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In social and economic surveys, it can be difficult to directly reach units of the target population, and indirect sampling is often advocated to solve this issue. In indirect sampling, the sample is drawn from a frame population that is linked to the target population, and estimation of target population parameters is typically achieved through the Generalized Weight Share Method (GWSM). This method provides a weight, for every unit of the target population, that depends on the one hand, on the sampling weights in the frame population and, on the other hand, on the link weights between the frame population and the target population. In the present study, we focus on the situation in which the units from the frame population are linked to one and only one unit from the target population (Many-to-One case). This situation is encountered at the French postal service where addresses are sampled instead of postman rounds. We aim at understanding of the impact of the link weights on the efficiency of the GWSM estimators. We derive variance expressions and optimality results for a large class of sampling designs. Moreover, we note that the Many-to-One case can lead to too many links to observe. We alleviate the problem by introducing an intermediate population and double indirect sampling. The question of the loss of precision in this situation is discussed in detail through theoretical results and simulations. These findings help to explain the loss of precision of double GWSM estimators observed recently at the French postal service.

Introduction

In France, at the postal service (La Poste), only part of the postal traffic goes though an automatized processing. The monthly postal traffic is unknown and is estimated through probability-based surveys. For many years, La Poste has drawn samples directly in the population of postman rounds, which is considered to be the population of interest or the target population. Since 2008, the organization of postman rounds has changed and is no longer stable over time. Sampling directly in the target population has become impossible, and the sampling design has evolved to an indirect sampling design where the frame population is the population of postal addresses.

Indirect sampling has been extensively studied in the survey sampling literature; see [START_REF] Deville | Indirect sampling: The foundations of the generalized weight share method[END_REF], [START_REF] Lavallée | Indirect sampling[END_REF], [START_REF] Kiesl | Indirect sampling: a review of theory and recent applications[END_REF] and [START_REF] Haziza | Construction of weights in surveys: A review[END_REF] for a general theory and reviews with many references inside. As described in [START_REF] Kiesl | Indirect sampling: a review of theory and recent applications[END_REF], indirect sampling has many applications, including household panels: [START_REF] Kalton | Weighting schemes for household panel surveys[END_REF]; [START_REF] Rendtel | Weighting and calibration for household panels[END_REF] and hard-to-reach populations: [START_REF] Deville | Extension of the indirect sampling method and its application to tourism[END_REF] for tourism and De [START_REF] De Vitiis | A methodological approach based on indirect sampling to survey the homeless population[END_REF] for the homeless population. The use of indirect sampling at La Poste, has been introduced in [START_REF] Dessertaine | Utilisation de la méthode généralisée du partage des poids dans le cadre des estimations de flux de courrier à la poste[END_REF] and [START_REF] Lardin-Puech | Estimation du trafic de courrier distribué en france métropolitaine par sondage indirect[END_REF]. A useful estimation method in the context of indirect sampling is the Generalized Weight Share Method (GWSM), as detailed in [START_REF] Deville | Indirect sampling: The foundations of the generalized weight share method[END_REF]. It consists of using the links that relate the frame and the target populations, and considering a total over the target population to be a total over the frame population. The use of standard methods, such as the Horvitz-Thompson estimator, is then possible and leads to the GWSM estimator. [START_REF] Kalton | Weighting schemes for household panel surveys[END_REF], [START_REF] Deville | Indirect sampling: The foundations of the generalized weight share method[END_REF] and [START_REF] Kiesl | Indirect sampling: a review of theory and recent applications[END_REF], among others, studied in detail the properties of the GWSM estimator, and in particular the question of the impact of the link structure and link weights on its variance. Optimality, in the sense of variance minimization with respect to the link weights for unbiased GWSM estimators, is discussed at length in [START_REF] Deville | Indirect sampling: The foundations of the generalized weight share method[END_REF]. The conclusion is that optimal GWSM estimators, that do not depend on the variable of interest, cannot be derived for general link structure. In the present study, we propose to focus on a particular link structure described below that is of interest at La Poste, and go further into the understanding of indirect sampling.

At the French postal service, every postal address is linked to only one postman round for a given day. This link structure is of a particular type, called Many-to-One (MtO), where each unit in the frame population is linked to one and only one unit in the target population. This situation is also encountered in households surveys where individuals are sampled instead of households. This link structure is studied in detail in the present paper. We derive the optimal GWSM estimator that minimizes the variance among the unbiased GWSM estimators, for a large class of indirect MtO sampling designs. This class includes Poisson sampling, simple random sampling without replacement, and stratified designs, including the design implemented at La Poste. Moreover, we derive a simple formula to evaluate the increase in variance when using a non-optimal GWSM estimator compared to the optimal one.

The weight share method is simple but requires that the links between the indirectly sampled units in the target population, and the frame population, are known. The problem faced by the French postal service with MtO links, is that every unit in the target population is linked to a very large number of units in the sampling frame. At La Poste, all addresses delivered during a sampled postman round must be known. On average, there are approximately 500 addresses per postman round, and it is not possible to enumerate all of the addresses in the morning, before the departure of the postman.

To get around this problem, La Poste has set up a double indirect sampling design, using the outgoing mail sorting boxes as an intermediate population. This method is much faster than simple indirect sampling. Only the addresses of the sampled boxes and the boxes of the sampled rounds are to be observed, which is approximately 60 items on average, compared to the 500 for simple indirect sampling. Given the situation at La Poste, double indirect sampling is an alternative to a time consuming simple indirect sampling design. This alternative is necessary to be able to collect the data. However, using this method, La Poste observed a deterioration in the precision of the estimators. The goal of the present paper is to understand the loss of precision observed at La Poste, but also to give guidelines for the implementation of an efficient double indirect sampling design.

In Section 2 of the present paper, we consider a large class of indirect MtO sampling designs. We derive the optimal GWSM estimator and give a simple expression of the difference in the variances between the optimal GWSM estimator and any non-optimal unbiased GWSM estimator. For Poisson sampling, we also prove that the optimal GWSM estimator is less precise than the direct estimator. The result on optimal GWSM estimator is used in Section 3, where we introduce and compare double indirect MtO sampling with simple indirect MtO sampling with optimal link weights. In the same section, we detail situations where there is a gain, in terms of the smaller number of links to observe, from using double indirect sampling compared to simple indirect sampling. In Section 4, we define several setups and illustrate, through a Monte Carlo study, the impact of double indirect sampling on the precision of the estimators. Depending on the link structure, we observe that there could be no loss at all, or, on the contrary, an enormous loss of precision. In Section 5, we also give numerical results in a context similar to La Poste. These results allow us to explain the loss of precision observed at La Poste, when using a double indirect sampling design compared to a simple direct sampling design. Section 6 concludes the paper while the proofs are given in the Appendix.

2 Indirect sampling

GWSM

In some surveys, it is not possible to sample directly from the target population U T . However, a sampling frame can exist for a population U F , that is related to U T in such a way that any unit in U T is linked to at least one unit in U F . Indirect sampling refers to selecting a sample s F from U F by using standard selection methods and derive estimators for parameters defined on U T . In the case of the La Poste survey, the population of interest is made of postman rounds on a given day in France, but no sampling frame for the rounds exists. A sampling frame for postal addresses is however available, and each postman round contains at least one address.

Let us denote by N T (resp. N F ) the size of U T (resp. U F ) and by l ik the link between i ∈ U F and k ∈ U T , with l ik = 1 if the units i and k are linked, and l ik = 0 otherwise. Units from U F can be linked in several ways to units from U T [START_REF] Deville | Indirect sampling: The foundations of the generalized weight share method[END_REF]. We can have "Many-to-One" (MtO) links as on the left panel of Figure 1, namely each unit from the frame population U F is linked to only one unit from the target population U T . We can have "One-to-Many" links as on the middle panel of Figure 1, namely each unit from U T is linked to only one unit from U F . Finally, we can have "Many-to-Many" (MtM) links as on the right panel of Figure 1, with units from U F linked to several units in U T and reciprocally. In the La Poste survey, an address almost always belongs to only one round and the links are MtO. Following [START_REF] Deville | Indirect sampling: The foundations of the generalized weight share method[END_REF], we start by making the assumption that the links between U F and U T can be observed for every unit in U F and every unit in U T .

Figure 1: The different types of links between U F and U T .

Let y be the variable of interest measured on U T , and let y k be its value for the k-th unit in U T . We are interested in estimating t y = k∈U T y k , the total of y over U T . A sample s F is drawn from U F according to a sampling design p F (•). We can associate to s F the vector (I 1 , . . . , I N F ) where I i is the sample membership indicator of the individual i from U F defined as I i = 1 if i is selected and I i = 0 otherwise. We denote by π i = P r(i ∈ s F ) the firstorder inclusion probability of unit i and by π ii = P r(i, i ∈ s F ) the secondorder inclusion probability of units i and i . We suppose that all of the units i have a positive inclusion probability π i > 0 and we denote by d i = 1/π i their sampling weights. Two standard sampling designs are considered in the present paper: simple random sampling without replacement (SRSWOR) of size n F , and Poisson design with inclusion probabilities π i , i ∈ U F . For SRSWOR, p F assigns an equal probability to all without replacement samples of size n F and zero otherwise. The sampling weights are equal to d i = N F /n F for all i in U F . For Poisson sampling, the variables I i 's are independent and distributed as Bernoulli random variables with parameter π i .

The sample s F in U F leads to a sample s T in U T , which is made of the units in U T linked to at least one unit in s F . However, the sampling design p T (•) which governs the selection of s T , as well as the associated first-order inclusion probabilities, may be difficult to derive [START_REF] Deville | Indirect sampling: The foundations of the generalized weight share method[END_REF]. Fortunately, as we will see in the next paragraph, for the GWSM estimators only p F (•) and the associated inclusion probabilities are needed for the estimation of t y and p T (•) will not be used.

Consider, for all i ∈ U F and k ∈ U T , some non negative link weight θ ik associated to the link l ik between U F and U T , such that θ ik is positive when l ik = 1 and θ ik = 0 otherwise. We define the standardized link weights θik = θ ik / i ∈U F θ i k which satisfy the constraint i∈U F θik = 1. To compute the standardized link weights θik for a given k in U T , one needs to know i∈U F θ ik , which implies that the units i in U F linked with k must be known. We can take as an example θ ik = l ik , and in this case, standardization implies that the number of units i in U F linked with k is known. More general weights can also be considered; see [START_REF] Deville | Indirect sampling: The foundations of the generalized weight share method[END_REF] and [START_REF] Haziza | Construction of weights in surveys: A review[END_REF]. The total t y can then be written as the total on U F of the variable k∈U T θik y k , i ∈ U F , as follows:

t y = k∈U T y k = k∈U T i∈U F θik y k = i∈U F k∈U T θik y k .
The estimation of t y can be obtained by considering standard estimators based on the sample s F selected from U F . The Horvitz-Thompson (HT) estimator of t y is given by

ty1 = i∈s F d i k∈U T θik y k (1)
and it estimates unbiasedly the total t y , provided that the link weights θik , i ∈ U F , are standardized. This estimator is the Generalized Weight Share Method (GWSM) estimator, and it was studied by [START_REF] Deville | Indirect sampling: The foundations of the generalized weight share method[END_REF]. It can also be written as follows:

ty1 = k∈U T tθ k y k
where tθ k = i∈s F d i θik is the HT estimator of the total t θk = i∈U F θik = 1, for all k in U T . To calculate ty1 , we only need to standardize the link weights that correspond to the sampled units k in U T .

Let us denote

∆ ii = π ii -π i π i π i π i , i, i ∈ U F .
The variance of the GWSM estimator ty1 is given by:

Var( ty1 ) = i∈U F i ∈U F ∆ ii k∈U T θik y k k ∈U T θi k y k .
Interestingly, this variance can be rewritten as:

Var( ty1 ) = k∈U T k ∈U T y k y k Cov( tθ k , tθ k ), (2) 
where

Cov( tθ k , tθ k ) = i∈U F i ∈U F ∆ ii θik θi k .
The variance expression (2) is similar to the variance in the case of a direct sampling design on U T . However, while for direct sampling, the covariance involved in the double sum is between the sample membership indicators weighted by the sampling weights, for indirect sampling, the covariance is between the HT estimators of the link weights totals. [START_REF] Deville | Indirect sampling: The foundations of the generalized weight share method[END_REF] were interested in finding the optimal weights θopt ik that minimize the variance Var( ty1 ) for any survey variable y, namely Var( topt y1 ) ≤ Var( ty1 ), for all y,

where

topt y1 = i∈s F d i k∈U T θopt ik y k
is the GWSM estimator obtained by using the optimal link weights θopt ik , i ∈ U F , k ∈ U T . Such a criterion is called strong optimality criterion and the optimal weights derived in this way, if they exist, should not depend on the survey variable y. However, the optimal link weights satisfying (3) might not exist, even for particular sampling designs such as Poisson or SRSWOR sampling designs (see [START_REF] Deville | Indirect sampling: The foundations of the generalized weight share method[END_REF]. Therefore, [START_REF] Deville | Indirect sampling: The foundations of the generalized weight share method[END_REF] suggested the weak optimality criterion which consists in finding the weak-optimal weights θwopt ik which minimize the variance Var( ty1 ) for the particular variables y such that y k = 1 for a unit k ∈ U T and y k = 0 for k = k ∈ U T . We obtain for these particular variables:

ty1 = i∈s F d i θik = tθ k .
Thus, the weak-optimal weights θwopt ik are the weights that minimize the variance of tθ k :

( θwopt ik ) i∈U F = arg min θik ,i∈U F Var( tθ k ), for all k ∈ U T .
(4) [START_REF] Deville | Indirect sampling: The foundations of the generalized weight share method[END_REF] derived weak-optimal link weights for Poisson and SRSWOR, and noticed that the weak optimality is a necessary condition for strong optimality.

MtO links and optimal weight links

The strong minimization problem previously mentioned becomes easier to handle when the links between U F and U T are Many-to-One. With MtO links, every unit from U F is linked to only one unit from U T , and we can order the units in U F with respect to their common linked unit in U T . For a given unit k ∈ U T , let us denote by U F k , with size N F k = i∈U F l ik , the set of units i in U F that are linked to k. In what follows, we consider that units in U F are ordered according to these subpopulations. Let ∆ = (∆ ii ) i,i ∈U F be the matrix of size N F × N F . Thanks to this ordering, we can consider the submatrix 

∆ kk = (∆ ii ) i∈U F k ,i ∈U F k of ∆ corresponding
∆ = (∆ kk ) k,k ∈U T .
Let 1 k be the N F k -dimensional vector of ones. For MtO links, a sampling design is said to satisfy the ∆-property if, for all k ∈ U T , ∆ k is invertible and, for k = k ∈ U T , we have

∆ k,k =k = c kk 1 k 1 t k
with c kk not depending on i and i .

(5)

The ∆-property holds for Poisson sampling, SRSWOR and stratified SR-SWOR under conditions detailed below.

For Poisson sampling from U F with inclusion probabilities π i , i ∈ U F , ∆ k is diagonal with positive terms, thus invertible, and c kk = 0 for all k = k ∈ U T . For SRSWOR of size n F from U F , ∆ k is invertible as soon as N T > 1, as can be seen in [START_REF] Deville | Indirect sampling: The foundations of the generalized weight share method[END_REF], page 174. If we denote f = n F /N F , we have

c kk = - 1 -f f 1 N F -1 ,
which does not depend on i and i , for all k = k ∈ U T . For stratified SRSWOR with H strata of size N h in U F , h = 1, . . . , H, let us denote f h = n h /N h . The submatrix ∆ k,k =k cannot generally be written as c kk 1 k 1 t k , especially if k is linked to one unit i from stratum h and one unit i from stratum h = h. The ∆-property holds if we assume that, for all k in U T , all units i linked to k belong to the same stratum h and if, for each stratum h, there are at least two units of U T linked to h. Then ∆ k is invertible, and we have

c kk =      - 1 -f h f h 1 N h -1
, if all units in U F linked to k and k are in the same stratum h 0 otherwise.

Thus, c kk does not depend on i and i , for all k = k ∈ U T .

The first part of Proposition 2.1 gives an expression of the variance of the GWSM estimator while the second part gives the optimal link weights, in the MtO case, for sampling designs that satisfy the ∆-property.

Proposition 2.1. If the links are MtO and the sampling design satisfies the ∆-property, then:

Var( ty1 ) = k∈U T y 2 k Var( tθ k ) + k∈U T k =k∈U T y k y k c kk . ( 6 
)
where tθ k = i∈s F d i θik is the HT estimator of the total t θk = 1 for all k ∈ U T . Moreover, the optimal link weights verifying the strong-optimality criterion given in (3) are given by

( θopt ik ) i∈U F k = ∆ -1 k 1 k 1 t k ∆ -1 k 1 k -1 , for all k ∈ U T .
The second term in the right-hand term of (6), does not depend on the link weights. As a consequence, minimizing the variance of ty1 , regardless of the variable y is, is equivalent to minimizing Var( tθ k ) for all k in U T . Using the terminology introduced by [START_REF] Deville | Indirect sampling: The foundations of the generalized weight share method[END_REF] (see also relations (3) and ( 4)), this result means that, for MtO links and sampling designs that satisfy the ∆-property, weak -optimality of the link weights is equivalent to strongoptimality and the link weights will be simply called optimal in the following.

For Poisson sampling, we have ∆ ii = (1-π i )/π i and the optimal link weights are equal to:

θopt ik = l ik /∆ ii i ∈U F l i k /∆ i i , (7) 
for all i ∈ U F and k ∈ U T . For SRSWOR sampling, the optimal link weights are equal to θopt ik = l ik / i ∈U F l i k , for all i ∈ U F and k ∈ U T . Details on the derivation of these optimal link weights can be found in [START_REF] Deville | Indirect sampling: The foundations of the generalized weight share method[END_REF]. For stratified SRSWOR with the assumptions previously mentioned, it is easy to prove that the optimal link weights are the same as those for SR-SWOR by following the proof in [START_REF] Deville | Indirect sampling: The foundations of the generalized weight share method[END_REF].

Consider now the GWSM estimator ty1 given in (1) and computed with some standardized link weights θik , i ∈ U F , k ∈ U T . Consider also the optimal GWSM estimator denoted by topt y1 , and computed with the optimal link weights θopt ik . For MtO links and designs that satisfy the ∆-property, it is possible to derive a new formula for the loss of efficiency between ty1 and topt y1 . This loss can be expressed as a simple function of the variances of the HT estimator of

t θk -θopt k = i∈U F ( θik -θopt ik ) = 0, k in U T .
Proposition 2.2. If the links are MtO and the sampling design satisfies the ∆-property, then the loss of efficiency compared with optimal link weights θopt ik , i ∈ U F , k ∈ U T , is given by:

Var( ty1 ) -Var( topt y1 ) = k∈U T y 2 k Var( tθ k -tθ opt k ) = k∈U T y 2 k Var( tθ k -θopt k ),
where

tθ opt k = i∈s F d i θopt ik is the HT estimator of the total t θopt k = i∈U F θopt ik = 1, and tθ k -θopt k = i∈s F d i ( θik -θopt ik ) is the HT estimator of the total t θk -θopt k = 0, for all k ∈ U T .
As mentioned before, the matrices ∆ derived with Poisson and SRSWOR designs satisfy the ∆-property. Thus, we can compute easily the loss of efficiency between ty1 and topt y1 as formulated in the following corollary.

Corollary 2.1. If the links are MtO and if the sampling designs are Poisson or SRSWOR, then the loss in efficiency between ty1 and topt y1 has the expression given in Proposition 2.2. For Poisson sampling, we have:

Var( ty1 ) -Var( topt y1 ) = k∈U T y 2 k i∈U F 1 -π i π i ( θik -θopt ik ) 2 .
For SRSWOR, we have:

Var( ty1 ) -Var( topt y1 ) = c k∈U T y 2 k i∈U F ( θik -θopt ik ) 2 , where c = N 2 F 1 n F - 1 N F 1 N F -1 .
The previous expression for SRSWOR can be easily adapted to stratified SRSWOR under the assumptions mentioned previously.

Comparison of direct and optimal indirect MtO sampling designs

It is not possible to compare theoretically the variances of simple indirect and direct estimators for general sampling designs even if we restrict ourselves to MtO links. However, for Poisson sampling, we prove in Proposition 2.3 that the variance of the direct HT estimator is always smaller than the variance of the simple GWSM estimator when using optimal link weights. Let us consider a Poisson sampling design in U F with first-order inclusion probabilities π i , i ∈ U F . Because of the independence between the inclusion indicators, this sampling design induces a Poisson sampling design on U T . Accounting for the MtO links between U F and U T , we can calculate the probability of inclusion of every unit k ∈ U T . We have that

π k = P ( at least one i ∈ U F linked to k is sampled in s F ) = 1-Π i∈U F (1-π i ) l ik .
Proposition 2.3. Let us consider a sample s F drawn in a population U F , using a Poisson sampling design with inclusion probabilities 0 < π i < 1. Let U T be another population associated to U F through MtO links l ik . The sample s T deduced from s F using the MtO links between U F and U T can be considered as drawn in U T , using Poisson sampling with inclusion probabilities

π k = 1-Π i∈U F (1-π i ) l ik .
The variance of the direct HT estimator, ty = k∈s T y k /π k , is smaller than the variance of the GWSM estimator topt y1 = i∈s F k∈U T θopt ik y k /π i calculated with optimal link weights given in Equation (7).

As already stated, for Poisson sampling and MtO links, the optimal link weights lead to the smallest possible variance of the simple GWSM estimator for any variable of interest. So, under the assumptions of Proposition 2.3, the simple indirect estimator is always less precise than the direct estimator.

The MtO case is interesting because it is possible, at least for Poisson sampling, to compare the direct and the indirect sampling designs. Moreover, for several standard sampling designs, it is possible to define optimal link weights and to calculate the exact loss of precision when using non-optimal link weights. However, when the number of units in the frame population linked with a unit in the target population is large, all of the links might be not observable, and an MtO indirect sampling could be very costly or even unfeasible. This problem arises for the La Poste survey in which the number of addresses per postman round is 500, on average, and where it is not possible to enumerate all addresses before the departure of the postman in the morning. One solution is to use a double indirect sampling design as detailed in the next section.

3 Double indirect sampling 3.1 Double GWSM Double indirect sampling or indirect sampling in two steps (see [START_REF] Deville | Indirect sampling: The foundations of the generalized weight share method[END_REF]) consists of introducing an intermediate population U M in between the frame and the target populations, and using the same principle as for simple indirect sampling. There could be various reasons for introducing such a population. One reason could be that the target population U T units are only reachable through U M . Another reason could be to simplify derivations. For example, [START_REF] Deville | Indirect sampling: The foundations of the generalized weight share method[END_REF] introduces an artificial intermediate population to simplify the search of an optimal standardized link matrix. In the La Poste survey, the objective is rather to decrease the number of links to observe. At La Poste, the intermediate population is a population of mail sorting boxes. Every morning, postmen sort the letters into boxes and deliver the letters from their allocated boxes (see Figure 2). The population of boxes is used as an intermediate population U M to link the addresses from the frame population U F to the postman rounds from the target population U T . jk be the link between j ∈ U M and k ∈ U T . A unit i from the frame population U F could be linked to a unit k from the target population U T by means of the unit j from the intermediate population. The three populations U F , U M and U T could be linked in various ways, as in simple indirect sampling with MtO, OtM and MtM links (see Figure 1).

As in Section 2, we consider non negative link weights θ ik associated with the links l ik between U F and U T such that θ ik is positive when l ik = 1 and θ ik = 0 otherwise. We consider also the non negative weights θ F M ij associated with the links l F M ij between U F and U M such that θ F M ij is positive when l F M ij = 1 and θ F M ij = 0 otherwise. Finally, θ M T jk are non negative weights associated with the links between U M and U T and are defined in a similar way. With this double indirect sampling design, it can be seen that the links between units i from U F and k from U T are weighted by j∈U M θ F M ij θ M T jk , and this link weight could be different from the link weight θ ik used in simple indirect sampling.

Let θik be the standardized link weight used in simple indirect sampling from U F to U T , namely i∈U F θik = 1 for all k ∈ U T . We denote by θFM ij , respectively θMT jk , the link weights between U F and U M , respectively U M and U T , such that the link weights used in double indirect sampling between the frame population U F and the target population U T are normalized, namely

i∈U F j∈U M θFM ij θMT jk = 1 for all k ∈ U T .
Note that this standardization does not require us to standardize each set of links θFM ij and θMT jk . However, to obtain these standardized link weights, for a given k in U T , one needs to know the sum of the link weights of units from U F linked to k passing by the intermediate

population U M , namely i∈U F j∈U M θ F M ij θ M T
jk should be known. The finite population total t y of y can then be written as a total on the frame population U F as follows:

t y = k∈U T y k = k∈U T   i∈U F j∈U M θFM ij θMT jk   y k = i∈U F   k∈U T j∈U M θFM ij θMT jk y k   .
An estimator of t y can be derived easily by using the unbiased HT estimator as follows:

ty2 = i∈s F d i   k∈U T j∈U M θFM ij θMT jk y k   . ( 8 
)
We call ty2 the double GWSM estimator, and its variance is given by:

Var( ty2 ) = i,i ∈U F ∆ ii k∈U T j∈U M θFM ij θMT jk y k k ∈U T j ∈U M θFM i j θMT j k y k .

MtO links

In this subsection, we focus on MtO links between the frame and the target populations. Comparing expressions ( 1) and ( 8), we can deduce that the double GWSM estimator ty2 can be viewed as a simple GWSM estimator with link weights θik = j∈U M θFM ij θMT jk . Assuming that the sampling design verifies the ∆-property, we can apply Proposition 2.2 to determine the differences of the variances between double and simple GWSM. Thus, Proposition 2.2 shows that, for any variable of interest y, the optimal simple GWSM estimator is always better than the double GWSM estimator. The loss of efficiency of the double GWSM estimator with respect to the optimal simple GWSM estimator depends on the variances of the HT estimators i∈s

F d i ( j∈U M θFM ij θMT jk -θopt ik ) for k ∈ U T .
This loss depends on the configuration of the link weights used in the double indirect sampling. If the double indirect sampling weights, j∈U M θFM ij θMT jk , are close to the optimal simple indirect sampling weights, θopt ik , for all i ∈ U F , then the use of a double GWSM estimator will cause a small loss in precision. Otherwise, the loss could be substantial.

In the following subsection, we describe a particular double indirect sampling design that requires fewer links than its simple indirect sampling counterpart while maintening the same precision.

MtO-MtO links and double standardization

Consider the MtO-MtO case where the links between the frame and the intermediate population are MtO, and the links between the intermediate and the target population are also MtO. This case implies that the links between U F and U T are MtO. In this situation, the double GWSM estimator has a simple expression, since a unit i from the frame population is linked to a single unit j from the intermediate population, which is itself linked to a single unit k from the target population. Thus, for a given sampled unit i ∈ U F , the sums over the intermediate and the target populations in the double GWSM estimator ty2 given by ( 8), contain only one non-zero element equal to θFM ij θMT jk y k . To compute ty2 , we need to compute only the standardized link weight θFM ij θMT jk that corresponds to the unique unit k ∈ U T linked to the sampled unit i ∈ U F through the unique j ∈ U M .

In this MtO-MtO setup, the choice of the standardization method arises and has an impact on the number of links to observe. One can consider link weights θFM ij and θMT jk that are either both standardized i ∈U F θFM i j = 1 and

j ∈U M θMT j k = 1 , or globally standardized i ∈U F j ∈U M θFM i j
θMT j k = 1 . Note that if both link weights are standardized (double standardization), then they are also globally standardized, but the converse is not true. As detailed below, using MtO-MtO with double standardization could allow for a reduction in the number of links to observe compared to the MtO-MtO with global standardization, or even compared to the simple MtO GWSM. jk separately. To compute θFM ij , the links between U F and the units j ∈ U M indirectly sampled through i ∈ s F need to be observed, which gives the total number of links to observe equal to N F j = i ∈U F l F M i j . Similarly, to compute θMT jk , the links between U M and the indirectly sampled k ∈ U T must be observed which leads to N M k = j ∈U M l M T j k links to observe. Thus, for MtO-MtO GWSM with double standardization and for a given unit i ∈ s F , the total number of links to observe is equal to N F j + N M k . The right plot of Fig. 3 shows the links to observe (black links) on a small example for MtO-MtO with double standardization.

For MtO-MtO with global standardization, we need to observe the links between U F and the units j ∈ U M linked to the indirectly sampled units k ∈ s T , namely we need to know i ∈U F j ∈U M l F M i j l M T j k = j ∈U M N F j l M T j k . We also need the number of links between U M and the indirectly sampled k ∈ U T , namely we need to know N M k = j ∈U M l M T j k . Thus, for MtO-MtO links with global standardization, we need to observe j ∈U M N F j l M T j k + N M k links. The middle plot of Fig. 3 shows the links to observe (black links), for a given unit i ∈ s F , for MtO-MtO with global standardization.

Consider now simple MtO indirect sampling. A unit i from the frame population can be linked to a single unit k from the target population, and the sum over the target population in the simple GWSM estimator ty1 given by ( 1) contains only a non-zero element equal to θik y k . To compute ty1 , for each unit i ∈ s F , we need to compute the standardized link weight θik that corresponds to the unique unit k ∈ U T linked to i ∈ s F . This circumstance implies that we need to observe the links between the indirectly sampled unit k of the target population and the frame population; namely we need to observe a number of links equal to N F k = i ∈U F l i k . The left plot of Fig. 3 shows the links to observe (black links) for a given unit i ∈ s F in MtO indirect sampling.

It is possible to compare the number of links between MtO-MtO with double standardization with simple MtO if we assume that

N F k = N F j N M k , N F j > 2 and N M k > 2. We then have N F j + N M k < N F j N M k = N F k , (9) 
and the double GWSM with double standardization always requires fewer links to observe than the simple GWSM. Moreover, the smallest number of links to observe with the double GWSM with double standardization is achieved when

N F j = N M k = N 1/2
F k , which is the most favorable situation for the double GWSM.

The assumption N F k = N F j N M k is true if the numbers of links N F j are equal for all j linked to the same k in U T . Indeed, if we let C k denote a positive constant, that does not depend on j, such that N F j = C k for all units j ∈ U M linked to k in U T , then,

N F k = j∈U M l M T jk N F j = C k j∈U M l M T jk = C k N M k = N F j N M k . ( 10 
)
This remark is interesting as it stands in that when the number of links between U F and U M is the same for each unit in U T , there will be fewer links to observe when using MtO-MtO with double standardization, regardless of what are the links between U M and U T (see Setups 1 and 3 in Section 4). Furthermore, if the link weights are the link indicators, namely

θ F M ij = l F M ij , θ M T jk = l M T
jk , θ ik = l ik , and N F k = N F j N M k , then the double GWSM and the simple GWSM estimators are equal. Indeed,

j∈U M θFM ij θMT jk = j∈U M l F M ij N F j l M T jk N M k = l ik N F k = θik . (11) 
In such a situation, the double GWSM with double standardization and the simple GWSM have the same precision, but the double GWSM ensures a gain in terms of the smaller number of links to observe. However, if the condition N F k = N F j N M k is not fulfilled, (see Setups 2 and 4 in Section 4 for further details), the double GWSM could be less efficient than the simple GWSM estimator.

For the double GWSM with global standardization, the number of links to observe is

j ∈U M l M T j k N F j + N M k = N F k + N M k
, which is greater than the number of links to observe for both, the simple GWSM and the double GWSM with double standardization.

In Fig. 3, N F k = 10, N F j = 5 and N M k = 2. The number of links to observe is 10 for the simple GWSM (left plot of the figure), 12 for the double GWSM with global standardization (middle plot) and 7 for the double GWSM with double standardization (right plot). In the La Poste situation, where the double GWSM with double standardization is used, the gain is much larger because on average N F k = 500, N F j = 10 and N M k = 50. Thus, we have N F j + N M k = 60 links to observe for the double GWSM with double standardization while it is N F j N M k = 500 for the simple GWSM and N F k + N M k = 550 for the double GWSM with global standardization.

Double GWSM with global standardization is of poor interest in the context of La Poste. The loss of precision is not compensated by a gain in the number of links to observe. In what follows, we focus only on double GWSM with double standardization.

Simulation study

We have shown in Subsection 3.1 that, in the case of MtO links and sampling designs with the ∆-property, the loss of precision of the double GWSM compared to the optimal simple GWSM depends on the variance of the HT estimators

i∈s F d i ( j∈U M θFM ij θMT jk -θopt ik ) for all k ∈ U T .
In other words, the increase in the variance depends on the configuration of the double GWSM link weights j∈U M θFM ij θMT jk , compared to the optimal simple link weights θopt ik . In this section, we conduct a Monte Carlo study to analyze the influence of the link weights on the efficiency of the double GWSM estimator.

Population and link setups

We have generated three populations, U F , U M and U T as well as the links between them, to meet the framework assumed in Subsection 3.1 as well as at the La Poste situation. At La Poste, the target population U T is the population of rounds, the frame population U F is the population of addresses, and the intermediate population U M is the population of boxes. All links are MtO, which means that an address can only be in one box and a box in only one round. There are on average 50 boxes per round and 500 addresses per round. The three populations U F , U M and U T were generated in the following way. The target population of rounds U T of size N T = 6 958 was obtained from La Poste's historical data. Then, based on U T , we generated the intermediate population of boxes U M of size N M = 347 900 = 50 × 6 958, and the frame population of addresses U F , of size U F = 3 479 000 = 500 × 6 958, together with the links.

We are interested in estimating the total t y = k∈U T y k of a study variable y which is a particular measure of the postal traffic obtained from La Poste's historical data. For confidentiality reasons, the study variable y was transformed.

We considered different setups of MtO links between U F and U M and between U M and U T . For ease of comparison, we kept unchanged the links between U F and U T in all scenarios. In this double indirect sampling design, additional care must be taken to ensure that, if unit i ∈ U F is linked to k ∈ U T in simple indirect sampling case, then it must be linked to k ∈ U T for double indirect sampling also. There is a link between U F (resp. U F , U M ) and U T (resp. U M , U T ) when an address (resp. an address, a box) is part of a round (resp. a box, a round). The first set of links was generated between U F and U T , and is such that the number of addresses N F k in a round k of U T is equal to 500, for all rounds k ∈ U T . Thus, N F k = j∈U M l M T jk N F j = 500, where N F j is the number of addresses in the box j. This configuration means that all units from the target population have the same number of links with the frame population. As detailed in Subsection 4.2, the advantage of this simplification is that, under some supplementary assumptions on the populations and on the inclusion probabilities that are true in our setting, the simple GWSM estimator has the same expression as a direct HT estimator. To study the effect of the links structure on the efficiency of the double GWSM estimator, we created four different setups of links with the intermediate population. The links between U F and U M (resp. U M and U T ) were generated either uniformly or not. The links between U F and the boxes j of U M are called "uniform" when there is the same number of addresses, N F j , in all boxes j of U M that are part of the same round k of U T . They are called "non-uniform" when we generate one address in all boxes of U M that are part of the same round of U T , except for one box j 0 which contains the remaining addresses. This last situation is a type of extreme unbalanced case for the number of links between U F and U M . The links between U M and U T are "uniform" when there is the same number of boxes N M k per round. The "non-uniform" case is generated by considering two boxes for 6 286 rounds and 499 boxes for the remaining 672 rounds. Note that we cannot choose non-uniform links between U M and U T with one box or 500 boxes in a round together with non-uniform links between U F and U M similar to the ones proposed above. The reason is that we have set a constraint of 500 addresses per round. Under this constraint, having one box (resp. 500 boxes) in a round implies having 500 addresses (resp. one address) in each box of the round, which corresponds to uniform links between the addresses and the boxes.

The four setups are detailed below (see also Figure 4 for graphical examples):

• Setup 1: Uniform/Uniform: the number of links between U F (resp. U M ) and U M (resp. U T ) is uniform. In this setup, the double GWSM and the simple GWSM estimators are equal, as proved in Subsection 3.3 (see ( 11)).

• Setup 2: non-uniform/Uniform: the links between U F and U M are nonuniform while the links between U M and U T are uniform.

• Setup 3: Uniform/non-uniform: the links between U F and U M are uniform while the links between U M and U T are non-uniform. In this setup, the N F j must be rounded as illustrated on Figure 4 (bottom left panel) where, for the second unit in U T , there are 6 addresses to divide between 4 boxes, and thus, 2 boxes contain 1 address each, while the other 2 boxes contain 2 addresses each. Ignoring the rounding of the N F j , the relation N F k = N F j N M k holds (see also equation ( 10)), which allows for the equality of the simple and double GWSM estimators.

• Setup 4: non-uniform/non-uniform: the links between U F and U M , and between U M and U T are non-uniform.

Sampling designs and GWSM estimators

We consider two sampling designs that satisfy the ∆-property: the SRSWOR of sizes n = 500 and n = 1 000, as well as the Bernoulli design (which is a Poisson design with equal inclusion probabilities) with expected sample sizes equal to 500 and 1 000. Let y k , k ∈ U T , be a measure of the postal traffic in round k, as mentioned at the beginning of section 4.1. For each link setup, we compare the double GWSM estimator to the simple GWSM estimator, both computed on samples s F drawn from the frame population U F of addresses:

ty1 = i∈s F 1 π i k∈U T θik y k , ty2 = i∈s F 1 π i j∈U M θFM ij k∈U T θMT jk y k .
For the simple GWSM estimator, we consider the optimal link weights, which are equal to θik = l ik /N F k for SRSWOR and Bernoulli samplings. For the double GWSM, we consider θFM ij = l F M ij /N F k and θMT jk = l M T jk /N M k . The above simulation setting facilitates the comparison between the double GWSM estimator and the simple GWSM estimator by ensuring that only the double GWSM varies, while the simple GWSM remains fixed. In fact, the setting makes the simple GWSM very close to the direct HT estimator in the 4 setups. We compare also the double GWSM estimator to the direct HT estimator as calculated from samples s * T drawn directly from the target population U T of rounds using SRSWOR of size n T :

tHT = k∈s * T y k π k .
If the π i are small, the probability of drawing two or more units from U F that are linked to the same k in U T is small and we can approximate π k by N F k π i . In this Figure 4: The four setups situation, every unit from the target population is generally linked with at most one unit from the sample s F , and thus, for all k ∈ s T , we have i∈s F l ik 1. This hypothesis is true at La Poste because given the large number of postal addresses in the frame population, we never sample several addresses from the same round. Thus, we have:

ty1 = i∈s F 1 π i k∈U T θik y k = k∈U T y k i∈s F 1 π i θik k∈s T y k N F k π k i∈s F l ik N F k k∈s T y k π k
which means that, in our setting, the simple GWSM estimator is approximately equivalent to the direct HT estimator for the sample s T . Since this formula does not depend on the simulation setup, the simple GWSM does not vary between the setups.

Measures of efficiency and results

We have considered R = 100 000 samples according to the SRSWOR and Bernoulli sampling designs with sizes or expected sizes 500 and 1 000. We have computed the Monte Carlo relative bias of the simple GWSM and the double GWSM estimators:

RB M C ( ty1 ) = 100 × 1 R R r=1 t(r) y1 -t y t y and RB M C ( ty2 ) = 100 × 1 R R r=1 t(r) y2 -t y t y ,
where t(r) y1 and t(r) y2 are the simple and the double GWSM estimates respectively, computed for the r-th sample, r = 1, . . . , R. As a measure of efficiency, we have computed the relative root mean square error (RRMSE) of ty2 with respect to ty1 , and with respect to tHT :

RRM SE M C ( ty1 ) = M SE M C ( ty2 ) M SE M C ( ty1 ) and RRM SE M C ( tHT ) = M SE M C ( ty2 ) M SE M C ( tHT )
where

M SE M C ( ty2 ) = R -1 R r=1 t(r) y2 -R -1 R r=1 t(r) y2 2 ,
and M SE M C ( ty1 ), and M SE M C ( tHT ) are defined similarly. Table 1 contains the simulation results for the SRSWOR design. Similar results were obtained for Bernoulli sampling and are not reported here. The results are also very comparable for both sampling sizes. As expected, both GWSM estimators have a low Monte Carlo relative bias in all setups.

Moreover, we observe small differences between the RRMSE of the double compared to the simple GWSM, and the double GWSM compared to the direct HT estimators in all setups. This result was expected since the simple GWSM expression corresponds to a direct HT expression (see details at the end of Subsection 4.2). Small differences arise because the samples s * T , drawn directly in the target population, differ from the samples s T that are obtained through the samples s F using the links between U F and U T .

For Setups 1 and 3, as shown in Subsection 3.3, ty1 = ty2 . Thus, RRM SE M C ( ty1 ) = 100% and M SE M C ( ty1 ) = M SE M C ( ty2 ). The small loss of precision between the GWSM estimators in Setup 3 occurs because the relation

N F k = N F j N M k
is not exactly satisfied due to rounding errors.

For Setups 2 and 4, the equation N F k = N F j N M k does not hold at all. In Setup 2, if the sampled address i is alone in the box j, then N F j N M k = 1 * 50 which is far from N F k = 500. If i is in the box containing 451 addresses, then N F j N M k = 451 * 50 which is also far from N F k . In Setup 4, the difference between N F k and N F j N M k is even larger because we also let the N M k vary. We note an important loss of precision of the double GWSM estimator compared to the simple GWSM estimator in Setups 2 and 4.

The precision of the double GWSM estimator depends on how close the values N F j N M k and N F k are, for every j linked to the same k. As proved in equation ( 10), the uniform link structure between U F and U M implies that N F k = N F j N M k , regardless of the link structure between U M and U T . This remark helps to explain the good results for Setups 1 and 3 and the poor results for Setups 2 and 4.

It is also interesting to compare the number of links to observe for the two GWSM estimators in each setup. The simple GWSM estimator requires the observation of 500 links per sampled round in each setup. To compute the double GWSM estimator, there are 60 links to observe on average per sampled round in Setup 1, 457 in Setup 2, 276 in Setup 3 and 500 in Setup 4 (the averages are rounded values). For Setups 1 and 3, the equation N F k = N F j N M k (almost) holds, and thus, there will always be a gain in the number of links to observe (see equation ( 9)). It can be noted that this gain is even larger if the N M k are uniform. For Setup 2, the gain in the number of links is limited, while there is no gain in Setup 4.

The simulations illustrate that the link structure between the three populations has a large impact on the double GWSM estimator in terms of the precision, but also in terms of the number of links to observe. In the ideal situation of Setup 1, there is a clear advantage of using double indirect sampling for an MtO-MtO situation, while it is not at all recommended in situations like the one illustrated in Setup 4.

Application to the French Post Data

Before 2008, La Poste sampled directly the postmen rounds to estimate the monthly postal traffic. After a reorganization of the post offices in 2008, the population of rounds became incomplete and La Poste had to use indirect sampling through the frame population of addresses. Because of the large number of links to observe, a simple GWSM estimator was not possible. La Poste had to consider a double MtO-MtO indirect sampling design and a double GWSM estimator with double standardization. The use of double indirect sampling, compared to the previous direct sampling method, led to a precision loss of the estimators. The estimated standard deviations of the estimators were increased by a factor between 2 and 3. To complete the theoretical results of Sections 2 and 3, we propose, through simulations and in a setup similar to La Poste, to evaluate the loss of precision due to using double indirect sampling, and to check if the calculated loss is of the same order as the loss observed in reality.

In this application, we focus on simple GWSM and double GWSM, which are both computed on a sample of addresses, and a direct HT estimator computed on a sample of rounds. The samples are drawn according to SRSWOR designs. The sampling design at La Poste is more complex and involves a stratification based on a typology of the post offices. This stratification of the postal addresses ensures that a round cannot belong to two different strata of addresses, and that every stratum contains at least two rounds. Thus, the ∆ ∆ ∆-property holds for this sampling design (see details in Subsection 2.2 on stratified SRSWOR). The estimators are also more complex and involve calibration and winzorisation. Considering such complex designs and estimators is beyond the scope of the present study, and we focus on the SRSWOR sampling design with direct HT, and with simple and double indirect GWSM estimators.

We do not only look at the loss caused by the use of a double GWSM compared to a simple GWSM. We also examine the loss caused by the use of double indirect sampling compared to a direct sampling. The objective is to capture the total loss in the precision observed at La Poste when changing their sampling design from direct to doubly indirect.

The setup for the simulations below is close to the La Poste setup in the sense that the number of addresses in a box, and the number of boxes in a round were generated using observed distributions from La Poste data. Compared to the four setups in Section 4, the number of addresses in a round was not fixed at 500, but computed using the number of addresses in a box and the number of boxes in a round. The number of addresses in a box varies from 1 to 29 with two modes at 1 and 13, with rare observations at approximately 40 and 120. The number of boxes in a round varies from 28 to 73 with two modes at approximately 35 and 70, and rare observations between 100 and 1000. The average number of addresses in a box in this setup is 14, the average number of boxes in a round is 60 and the average number of addresses in a round is 841. This setup is close to Setup 4 in Section 4, but it has less variability in the number of links, with the number of addresses between 30 and 70 and the number of boxes between 1 and 29, while the number of addresses and boxes varies between 2 and 499 in Setup 4.

We consider two study variables y, and we are interested in estimating their totals on the target population of rounds. The first study variable is equal to 1 for all units, which gives a total over the target population equal to N T , while the second variable is a confidential measure of postal traffic obtained from La Poste data. For the selection of indirect sample, we consider simple random sampling without replacement with respective sizes of 500 and 1000 selected from the frame population of addresses. For the selection of direct sample, We also consider a simple random sampling without replacement with respective sizes 500 and 1000 selected in the target population of rounds.

As in Section 4, we compute, for R = 100 000 simulations, the Monte Carlo relative bias (RB) as a percentage of the simple (S) and double (D) GWSM estimators together with their mean square errors. For both variables (y = 1 and y =traffic), we use the RRMSE in percentage, to compare the double to the simple GWSM (see the two RRMSE columns relative to S in Table 2). For y =traffic, we also compare the double GWSM to the direct estimator (see the RRMSE relative to direct in the last column of Table 2). We note that, for y = 1, the MSE of the direct estimator is zero since the estimator is calibrated on the size of the population. Thus, the RRMSE of the double GWSM compared to the direct is infinite and not reported. We notice that there is almost no difference between the results obtained for the two sample sizes. As expected, given that all estimators are unbiased, the relative biases of the simple and double GWSM estimators in Table 2 are small for both variables of interest. Moreover, we observe a loss in precision by using the double GWSM estimator instead of the simple GWSM estimator for both variables. This loss is less important than those observed in Setups 2 and 4, since the differences in the weights between the double GWSM and the simple GWSM are smaller here and have less variability than in Setups 2 and 4. In Table 1 (see the last two columns), for Setup 2 (resp. Setup 4), the standard deviations are multiplied by a factor between 3 and 4 (resp. 10 and 13). In Table 2, the standard deviations are multiplied by a factor between 1 and 2 (resp. 2 and 3) for the "traffic" (resp. 1) variable when comparing D and S. The additional loss of precision between the S and the direct HT estimators is not negligible, and gives a factor between 1 and 2 for the "traffic"variable (1.38 for the sample size n F =500 and 1.45 for n F = 1000). In total, the standard deviations increase by a factor between 2 and 3 (approximately 2.3) when changing from direct to double indirect sampling. Interestingly, the loss of precision that we observe is of the same order as the loss observed in practice at La Poste.

Conclusion

The MtO situation in indirect sampling allows us to obtain optimal link weights for some classical sampling designs such as simple random sampling without replacement, Poisson sampling and stratified SRSWOR. In this context, it is also possible to derive an exact expression for the loss of precision when the link weights are not optimal. This expression shows that the increase of variance of the GWSM estimator depends on how far the link weights estimators are from the optimal link weights estimators. When the number of links to observe is large, it is possible to introduce a double indirect sampling design that allows us to reduce the number of links to observe when using a double standardization. As illustrated by our simulations, the double GWSM with double standardization proves to be especially interesting in some specific cases. It allows for a reduction in the number of observed links while maintaining the level of precision of a simple GWSM. However, it can be less useful in other cases, with a considerable loss of precision and not an important reduction of the number of links to observe. In the La Poste situation, there is a clear reduction in the number of addresses to observe per round, but at the cost of a large loss of precision. One perspective to improve on the precision of the estimators at La Poste is to keep the double indirect sampling design but use simple indirect GWSM and to predict the unobserved link weights as proposed for example by [START_REF] Xu | Treatments for link nonresponse in indirect sampling[END_REF] and [START_REF] Falorsi | Cost optimal sampling for the integrated observation of different populations[END_REF]. Indeed, double indirect sampling helps on saving costs and should be maintained. However, the use of the double GWSM with double standardization may lead to a significant loss of precision. Thus, a perspective that is currently under study at La Poste is to predict the number of unobserved links that are needed for the simple GWSM by using a model along with auxiliary information available at the level of the intermediate population of boxes.

vector of standardized link weights. With MtO links, we can write Θk as follows:

Θk =   0 θk 0   , k ∈ U F , (12) 
where θk = ( θik ) i∈U F k is the N F k -dimensional vector of positive weighted links with N F k = i∈U F l ik , the number of units i in U F linked to k in U T . The variance of the GWSM estimator ty1 given in (2) can be written as follows:

Var( ty1 ) = k∈U T k ∈U T y k y k Cov( tθ k , tθ k ) = k∈U T k ∈U T y k y k Θt k ∆ Θk = k∈U T k ∈U T y k y k θt k ∆ kk θk , (13) 
where

∆ = π ii -π i π i π i π i i,i ∈U F
and ∆ kk = (∆ ii ) i linked to k,i linked to k is the submatrix of ∆ of size N F k × N F k corresponding to elements in positions i and i such that i is linked to k and i to k . The variance of ty1 is given in ( 13), and the ∆ property states that, for any units k and k in U T , we have ∆ kk = c kk 1 t k 1 k . By using also the fact that, for all k ∈ U T , θk satisfies the standardization constraint:

1 t k θk = 1 for all k ∈ U F , (14) 
where 1 k is the N F k -dimensional vector of ones, we have:

Var( ty1 ) = k∈U T y 2 k θt k ∆ k θk + k∈U T k =k∈U T y k y k θt k ∆ kk θk = k∈U T y 2 k θt k ∆ k θk + k∈U T k =k∈U T y k y k c kk θt k 1 k 1 t k θk = k∈U T y 2 k Var( tθ k ) + k∈U T k =k∈U T y k y k c kk . (15) 
This is exactly (6) and finishes the proof of the first part of Proposition 2.1.

For the derivation of the optimal link weights, the proof is similar to the proof given in [START_REF] Deville | Indirect sampling: The foundations of the generalized weight share method[END_REF] (section 6.2) for deriving the optimal weighted links. In our situation, the links between the frame population U F and the target population U T are of type MtO. Thus, we don't need to use a factorization step as in [START_REF] Deville | Indirect sampling: The foundations of the generalized weight share method[END_REF].

Our aim is to find the link weights θopt k , k ∈ U F that minimize Var( ty1 ) = k∈U T k ∈U T y k y k θt k ∆ kk θk under the standardization constraint ( 14). The variance Var( ty1 ) is minimized for vectors θk verifying the following equation (see Deville and Lavallée, 2006, equation 6.4):

y k k ∈U T ∆ kk θk y k = λ k 1 k , k ∈ U F , (16) 
where λ k , k ∈ U F the Lagrange multipliers. Let us show that the optimal weights are given by:

θopt k = 1 t k ∆ -1 k 1 k -1 ∆ -1 k 1 k , k ∈ U F ,
where ∆ k = ∆ kk . Equation ( 16) can be rewritten as:

y 2 k ∆ k θk + y k k =k∈U T ∆ kk θk y k = λ k 1 k , k ∈ U F , which implies θk = y -2 k ∆ -1 k   λ k 1 k -y k k =k∈U T ∆ kk θk y k   , k ∈ U F . (17) 
By using the fact that ∆ k,k =k = c kk 1 k 1 t k and the standardization constraints (14), we get:

θk = y -2 k ∆ -1 k 1 k   λ k -y k k =k∈U T c kk y k   , k ∈ U F . (18) 
Multiplying by 1 t k the equation ( 18) and using again the standardization constraints (14), we obtain the following expression for the Lagrange multipliers:

λ k = y 2 k 1 t k ∆ -1 k 1 k -1 + y k k =k∈U T c kk y k , k ∈ U F . (19) 
Finally, by plugging the expression of λ k given in (19) in the expression of θk from (18), we obtain:

θopt k = y -2 k ∆ -1 k 1 k   λ k -y k k =k∈U T c kk y k   = y -2 k ∆ -1 k 1 k   y 2 k 1 t k ∆ -1 k 1 k -1 + y k k =k c kk y k -y k k =k c kk y k   = ∆ -1 k 1 k 1 t k ∆ -1 k 1 k -1 .
This finishes the proof of 2.1.

Proof of Proposition 2.2

Result (15) holds for any standardized set of weights. Thus, the result also holds for the set of optimal weights θopt ik , and we can write:

Var( topt y1 ) = ) .

Let us show that for the optimal weights derived in Proposition 2.1, we have:

Var( tθ k ) -Var( tθ opt k ) = Var( tθ k -tθ opt k ).
The optimal set of weights is given by θopt 

k = ∆ -1 k 1 k 1 t k ∆ -1 k 1 k -1 , k ∈ U F . Var( tθ k ) -Var( tθ opt k ) = θt k ∆ k θk -( θopt k ) t ∆ k θopt k = θk -θopt k t ∆ k θk -θopt k + θt k ∆ k θopt k + ( θopt k ) t ∆ k θk -2( θopt k ) t ∆ k θopt k .

Now, θt

Proof of Proposition 2.3

For all i ∈ U F , we recall that we assume 0 < π i < 1, and

π k = 1 -Π i∈U F (1 - π i ) l ik . For Poisson sampling, θopt ik = l ik πi 1-πi i ∈U F l i k π i 1-π i .
Using the variance expressions for Poisson sampling, we have that proving Var( ty ) < Var( topt y1 ) is equivalent to prove

k∈U T y 2 k 1 -π k π k < k∈U T y 2 k i∈U F 1 -π i π i ( θopt ik ) 2 .
This inequality is true if, for all k ∈ U F , we have:

1 -π k π k < i∈U F 1 -π i π i ( θopt ik ) 2
which is true as proved next.

1 -π k π k < i∈U F 1 -π i π i ( θopt ik ) 2 ⇔ Π i∈U F (1 -π i ) l ik 1 -Π i∈U F (1 -π i ) l ik < i∈U F 1 -π i π i ( θopt ik ) 2 ⇔ i∈U F l ik π i 1 -π i < 1 -Π i∈U F (1 -π i ) l ik Π i∈U F (1 -π i ) l ik ⇔ 1 + i∈U F l ik π i 1 -π i < 1 Π i∈U F (1 -π i ) l ik ⇔ 1 + i∈U F l ik π i 1 -π i < Π i∈U F 1 + π i 1 -π i l ik .
This last inequality is true since π i 1 -π i > 0, and this finishes the proof of Proposition 2.3.

Figure 2 :

 2 Figure 2: The frame, intermediate and target populations at La Poste.

Figure 3 :

 3 Figure 3: Number of observed links for each standardization With double standardization, we can derive θFM ij and θMTjk separately. To compute θFM ij , the links between U F and the units j ∈ U M indirectly sampled through i ∈ s F need to be observed, which gives the total number of links to observe equal to N F j = i ∈U F l F M i j . Similarly, to compute θMT jk , the links between U M and the indirectly sampled k ∈ U T must be observed which leads to N M k = j ∈U M l M T j k links to observe. Thus, for MtO-MtO GWSM with double standardization and for a given unit i ∈ s F , the total number of links to observe is equal to N F j + N M k . The right plot of Fig.3shows the links to observe (black links) on a small example for MtO-MtO with double standardization.

  =k∈U T y k y k c kk . (20)Using equations (15) and (20), we get:Var( ty1 ) -Var( topt y1 ) = k∈U T y 2 k Var( tθ k ) -Var( tθ opt k

  k ) t ∆ k θk since they are real quantities. Straightforward calculations using the standardization constraint (14), give us that θtk tθ k -tθ opt k ) = Var( tθ k -θopt k )which ends the proof of Proposition 2.2.

  

  

  to elements in positions i and i such that i (resp. i ) is linked to k (resp. k ), for all k (resp. k ) in U T . For simplicity, we denote ∆ k the ∆ kk square submatrix with size N F k . With MtO links, the submatrices ∆ kk , k, k ∈ U T , form a partition of ∆, namely

Table 1 :

 1 Relative bias and efficiency of the DGWSM estimate under different links setups.

	Design	Setup	n	RBMC ( ty2)	RRM SEMC ( ty1)	RRM SEMC ( tHT )
		Setup 1	500 1000	0.15 0.09	100.00 100.00	103.96 109.78
	SRSWOR 100 000 simulations	Setup 2 Setup 3	500 1000 500 1000	-0.53 0.44 0.07 0.12	337.89 334.51 100.01 100.02	347.14 365.85 105.35 106.12
		Setup 4	500 1000	2.67 0.33	1173.36 1093.90	1216.95 1198.97

Table 2 :

 2 Relative bias and comparison of RMSE, in percentages, for the double (D) GWSM, the simple (S) GWSM and the direct estimates in a setup comparable to La Poste.

	Design	n GWSM	RB RRMSE	RB	RRMSE	RRMSE
				y = 1	y = 1 y =traffic y =traffic	y =traffic
					rel. to S		rel. to S rel. to direct
	SRSWOR	500	S	-0.01	100	0.02	100	137.96
	100 000	500	D	-0.03	219.00	0.08	166.69	229.98
	simulations 1000	S	0.00	100	-0.01	100	144.55
		1000	D	0.00	220.89	-0.07	163.53	236.39
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Appendix

Proof of Proposition 2.1

We compute first the variance of the simple GWSM assuming MtO links and a sampling design that satisfy the ∆-property. We follow [START_REF] Deville | Indirect sampling: The foundations of the generalized weight share method[END_REF] and use matrix notations. Let Θk = ( θik ) i∈U F be the N F -dimensional