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Abstract: The modal parameters of structures, and in particular their mode shapes, are generally
determined based on the measurement of accelerometers or laser vibrometers. However, these
sensors do not allow the performance of full-field measurements. In this study, the free vibration of
a beam triggered by a shock is investigated using a high-speed camera with high image definition.
With the help of digital image correlation (DIC), the beam displacement fields are deduced from the
images. To analyse the DIC measurement quality, different tests and analyses are performed. First,
the systematic errors and uncertainties in the DIC calculation for a simple translation are analysed
considering different speckles. Then, tests on two configurations of a vibrating beam are filmed
and full-field displacement measurements are computed. The modal parameters of the beam are
deduced from these measurements using a continuous wavelet transform method. Particular care
was taken to adapt the method to the post-processing of the numerous and noisy signals obtained
for these experiments. All the steps of the post-processing are detailed in this paper. Finally, the
modal parameters obtained with the proposed method are compared with those obtained in a more
classical way using accelerometers and from the beam theory. In particular, the comparison of the
signal-to-noise ratio of the different measurement methods is discussed.

Keywords: structural vibration; experimental modal analysis; DIC; beam

1. Introduction

In order to identify the modal parameters of a structure it is necessary to deal with
measurements such as acceleration, velocity, or displacement signals. These temporal
signals can be processed, using the continuous wavelet transform for example, to determine
the natural frequency, the damping ratio, and the mode shape for each mode. Nowadays,
the current metrology tools for vibration measurement are mainly based on the use of
accelerometers and laser vibrometers [1,2]. However, in order to obtain a sufficiently precise
description of the mode shapes of a studied structure, a large number of sensors have to be
installed. Depending on the size of the structure, the use of accelerometers can introduce
additional damping due to the connecting cables, but also additional masses due to the
sensors themselves [3]. The laser vibrometers require surfaces whose direction of reflection
remains relatively unchanged during the test and free from edge effects. These conditions
are difficult to guarantee in certain cases. In order to carry out field measurements (speed or
displacement), scanning vibrometers also require the use of a periodic stationary excitation,
which is a limitation.

For the past decade, digital image correlation (DIC) has been increasingly used in the
mechanics of materials and structures to determine, in particular, 2D and 3D strain fields.
Indeed, when the experimental conditions are optimal, it is possible to obtain a displacement
resolution of less than one tenth or even one hundredth of a pixel [4]. This technique can
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be applied for the analysis of dynamic loads with the use of high-speed cameras. However,
the latter are often limited in terms of image definition, which restricts the spatial resolution
of the analysis and penalizes the analysis of slender structures such as those encountered in
civil engineering. New generations of cameras, presenting a wide variety of combinations of
image definition and acquisition frequency, make it possible to push back these limits and
thus constitute potential alternatives to the conventional modal analysis instrumentation.

In the literature, some studies have explored the use of fast imaging techniques to
perform modal analysis of structural elements [5,6]. Beberniss et al. [7] have studied the
influence of the speckle to identify the best suited for the monitoring of random vibration.
Although there is a correlation between the size of the spots and the size of the patterns,
this study does not take into account the size of the patterns used for the DIC, which
are always 15 px2. The different results obtained are compared with those inferred from
strain gauges and laser vibrometer measurements. Although the application of imaging
techniques in dynamic experiments is in constant progress, the studies of some authors, as
in [8], are limited by the frame rate of the camera. Cameras with on-board memory (such
as the Photron SA series) can reach higher frame rates, but their image definition is limited
(typically 1 or 2 megapixels) and the test duration is then restricted by the available memory
(a few seconds). Recent alternative camera technologies, associated with very high-speed
data transfer solutions, permit us to record several thousand images per second at relatively
high resolutions and during rather long sequences (e.g., 12 megapixels at 190 Hz for the JAI
SP-12000M-CXP4, which can also be used at much higher frame rates on smaller images).
More details will be given in the next part. The use of such a camera makes it possible to
obtain a quasi-continuous measurement of the studied object. However, few tools have
been developed to analyze this amount of information and most authors compare the
displacement fields and the modal deformations obtained with the results of finite element
(FE) calculations [9,10]. Some researchers caution about the frequency of cameras’ fans,
which can disturb the measurements [11,12]. In order to obtain the displacements using
fast imaging, Chen et al. [13] have proposed a process called “video magnification”, but
the results obtained remain relatively noisy and inaccurate. It is clear from this preliminary
overview that, despite several disadvantages, which are mainly the limited frame rate for
high resolutions and the lower measurement accuracy with respect to strain gauges, DIC
has several advantages in the field of vibratory analysis. Based on the above survey of the
literature, this study investigates the transverse vibratory response of a beam excited by a
shock with a focus on the analysis of the measurement quality (dispersion of the results,
noise disturbance, random and systematic errors, uncertainty, etc.).

The first part of this paper describes the set-up used for the experimental study of
the vibrating beam and briefly recalls the main principles of the DIC method. Particular
attention is paid to the determination of the error and the uncertainty of the measured
displacements [14] induced by the speckle characteristics (size of the spots and size of the
patterns). Then, a fairly common modal identification based on the continuous wavelet
transform method is presented; however, a signal processing procedure is proposed to deal
with the numerous and noisy signals obtained from the DIC measurements. The standard
deviation of the experimental results is also discussed and a process to remove the noise
disturbance is presented. Next, the main experimental results are shown for two boundary
conditions of the beam (clamped–clamped and clamped–free) and compared with results
of a theoretical calculation and with data sets from accelerometers. Finally, concluding
remarks are discussed.

2. Experimental Implementation of DIC
2.1. Experimental Set-Up

The structure chosen for carrying out an experimental modal analysis using DIC is
an aluminum beam of width b = 30 mm and thickness h = 6 mm. The Young’s modulus
and the density of the beam were experimentally determined and are respectively equal to
E = 71.8 GPa and ρ = 2760 kg·m−3. The boundary conditions are either clamped–clamped,
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with length L = 505 mm, or cantilever, with length L = 570 mm. The beam is subjected to
a shock produced with an instrumented impact hammer system. This system consists of
a hammer head (Brüel & Kjær type 8200) mounted with a spring like a pinball plunger.
In this way, double shocks are avoided and the impact duration can be adjusted. This
kind of excitation leads to the solicitation of a maximum number of modes. Moreover,
we are able to measure the excitation signal. In order to isolate, as much as possible, the
experimental set-up from external disturbances, the latter one is mounted on a breadboard.
The vibratory response of the beam is recorded using a JAI SP-12000M-CXP4 fast camera
that directly records images within the RAM of the host computer. This camera, equipped
with a macro lens from Zeiss (DISTAGON T 2/35 ZF-I), is set above the beam by means
of a gantry mounted on the same breadboard at a distance such that the whole beam is
observed within the width of the field of view. The frame rate of the image acquisition is
limited by the internal data processing of the camera and the speed of the bus that transfers
them to the host computer. At full definition (4096 × 3072 px2), it reaches 190 frames per
second (fps). However, such a definition is useless for a slender structure such as our
beam. An image definition of 4096 × 80 px2 is sufficient to image the whole system, with
the same image resolution, and permits a much larger frame rate of 5439 fps. In order to
avoid images being blurred by motion during the shooting, the integration time of the
camera is set to its minimal value: 15 µs. Therefore, sufficient light is required for the
object to be imaged with the best signal-to-noise ratio of the camera. In our case, the beam
was illuminated using four pulsed LED spots (developed by R&D Vision), which light the
scene with pulses having a duration of 8 µs, i.e., slightly more than half of the integration
time. This system is synchronized with the camera using an external trigger box (EG,
synchronization electronics developed by R&D Vision). For the chosen image resolution,
this illumination system restrains the maximum fps we can choose for the camera since the
maximum reachable light pulse frequency for the system is about 4500 Hz due to the cyclic
pulse duration limit of the LED. The acquisition of the frames is therefore performed at
this sampling frequency. This allows us to record sequences of typically 10 to 15 thousand
images, from which displacement data need to be extracted.

In addition, ten accelerometers are installed on the beam in order to compare the
results of the modal analysis performed using the DIC measurements with those obtained
with such more conventional sensors. Data acquisition of the accelerometers and the force
sensor is carried out using NI CompactDAQ equipment (housing 9174 with three modules
9234). For this system, the sampling frequency is chosen equal to 10,240 Hz so as, on one
hand, to investigate the presence of other modes beyond the range of frequencies studied
by the optical system [0–4500] Hz and, on the other hand, to quantify precisely the loading
sequence. The experimental setup is pictured in Figure 1.

Pulsed LED spots Camera: JAI SP-12000M-CXP4

Lens: Distagon T*2/35mm ZF-I

Figure 1. Experimental set-up.
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2.2. DIC Post-Processing

The DIC method consists in determining a displacement field by comparing a dis-
torted image to a reference one, which can be chosen arbitrarily among all the images of
the sequence. In practice, the reference image is recorded before the shock. The images
are considered as gray level functions, f for the reference image and g for the distorted
one, spatially discretized over the pixels of the camera and taking integer values within
the dynamic range of the digitisation provided by the camera (here 8 bits). Numerous
formulations and implementations of DIC are available, a short review of which can be
found in [14]. For the present study, the in-house software CMV has been used. This
software has initially been specifically developed for micromechanical applications using
scanning electron microscope (SEM) images or images recorded with optical microscopes
(see, e.g., [15–17] for applications). It implements several DIC formulations and has been
shown to provide results consistent with other implementations (it is one of the soft-
ware packages bench-marked in [14]). In addition, some specific post-processing routines
adapted to micromechanical analyses are implemented, out of the scope of the present
work, as well as routines to efficiently quantify the measurement errors, including random
and systematic errors [16], which will be discussed later.

The particular DIC formulation used in this study consists in dividing the region
of interest of the reference image into juxtaposed independent, and in practice square,
correlation windows. The size of these windows needs to be sufficiently large with respect
to the local gray level fluctuations of the images and sufficiently small with respect to the
fluctuations of the displacement field to be investigated. Within each of these windows, the
mechanical transformation Φ0 is assumed to be a purely rigid translation (transformation of
order 0, see [14]) characterized by two scalar components. The actual mechanical translation
of the beam is estimated by maximizing the matching between the reference f and the
back-translated deformed image g(Φ0), the matching being quantified by the so-called
zero-centered, normalized cross-correlation coefficient, C, defined as:

C = 1−
∫

D( f (u)− f )(g(Φ0(u))− g)du√∫
D( f (u)− f )2du

∫
D(g(Φ0(u))− g)2du

(1)

where f and g are the mean values of f (u) and g(Φ0(u)) in the current window, with u the
coordinates vector, and

∫
D refers to a summation over all pixels in the reference window.

We emphasize here the fact that higher-order shape functions describing the mechani-
cal transformation with, e.g., affine or quadratic functions were unnecessary because of
the very low strains associated with the vibrations of the beam. The actual DIC errors are
for the present application dominated by the so-called “ultimate errors” and not the shape
function mismatch errors: we refer to [14] for a discussion on these two error regimes.
This has been checked with a comparison of the displacements evaluated assuming a
rigid transformation and those obtained when an affine transformation is assumed, whose
higher-order coefficients are determined, not by optimizing the correlation coefficient
(which would have lead to additional random errors, see [14]), but from a larger scale
fitting using the displacements evaluated in neighbor windows (see [18] for details about
such a procedure). The differences between both approaches are within the random errors,
discussed hereafter. This proves that the DIC errors in our experiments are identical to
those occurring when purely rigid translations are considered, i.e., DIC errors are governed
by the so-called ultimate error regime [14].

It is then of primary importance to consider the parameters that govern the accuracy
in this regime: the quality of the speckle pattern, image noise, window size, and gray
level interpolation used in the DIC formulation. The latter is central to the evaluation
of displacement with subpixel accuracy, as it allows us to compute g(Φ0(u)) for integer
pixel positions u in the reference image, even when Φ0 is a subpixel translation. The CMV
software provides several options for the interpolation of gray levels, which have been
compared. It turns out that an interpolation with bi-quintic splines provides the best results
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here. As already discussed, the image noise has been reduced to a minimum for the chosen
cameras, using appropriate lighting. The main way to further optimize the experiment is
then to consider the speckle painting and the window size.

2.3. Speckle Choice and Characterization

The image contrast, provided here by a speckle painting as the non-painted beam does
not provide sufficiently pronounced gray level fluctuations, plays a central role in the DIC
measurement accuracy. It is usually designed to be random, to avoid mismapping between
patterns of similar shapes, even though a periodic pattern could also be considered by
the CMV sofware (e.g., [19]). Periodic patterns are also easier to produce, and several
methodologies are compared here. Indeed, as shown in several studies [14,20,21], the spot
diameter directly affects the performance of the full-field measurements and the pattern
size that can be used. Most of the speckles are made black on white. Crammond et al. [21]
show four experimental speckles: two white on black and two black on white. The results
show that the spots’ size and distribution are more prominent than the colors of the spots
and the background. In order to determine the quality of our speckle, three different
ones were made on an aluminum piece: one with spray paint, which is the most-used
technique [22], another with a black fine felt tip pen, and the last with a sponge. These
three examples are visible in Figure 2a–c.

(a) Spray paint (b) Pen

50 mm

(c) Sponge

Figure 2. Experimental speckles on aluminum piece.

To measure the error and the uncertainty of the measured in-plane displacements
the procedure described in [16] is adapted to the present set-up. It consists in applying
a slight magnification achieved by moving the camera, mounted on a linear translation
stage with micrometer resolution, towards the target object. In this way the object seems
to be bigger. Thus, the apparent transformation of the sample is homogeneous and the
displacement measured at each point can be compared with the one expected. In this
case the camera is translated 6 mm closer to the aluminum piece, so the homogeneous
apparent deformation is about 0.5%, and the DIC is performed on a 350 px2 square area
with 50 patterns in both directions. The distribution of the subpixel displacement is shown
on Figure 3 in the pen case. Here, the subpixel displacement is divided into ten parts.
Figure 3 clearly indicates that the obtained distribution is quite homogeneous for each part.
It is then possible to determine the systematic error (see Figure 4a–c) and the measurement
uncertainty (see Figure 4d–f) [23] for the different speckles applied and for different pattern
sizes (10, 15, 20, and 25 px2). The black horizontal line in Figure 4f represents the maximum
value of the y-axis of Figure 4d,e. These figures represent, respectively, the means and the
standard deviations of the error for each subpixel part.

It can be concluded from Figure 4 that the speckle made using the pen is the most
beneficial to our experimental configuration. Indeed, the systematic error is always less
than 0.01 px in this case (Figure 4b), whereas it can be up to the order of 0.02 px for the
speckles using spray paint and the sponge (Figure 4a,c respectively). The value of the
measurement uncertainty is between 0.005 and 0.01 px for the speckle using a pen. As
expected, the uncertainty decreases with the increase in the size of the patterns. The
uncertainty obtained considering the spray paint speckle (Figure 4d) is slightly higher
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and is much more important with the sponge speckle (Figure 4f). As the best results are
obtained with the speckle realized with the pen, this technique was therefore chosen to
be applied to the tested beam. We have also chosen patterns of 20 px2 in order to, on
the one hand, obtain a low uncertainty and, on the other hand, place several elements in
the thickness of the beam. This leads to an accuracy of the DIC slightly lower than one
hundredth of a pixel. As the ratio mm/pixel is equal to 0.125 in our images, a displacement
measurement accuracy of 1.25 µm is expected. The speckle obtained for the experiments
is described by the following characteristics: the density is equal to 1.86 spots/mm2 or
0.029 spot/px2, the size of the spots (diameter) is between 3 and 7 px, and the proportion of
the black spots on the white background is about 32%. Concerning the image and especially
the white and black contrast, there are approximately 140 gray levels (out of 256) between
the mean value of the gray level of the black spots and the mean value of the gray level of
the white background.
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2.4. Full-Field Measurements

Concerning the full-field measurements, the area of interest, which represents the
beam, is decomposed into 900 patterns: 300 patterns in length over 3 levels in thickness. In
this configuration, full-field measurements involve 90 times more points than the instru-
mentation with accelerometers. However, in this study, we will only consider the results
obtained from the 300 points close to the neutral axis; therefore, the configuration only
involves 30 times more points. The DIC is performed with patterns of 20 px2 in size, using
biquintic splines to interpolate the gray levels, and assuming rigid transformations. A
zoom of the speckle and the patterns used for the DIC is shown in Figure 5.

152 pixels  19 mm

48 pixels  6 mm

Figure 5. Zoom on an image captured by the camera.

Before making any use of these fields, the rigid body motion has to be taken into
account. Indeed, the hammer impact sets in motion the frame on which the camera is
installed. To compensate for this induced motion, the mean displacement of the clamped
points is subtracted to the whole displacement field in both directions of the plane filmed
by the camera. The deflections obtained at different times for the clamped–clamped beam
are depicted in Figure 6.
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Figure 6. Example of deflections obtained for the clamped–clamped beam at different times.

3. Modal Identification
3.1. Beam Theory

The transverse displacement of a beam due to bending vibration, v(x, t), can be
decomposed on a modal basis [24] as:

v(x, t) =
∞

∑
i=1

bi(t) · φi(x) (2)
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where bi(t) is the modal response of the ith mode and φi(x) is the ith mode shape admitting
for generic solution:

φi(x) = C1 cos(βix) + C2 sin(βix) + C3 cosh(βix) + C4 sinh(βix) (3)

The coefficients Ci depend on the boundary conditions. Applying the boundary
conditions for a clamped–clamped beam leads to:

cos(βiL)× cosh(βiL) = 1 (4)

and for a cantilever beam:

cos(βiL)× cosh(βiL) = −1 (5)

The values βiL are the roots of these equations and give the different natural frequen-
cies, with L the length of the beam. For these two boundary conditions, the ith mode shape
can then be expressed by:

φi(x) = cosh(βix)− cos(βix)− σi · (sinh(βix)− sin(βix)) (6)

with σi =
cosh(βi L)−cos(βi L)
sinh(βi L)−sin(βi L)

for a clamped–clamped beam and σi =
sinh(βi L)−sin(βi L)
cosh(βi L)+cos(βi L)

for a
cantilever beam.

The first six natural frequencies expected for the studied beam, in both configurations,
are reported in Table 1, as well as the values of βiL and σi. Moreover, the mode shapes are
shown on Figure 7 for both configurations.

Table 1. Expected natural frequencies.

Clamped–Clamped Beam Cantilever Beam

i βi L σi fi [Hz] βi L sigmai fi [Hz]

1 4.730 0.9825 124.6 1.875 0.7341 15.37
2 7.853 1.0008 343.4 4.694 1.0185 96.3
3 10.996 1.0000 673.3 7.855 0.9992 269.7
4 14.137 1.0000 1112.9 10.996 1.0000 528.6
5 17.279 1.0000 1662.6 14.138 1.0000 873.7
6 20.421 1.0000 2322.1 17.280 1.0000 1305.1
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Figure 7. Theoretical mode shapes for clamped–clamped and cantilever beams.
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3.2. Continuous Wavelet Transform Method for Modal Identification

In order to obtain the experimental modal parameters of the beam, a modal analysis
is carried out using a method based on the continuous wavelet transform (CWT) [25]. It
consists in transforming a signal u(t) using functions, which are expressed as:

ψ(b,a) =
1
a

ψ

(
t− b

a

)
(7)

where a is a dilating scale parameter, b is a translation parameter (in time), and ψ is the
mother wavelet.

The mother wavelet must be a square-integrable and piecewise continuous function.
For modal identification purposes using the free responses of a system with several degrees
of freedom, the mother wavelet has to satisfy certain conditions, which are discussed in [25].
The Cauchy mother wavelet, defined by ψ(t) = (i/(t + i))n+1 with i the unit imaginary
number, is then used in this study.

The CWT can be expressed as:

Tψ[u](a, b) =
1
a

∫ +∞

−∞
u(t)ψ

(
t− b

a

)
dt (8)

where ψ(.) is the complex conjugate of the function ψ(.).
The local resolution of the CWT, in time and in frequency, depends on the dilatation

parameter a and is determined, respectively, by the duration ∆tψ and bandwidth ∆ωψ of
the mother wavelet:

∆t = a∆tψ ; ∆ω =
∆ωψ

a
(9)

The factor Q is introduced as the ratio of the center-frequency to the frequency bandwidth

Q =
ωψ

2∆ωψ
=

n + 1
2√

2n + 1
for Cauchy mother wavelet (10)

In order to avoid edge effects, Q needs to fulfill certain basic preconditions, which are:

c f
ωi

2dωi
≤ Q ≤

Tf ωi

2ct
(11)

where ct and c f are two chosen coefficients, here both equal to 5 (see [25]), Tf is the length
of the signal, and dωi = min(ωi+1 −ωi, ωi −ωi−1).

For each mode, a local CWT is performed in a specific range of time and frequency by
adjusting the length of the signal processed, the frequency bandwidth, and the factor Q.
Then, it is possible to extract the modal parameters from each measurement point to obtain
the eigen frequencies, the modal damping ratios, and the mode shapes. In the case of free
response at point j of the beam, of abscissa xj, Equation (2) leads to:

v(xj, t) = vj(t) =
∞

∑
i=1

vji(t) =
∞

∑
i=1

ρi exp(−ξiωit) cos(ω̃it− ϕi(t)) · φi(xj)

=
∞

∑
i=1

Avji (t) cos
(
αji(t)

) (12)

where ωi and ω̃i are the undamped and damped vibration angular frequencies of the ith
mode, ξi is the damping ratio, ρi is a factor depending on initial conditions, and{

Avji (t) =
∣∣φi(xj)

∣∣ρi exp(−ξiωit)
αji(t) = ω̃it− ϕi(t) + π

2 (1− sign(φi(xj)))
(13)

With the assumption of low damping (ξi << 1), each component vji(t) can be considered
as asymptotic; thus, Zji(t) ≈ Avji (t) exp

(
αji(t)

)
where Zji(t) is the analytical signal of vji(t).
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Then, the modal parameters can be identified using the CWT method. The instanta-
neous frequency is obtained using:

ω̃j = α̇ji(t) =
K

arvji
(t)

(14)

with K a constant depending on the mother wavelet and arvji
(t) the time evolution of the

ridge. For α̇ji(t), the dot represents the derivative with respect to time. The skeleton of the
wavelet transform is the restriction of the CWT to each ridge and contains a maximum of
information, very close to the signal components.

The amplitude along the ridge is used to obtain the modal damping ratio and the
mode shape amplitude using the expressions:

log
(

Avji (t)
)
= log

(∣∣φi(xj)
∣∣ρi
)
− ξiωit (15)

∣∣φi(xj)
∣∣ = Avij(t)

Avmj(t)
(16)

where Avmj(t) is the maximum modal amplitude among the measurement points analyzed.
The instantaneous frequency and the amplitude Auij(t) (in log scale) are depicted in

Figure 8 for 300 measurement points of the neutral axis of a clamped–clamped beam, for
Modes 2 and 5, respectively.

Since the method is a time–frequency method, the results obtained for the eigen
frequencies, modal damping ratios, and modal amplitudes depend on time. Thus, to obtain
the value of the modal parameters for a measurement point, an average is taken over a
time period not subjected to edge effects of the CWT (depending on factor Q and inside the
red vertical lines of Figure 8a–d). For more details on the method, one can see [25].

(a) Instantaneous frequencies for Mode 2 (b) Instantaneous frequencies for Mode 5

(c) Instantaneous modal amplitudes for Mode 2 (d) Instantaneous modal amplitudes for Mode 5

Figure 8. Instantaneous frequencies and modal amplitudes (in log scale) obtained from 300 measure-
ment points of the neutral axis of a clamped–clamped beam for Mode 2 and 5.
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3.3. Signal Processing Procedure to Limit the Disturbance of Measurement Noise on
Modal Identification

In order to process the numerous measurement points resulting from DIC, a signal
processing procedure is proposed. Indeed, the number of points being much more numer-
ous (several hundreds) than classically with accelerometers (at best several tens of points),
some of them are located near the nodes of the different mode shapes and, thus, disturb a
global procedure as they contain low information due to a poor signal-to-noise ratio (SNR)
due to their location, especially for the higher modes.

The process using the CWT method proposed here, for each mode, is as follows:

• First of all, the length of the signals to be processed has to be fixed, i.e., the beginning
and the end of the signals have to be defined. There is no particular difficulty for the
beginning of the signal. For the end of the signal, a first wavelet transform is applied to
all the measurement points on a narrow frequency bandwidth close to the frequency of
the mode considered ([0.99, 1.01]× fi) with a factor Q = (Qmin + Qmax)/5. Then, after a
first approximation of the mode shape, the points whose modal amplitude is less than
0.1 (the mode shape is normalized to the maximum value, so its maximum is equal to 1)
are not used for determining the end of the signals. For each of the remaining points, the
curve log

(
Aukj(t)

)
is normalized to the maximum and the time from which the curve is

under the arbitrarily fixed threshold of 0.2 is saved. The final time for all the points to be
analyzed is defined as the minimum of the times saved previously.

• Once the length of the signals is determined, a second wavelet analysis on the same
bandwidth as before is performed using a factor Q equal to 0.95× Qmax in order
to minimize the time fluctuation on the ridge. The values obtained for the modal
parameters (frequency, modal damping ratio, and mode shape) are the averages of
these parameters for the time interval not subject to edge effects (inside the two vertical
red lines represented in Figure 8).

• In order to limit the noise disturbance on the identification of the modal parameters, a
singular value decomposition (SVD) is applied to the wavelet scalogram as proposed
in [26]. The scalogram is recombined from matrices obtained using SVD after setting
the lowest singular values to zero. Since it is time-consuming and not needed for the
first wavelet transform used to determine the final duration of the signals, the SVD is
only applied for the second wavelet transform used to obtain the modal parameters.
The noise present in the data has no effect on the determination of the frequency, a
small effect on the mode shape (Figure 9a,b (zoom)), and a quite important effect on
the values of the modal damping ratio (Figure 9c).
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Figure 9. Comparison of the results obtained for the clamped–clamped beam with (red dash curves
or circles) and without (blue curves or asterisks) the use of SVD for denoising: (a,b) mode shape of
Mode 6 and (c) modal damping ratio of Mode 4.

Another point to pay attention to is the analysis of the results in terms of statistics,
in particular the dispersion of the results due to the large number of measurement points.
Indeed, as the mode shapes obtained are quite noisy, if they are normalized to the maximum
without precaution, a higher relative standard deviation (RSD) would result (Figure 10a).
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To avoid this, the mode shapes are filtered with a low-pass filter to remove the noise
disturbance and the normalization factors are deduced from these filtered mode shapes.
The low-pass filter is applied by performing zero-phase digital filtering by processing the
input data, i.e., the mode shapes, in both the forward and reverse directions (filtfilt function
in MATLAB®). The filter used in the filtfilt function is a 4th-order lowpass elliptic filter
(ellip function in MATLAB®) with 0.5 dB of passband ripple, 40 dB of stopband attenuation,
and a passband edge spatial frequency of 20 m−1, which, for mode shapes sampled at
nearly 592 m−1, corresponds to 0.068π rad/sample. Figure 10b shows the mode shape
of Mode 6 of the clamped–clamped beam for ten tests after applying this normalization.
Finally, the relative standard deviation is calculated. Figure 11 illustrates, in log scale
along the y-axis, the relative standard deviation obtained for ten tests before and after the
renormalization of four mode shapes of the clamped–clamped beam.

0 0.1 0.2 0.3 0.4 0.5

Position [m]

-1

-0.5

0

0.5

1

M
od

al
 a

m
pl

itu
de
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0 0.1 0.2 0.3 0.4 0.5

Position [m]

-1

-0.5

0

0.5

1

M
od

al
 a

m
pl

itu
de

(b) Normalization with filtering

Figure 10. Comparison of different normalization criteria on the dispersion obtained for ten tests for
mode shape of Mode 6 of the clamped–clamped beam.
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(a) Comparison of RSD for mode shape of Mode 1
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(b) Comparison of RSD for mode shape of Mode 2
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(c) Comparison of RSD for mode shape o Mode 3
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(d) Comparison of RSD for mode shape of Mode 5

Figure 11. Comparison of relative standard deviation before (blue asterisks) and after (red circles)
the renormalization of mode shapes obtained for ten tests.
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The number of measurement points to take into account in the calculation of the
average and the relative standard deviation of modal damping ratio is also important. The
frequency being a more stable modal parameter, the average frequencies are not sensitive to
the number of points used to calculate them. Figure 12 shows the evolution of the average
modal damping ratio for the first six modes of the clamped–clamped beam according to the
number of measurement points taken into account in the calculation. As the information is
better when the modal amplitude is greater, the measurement points used for the calculation
of frequencies and modal damping ratios are selected based on their modal amplitude
using a threshold (equal to 0.5).
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Figure 12. Relative variation of the modal damping ratios of the clamped–clamped beam as a function
of the modal amplitude threshold of the normalized mode shapes used to select the points to calculate
the averages of the modal damping ratios.

This analysis is performed on the two data sets obtained from full-field measurements
and accelerometers.

4. Results and Discussion

Two cases are studied, i.e., a clamped–clamped beam and a cantilever beam, with ten
tests being performed for each case. The mean and the standard deviation for each modal
parameter are determined in order to evaluate the tests’ repeatability.

4.1. Clamped–Clamped Beam

First, a 1D FE computation, using beam elements with two degrees of freedom, is
performed and compared with the results of the test. The loading signal is taken up
from the experimental measurement of the impact hammer. To fit the numerical model
on the experimental configuration, the Young’s modulus is adjusted in order to obtain
the first numerical frequency in accordance with the experimental one. On Figure 13 the
Fourier transform of both numerical and experimental data, for the neutral axis point
of coordinate x = 14.10 cm, are shown. The first six modes are observable through the
experimental displacement field. Figure 14 illustrates the comparison between numerical
and experimental transverse displacements of the middle of the beam (x = L/2 = 25.25 cm).
Concerning the experimental displacements, the standard deviation before the excitation,
representing the noise level, is lower than 10−6 m, as expected. The results presented in the
two previously mentioned figures show a very good agreement of the measurement with
the theory, except for Mode 4, whose amplitude is higher in the experiment, possibly due
to a spurious mode.
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Figure 13. Comparison of Fourier transform of numerical and experimental signals for neutral axis
point of the clamped–clamped beam at abscissa x = 14.10 cm.
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Figure 14. Comparison of numerical and experimental transverse displacement for the neutral axis
point of the clamped–clamped beam at abscissa x = 25.25 cm.

In order to quantify the noise level for each mode for the full-field measurements, the
SNR is calculated for each measurement point of the neutral axis for the clamped–clamped
beam. The evolution of this ratio along the beam is shown for each mode on Figure 15a for
the full-field displacements and Figure 15b for the accelerometers for comparison. For the
full-field displacements, it can be observed that this ratio decreases with the mode number
and also at the modal nodes. These two observations can be easily explained by the fact
that the higher the mode is, the less it participates in the global motion and that, close to
the nodes, the motion is near to zero and thus, closer to the noise level.

After evaluating the noise level for each mode, the modal parameter identification
is presented. Figure 16a,d depict, for a specific test, the frequency determined at each
measurement point for the second and fifth mode, respectively. Figure 16b,e show the
damping ratios and Figures 16c,f the mode shapes for the same modes, respectively. From
these figures, it can be observed that, apart in a few measurement points near the modal
nodes and the boundary conditions, the determined frequencies and damping ratios are
rather constant. In the following, the frequencies and modal damping ratios will refer to
the averages of the values obtained for all measurement points.



Appl. Sci. 2023, 13, 4792 15 of 24

0 0.1 0.2 0.3 0.4 0.5
Position [m]

10

20

30

40

50

60

70

S
N

R
 [d

B
]

Mode 1
Mode 2
Mode 3
Mode 4
Mode 5
Mode 6

(a) Full-field displacements
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Figure 15. Signal-to-noise ratio (SNR), in dB, for different measurement types for the clamped–
clamped beam: (a) full-field displacements and (b) accelerometers.
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(b) Modal damping ratio values for Mode 2
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(c) Mode shape for Mode 2
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(d) Frequency values for Mode 5
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(e) Modal damping ratio values for Mode 5
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(f) Mode shape for Mode 5

Figure 16. Modal parameters obtained from the DIC measurements for Modes 2 and 5 of the
clamped–clamped beam.
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The distributions of the frequency and the damping ratio values obtained for the
second and fifth mode are shown in Figure 17a,d. It appears one more time that, apart from
a few points very far from the average values, there is little deviation for all other points.

(a) Frequency distribution for Mode 2 (b) Frequency distribution for Mode 5

(c) Modal damping ratio distribution for Mode 2 (d) Modal damping ratio distribution for Mode 5

Figure 17. Distributions of frequencies and modal damping ratios obtained from the DIC measure-
ments for Mode 2 and 5 of the clamped–clamped beam.

One of the main advantages of a full-field measurement is to consider numerous
points and thus to provide mode shapes with a high discretization. Figure 18a,f show the
means and relative standard deviations (RSD) for each point of the mode shapes over ten
tests. Since the CWT method is an output-only method, which means that the excitation
signal is not needed for modal parameter identification, the mode shapes are normalized
to their maximum (L1-normalization). The mode shapes obtained are consistent with those
expected. Considering the standard deviation, the figures highlight that, as expected, it
increases with the order of the mode, because the SNR is less important for higher modes,
and also close to the modal nodes.
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(a) Mode 1
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(c) Mode 3
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Figure 18. First six mode shapes obtained from the DIC measurements for the clamped–clamped beam.

For the frequencies and damping ratios, the values obtained from the DIC measure-
ments and the accelerometers are reported in Tables 2 and 3, respectively.

Table 2. Average frequencies (in Hz) determined from DIC measurements and accelerometers for the
clamped–clamped beam.

Test
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

DIC Acc. DIC Acc. DIC Acc. DIC Acc. DIC Acc. DIC Acc.

1 118.0 118.0 325.1 325.1 634.5 634.7 1055.0 1055.2 1571.8 1572.2 2192.3 2193.4
2 117.9 117.9 324.9 325.0 634.1 634.4 1054.5 1054.8 1571.6 1571.6 2191.3 2192.1
3 117.8 117.8 324.8 324.8 634.0 634.3 1054.7 1054.6 1571.4 1571.6 2191.6 2192.1
4 117.9 118.0 325.0 325.1 634.8 634.8 1055.8 1055.7 1572.8 1572.6 2193.6 2194.3
5 117.8 117.8 324.7 324.7 634.2 634.5 1054.9 1054.9 1572.0 1571.9 2192.4 2193.2
6 117.5 117.6 324.5 324.5 633.8 633.9 1054.2 1054.5 1571.3 1571.1 2191.2 2191.5
7 117.8 117.8 324.8 324.9 634.2 634.3 1054.8 1055.0 1571.6 1571.8 2191.9 2192.5
8 117.6 117.7 324.6 324.7 634.0 634.1 1054.3 1054.5 1571.2 1571.4 2191.0 2192.1
9 117.6 117.6 324.4 324.5 633.6 633.9 1054.1 1054.3 1570.9 1571.2 2189.9 2191.8
10 117.5 117.5 324.3 324.3 633.6 633.7 1054.3 1054.3 1571.0 1571.3 2190.8 2191.9

Mean 117.8 117.8 324.7 324.8 634.1 634.2 1054.7 1054.8 1571.5 1571.7 2191.6 2192.5
RSD (%) 0.15 0.15 0.08 0.08 0.06 0.06 0.05 0.04 0.04 0.03 0.05 0.04
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Table 3. Average modal damping ratios (in %) determined from DIC measurements and accelerome-
ters for the clamped–clamped beam.

Test
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

DIC Acc. DIC Acc. DIC Acc. DIC Acc. DIC Acc. DIC Acc.

1 0.49 0.51 0.38 0.37 0.38 0.37 0.32 0.31 0.20 0.20 0.17 0.18
2 0.51 0.50 0.36 0.36 0.39 0.39 0.32 0.31 0.21 0.21 0.18 0.19
3 0.44 0.46 0.37 0.36 0.39 0.38 0.32 0.31 0.21 0.21 0.18 0.19
4 0.37 0.36 0.26 0.26 0.30 0.33 0.25 0.27 0.18 0.17 0.17 0.17
5 0.37 0.38 0.36 0.36 0.36 0.36 0.30 0.29 0.20 0.19 0.17 0.18
6 0.47 0.48 0.37 0.37 0.39 0.39 0.31 0.30 0.21 0.21 0.18 0.19
7 0.46 0.47 0.37 0.37 0.37 0.38 0.30 0.30 0.20 0.20 0.18 0.19
8 0.51 0.53 0.37 0.37 0.39 0.38 0.31 0.30 0.21 0.20 0.18 0.19
9 0.50 0.55 0.37 0.36 0.38 0.39 0.30 0.30 0.20 0.20 0.17 0.19
10 0.52 0.54 0.37 0.36 0.38 0.38 0.30 0.30 0.20 0.20 0.18 0.19

Mean 0.46 0.48 0.36 0.35 0.37 0.37 0.30 0.30 0.20 0.20 0.18 0.19
RSD (%) 12.20 13.47 10.13 9.59 7.54 4.94 6.95 4.06 4.65 5.46 2.91 4.17

From results reported in the aforementioned tables, a good repeatability of the tests is
observed; indeed, the standard deviations of frequencies and of modal damping ratios are
low for both data sets. Secondly, it can be seen that the two kinds of measurement lead to
very similar results for the natural frequencies and modal damping ratios.

Figure 19 depicts the Fourier transforms of the measured displacement and acceler-
ation for the neutral axis point of the clamped–clamped beam at abscissa x = 14.10 cm.
The presented results clearly show that the displacement measurement emphasizes the
low frequencies, while the acceleration measurement emphasizes the high frequencies,
which is classical. It should also be noted that the SNR is much higher for the acceleration
measurement, especially as the mode order increases.
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Figure 19. Fourier transforms obtained from the accelerometer and the DIC for the neutral axis point
of the clamped–clamped beam at abscissa x = 14.10 cm.

To continue the direct comparison between modal analysis based on accelerometers
and full-field measurements, Figure 20 presents the first six mode shapes determined
from both experimental data sets, for a single test, and those expected from the beam
theory. Therefore, the graphs confirm a very good agreement between the experimental
measurements and the theory, excepted for the fourth and sixth mode shapes obtained
with DIC measurements. Indeed, the excitation level for the sixth mode is very weak so
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that the identified mode shape is very noisy and, for the fourth mode, the identification
process is disturbed, especially near the modal nodes, by a spurious mode with nearly the
same frequency. This spurious mode is only present in the DIC measurements. Its shape
is that of a first mode but its frequency does not correspond to the first mode of the other
motion components, i.e., traction and torsion. However, we found it was sensitive to the
boundary conditions but not enough to uncouple this mode from the fourth mode and
improve the identification process.
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Figure 20. Comparison of the first six mode shapes of the clamped–clamped beam for a particular test.

To validate the use of the DIC to perform modal analysis, we can compare the eigen
frequency and modal damping ratio values obtained to those determined using the ac-
celerometer measurements. The mode shapes can also be compared to theoretical or
numerical ones. To this end, the Modal Assurance Criterion (MAC) is commonly used [27].
This criterion is defined as the normalized scalar products of the mode shapes. The ith
mode of a family A is compared to the jth mode of a family B, and the resulting scalar is
arranged into the MAC matrix as follows:

MAC(i, j) =
|{φA}ᵀi {φB}j|2(

{φA}ᵀi {φA}i
)(
{φB}ᵀj {φB}j

) (17)

The values of the MAC coefficients are bounded between 0 and 1, with 1 indicating
fully consistent mode shapes. It can only indicate consistency and does not indicate validity
or orthogonality. A value near 0 indicates that the modes are not consistent.

Moreover, the MAC can be calculated between both data sets in order to compare the
different mode shapes obtained. First, an auto-MAC issued from the DIC mode shapes is
shown on Figure 21a. The fact that the values of the non-diagonal terms MAC(1,4) and
MAC(4,1) are a little bit higher, but still very low (around 0.03), than for the other non-
diagonal terms is due to the spurious mode perturbing the identification of the fourth mode,
as previously discussed. It appears, for the zones near the nodes, that the determination
of the fourth mode shapes is disturbed by another mode, whose frequency is close to the
fourth mode and whose shape is similar to that of a first mode.
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The MAC matrix between the accelerometer and DIC data is presented in Figure 21b.
One more time, this latter figure shows a good agreement between both experimental mode
shape bases. As for the auto-MAC of DIC, the term MAC(1,4) is different (also around 0.03)
due to the spurious mode observed in DIC measurements. Due to this spurious mode for
the fourth mode and to the low quality of the determination of the mode shape for the sixth
mode, for DIC measurements, the correlation coefficients for these modes (diagonal terms)
are lower than for the other modes (0.99), respectively equal to 0.96 and to 0.94.

The results obtained for this configuration are encouraging, with the first six modes
quite well identified, except the sixth one. The natural frequency of the last mode is
around 2192 Hz. Following the previous study carried out for clamped–clamped boundary
conditions, the next section will focus on the case of the cantilever beam.
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Figure 21. Components of the MAC matrix calculated from measurements: (a) auto-MAC of mode
shapes obtained from DIC measurements and (b) MAC of mode shapes obtained from accelerometer
and DIC measurements.

4.2. Cantilever Beam

Figure 22 shows the averages and standard deviations over the ten tests for the mode
shapes, while Tables 4 and 5, respectively, report the frequencies and the modal damping
ratios determined using the full-field measurement and the accelerometer data set.

DIC measurements are obtained after a numerical processing performed on each
image. The time signal being obtained after a numerical post-processing and not in an
analogue way, as for accelerometers, the signal is therefore necessarily subjected to aliasing
because no analogue filter can be applied. Thus, the eighth mode observed from DIC
measurements, at the frequency of 2178 Hz (see Table 4), is a folding frequency of the
frequency obtained with the accelerometer measurements for this mode, which is equal to
2327 Hz.

As for the previous case of the clamped–clamped beam, the tests for the cantilever
beam show a good repeatability and both sets of data lead to similar eigen frequencies and
modal damping ratios. As in the previous case, the mode shapes were determined with a
good accuracy for modes with frequencies up to almost the Nyquist frequency, equal to
2250 Hz in this study.
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Figure 22. First eight mode shapes obtained from the DIC measurements for the cantilever beam.

Table 4. Frequencies of the cantilever beam determined for the different tests from DIC measurements
and accelerometers (in Hz).

Test
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8

DIC Acc. DIC Acc. DIC Acc. DIC Acc. DIC Acc. DIC Acc. DIC Acc. DIC Acc.

1 15.05 15.05 93.09 93.08 259.0 259.0 509.3 509.3 844.3 844.3 1255.3 1255.2 1752.9 1753.5 2178.2 2327.0
2 15.04 15.05 93.09 93.08 259.1 259.1 509.4 509.4 844.4 844.2 1255.2 1255.2 1753.2 1753.5 2178.2 2326.9
3 15.04 15.05 93.08 93.10 259.1 259.1 509.3 509.3 844.5 844.2 1255.5 1255.3 1753.0 1753.3 2178.0 2326.9
4 15.04 15.05 93.09 93.09 259.0 259.1 509.2 509.3 844.0 844.3 1254.8 1255.3 1753.0 1753.1 2177.9 2326.4
5 15.05 15.05 93.09 93.09 259.1 259.1 509.4 509.4 844.0 844.5 1255.3 1255.5 1753.3 1753.5 2176.9 2327.0
6 15.04 15.05 93.08 93.09 259.1 259.1 509.4 509.3 844.7 844.3 1255.4 1255.4 1753.1 1753.6 2177.8 2327.0
7 15.04 15.04 93.09 93.09 259.0 259.1 509.5 509.5 844.5 844.4 1255.5 1255.6 1753.3 1753.6 2178.2 2326.9
8 15.07 15.07 93.13 93.16 259.0 259.2 509.6 509.7 844.6 844.8 1253.2 1256.0 1753.8 1754.1 2176.7 2328.1
9 15.04 15.04 93.08 93.08 259.1 259.0 509.3 509.4 844.1 844.2 1254.9 1255.1 1753.0 1753.1 2177.7 2326.7
10 15.03 15.04 93.09 93.09 259.0 259.0 509.2 509.3 844.3 844.3 1255.2 1255.1 1753.0 1753.1 2177.7 2326.8

Mean 15.04 15.05 93.09 93.10 259.1 259.1 509.4 509.4 844.3 844.4 1255.0 1255.4 1753.2 1753.4 2177.7 2327.0
RSD (%) 0.08 0.07 0.02 0.02 0.01 0.02 0.02 0.02 0.03 0.02 0.05 0.02 0.01 0.02 0.02 0.02
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Table 5. Modal damping ratios (in %) of the first eight modes of the cantilever beam determined for
different tests from DIC measurements and accelerometers.

Test
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8

DIC Acc. DIC Acc. DIC Acc. DIC Acc. DIC Acc. DIC Acc. DIC Acc. DIC Acc.

1 0.45 0.50 0.28 0.28 0.27 0.28 0.15 0.15 0.49 0.49 0.13 0.14 0.14 0.14 0.17 0.15
2 0.46 0.48 0.28 0.28 0.27 0.27 0.15 0.15 0.47 0.49 0.14 0.14 0.13 0.14 0.16 0.15
3 0.47 0.51 0.29 0.28 0.27 0.27 0.15 0.15 0.48 0.49 0.14 0.14 0.13 0.14 0.16 0.15
4 0.45 0.50 0.28 0.28 0.27 0.27 0.16 0.15 0.47 0.48 0.14 0.14 0.13 0.14 0.17 0.16
5 0.48 0.50 0.29 0.28 0.27 0.27 0.14 0.14 0.48 0.50 0.12 0.13 0.13 0.14 0.17 0.15
6 0.49 0.51 0.29 0.28 0.28 0.27 0.16 0.14 0.48 0.50 0.13 0.13 0.14 0.14 0.17 0.15
7 0.49 0.51 0.28 0.28 0.28 0.27 0.15 0.14 0.47 0.50 0.14 0.13 0.14 0.14 0.16 0.15
8 0.55 0.53 0.27 0.25 0.24 0.23 0.13 0.13 0.50 0.51 0.14 0.12 0.14 0.13 0.12 0.14
9 0.47 0.48 0.29 0.28 0.27 0.27 0.16 0.15 0.48 0.49 0.13 0.14 0.14 0.14 0.16 0.15
10 0.47 0.50 0.28 0.28 0.27 0.27 0.16 0.15 0.47 0.49 0.14 0.14 0.14 0.14 0.15 0.15

Mean 0.48 0.50 0.28 0.28 0.27 0.27 0.15 0.14 0.48 0.49 0.13 0.13 0.14 0.14 0.16 0.15
RSD (%) 6.43 3.19 1.86 3.77 3.97 5.14 6.42 4.86 1.96 1.92 5.81 4.22 2.00 1.37 9.01 2.09

4.3. Discussion

The major inconvenience of the DIC, compared to other classical instrumentation in
dynamics, is the special care taken in the experimental set-up of the tested structure, espe-
cially the speckle realization and the lighting, whereas other sensors such as accelerometers
and vibrometers are more “ready-to-use”. However, the use of full-field measurements
by means of DIC to perform a modal analysis offers many advantages. Given that the
surface of the structure under test is not “mechanically” scanned, the duration of the tests
is shorter than that needed using scanning vibrometers. As previously underlined, the
main advantage of the full-field measurements is the large amount of data points. This
amount of data allows us to increase the spatial resolution, leading to a better description
of the mode shapes.

Even if the resolution is lower than for accelerometers and vibrometers, we were able
to identify using DIC the first six modes of a clamped–clamped beam and the first eight
ones of a cantilever beam. The highest natural frequency determined using the full-field
measurement here is up to 2200 Hz.

Table 6 summarizes the pros and cons of both measurement techniques considered
in this research. We should note that the deviation observed in the identification of the
modal damping ratios of some modes with DIC measurements is partially due to the large
number of measurement points.

Table 6. Comparison between the DIC measurements and accelerometers.

Parameter DIC Accelerometers

Frequency Good determination = Good determination =

Damping ratio Some disparity
(many measurements) +/− Low disparity

(few measurements) +

Mode shape Accurate description + Lack of points −

Impact on measurement Non-intrusive + Intrusive −

5. Conclusions

The presented experiments allowed us to demonstrate the feasibility of modal analysis
using the displacement measurement with DIC. It must be emphasized that the speckle
realization affects the displacement resolution. In the presented investigation, the speckle
realized with a pen showed better results in terms of random and systematic errors than
that realized with the spray paint. This can be partially explained by the fact that setting
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the spot size with a pen is far easier at the scale of the experiment presented in the paper
than with spray paint.

The measurement quality realized with DIC has been investigated for the transverse
vibratory response of a beam excited by a shock for two boundaries conditions, clamped–
clamped and cantilever. To deal with the numerous and noisy signals obtained from the
DIC measurements, a continuous wavelet transform method is adapted to perform a modal
identification and a signal processing procedure is proposed. The identification was carried
out for modes whose frequency goes up to about 2200 Hz, up to the sixth mode for the
clamped–clamped beam and the eighth mode for the cantilever beam.

The comparison with the results of modal analysis resulting from the measurement
of accelerometers shows that the natural frequencies and the modal damping ratios de-
termined using DIC are very close to those obtained with the accelerometers and that
the dispersion of the results is similar. Concerning the mode shapes, the results obtained
from DIC measurements are much more accurate due to the large number of points, up
to three hundred in our experiments. Thus, one of the interests of using DIC for modal
identification of structures is to provide a more accurate description of the mode shapes.
This can therefore be very useful for damage detection methods using mode shapes and/or
their derivatives, such as modal curvature methods.
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