
HAL Id: hal-04067620
https://hal.science/hal-04067620v1

Submitted on 13 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Adaptive streaming of 3D content for web-based virtual
reality: an open-source prototype including several

metrics and strategies
Jean-Philippe Farrugia, Luc Billaud, Guillaume Lavoué

To cite this version:
Jean-Philippe Farrugia, Luc Billaud, Guillaume Lavoué. Adaptive streaming of 3D content for web-
based virtual reality: an open-source prototype including several metrics and strategies. ACM Multi-
media Systems Conference, Jun 2023, Vancouver, Canada. �10.1145/3587819.3592555�. �hal-04067620�

https://hal.science/hal-04067620v1
https://hal.archives-ouvertes.fr


Adaptive streaming of 3D content for web-based virtual reality:
an open-source prototype including several metrics and strategies

Jean-Philippe Farrugia
jean-philippe.farrugia@univ-lyon1.fr
Univ Lyon, UCBL, CNRS, INSA Lyon,

LIRIS, UMR5205
Villeurbanne, France

Luc Billaud
Univ Lyon, UCBL, CNRS, INSA Lyon,

LIRIS, UMR5205
Villeurbanne, France

Guillaume Lavoué
guillaume.lavoue@enise.ec-lyon.fr
Univ Lyon, Centrale Lyon, CNRS,

INSA Lyon, UCBL, LIRIS, UMR5205,
ENISE

Saint-Etienne, France

Figure 1: Our software allows us to compare different combinations of strategies and utility metrics for adaptive streaming of
3D content. This figure illustrates the performance of two combinations : Naive1-Surface and Gready2-Potential with respect to
the visual quality of the rendered streamed scenes. A frame is illustrated on the right for each of these methods.

ABSTRACT
Virtual reality is a new technology that has been developing a lot
during the last decade. With autonomous head-mounted displays
appearing on the market, new uses and needs have been created.
The 3D content displayed by those devices can now be stored on
distant servers rather than directly in the device’s memory. In
such networked immersive experiences, the 3D environment has
to be streamed in real-time to the headset. In that context, several
recent papers proposed utility metrics and selection strategies to
schedule the streaming of the different objects composing the 3D
environment, in order to minimize the latency and to optimize the
quality of what is being visualized by the user at each moment.
However, these proposed frameworks are hardly comparable since
they operate on different systems and data. Therefore, we hereby
propose an open-source DASH-based web framework for adaptive
streaming of 3D content in a 6 Degrees of Freedom (DoFs) scenario.
Our framework integrates several strategies and utility metrics
from the state of the art, as well as several relevant features: 3D
graphics compression, levels of details and the use of a visual quality
index. We used our software to demonstrate the relevance of those
tools and provide useful hints for the community for the further
improvements of 3D streaming systems.

MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
14th ACM Multimedia Systems Conference (MMSys ’23), June 7–10, 2023, Vancouver, BC,
Canada, https://doi.org/10.1145/3587819.3592555.

CCS CONCEPTS
• Computing methodologies→ Virtual reality.

KEYWORDS
Virtual Reality, Streaming, Mesh compression, DASH protocol

ACM Reference Format:
Jean-Philippe Farrugia, Luc Billaud, and Guillaume Lavoué. 2023. Adaptive
streaming of 3D content for web-based virtual reality: an open-source
prototype including several metrics and strategies. In Proceedings of the
14th ACM Multimedia Systems Conference (MMSys ’23), June 7–10, 2023,
Vancouver, BC, Canada. ACM, New York, NY, USA, 7 pages. https://doi.org/
10.1145/3587819.3592555

1 INTRODUCTION
3D content is now more and more common, as technologies and
techniques are developed to widespread its usage. Computer-Aided
Design softwares, video games, industrial or scientific applications
now all propose 3D content to their users. Hardwares like GPUs
(Graphic Processing Units) allow, in conjunction with algorithms
like shaders, computers to efficiently display this 3D content. Since
a few years now, the rising 3D technology is Virtual Reality (VR). By
immersing the users (using head-mounted displays) in a virtual 3D
environment, VR proposes a seemingly realistic experience. More-
over, with the introduction of autonomous head-mounted displays,
like the Oculus Quest, we got rid of constraints like a cable and a
PC, as well as a restricted playground. However, this comes at the
cost of performance and thus introduces new constraints on the
size and complexity of the 3D world that can be displayed.

https://doi.org/10.1145/3587819.3592555
https://doi.org/10.1145/3587819.3592555
https://doi.org/10.1145/3587819.3592555


MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada Jean-Philippe Farrugia, Luc Billaud, and Guillaume Lavoué

These new constraints are amplified by the fact that, in most ap-
plications, the 3D content is always more and more complex and
detailed.
Another novelty is that standards such as WebGL and WebXR [16]
now enables full 3D VR experience through web browsers. In those
6 DoFs (degrees of freedom) web-based VR applications, the 3D
content has to be streamed from a remote web server; this may in-
duce drops in performance and latency due to transmission, which
may be both very detrimental for the user experience. In this con-
text, several authors (e.g., [2, 11, 15]) proposed utility metrics and
selection strategies to prioritize which 3D objects to fetch from the
server according to the user viewport position and movement, in
order to optimize at run-time the quality of what is being visual-
ized. Those proposed algorithms use each different features (e.g.,
tiling, compression, levels of details), different utility metrics and
different streaming strategies; it is thus difficult to compare them
and evaluate the best choices in this large parameter space.
In this work, we address this problem by providing an open-source
framework, which we use for the evaluation and comparison of
those different features, metrics and strategies. Our contributions
are the following:

• We propose and release publicly, in open source, a DASH-based
web virtual reality application integrating several features, met-
rics and streaming strategies from the state of the art. The source
code is publicly available on our GitHub repository 1.

• We provide an exhaustive evaluation and comparison of 30 com-
binations of metrics and strategies, under 3 different bandwidths
and for 3 camera paths for a museum scene containing more
than 880MB of 3D content. We explored a large set of parame-
ters, leading to the generation of a total of 720 captured videos
corresponding to user simulated navigation paths.

• We isolate and evaluate the effect of three features highly rele-
vant for 3D streaming : 3D mesh compression, levels of details
and visual quality index integration.

The remainder of this paper is organized as follows : section 2 review
the related work about adaptive 3D content streaming. Section
3 describes our implemented system, while section 4 details the
experimental results. Finally, in section 5, we provide conclusions
and perspectives.

2 RELATEDWORK
This related work section focuses on web-based adaptive streaming
of 3D content, an more particularity on the algorithms introduced
to optimize and prioritize the downloads in order to optimize the
quality of experience. The reader can refer to [7] for a complete
survey about 3D mesh compression.
With the introduction of WebGL 10 years ago, several algorithms
were introduced for 3D content compression and streaming over
the web [3, 4, 6, 12]. They are based on different compression strate-
gies, compliant with a fast web decoding. Those algorithms focus
on optimizing the compression rate and the streaming of one single
3D object, without any consideration on how to optimize the deliv-
ery of a whole scene composed of several objects. However, they
constitute relevant tools for our problematic; the DRACO codec [3]

1https://github.com/Plateforme-VR-ENISE/AdaptiveStreaming

from Google is integrated into our implemented framework.
Pioneering works related to our focus of interest were introduced
only three years ago, concurrently by Forgione et al. [2], van der
Hooft et al.[15] and Park et al. [11]. Those three works proposed sys-
tems and algorithms for adaptive streaming of scenes comprising
multiple 3D models (either 3D point clouds or meshes). In partic-
ular, they proposed utility metrics and strategies to schedule and
optimize the delivery of the 3D models (or their levels of details
- LoDs) according to the network and the viewport of the user.
Further methods and systems were introduced latter, based on the
same or close principles [5, 13, 14]. Most of the above works in-
tent to remain compatible with the Dynamic Adaptive Streaming
over HTTP (DASH) standard, which is already widely deployed for
streaming adaptive video content on the Web. These frameworks
focus on 3D content represented by textured meshes [2, 5, 13] or
colored point clouds [11, 14, 15]. They consider different tools, such
as compression, tiling [11, 14], texture LoD [2], quality index [2],
3D object grouping [13] or manual prioritization [5].
Since these algorithms use heterogeneous data, tools and strate-
gies then it becomes very difficult to have a clear idea of the best
choices. In this work, we propose an open-source DASH compliant
web-based virtual reality framework that integrates and combines
a large set of tools, metrics and strategies.

3 OUR ADAPTIVE STREAMING FRAMEWORK
3.1 General description and data preparation
Our implemented framework is inspired by [2] and is compliant
with DASH. It implements a scenario of an interactive visit to
a virtual museum composed of high quality 3D models. On the
server side, the 3D models composing the scene are simplified
into 10 levels of details. Each level of details (LoD) is compressed
with Google Draco and the resulting .drc files are stored. Each
LoD is also associated with a quality score computed using the
HDR-VDP2 perceptual quality metric [8]. This metric intends to
predict the visual fidelity of the LoD with respect to the pristine
unsimplified object. Note that HDR-VDP2 is an image-based metric;
we computed its value for each 3D model by applying it to the
most perceptually-relevant screenshot. On the client side, a script is
charged to evaluate the current state of the scene, the user’s position,
rotation and trajectory and the client’s bandwidth to determine
the best objects and their levels of detail to download. Once this is
determined, the corresponding files are requested, decompressed
and then displayed, and the process can start again, until all the
objects have their best level of detail imported.
To determine which levels of detail are the best and have to be
imported, different combinations of strategies and metrics were
implemented, taken from [2, 15] ; they are presented below.

3.2 Utility metrics from [2, 15]
Those metrics 𝑈 (𝑚) reflect how much an object𝑚 is useful to the
global quality of the scene. Intuitively, the closer and the bigger an
object is, the more useful it is. The implemented metrics are the
following :

• Distance : Distance between the object and the camera.
𝑈𝐷 (𝑚) = 1/𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑐𝑎𝑚𝑒𝑟𝑎,𝑚)2



Adaptive streaming of 3D content for web-based virtual reality MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada

• Surface : Surface of the object divided by its squared distance
to the camera.
𝑈𝑆 (𝑚) = 𝑠𝑢𝑟 𝑓 𝑎𝑐𝑒 (𝑚)/𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑐𝑎𝑚𝑒𝑟𝑎,𝑚)2

• Visible : Area on the screen taken by the bounding box (BB) of
the object relative to the screen’s area.
𝑈𝑉 (𝑚) = 𝑠𝑐𝑟𝑒𝑒𝑛𝐴𝑟𝑒𝑎(𝐵𝐵(𝑚))

• Potential : Area on the screen of the object if the camera were
oriented towards the center of this object.
𝑈𝑃 (𝑚) = 𝑠𝑐𝑟𝑒𝑒𝑛𝐴𝑟𝑒𝑎𝐶𝑎𝑚𝑒𝑟𝑎𝑇𝑜𝑤𝑎𝑟𝑑 (𝑚) (𝐵𝐵(𝑚))

• VisiblePotential : It is equal to the Visible metric if the object
is in the field of view, and is equal to Potential otherwise.

3.3 Strategies from Forgione et al. [2]
These strategies serve to select one level of detail 𝑚𝑙 of a given
object𝑚 to be imported. This𝑚𝑙 is the one considered as the best,
i.e., the one with the best score as computed by the utility metrics
presented above. Each strategy has a different criterion, and a dif-
ferent way to calculate the score according to the metrics above.
Note at, at each selection step, candidate LoDs are those which
are in the current view frustum and in a predicted view frustum
computed using a linear predictor of the position and the rotation
of the camera. The temporal horizon for this viewpoint prediction
is set by default to 2 seconds in our system. The impact of this value
is evaluated in the experiments.

• Naive1 : The score is the utility of the object multiplied by the
quality index of the level of detail. This strategy is most likely to
select an object that is currently visible.

• Greedy1 : The score is the variation of utility of an object be-
tween the moment it is imported and the temporal horizon,
multiplied by the quality index of the level of detail. This strat-
egy is most likely to select an object that will be visible after
some time.

• Optimize1 : (called Proposed in the original article) The score
is the integral of the utility of an object between the moment it
is imported and the temporal horizon, multiplied by the quality
index of the level of detail. We do it by calculating a Riemann
sum. This strategy is most likely to select an object that is visible
over the full period.

3.4 Strategies from Van der Hooft et al.[15]
These strategies select and import multiple levels of detail at a time.
Here, we are filling a buffer, which corresponds to a number of bits
that can be imported (downloaded and decompressed) in a certain
amount of time (by default 2 seconds × the bandwidth). A loop will
go through all the levels of details of all the objects and allocate bits
to these LoDs until the buffer is full. The strategies loop through
the levels of details differently, thus allocating the bits differently.

• Greedy2 :We loop through all of the levels of detail of an object
before considering the next object. Objects are considered by
decreasing utility.

• Uniform2 :We loop through a certain level of detail (e.g. level 1)
for all the objects in decreasing utility order before considering
the next level of detail (e.g. level 2).

Figure 2: Architecture of our application

• Hybrid2 :We first loop through the visible objects in a Uniform
way, then we loop through the non-visible object in a Greedy
way.

As for the temporal horizon above, the impact of the buffer size (set
to 2 seconds * bandwidth) is evaluated in the experiments.

3.5 Implementation
In the context of streaming use, it seemed natural to use a web-
based framework for our implementation. We selected Babylon.js,
which has the advantage of being WebXR compatible and allowing
the use of javascript WebWorkers. WebWorkers were used to be
able to run the decompression of the levels of details in parallel to
the user visualization and interaction (thus preventing any freeze).
Typescript, a superset of javascript, is used to allow more rigorous
object programming. The architecture of our application is shown
in Figure 2. It includes two singletons, an instantiated class, and
service classes.

3.5.1 Singletons.

• The Museum Class creates the context of the application and
handles its basic operations: inputs handling, scene display, asset
import.

• TheObjectManager Class is the application scheduler. It manages
the initialization, positioning and display of all museum objects
in the scene as well as the execution of strategies.

3.5.2 Instantiated class.

• The MuseumObject class represents an object in the museum
and is multi-instanced by the ObjectManager for each object in
the scene. This class contains all the metadata (name, area, size,
visual quality index) and the levels of detail generated for this
object. All level of details are stored as independent .drc meshes,
compressed with the Draco Framework. The MuseumObject
class uses methods of the DracoCompression class, provided
by BabylonJS, to decompress level of details asynchronously.
In our implementation, a single pool of 5 DracoCompression
web-workers is used for the whole scene.

3.5.3 Services.

• The SpeedManager static class gathers speed and bandwidth
calculation functions.

• The Metrics class includes metric calculation functions
• The Strategies class brings together the strategy calculation func-
tions



MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada Jean-Philippe Farrugia, Luc Billaud, and Guillaume Lavoué

The overall behaviour of the application is as follows: an in-
stance of the application is created with the Museum class. It then
creates an instance of the ObjectManager singleton, which itself
will dynamically create the scene’s objects with the MuseumObject
class. At runtime, ObjectManager applies metrics and strategies to
determine the appropriate level of detail for each museum object.
Each museum object instance calculates its speed and bandwidth
data.

3.6 Differences with the state of the art
As stated above, our system integrates the metrics and strategies
from both Forgione et al. [2] and Van der Hooft et al. [15]. However
some differences remain with regards to their frameworks : Van
der Hooft et al. [15] considered colored point clouds whereas we
consider textured meshes. Our system uses multiple geometrical
levels of detail (i.e., different meshes) while Forgione et al. [2] had
only one geometrical level of detail per object but multiple texture
resolutions. They use a quality index for the textures which is a
simple PSNR. Our quality index (HDR-VDP2 [8]) was designed to
reflect the perceived quality and demonstrated good correlation
with subjective opinion on a dataset of distorted 3D models [9].
Another point is that Forgione et al. [2] did not use a compression
algorithm. Finally, we obviously introduced differences in the al-
gorithm implementation since research papers do not contain full
implementation details.

4 EXPERIMENTS AND RESULTS
4.1 Experimental setup
To demonstrate the utility of the proposed software, we compare the
different combinations of strategies and metrics presented above.
We also assess the influence of the different parameters of our sys-
tem.We took inspiration from Forgione et al.’s experimental process
[2]. We created a museum scene composed of 20 high quality 3D
models between 20K and 635K vertices, for a total of 880MB of
uncompressed data (including 5MB for the museum building itself).
Those models were taken from the Creative Common collections
of Sketchfab. We created three different predefined camera move-
ments in the scene, corresponding to realistic exploration paths.
Each of these animations is 21 seconds long. We also considered
three network bandwidth conditions : 2 Mbps, 4 Mbps, and 30 Mbps
and two values for the temporal horizon / buffer size: 1s and 2s.
Figure 3 illustrates several views of our 3D environment.
For each combination of conditions (3*animations, 6*strategies,
5*metrics, 3*bandwidths and 2*Temporal horizons/buffer size), the
navigation was simulated using our adaptive streaming engine and
recorded, giving us a total of 540 recordings. To objectively evaluate
the quality of those resulting renderings, as in [2], we compared
them to reference recordings using PSNR. Those references were
offline versions, where each object of the scene was initially loaded
with its maximum quality, thus having the best possible quality
in the video. To compute the PSNR between those test and ref-
erence recordings, they were sampled each 100ms giving a total
of 210 frames to compare. A particular care was taken to be sure
that the frames of each pair to compare have a perfect temporal
correspondence. Additional recordings were computed for differ-
ent parameter settings (visual quality index on/off, levels of detail

Figure 3: Several views of our virtual environment, taken
from the MainRoom camera path (first row), the StatueRoom
camera path (second row) and the UpperRoom camera path
(third row).

on/off) giving a total of 720 recording, i.e. 151200 test images plus
630 references ones.

4.2 Results
In this section, we evaluate and compare the performance of the dif-
ferent combinations of strategies and utility metrics, with regards
to the bandwidth, the camera path and to the temporal parameters.
We also evaluate the impact of three features of our system : the
perceptual quality metric, the compression algorithm and the use
of levels of details.

Best metrics and strategies according to the bandwidth
Figures 4 illustrate boxplots of PSNR values according to the met-
rics (top row) and according to the strategies (bottom row), for the
three tested bandwidth values. For each metric (resp. strategy) each
boxplot aggregates PSNR values of all frames for all the strategies
(resp. metrics), and all camera paths. Note that those results are for
standard conditions meaning that we activate the perceptual quality
index, the compression and the levels of detail and the values of
the temporal parameters are set to 2s.
The performances of the different utility metrics are very close to
each others with a similar trend regarding the effect of bandwidth.
It is interesting to observe the strong improvement between 2Mbps
and 4Mbps, whereas 30Mbps brings a relatively small additional
quality. The best metrics are Surface and VisiblePotential.
For the strategies, surprisingly, the simplest provide the best results
: Naive1 and Greedy2. One explanation is that these strategies re-
quire less operations to execute than the others. This result is a bit
surprising as they are presented as bad in their respective articles.
This emphasizes the need of a common public implementation,
since the real-time performance of such interactive systems can be
impacted by tiny details of implementation that do not necessarily
appear in the research papers.
Another surprising result is the decrease in performance of the



Adaptive streaming of 3D content for web-based virtual reality MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada

Figure 4: Boxplots of PSNR values according to the utility
metrics (top) and strategies (bottom). Mean values are repre-
sented by the red dots.

Uniform2 strategy when passing from 4Mbps to 30Mbps. By check-
ing in details the results, we found that the explanation could be
the time processing of the buffer filling algorithm (as described in
Section 3.4). Indeed, since this algorithms loop through all objects
until it fills the buffer, then a large buffer size could create latency
in the downloading decisions.

Best metric/strategy combinations
Figure 5 presents the performance of each combination of met-
ric/strategy in term of PSNR averaged over all the frames and all
the animations for each bandwidth (still for the standard conditions).
Methods are ordered by their average performance (i.e., mean over
the three bandwidths). For the sake of visibility we present only the
20 best combinations (among 30). Overall, the best combinations are
the following: Naive1-Surface, Naive1-Visible, Naive1-Potential and
Greedy2-VisiblePotential. Moreover, none of the best strategies from
Forgione’s and van der Hooft’s articles [2, 15], respectively Opti-
mize1 and Hybrid2, appear in our best combinations. As mentioned
above, thismay be probably explained by a different implementation
of the algorithms and the strategies, a different test environment
or even a slightly different measurement process. It is interesting
to notice that the respective ranks of the combinations actually
depend on the bandwidth conditions. Several methods are very
stable (Naive-Surface), while others are significantly impacted by
the decrease in bandwidth (e.g., greedy2-potential). It is noteworthy
that for 30Mbps and 4Mbps the greedy2-potential method is actually
the best one.
Figure 1 illustrates quality values over time and illustrations for
the Naive1-Surface and Gready2-Potential combinations. We can
see how the two combinations behave differently. Some drops in
quality are happening at the same time because they correspond

2M
bp

s
4M

bp
s

30
M
bp

s

Figure 5: Performance per combination for each of the 3
bandwidths. The performance is computed as the PSNR av-
eraged over all camera paths. Combinations are ordered by
increasing average performance over the 3 bandwidths.

to new objects entering the field of view. However, the spikes are
not happening at the same time and not with the same amplitude,
because the choices made by the combinations regarding the levels
of detail to import are not the same.

Influence of the temporal horizon
The horizon and the buffer, which are parameters used by the dif-
ferent strategies were suspected to have a large influence on the
performances of the algorithms. Van der Hooft et al. [15] have
shown that the buffer have an impact on the number of freezes and
the video quality. They showed that for higher buffer values, the
prediction accuracy and then the video quality decreases, but the
resilience to freezes increases. We performed our quality evaluation
for two values of these parameters: 1s and 2s for the horizon and
the buffer size. Statistical tests shows that the parameters have an
impact on the performance, and that a buffer/horizon of 2 seconds
is performing significantly better than a buffer/horizon of 1 second.
Those results are confirmed by Figure 6.

Influence of the camera path The performance of the system
is obviously dependent on the complexity of the camera path, its
velocity and the 3D objects that are present. Figure 7 (left) illustrates
this behavior. The camera path UpperRoom generates globally the
worst results (this trend is general for all methods).



MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada Jean-Philippe Farrugia, Luc Billaud, and Guillaume Lavoué

Figure 6: Boxplots of PSNR values of the strategies, according
to the buffer/horizon values.

Figure 7: Boxplots of PSNR values according to the camera
path (left), the use of quality metric (middle) and the use of
levels of details (right).

Influence of the visual quality index
Only three strategies use a quality index. Those strategies are
Naive1, Greedy1 and Optimize1. Therefore, only these strategies
are considered in the results below. In these strategies, the quality
index is used to weight the utility of an object. Then, to evaluate
our combinations without the use of the visual quality index, we
simply replace it by 1. Figure 7 (center) clearly shows that the visual
quality index (HDR-VDP2 [8]) brings a significant improvement of
the PSNR (confirmed by statistical test).

Influence of the levels of detail
Figure 7 (right) clearly shows that the levels of detail have a sig-
nificant impact on the PSNR (confirmed by statistical test). This
result was expected as simplified meshes are always closer to the
reference than the background.

Influence of compression
Table 1 shows a comparison of the download time of some .obj files
and the import time of their .drc counterparts (i.e., compressed
by Draco [3]). In this table, the calculations are made with a high
bandwidth (30 Mbps) and an average decompression speed of 8
Mbps (the average decompression speed in our setup). In those
conditions, the compressed files require around 90% less time to
be imported than the uncompressed ones. This data clearly indi-
cates that compression with Google Draco is very advantageous
and reduces the import time of meshes in almost every situation.
Moreover, .obj files might be long to parse and most OBJ Loaders
are not meant to be used during runtime and are not multi-threaded,
while Babylon.js’s DracoCompression object is.

Name Uncompressed (.obj) Compressed (.drc)
ΔSize (KB) Time (s) Size (KB) Time (s)

Dinosaur 78185 20.85 794 1.01 95%
Lion 45492 12.13 794 1.01 92%
Lizard 4402 1.17 84 0.11 91%
Orchid 2221 0.59 52 0.07 89%
Shuttle 10583 2.82 250 0.32 89%

Table 1: Comparison of the import time for uncompressed
and compressed meshes. Bandwidth = 30Mbps, decompres-
sion speed = 8Mbps.Δ expresses the gain in the time provided
by the compression.

5 CONCLUSION AND DISCUSSION
In this work, we present our open-source framework for streaming
3D graphics in 6DoFs scenarios. We used our framework to evalu-
ate 6 strategies and 5 metrics from the state of the art in a virtual
museum scenario. We determined the best combinations for several
bandwidths and demonstrated the impact of several tools and pa-
rameter values. Those results constitute first steps toward the full
understanding and development of optimized streaming systems
for 6 DoFs virtual experiences. Our results and the differences we
observed regarding state-of-the-art conclusions, emphasized the
fact that streaming systems are difficult to compare since many
details of implementation may influence the results. The release
of our source code is an attempt to provide the community with a
common basis for comparison.
Beyond the considerations raised above, our implemented system
owns several limitations that should be improved in future work.
First, levels of details should be considered also for texture, and
not only for meshes. For instance, the progressive algorithm from
Caillaud et al. [1] proposes a bit-allocation framework which mul-
tiplexes mesh and texture levels of details to optimize the visual
quality for a given bit budget. Another way of improvement con-
cerns the visual quality index: we used an existing image-based
metric calibrated for natural image distortions; however, very re-
cently, several authors introduced metrics specifically suited for
visual quality assessment of 3D graphics [9, 10]. Finally, our per-
formance metric is the per-frame PSNR ; this metric is obviously
not directly related to the quality of experience which is our main
interest. Note that we also computed SSIM values on top of PSNR ;
however reported values were not significant since this perceptual
metric is not suited for large scene renderings where only local-
ized distortions occur. The only way to measure and evaluate the
quality of experience would be to conduct subjective user tests.
Such user studies would also be a mean to assess if the quality of
user experience is correlated or not with our evaluation measure.
We believe that our publicly-released platform may constitute an
excellent basis for that, as well as for exploring further factors (e.g.,
including visual attention models, and so on).

6 ACKNOWLEDGMENTS
Thisworkwas partly supported by FrenchNational ResearchAgency
as part of ANR-PISCo project (ANR-17-CE33-0005), and by Com-
puter Science Department of IUT Lyon 1, Bourg en Bresse, France.



Adaptive streaming of 3D content for web-based virtual reality MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada

REFERENCES
[1] F. Caillaud, V. Vidal, F. Dupont, and G. Lavoué. 2016. Progressive compression

of arbitrary textured meshes. Computer Graphics Forum 35, 7 (2016). https:
//doi.org/10.1111/cgf.13044

[2] Thomas Forgione, Axel Carlier, Géraldine Morin, Wei Tsang Ooi, Vincent Charvil-
lat, and Praveen Kumar Yadav. 2018. DASH for 3D Networked Virtual Environ-
ment. In Proceedings of the 26th ACM International Conference on Multimedia
(Seoul, Republic of Korea) (MM ’18). Association for Computing Machinery, New
York, NY, USA, 1910–1918. https://doi.org/10.1145/3240508.3240701

[3] Google. [n. d.]. Draco. https://github.com/google/draco.
[4] G Lavoué, L Chevalier, and F Dupont. 2013. Streaming Compressed 3D Data on

the Web using JavaScript and WebGL. ACM Web3D (2013). http://liris.cnrs.fr/
guillaume.lavoue/travaux/conference/WEB3D2013.pdf

[5] Hendrik Lievens, Maarten Wijnants, Mike Vandersanden, Peter Quax, and Wim
Lamotte. [n. d.]. Adaptive Web-Based VR Streaming of Multi-LoD 3D Scenes via
Author-Provided Relevance Scores. In 2021 IEEE Conference on Virtual Reality and
3D User Interfaces Abstracts and Workshops (VRW) (Lisbon, Portugal, 2021-03).
488–489.

[6] Max Limper, Maik Thöner, Johannes Behr, and Dieter W. Fellner. 2014. SRC - a
streamable format for generalized web-based 3D data transmission. Proceedings
of the Nineteenth International ACM Conference on 3D Web Technologies - Web3D
’14 (2014), 35–43. http://dl.acm.org/citation.cfm?id=2628588.2628589

[7] A. Maglo, G. Lavoué, F. Dupont, and C. Hudelot. 2015. 3D mesh compression:
Survey, comparisons, and emerging trends. Comput. Surveys 47, 3 (2015). https:
//doi.org/10.1145/2693443

[8] Rafal Mantiuk, Kil Joong Kim, Allan G Rempel, and Wolfgang Heidrich. 2011.
HDR-VDP-2 : A calibrated visual metric for visibility and quality predictions in
all luminance conditions. ACM Siggraph (2011).

[9] Yana Nehmé, Florent Dupont, Jean-Philippe Farrugia, Patrick Le Callet, and
Guillaume Lavoué. 2021. Visual Quality of 3D Meshes With Diffuse Colors
in Virtual Reality: Subjective and Objective Evaluation. IEEE Transactions on
Visualization and Computer Graphics 27, 3 (2021), 2202–2219. https://doi.org/10.
1109/TVCG.2020.3036153

[10] Yana Nehmé, Florent Dupont, Jean-Philippe Farrugia, Patrick Le Callet, and
Guillaume Lavoué. 2022. Textured Mesh Quality Assessment: Large-Scale Dataset
and Deep Learning-based Quality metric. arXiv preprint arXiv:2202.02397 (2022).

[11] Jounsup Park, Philip A. Chou, and Jenq-Neng Hwang. [n. d.]. Rate-Utility Op-
timized Streaming of Volumetric Media for Augmented Reality. IEEE Journal
on Emerging and Selected Topics in Circuits and Systems 9, 1 ([n. d.]), 149–162.
https://doi.org/10.1109/JETCAS.2019.2898622

[12] Federico Ponchio and Matteo Dellepiane. 2016. Multiresolution and fast decom-
pression for optimal web-based rendering. Graphical Models 88 (2016), 1–11.
https://doi.org/10.1016/j.gmod.2016.09.002

[13] Carter Slocum, Jingwen Huang, and Jiasi Chen. [n. d.]. VIA: Visibility-awareWeb-
based Virtual Reality. In The 26th International Conference on 3D Web Technology
(Pisa Italy, 2021-11-08). ACM, 1–9. https://doi.org/10.1145/3485444.3487641

[14] Shishir Subramanyam, Irene Viola, Alan Hanjalic, and Pablo Cesar. [n. d.]. User
Centered Adaptive Streaming of Dynamic Point Clouds with Low Complexity
Tiling. In Proceedings of the 28th ACM International Conference on Multimedia
(Seattle WA USA, 2020-10-12). 3669–3677.

[15] Jeroen van der Hooft, Tim Wauters, Filip De Turck, Christian Timmerer, and
Hermann Hellwagner. 2019. Towards 6DoF HTTP Adaptive Streaming Through
Point Cloud Compression. In Proceedings of the 27th ACM International Conference
on Multimedia (Nice, France) (MM ’19). Association for Computing Machinery,
New York, NY, USA, 2405–2413. https://doi.org/10.1145/3343031.3350917

[16] W3C. [n. d.]. WebXR Device API. https://www.w3.org/TR/webxr/.

https://doi.org/10.1111/cgf.13044
https://doi.org/10.1111/cgf.13044
https://doi.org/10.1145/3240508.3240701
http://liris.cnrs.fr/guillaume.lavoue/travaux/conference/WEB3D2013.pdf
http://liris.cnrs.fr/guillaume.lavoue/travaux/conference/WEB3D2013.pdf
http://dl.acm.org/citation.cfm?id=2628588.2628589
https://doi.org/10.1145/2693443
https://doi.org/10.1145/2693443
https://doi.org/10.1109/TVCG.2020.3036153
https://doi.org/10.1109/TVCG.2020.3036153
https://doi.org/10.1109/JETCAS.2019.2898622
https://doi.org/10.1016/j.gmod.2016.09.002
https://doi.org/10.1145/3485444.3487641
https://doi.org/10.1145/3343031.3350917
https://www.w3.org/TR/webxr/.

	Abstract
	1 Introduction
	2 Related Work
	3 Our adaptive streaming framework
	3.1 General description and data preparation
	3.2 Utility metrics from DASHfor3D, 6DoFstreaming
	3.3 Strategies from Forgione et al. DASHfor3D
	3.4 Strategies from Van der Hooft et al.6DoFstreaming
	3.5 Implementation
	3.6 Differences with the state of the art

	4 Experiments and results
	4.1 Experimental setup
	4.2 Results

	5 Conclusion and discussion
	6 Acknowledgments
	References

