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Abstract
Melting sea ice is a seasonal source of iron (Fe) to the Southern Ocean (SO), where Fe levels in surface waters are otherwise 
generally too low to support phytoplankton growth. However, the effectiveness of sea-ice Fe fertilization in stimulating 
SO primary production is unknown since no data exist on Fe uptake by microorganisms in the sea-ice environment. This 
study reports a unique dataset on Fe uptake rates, Fe-to-carbon (C) uptake ratio (Fe uptake normalized to C uptake) and 
Fe:C uptake rate (Fe uptake normalized to biomass) by in situ microbial communities inhabiting sea ice and the underlying 
seawater. Radioisotopes 55Fe and 14C were used in short-term uptake experiments during the 32-day Ice Station POLarstern 
(ISPOL) time series to evaluate the contributions of small (0.8–10 µm) and large (> 10 µm) microbes to Fe uptake. Overall, 
results show that over 90% of Fe was bound to the outside of the cells. Intracellular Fe  (Feintra) uptake rates reached up to 68, 
194, and 203 pmol Fe  L−1d− 1 in under-ice seawater, bottom ice, and top ice, respectively. Inorganic carbon uptake ranged 
between 0.03 and 3.2 µmol C  L−1  d−1, with the lowest rate observed in under-ice seawater. Importantly, between the start 
and end of ISPOL, we observed a 30-fold increase in  Feintra normalized to carbon biomass in bottom sea ice. This trend 
was likely due to changes in the microbial community from a dominance of large diatoms at the start of the survey to small 
diatoms later in the season. As the Antarctic icescape and associated ecosystems are changing, this dataset will help inform 
the parameterisation of sea-ice biogeochemical and ecological models in ice-covered regions.
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Introduction

About 30% of the ocean primary productivity in our global 
ocean is limited by low levels of iron (Fe) in surface waters 
(Moore et al. 2013). The Southern Ocean (SO) is a prime 
example where high concentrations of macro-nutrients (nitrate, 
phosphate, and silicic acid) do not translate into high phyto-
plankton biomass because of this Fe limitation. However, some 
naturally Fe-fertilized biological hotspots do exist in the SO, 
such as downstream of island plateaus (Blain et al. 2007; Plan-
quette et al. 2007, 2011; Pollard et al. 2009), coastal polynyas 
(Arrigo and van Dijken 2003; St-Laurent et al. 2019; Moreau 
et al. 2019), or in the vicinity of floating icebergs (Raiswell 
et al. 2008; Lin et al. 2011; Shaw et al. 2011; Duprat et al. 
2016; Hopwood 2018) and melting glaciers (Raiswell et al. 
2006; Gerringa et al. 2012; Herraiz-Borreguero et al. 2016; 
van der Merwe et al. 2019). The sea-ice zone has been iden-
tified as another biologically productive area, where sea ice 
acts as a seasonal Fe reservoir (Sedwick and DiTullio 1997; 
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Lancelot et al. 2009; Lannuzel et al. 2016). During winter, 
when sea ice forms, it concentrates Fe and organic matter from 
seawater (Gradinger and Ikavalko 1998; Janssens et al. 2016; 
Person et al. 2020). When sea ice melts in spring, it releases Fe 
and organic matter in the surface layer of the ocean, therefore 
stimulating phytoplankton growth in surrounding waters and 
beyond (Smith and Nelson 1985; Lannuzel et al. 2013; Lieser 
et al. 2015). This seasonal and widespread fertilization repre-
sents the largest source of Fe in the seasonal ice zone in spring 
(Lannuzel et al. 2007; de Jong et al. 2015), an area that covers 
approximately 40% of the SO.

Whilst quantifying the magnitude of the Fe supply in sea-
sonally ice-covered waters is paramount, we need data on Fe 
uptake rates by the microbial community as a mean to estimate 
biological Fe demand. Some information is available for open 
ocean phytoplankton (Strzepek et al. 2005; Frew et al. 2006; 
Sarthou et al. 2008), but no studies have attempted to quantify 
Fe uptake by sea-ice (sympagic) algae and under-ice (cryo-
pelagic) phytoplankton. Therefore, modellers have had to use 
alternative ways to parameterize Fe and C dynamics in sea-
ice biogeochemical models (Lancelot et al. 2009; Wang et al. 
2014; Jeffery et al. 2020). For instance, measurements of dis-
solved Fe (DFe) concentrations in sea ice were used together 
with constant intracellular Fe to C molar ratio for phytoplank-
ton  (Feintra:C, see Table 1 for a description of abbreviations) 
to estimate the Fe-fuelled primary productivity during melting 
(de Jong et al. 2013; 2015). However, these  Feintra:C ratios 
are generally based on laboratory culture experiments (Brand 
1991; Twining et al. 2004; Sarthou et al. 2005; Hassler and 
Schoemann 2009; Strzepek et al. 2011; Twining and Baines 
2013) that are not representative of the sea-ice environment.

The ranges of  Feintra:C ratios for SO phytoplankton 
reported in the literature are also large, fuelling more uncer-
tainty. At steady state, the  Feintra:C ratio for phytoplank-
tonic cells vary between ~ 5 and 50 µmol Fe  mol−1 C but 
can reach > 100 µmol Fe  mol−1 C in the case of artificial 
Fe enrichments (Boyd et al. 2000; Fourquez et al. 2020). 
Total (extracellular + intracellular) and intracellular Fe and C 
contents also vary by several orders of magnitude depending 
on the type and size of phytoplankton (Veldhuis et al. 2005; 
Sarthou et al. 2005), the ambient DFe concentrations (Sunda 
and Huntsman 1995; Maldonado and Price 1996; Bruland 
et al. 2001; Sarthou et al. 2005), and/or in situ nutrient 

gradients (Twining et al. 2021). Therefore, overestimating 
algal Fe uptake may result in an underestimation of primary 
production and C export (and vice versa). Measurements 
of Fe:C ratios in and under sea ice are therefore crucially 
needed to properly constrain the efficiency of the biological 
pump of carbon in this climate-sensitive environment.

Since large physical and chemical gradients are encountered 
in sea ice, algal cell concentrations can vary by up to six orders 
of magnitude (from <  104 to  109 cells  L−1). Low values in the 
upper ice cover are typical of oceanic waters, whilst some of 
the highest values for any aquatic environment can be recorded 
at the sea ice/seawater interface (Lizotte 2003). Consequently, 
for this study we chose to target several sea-ice horizons to get 
a holistic view of how environmental conditions may affect 
Fe uptake rates both within and under sea ice. We carried out 
short-term (4–6 h) incubation experiments to measure Fe and 
inorganic carbon uptake by microbial communities inhabiting 
slush (a naturally occurring mixture of snow and seawater), 
bottom sea ice as well as seawater (right below sea ice). The 
use of radiotracers (55Fe and 14C) and a chemical wash allowed 
an estimation of the rates of incorporation into biomass (intra-
cellular) but also around the cells (extracellular). Measuring 
 Feintra is of prime interest to quantify cellular Fe needed to 
sustain biological activities, whilst measuring extracellular 
Fe  (Feextra =  Fetot—Feintra) is paramount for the construction 
of biogeochemical Fe budgets. Our study focuses on the behav-
iour of sea-ice algae and phytoplankton but we also discussed 
the role of other organisms (bacteria and protists) naturally 
present in our incubations.

Materials and methods

Sampling and analytical methods for the main 
variables

Sea ice, brine, seawater, and slush were collected in the 
Antarctic pack ice zone during the Ice Station POLarstern 
(ISPOL) research cruise onboard the RV Polarstern from 
29th November to 31st December 2004 in the Western Wed-
dell Sea (68°S 55°W). In situ sea-ice temperatures were 
measured using a calibrated probe (TESTO 720) inserted 
every 5 cm along a freshly sampled core. Precision of the 

Table 1  List of abbreviations Symbol Meaning Unit

Fetot Total (intracellular+extracellular) 55Fe uptake rate pmol  L−1  d−1

Feintra Intracellular 55Fe uptake rate pmol  L−1  d−1

Feintra:C Intracellular 55Fe uptake rate normalized to inorganic 14C uptake rate µmol Fe  mol−1 C
Feintra:POC Intracellular 55Fe uptake rate normalized to particulate organic carbon µmol Fe  mol−1 C  d−1

Fetot:C Total 55Fe uptake rate normalized to inorganic 14C uptake rate µmol Fe  mol−1 C
Fetot:POC Total 55Fe uptake rate normalized to particulate organic carbon µmol Fe  mol−1 C  d−1
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measurements was ± 0.1 °C (Tison et al. 2008). Ice-core 
sections were melted in the dark at 4 °C in 0.2-µm-pre-
filtered seawater (1:4 volume ratio). Chlorophyll a (Chl a) 
was quantified by fluorometry following filtration of 1 L to 
2 L (depending on particle load in the sample) onto 0.7-µm 
Whatman glass-fibre filters (GF/F) after 90% v:v acetone 
extraction of the particulate material retained on the filter, in 
the dark for 12 h at 4 °C (Yentsch and Menzel 1963). Algae 
and protozoa were enumerated by inverted light microscopy 
(Utermöhl 1958) and epifluorescence microscopy after 
DAPI staining (Porter and Feig 1980). Algae and protozoa 
biomasses were estimated from cell biovolumes using a set 
of geometric correspondences (Hillebrand et al. 1999) and 
specific carbon to volume relationship (Menden-Deuer and 
Lessard 2000). Meltwater for particulate organic carbon 
(POC) was collected on pre-combusted (450 °C, 4 h) GF/F 
filters and stored in polystyrene Petri dishes at − 20 °C until 
analysis in the home laboratory using a FisonsNA-1500 ele-
mental analyser (Dumont et al. 2009). Dissolved Fe (opera-
tional fraction < 0.2 µm) was analysed directly onboard 
by Flow Injection Analysis (FIA) 24 h after acidification 
with ultrapure HCl (Seastar Baseline) to pH 1.8. The FIA 
method was adapted from automated continuous flow system 
(FeLume, Waterville Analytical, USA) that detects chemi-
luminescence from the reaction of luminol and Fe (II). The 
detection limit (3σ of the blank) was on average 0.12 nM and 
the analysis of referenced materials NASS-5 and CASS-3 
agreed well with the certified values (Lannuzel et al. 2008).

Sampling strategy for the uptake experiments

Cleaning procedures

All labware used for sampling and incubation was cleaned 
following strict trace metal clean procedures. Polycarbonate 
(PC) petri dishes (0.14 m internal diameter, 15 mm thickness), 
20-L PC carboys, and 400-mL and 250-mL PC bottles (all 
Nalgene®) used for Fe incubations were soaked in a detergent 
bath (RBS 5% v:v) for 24 h, followed by 3 rinses with deion-
ized water and 3 rinses with Ultra High-Purity (UHP) water 

(18.2 MΩ, Millipore Milli-Q system) before being filled with 
1-M HCl (Merck, reagent grade) for 1 week. Each item was 
rinsed 5 times with UHP water and dried inside a class 100 
laminar flow hood. High-density polyethylene (HDPE) melt-
ing containers and 250-mL low-density polyethylene (LDPE) 
bottles were treated the same way, albeit with a stronger acid 
soak (6-M HCl, Merck, reagent grade). Acid-cleaned bottles 
and containers were sealed in triple plastic bags until use.

Sampling of seawater, brine, slush, and sea ice

Samples for the uptake experiments were collected on four 
occasions for sea ice and on one occasion for slush and seawa-
ter (Table 2). Core were collected with a 14-cm diameter corer 
using the trace metal clean techniques described in Lannuzel 
et al. (2006). As sea ice is a very heterogeneous environment, 
the cores were collected only 20 cm apart to reduce the uncer-
tainty linked to spatial variability. The cores were transported 
to the ship, placed in a polyethylene (PE) lathe under class 100 
laminar flow, and 1 cm thick of bottom slice were carefully cut 
along the cores using titanium chisels and blades (Fig. 1). The 
ice sections were then transferred into acid-washed PC dishes 
of 14 cm diameter. Surface-ice slush and under-ice seawater 
sample were also collected on one occasion. The slush sample 
was collected on Day 22 at the snow/ice interface, using an 
acid-clean PE shovel, and transferred into trace metal clean 
250-mL PC bottles. The seawater sample was sampled on Day 
23 at the ice/water interface, using an acid-cleaned braided 
PVC flexible tube and portable peristaltic pump (Cole-Parmer, 
Masterflex E/P) with acid-cleaned C-flex pump tubing and col-
lected into acid-clean 250- and 400-mL PC bottles.

Additional seawater and brine were collected to preserve 
the integrity and environmental conditions of the experi-
ments. Briefly, large volumes of seawater were collected 
from 30 m below sea ice using an acid-cleaned braided PVC 
flexible tube and a portable peristaltic pump (Cole-Parmer, 
Masterflex E/P) with acid-cleaned C-flex pump tubing con-
nected to an acid-cleaned 0.2 μm cartridge filter (Sartorius 
Sartroban® 300) and transferred into 20-L acid-clean PC 
carboys. The carboys were stored onboard the ship in the 

Table 2  Summary information 
on the short-term 55Fe and 14C 
uptake experiments

a Estimated from comparable samples after accounting for background DFe in the spike solutions

Sample type Date Day of 
time 
series

Incubation type Incubation 
temperature(°C)

In situ DFe 
(nmol  L−1)a

55Fe added 
(nmol  L−1)

Slush 21-Dec 22 Shipboard  − 1.0 2.54 0.03
Seawater 22-Dec 23 Shipboard  − 1.0 1.52 0.05
Bottom sea ice 5-Dec 6 Shipboard  − 1.9 19.6 0.66
Bottom sea ice 20-Dec 21 In situ  − 1.8 3.00 0.78
Bottom sea ice 28-Dec 29 Shipboard  − 1.6 2.90 1.4
Bottom sea ice 31-Dec 32 In situ  − 1.4 2.90 0.9
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dark at 4 °C until needed. This filtered seawater was used 
for two procedural purposes: 1) to melt the incubated sea-ice 
sections at a 4:1 (v:v) ratio to avoid thermal shock and cell 
damage and 2) as a spike solution for the slush incubation. 
Sea-ice brines were also needed for the preparation of the 
radiotracer solution for the bottom sea-ice incubations. For 
this purpose, sea-ice brines were drained in situ at 0.6 m 
deep in the ice cover using the sack-hole technique and 
collected using the same equipment as for seawater (Tison 
et al. 2008). The 0.2-μm-filtered brines were collected into 
an acid-clean 250-mL LDPE bottles previously rinsed with 
the collected brines. The brines were stored onboard the ship 
in the dark at 4 °C until needed.

Methods for 55Fe and 14C uptake experiments

Sea ice

The emission spectrum of 55Fe and 14C partly overlap, 
therefore two separate sea-ice cores were collected at the 
same time and 20 cm apart to allow better interpretation of 
the 55Fe and 14C results. For Fe uptake rate measurement, 
a 1-cm-thick bottom sea-ice slice was spiked with 3 mL 
of pre-filtered brine (< 0.2 µm) mixed with 17 µL of 55Fe 
(as 55FeCl3, 266 µCi  mL−1 specific activity Perkin Elmer). 
The final 55Fe concentrations in the sea-ice samples ranged 
from 0.7 to 1.4 nmol  L−1, depending on the sea-ice brine 
volume fraction. For inorganic C uptake rate measurement, 
a second 1-cm-thick slice from a nearby core was spiked 
with 3 mL of pre-filtered brine (< 0.2 µm) mixed with 20 
µL of 14C source solution (as  NaH14CO3, 1 mCi  mL−1, spe-
cific activity 50–60 mCi  mmol−1, Amersham Biosciences). 
The Petri dishes containing the slices were immediately 
sealed in a transparent plastic zip-lock bag and re-inserted 
at their original depth together with the remaining ice core 
sections. The reconstructed ice cores were then transferred 

into a triple-layered transparent plastic bag and returned to 
the original core hole (Fig. 1). The core holes were covered 
with snow to the original snow thickness (11 cm on Day 
21 and 6 cm Day 32). This moment marked the start of the 
in situ incubation period. In situ sea-ice incubations were 
performed for 5–6 h during ISPOL on two separate occa-
sions (Day 21 and Day 32). Short-term incubations of 5–6 h 
were also performed shipboard with 1-cm-thick slices of 
bottom sea ice in the ship’s culture room under set tempera-
ture (− 1 ± 1 °C) and light (50 µmol  m−2  s−1) conditions on 
two separate occasions (Day 6 and Day 29) to mimic the 
general in situ conditions.

Slush and under‑ice seawater

The 250-mL PC bottles filled with slush were spiked with 
3 mL of pre-filtered seawater (< 0.2 µm) with 1.5 µL of the 
55FeCl3 source solution. The final 55Fe concentration in the 
amended slush was about 0.03 nmol  L−1 of 55Fe. Another 
250-mL PC bottle filled with slush was spiked with 3 mL 
of pre-filtered seawater (< 0.2 µm) with 25 µL of 14C source 
solution.

For the seawater incubation, 2.5 µL of 55Fe source was 
added directly to a 400-mL PC bottles containing the sea-
water sample (final 55Fe concentration 0.05 nmol  L−1). 
Another 250-mL PC bottle filled with seawater was spiked 
directly with 25 µL of 14C source solution. The PC bottles 
were sealed in a zip-lock bag and incubated for 5–6 h in the 
shipboard culture room.

Filtration procedures

At the end of the incubation period, the ice cores were 
removed from the ice floe, immediately covered with black 
plastic bags, and transported to the laboratory of the RV 

Fig. 1  Photographs of (left) ice-core cutting process and (right) sam-
ple placement for the in situ incubation. 1-cm-thick slices of sea-ice 
cores were cut using titanium chisels and blades under a class 100 
laminar flow hood; bottom ice slices were transferred into acid-

washed polycarbonate dishes of 14 cm diameter and spiked with 14C 
or 55Fe. Reconstructed cores were inserted into the original core hole 
in the sea-ice cover, marking the start of the in situ experiment
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Polarstern. The sea-ice sections were left to melt in 0.2-
µm filtered seawater, in the dark and at ambient tempera-
ture of the laboratory (melting time 1 h). The samples were 
subsequently filtered when temperature was still close to 
0 °C according to Rintala et al. (2014).

The samples spiked with 55Fe were split in two and then 
sequentially filtered onto 0.8-µm and 10-µm PC membranes 
(Nuclepore) to distinguish the amounts of 55Fe incorporated by 
large (> 10 µm) from small (0.8–10 µm) microorganisms. For 
each size fraction, total and intracellular 55Fe were counted on 
separate filters. For total 55Fe measurements, cells collected on 
the filters were only rinsed once with 5 mL of 0.2-µm filtered 
seawater. For 55Fe intracellular measurements, cells collected on 
the filters were rinsed with a freshly prepared Ti-citrate-EDTA 
wash solution (Tang and Morel 2006) to eliminate non-incor-
porated 55Fe (extracellular and abiotic adsorption on filter). The 
wash solution was applied directly on the filters for 2 min, fol-
lowed by a rinse for 2 min with 5 mL of 0.2-µm filtered seawa-
ter (Hudson and Morel 1989; Hassler and Schoemann 2009b).

The samples spiked with 14C were entirely filtered onto 
25 mm GF/F membranes (0.7 µm pore size, Whatman). 
The filters were first rinsed with filtered seawater to reduce 
the background 14C in the DIC in the dissolved inorganic 
carbon (DIC) pool and allowed to dry in a desiccator for 
1 h under a fume hood before 200 µl of HCl 0.1 N was 
added onto each filter to allow the DIC to evaporate over-
night. Therefore, only organic 14C integrated in biomass 
remained on the filter. Note that the GF/F filters used for 
the filtrations from the 14C incubations tend to retain more 
organic carbon (and associated Fe) than the PC filters used 
for the 55Fe incubations (Morán et al. 1999).

Finally, all filters were transferred into separate scin-
tillation vials and 10 mL of scintillation cocktail (Ready 
Safe™, Perkin Elmer) were added. After vortex agitation, 
the radioactivity on filter (55Fe or 14C) was counted by 
liquid scintillation counter (Packard). Counts per minute 
(cpm) were then converted into disintegration per minute 
using 55Fe and 14C custom quench curves.

Molar uptake rates of Fe (mol Fe  L−1  d−1) were then 
calculated as follows: 

with

A ×55 Fe on filter

t × V
.

A =
mol55Fe added + molDFe in situ

mol55Fe added
,

55Fe on filter =
(cpm on filter sample − cpm on filter control)

55Fe specific activity
×

1

counting efficiency
,

where V = volume filtered (corrected for dilution), 
t = incubation time, and cpm = counts per minute

In situ DFe concentrations in the samples (Table 2) were 
estimated from the DFe concentration measured by Lannu-
zel et al. (2008) and corrected for the background DFe con-
centration in the 3-mL spike solution (brine DFe = 9.6 nmol 
 L−1 and 30-m seawater = 1.2 nmol  L−1).

The  Fetot uptake rates of the cells rinsed with filtered sea-
water represent whole-cell Fe contents, whilst the ratios of 
Ti-rinsed cells provide an indication of internal Fe contents 
 (Feintra).  Feintra by small microorganisms (0.8–10 µm) was 
estimated by calculating the difference between  Feintra of the 
whole community (> 0.8 µm) and the  Feintra by large organ-
isms (> 10 µm). Extracellular Fe uptake rates were calcu-
lated as the difference between  Fetot and  Feintra uptake rates.

Molar uptake rates of C were estimated by the follow-
ing equations: C uptake = (naturally occurring DIC x 14C-
POC × 1.05)/(14C-DIC added), with the naturally occurring 
concentration of DIC = 2,100 µmol  L−1 and 1.05, the cor-
rection for the preferential uptake of light isotopes (Wels-
chmeyer and Lorenzen 1984). Methods for DIC analysis are 
described in Delille et al. (2014).

Validation of the experimental set‑up

The question of time series is of considerable interest in 
a dynamic environment, especially in such remote places 
where data collected is unique. In situ (Day 26 and 32) and 
shipboard (Day 6 and 29) incubations were alternated during 
ISPOL to maximize our stay (note that the amount of time 
spent by science expeditioners on sea ice was restricted by 
worsening sea-ice conditions). The temperature and light 
intensity in the ship’s culture room were controlled and 
purposefully set to mimic in situ conditions to ensure the 
same growing conditions were met. The temperature of the 
culture room was set at − 1 ± 1 °C. In situ temperatures in 
bottom sea ice measured using a Testo thermometer varied 
from − 1.4 to − 1.9 °C (see Tison et al. (2008) for detail). 
In situ light of 0.5 to 40 µmol  m−2  s−1 was measured at the 
ice/water interface using a LiCOR sensor positioned at dif-
ferent angles to capture in situ irradiance. Using the same 
sensor, light measured in the ship’s culture room varied 
between 12 and 43 µmol  m−2  s−1 depending on the distance 
of the radio-labelled petri dish from the light source. Hence, 
we are confident that our experiments adequately reproduced 
natural light conditions.
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Statistical analysis

Key environmental sea-ice parameters such as in situ tem-
perature, salinity, sea-ice thickness, and DFe, Chl a, and 
POC concentrations were log transformed and assessed for 
correlations with Fe uptake using Pearson correlation analy-
sis. Transformed data were normally distributed according 
to the Shapiro–Wilk test.

Results

Background physical and biogeochemical variables

Detailed sea-ice thermodynamics, chemical properties and 
microbial diversity of the ISPOL drifting station are pre-
sented in Lannuzel et al. (2008), Lannuzel et al. (2013), and 
Tison et al. (2008), respectively. Sea-ice thickness at the 
chosen site remained stable between sampling days. Radia-
tion and weather conditions (at 5-min interval) are reported 
in Nicolaus et al. (2009). To summarize, the visited ice floe 
was level first-year sea ice 0.8–0.9 m thick. In situ ice tem-
peratures were above − 5 °C and showed clear signs of warm 
“spring–summer” transition regime (Tison et al. 2008).

Time series at the sea ice/seawater interface

The sharp decrease in DFe concentrations in bottom sea 
ice within the first 10 days (Fig. 2a) and the general DFe 

increase in underlying seawater (Fig. 2b) was indicative of 
Fe fertilization of seawater from melting sea ice (Lannuzel 
et al. 2008). During the time of the ISPOL study, POC 
concentrations in bottom sea ice deviated by 20% on aver-
age and ranged from 265 to 470 µmol C  L−1 (Fig. 2c). POC 
concentrations nearly doubled in seawater underneath but 
only ranged between 2.8 and 5.7 µmol C  L−1 (Fig. 2d). 
Seawater Chl a remained far lower than the sea-ice Chl 
a values but increased by more than 4 times during the 
survey (0.03 to 0.14 µg  L−1, Fig. 2d).

This point was further explored by looking at the bio-
mass distribution in the different compartments and how 
autotrophs and heterotrophs abundances evolved over time. 
A full description of the communities is presented in Lan-
nuzel et al. (2013), but briefly, autotrophs represented on 
average 82 ± 16% (n = 7) of the total biomass in sea ice and 
vastly dominated in top (90 ± 7%) and bottom (96 ± 7%) 
sea ice (Fig. 3). By contrast, autotrophs only represented 
41 ± 13% (n = 7) of the total biomass in seawater, with 
contribution from each group changing between the start 
and end of the survey. Therefore, autotrophs and hetero-
trophs—in particular heterotrophic bacteria and protozoa 
– contributed equally to the total biomass in under-ice sea-
water (Fig. 3c). Figure 3 also clearly shows that top and 
bottom sea ice hosted very different types of organisms. 
For instance, Phaeocystis single cells (Prymnesiophyte) 
dominated the top sea ice (Fig. 3a), whilst bottom sea ice 
was almost solely colonized by pennate diatoms (Fig. 3b). 
Despite a slight change in POC concentrations (Fig. 2c), 

Fig. 2  Bulk concentrations of dissolved iron (DFe, nmol Fe  L−1), par-
ticulate organic carbon (POC, µmol C  L−1), and chlorophyll a (Chl a, 
µg  L−1) in (a, c) bottom sea-ice Sects. (5–10-cm thick, from the bot-
tom of ice cores 0.8–0.9 m long) and (b, d) underneath seawater (at 

the interface with sea ice) during the time series. Day 1 represents the 
day of arrival on site and first day of sampling. Data are from Lan-
nuzel et al. (2008)
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the contribution of each group to carbon biomass remained 
fairly stable in sea ice over time.

Bulk iron uptake rates and contribution of different 
size fractions

Intracellular Fe uptake rates from the bulk community 
(> 0.8 µm) and two size classes (0.8–10 µm and > 10 µm) 
obtained from the incubations of bottom sea ice, slush, and 

seawater are presented in Fig. 4. In bottom sea ice,  Feintra 
increased from 5.8 to 194 pmol Fe  L−1  d−1 with the lowest 
and highest values measured on Day 6 and Day 32, respec-
tively. The bottom sea-ice community was composed by 
more than 90% of autotrophs, specifically pennate diatoms 
(Fig. 3b). Diatoms range in size from a few µm to up to 
several hundred µm. Large cells (> 10 µm) were the main 
contributor to  Feintra uptake at the start of the survey. Small 
autotrophs (0.8–10 µm) were present in bottom sea ice on 

Fig. 3  Biomass distribution of autotrophs, protozoa, and bacteria 
during the ISPOL time series. Data are presented for samples of a 
top sea ice (uppermost 6-cm sections of ice cores), b bottom sea ice 

(6-cm sections from ice cores 0.8–0.9 m long), and c under-ice sea-
water, at the ice/water interface. Data from Lannuzel et al. (2013)

Fig. 4  Intracellular 55Fe uptake rates in bottom sea ice, slush, and 
under-ice seawater samples. Short-term 55Fe incubations were per-
formed on 1-cm-thick bottom sea-ice sections under temperature-con-
trolled laboratory conditions (Day 6 and Day 29) or in situ conditions 

(Day 21 and Day 32). Slush (Day 22) and under-ice seawater (Day 
23) were incubated under temperature-controlled laboratory condi-
tions. White bars indicate  Feintra uptake by the 0.8–10-μm size frac-
tion and grey bars indicate  Feintra uptake measured on 10-μm filters
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Day 6 (Lannuzel et al. 2013) but their contribution to  Feintra 
uptake was negligible (Fig. 4). On Day 21, the contribution 
of small cells to  Feintra went up to 49%, then 23% on Day 29, 
and finally increased again to 40% by Day 32. Overall  Feintra 
for the whole community (> 0.8 µm) increased by more than 
30 times between Day 6 and Day 32 (Fig. 4), whilst the total 
carbon biomass remained stable (Fig. 2c).

A positive and significant correlation between sea-
ice temperature and  Feintra uptake rates for both small 
(0.8–10 µm) and large (> 10 µm) cells (Fig. 5b; Pearson cor-
relations: r = 0.893, p = 0.107, n = 4 and r = 0.996, p = 0.004, 
n = 4, respectively), although the confidence level for small 
cells was < 90%.

Measured C and Fe:C uptake rates

In situ C uptake rates in bottom sea ice ranged between 0.03 
and 3.19 µmol C  L−1  d−1 (Fig. 6). We measured a wide range 
of  Feintra:C uptake ratios in bottom sea ice, from 5.8-μmol 
Fe mol −1 C on Day 6 to up to 230-μmol Fe  mol−1 C on Day 
32 (Fig. 7a). One outlier value of 3,100 μmol Fe  mol−1 C 
was measured for Day 29 and likely due to an extremely 
low 14C uptake (0.03 μmol C  L−1  d−1) compared to other 
sampling days.

Fig. 5  a Temporal warming 
of bottom sea ice and b  Feintra 
uptake rates from the bulk 
community (> 0.8 µm) and two 
size classes of algae (0.8–10 
µm and > 10 µm) plotted against 
sea-ice temperatures

Fig. 6  14C uptake rates in bottom sea-ice, slush, and under-ice sea-
water samples. Short-term 14C incubations were performed on 1-cm-
thick bottom sea-ice sections under temperature-controlled laboratory 
conditions (Day 6 and Day 29) or in situ conditions (Day 21 and Day 

32). Slush (Day 22) and under-ice seawater (Day 23) were incubated 
onboard the ship. The bar for under-ice seawater indicates the lowest 
of the 14C uptake rates measured (0.003 µmol C  L−1  d−1) compared 
to the bottom sea-ice and slush samples (0.03–3.19 µmol C  L−1  d−1)

Fig. 7  Ratios of a  Feintra uptake to 14C uptake and b  Feintra uptake 
to POC concentration. The uptake ratios in a do not include values 
for bottom sea ice on Day 29 or under-ice seawater on Day 23 due 
to extremely low values for 14C uptake measured in those samples 
(Fig.  6). Ratios of  Feintra uptake to POC concentration in b do not 
include a ratio for slush because POC in slush was not measured
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In slush, C uptake on day 22 was 2.4 µmol C  L−1  d−1 
and within the range of the bottom sea-ice values (Fig. 6). 
The  Feintra:C uptake ratio was 84.0 μmol Fe  mol−1 C and 
sat within the ranges observed for bottom sea ice (Fig. 7a).

By contrast, seawater exhibited an extremely low C 
uptake (0.003 µmol C  L−1  d−1, Fig. 6), resulting in unrealis-
tically high  Feintra:C uptake ratio (24,000 μmol Fe  mol−1 C).

Intracellular versus extracellular Fe

Data on  Fetot and  Feintra by microorganisms are compiled 
in Table 3. In our study,  Fetot and  Feintra in bottom ice were 
measured on days 6, 21, 29, and 32 of the time series.  Fetot 
and  Feintra in slush and seawater were measured on days 22 

and 23, respectively.  Feintra represented only 1% of the  Fetot 
in slush, whilst  Feintra reached 8% of  Fetot in seawater.  Feintra 
in bottom sea ice sat between the slush and seawater values, 
with  Feintra = 1–7% of the  Fetot uptake. Therefore, regardless 
of the type of sample, more than 90% of Fe was bound to the 
outside of the cells.

Discussion

Caveats and compromises in the sampling design

Sea ice, like sediment and soil, is a heterogeneous medium. 
Adjacent sea-ice cores may have different physical, 

Table 3  Comparison of intracellular  (Feintra) and total  (Fetot) Fe uptake rates and Fe:C uptake ratios in sea-ice and associated environments.

Results are reported for this study, other field-based studies in natural and Fe-fertilized surface waters from the Southern Ocean as well as labo-
ratory-based phytoplankton cultures
a Ratio of 3,150 in bottom sea ice on Day 29 was excluded from this range due to extremely low 14C uptake
b Ratio of 180,000 in bottom sea ice on Day 29 was excluded from this range due to extremely low 14C uptake
c na indicates not available; ratio of 23,700 in seawater was excluded from this range due to extremely low 14C uptake
d Ratio of 290,000 in seawater was excluded from this range due to extremely low 14C uptake
e High nutrient low chlorophyll
f Naturally Fe-fertilized areas
g Artificially Fe-fertilized field experiments

Sample type and location (project acronym) Feintra uptake 
(pmol  L−1 
 d−1)

Fetot uptake 
(pmol  L−1 
 d−1)

Feintra:C uptake 
ratio (µmol 
 mol−1)

Fetot:C uptake 
ratio (µmol 
 mol−1)

Reference

Antarctic sea ice
 Bottom sea ice (n = 4) 6–194 157–4,591 5.8–230a 157–3,030b This study
 Under-ice seawater (n = 1) 68 830 nac nad This study
 Slush (n = 1) 201 23,850 84 9,900 This study

Southern Ocean seawater
 Drake passage na na 3.0–14.3 na Hopkinson et al. (2013)
  HNLCe—south of Australia na na 7–49 na Tovar-Sanchez et al. (2003)
 Kerguelen  Plateauf (KEOPS) 4.4–6.2 na na na Sarthou et al. (2008)
 Kerguelen  Plateauf (KEOPSII) 19–40 na 3.7–22.9 na Fourquez et al (2015)
 Sub-Antarctic zone 90–193 na na na Fourquez et al. (2020)
 Sub-Antarctic zone 11–27 na 6.6 na Ellwood et al. (2020)
 South of Australia  (SOIREEg) 3.07–11.9 na 2.7–3 na Bowie et al. (2001)
 HNLC waters of New Zealand (FeCycle) 26.2–101 na 2–19 na Strzepek et al. (2005)

4–12.5 na Frew et al. (2006)
na 5–20 na McKay et al. (2005)

 HNLC waters of New Zealand (FeCycleII) na na na 1.2–33.3 King et al. (2012)
 Unfertilized HNLC waters  (SOFEXg) na na na 6.2–14.3 Twining et al. (2004)
 Fe-fertilized HNLC waters  (SOFEXg) na na 10–40 Twining et al. (2004)

Laboratory phytoplankton cultures
 Fe limited na na 0.6–14 na Maldonado and Price (1996)
 Fe replete na na 26–102 na Maldonado and Price (1996)

na na 2.3–370 na Sarthou et al. (2005)
na na 6–500 na Sunda and Huntsman (1997)

na 0.4–8.6 na Strzepek et al. (2011)
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chemical, and biological compositions and obtaining a 
sampling programme representative of the sea-ice system is 
therefore challenging (Miller et al. 2015). Ideally, replicate 
samples should be collected for each variable considered. 
The horizontal patchiness of sea-ice algae has been mainly 
attributed to the spatial variability in physical sea-ice proper-
ties (Eicken et al. 1991) and light exposure (Raymond et al. 
2009). To keep processes as simple as possible for post-
cruise data interpretation and modelling, the ISPOL “clean 
site” (Tison et al. 2008) was chosen to be flat (no ridging), 
unflooded, first-year sea ice. The 14 cores (one core per vari-
able) collected on each sampling day were 90 cm thick, of 
same ice texture and snow thickness, and sampled within 
a 2.5×5 m area. The small size of the area minimizes het-
erogeneity between the cores to allow a multidisciplinary 
understanding of the physical, biological, and biogeochem-
ical processes at play. Collecting replicate cores for each 
variable would increase the size of the area and increase the 
likelihood for the increased distance between the ice cores 
to adversely affect data interpretation. The experiments pre-
sented here are also time sensitive. Adding more replicates 
would affect the incubation time, as time dedicated to each 
step of the process described below would triple. We there-
fore chose to collect one replicate per variable for a whole 
suite of variables rather than replicate cores for a limited set 
of variables. Consequently, all the results presented here are 
single measurements and do not bear standard deviations.

Autotrophic versus heterotrophic contribution to Fe 
uptake

When sea ice melts, DFe is released first together with 
salts and DOC, whilst particulate Fe is released later 
together with the dense brines and POC (Lannuzel et al. 
2013). Autotrophs vastly dominate in bottom sea ice but 
heterotrophs represent up to 50% of the biomass in sea-
water. Therefore, does the Fe supplied by melting sea ice 
stimulate the seawater microbial community and if so, 
which type of organisms (heterotrophs versus autotrophs) 
benefit the most from this fertilization? Comparing  Feintra: 
C uptake ratios and  Feintra: POC ratios in both sea ice and 
seawater may help answer these questions by deciphering 
the autotrophic from heterotrophic activities.

As a first approach, we compared  Feintra in bottom sea 
ice with measurements in slush and seawater. In slush, 
 Feintra uptake by the bulk community was measured once 
on Day 22 and similar to bottom sea ice on Day 32 (Fig. 4), 
with small cells (0.8–10 µm) contributing more than 80%. 
Both autotrophs and heterotrophs cells were likely present 
at the time of sampling in slush, similar to what was found 
in top sea ice (Fig. 3a) (Lannuzel et al. 2013). In seawa-
ter,  Feintra by the bulk community was within range of the 

sea-ice values, and with small and large cells contributed 
equally to  Feintra (46 and 54% for > 10 µm and 0.8–10 µm, 
respectively).

The short-term (5–6 h) nature of the incubation mini-
mizes radiocarbon losses by respiration (Schoemann et al. 
2001). Rates of inorganic C uptake during our experiments 
can therefore be used to evaluate the proportion of auto-
trophic activities in relation to  Feintra uptake by the bulk 
community. The 14C uptake rates measured in bottom sea 
ice are indicative of algal growth, since autotrophic algae 
(pennate diatoms) represented 96 ± 7% of the total biomass 
in these samples (Fig. 3b). Therefore, when normalized to 
14C uptake,  Feintra:C uptake ratios can act as indicators of Fe 
uptake in relation to algal growth.

The extremely low C uptake and high  Feintra:C uptake 
ratio observed in seawater may be partly explained by large 
differences in biomasses (Fig. 3c) and/or that autotrophic 
cells were not involved in Fe uptake. To account for the 
lower contribution of autotrophs to the carbon biomass in 
seawater compared to bottom sea ice,  Feintra uptake rates 
in seawater were also normalized to POC concentrations 
(Fig. 7b). We note that  Feintra:POC by the bulk community 
(> 0.8 μm) was in fact an order of magnitude higher in sea-
water than in bottom sea ice (Fig. 7b).

Collectively, these results suggest that heterotrophs were 
responsible for most of the Fe uptake in seawater, as opposed 
to slush and bottom sea-ice environments where autotrophs 
dominated. Another non-exclusive explanation is that phy-
toplankton in seawater was mixotroph (shared ability to 
use inorganic and organic sources of carbon), making it is 
impossible to distinguish which organisms contributed the 
most to Fe uptake.

Comparison to previous studies

The  Feintra measured in under-ice seawater is within the 
range of previous field studies, although on the high end 
(Table 3). Over 90% of the 55Fe taken up by the particles was 
adsorbed to the cell surfaces, regardless of the type of sea-ice 
environment incubated. As a comparison, the oxalate wash 
used to distinguish between scavenged and intracellular Fe in 
suspended particles collected in the SO showed that 60–80% 
of the total Fe associated with these samples was found to be 
surface-adsorbed, i.e. not intracellular (Tovar-Sanchez et al. 
2003). Frew et al. (2006) reported that around 45% of par-
ticulate Fe (PFe) was removed by the oxalate wash and could 
be classified as “extracellular” in sub-Antarctic waters South 
of New Zealand. Although we used a Ti- EDTA wash and 
not an oxalate wash, the two approaches have been shown 
to give comparable results (Tang and Morel 2006; Four-
quez et al. 2012). Like our study, the Southern Ocean Iron 
Experiment (SOFeX) experiments used 55Fe incubations 
and Ti-EDTA washes (Twining et al. 2004). They report 
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that 20–84% of the Fe was externally bound, depending 
on the size of the particles. The extremely high fraction of 
Fe adsorbed to marine particles in the sea-ice environment 
may be due to exopolysaccharides (EPS). EPS are gel-like 
substances produced by algae and bacteria. Sea ice is par-
ticularly enriched in EPS relative to ice-free seawaters (van 
der Merwe et al. 2009; Krembs et al. 2011; Ewert and Dem-
ing 2011). Their stickiness and negatively charged surfaces 
(Decho 1990; Underwood et al. 2010) possibly allow EPS to 
bind metallic cations (Croot and Johansson 2000; Verdugo 
et al. 2004), such as  Fe2+ and  Fe3+ in sea ice (Lannuzel et al. 
2015). The complexation of Fe with EPS would explain the 
extremely high fraction of Fe attached to the outside of the 
particles, especially within the slush and bottom ice samples 
where EPS are likely in higher proportions relative to under-
ice seawater.

The upper values for in situ carbon assimilation in bot-
tom sea-ice samples exceeded ranges previously reported 
from in situ measurements in newly formed Antarctic sea 
ice in the Weddell Sea in autumn (Mock 2002) and bottom 
pack ice from the East Antarctic sector in spring (Roukaerts 
et al. 2015). Daylength and light intensity Chl a concentra-
tion and temperatures were all lower in Mock’s study, poten-
tially leading to the lower C uptake rates their autumn visit 
compared to our summertime study. Similarly, the shorter 
photoperiod and thicker snow cover (0.3 to 0.8 m) expe-
rienced in early spring in Roukaert’s study reduced light 
penetration through the sea-ice cover and explain their lower 
14C uptake rates compared to our summertime series where 
photoperiod was longer and snow only reached about 0.06 
to 0.25 m in thickness (Tison et al. 2008). In slush, the C 
uptake rate was within the range of the bottom sea-ice values 
(Fig. 5). Seawater exhibited extremely low C uptake (Fig. 5) 
compared to the incubated bottom sea-ice and slush samples. 
Tortell et al. (2013) measured much higher averaged maxi-
mum 14C fixation rates in austral summer in slush, sea ice, 
and in under-ice seawater. The lack of seawater replicates 
in our study does not allow strong conclusions. However, 
one could expect that autotrophs may have adopted a mixo-
trophic behaviour to sustain their growth in this extremely 
low light environment. Mixotrophy may be an important 
trophic mode that is currently overlooked in the Antarctic 
ecosystem. More investigation is needed to confirm or refute 
this result.

The  Feintra:C uptake ratios measured in bottom sea 
ice are either within range reported for Fe-replete phyto-
plankton cultures or considerably higher than the ranges 
reported in Fe-fertilized areas (open ocean) of the SO 
(Table 3). Autotrophs largely dominate in bottom sea ice, 
and  Feintra:C uptake ratios are therefore indicative of the 
amount of Fe needed for autotrophic activities. In slush 
and under-ice seawater, where heterotrophs and autotrophs 
are equally abundant, it is more appropriate to estimate Fe 

uptake normalized to POC biomass rather than 14C uptake. 
The  Feintra:POC ratio in seawater (11.2 μmol Fe  mol−1 C 
 d−1) sits at the upper end of the range of  Feintra:POC ratio 
values reported for sub-Antarctic waters near Kerguelen 
Island during the KEOPS2 spring bloom (Fourquez et al. 
2015). Our work needs to be repeated and replicates 
recorded to allow better comparison between under-ice 
seawater and open ocean studies.

Extracellular scavenging as a Fe uptake strategy 
by sea‑ice algae

Regardless of cell size, our results are by far the highest 
rate of scavenged Fe so far measured in oceanic samples. 
Enhanced adsorption of cellular Fe to the outside of the 
phytoplankton cells was observed following Fe fertiliza-
tion during SOFeX (Twining et al. 2004). The accumula-
tion of Fe on the direct surroundings of the cells could 
be aided by the presence of ligands in sea ice and more 
specifically EPS, which have been shown to control DFe 
concentrations in this environment (Lannuzel et al. 2015; 
Genovese et al. 2018) and increase Fe bioavailability (Has-
sler et al. 2011). Ligands ultimately maintain Fe in solu-
tion for longer than would otherwise occur, thereby delay-
ing the adsorption of DFe onto particles and increasing the 
residence time of bioavailable forms of Fe.

From a biogeochemical perspective (i.e. cycling and 
fate of an element), such high Fe fraction bound to the 
outside of the cells may be considered as luxury uptake. 
The luxury uptake mechanism is a process during which 
cells accumulate excess Fe, sometimes at concentra-
tions up to 30 times higher than the Fe levels required 
for growth (Sunda and Huntsman 2011). This Fe storage 
strategy would be especially useful in environments like 
sea ice where Fe is ephemerally available (Marchetti et al. 
2009). Diatoms, which are the most abundant phytoplank-
ton groups in bottom sea ice (Fig. 3b), are especially well 
adapted to this strategy (Twining et al. 2021). Alterna-
tively, the high fraction of Fe bound to the outside of the 
cells could illustrate an experimental bias. We did not 
correct for background radioactivity on the filters (55Fe 
adsorbed onto the filter and/or onto particles that are not 
efficiently removed by the Ti-EDTA wash solution). Abi-
otic sorption of 55Fe to the filters may contribute to the 
extremely high  Fetot uptake values.

Effects of environmental conditions on Fe uptake 
by natural sea‑ice communities

Sea-ice habitats are often characterized by steep gradients 
in temperature,  CO2, salinity, irradiance, and other envi-
ronmental factors. Organisms inhabiting the pack ice can 
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be subject to very low irradiance or even periods of com-
plete darkness during wintertime, which will considerably 
alter the development of autotrophic species in favour of 
heterotrophic processes (Garrison and Close 1993). Low 
temperatures constrain metabolic rates and cellular growth 
requirements that are intrinsically linked to the Fe demand 
by organisms (Strzepek et al. 2011). To explore whether 
such environmental factors could explain the higher Fe 
uptake rate observed in bottom sea ice on Day 32 compared 
to Day 6, we tested for correlation between the Fe uptake and 
environmental sea-ice DFe concentration and temperature.

Effect of temperature

A correlation between  Feintra uptake rate and sea-ice temper-
ature is observed (Fig. 5b). The warming over the course of 
our sampling period is however too small (+0.5 °C, Fig. 5a) 
to explain the fourfold  Feintra uptake by large sea-ice diatoms 
between Day 6 and Day 32 (Fig. 4b). Iron plays a pivotal 
role in enzymatic reactions that are sensitive to tempera-
ture (Raven and Geider 1988), such as photosynthesis and 
nitrogen transport. Synergistic effects of an increase in DFe 
concentration (by + 1 nmol  L−1) and increase in temperature 
(by + 4 °C) have been observed previously on phytoplankton 
assemblages in the Ross Sea, Antarctica (Rose et al. 2009), 
where simultaneous increases in both factors magnified rate 
increases over single-factor treatments by 8–16 times. More 
generally, when microorganisms at temperatures suboptimal 
for growth, particularly sub-zero temperatures, experience 
a temperature increase of only a few degrees, the effect on 
some transport rates can be unexpected (Jumars et al. 1993; 
Berges et al. 2002), including Q10 values > 12 compared to 
the typical value of 2 (Yager and Deming 1999). We suggest 
that laboratory-based experiments on the combined effect of 
stressors (e.g. Fe, types of ligands, light, temperature, and 
macro-nutrients) on Antarctic sea-ice algae and bacteria are 
needed to understand how sub-zero temperatures constrain 
 Feintra uptake rates.

Effect of DFe concentration

Iron-deplete phytoplankton have been shown to transport 
Fe into the cell at a faster rate than Fe-replete cells (Har-
rison and Morel 1986). Low Fe concentrations are thought 
to induce upregulation of the number of cell-surface Fe 
transport systems, resulting in considerably faster Fe uptake 
rates (Hudson and Morel 1990; Taylor et al. 2013). This 
upregulation of cellular Fe acquisition machinery has been 
observed in a SO eddy system, with a higher Fe:C uptake 
ratio inside the eddy (Fe limited) than outside the eddy (Fe 
replete) (Ellwood et al. 2020). In our study, in situ DFe 
concentrations were high (3.1–20.4 nmol  L−1) and can be 
considered Fe replete. No significant correlation between 

DFe concentration and cellular Fe uptake was observed. 
These experiments should be repeated over a gradient of 
low to high sea-ice DFe concentrations to confirm or refute 
the hypothesis that decreasing sea-ice DFe concentration 
may lead to an increase in biological Fe uptake by sea-ice 
communities.

Trends in Fe:C uptake ratios

Sea ice

Sympagic ice algae are the most abundant in the ice/water 
interface. They often grow under low light and consume 
macro-nutrients from the underlying seawater, with micro-
nutrient Fe supplied from the sea-ice brine system. Our 
measurements of  Feintra:C uptake ratios (µmol Fe  mol−1 C) 
in bottom sea-ice varied by two orders of magnitude between 
sampling days. This variability was mainly driven by Fe 
rather than C uptake, which is also illustrated by increased 
 Feintra:POC ratio over time, whilst biomass remained rel-
atively stable. In the meantime, the contribution of small 
cells (0.8–10 µm) to bulk  Feintra uptake (> 0.8 µm) overall 
increased between Day 6 and Day 32. Hence, we believe 
that this result illustrates the change in bottom sea ice from a 
dominance of large diatoms at the start of the experiments to 
a mixture of small and large diatoms as summer progresses 
and DFe concentrations in bottom sea ice decrease. In gen-
eral, smaller cells have a clear advantage in accessing DFe 
because of their high surface area-to-volume ratios (Lis et al. 
2015). Large diatoms require higher more DFe than smaller 
diatoms (Timmermans et al. 2004), but that does not neces-
sarily translate into higher  Feintra:C (Strzepek et al. 2011) in 
larger than smaller cells. A negative correlation between cel-
lular Fe:C content and cell biovolumes has been reported in 
several SO studies, both in situ (Twining et al. 2004) and in 
the laboratory (Sunda and Huntsman 1995, 1997; Strzepek 
et al. 2011). The shift between large and small diatom spe-
cies could easily influence  Feintra:C uptake ratios, as well as 
how much and under which form Fe is released into seawater 
when sea ice melts.

Seawater and slush

Since POC and Chl a concentrations in bottom sea ice were 
stable over time (Fig. 2c), the POC and Chl a increase in 
seawater is likely a signature of phytoplankton growth as 
a response to Fe fertilization, rather than due to the release 
of ice algae from bottom sea ice. Seawater communities are 
exposed to low irradiance but benefits from high macro-
nutrients and Fe released from melting sea ice. During the 
ISPOL time series, autotrophic organisms (mostly Phaeo-
cystis) represented only 41 ± 13% of the total biomass in 
seawater (Lannuzel et  al. 2013). Bacteria dominated in 
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under-ice seawater until Day 11 and then protozoa domi-
nated in terms of biomass (Fig. 3c). The dominance of het-
erotrophs in under-ice seawater can be explained by very 
low irradiance (and even complete darkness periods dur-
ing wintertime), which considerably alters the development 
of autotrophic species in favour of heterotrophic processes 
(Garrison and Close 1993). Moreover, Sunda and Hunts-
man (2011) observed an increased in cellular Fe:C ratio 
when light availability is low. Their result matches those 
from our under-ice seawater incubation experiment, where 
the  Feintra:POC was in fact an order of magnitude higher in 
seawater than in bottom sea ice (Fig. 7b). These results sug-
gest that heterotrophs were responsible for most of the Fe 
uptake in seawater, as opposed to bottom sea ice where auto-
trophs dominated. Heterotrophic bacteria have historically 
been considered strong competitors against phytoplankton 
for access to Fe (Tortell et al. 1996; Maldonado and Price 
1999). However, recent studies have challenged this view 
and new concepts have emerged (Fourquez et al. 2020; 
2022). We recommend future work using laboratory-based 
cultures of phytoplankton (strict autotrophs and mixotrophs) 
and heterotrophic bacteria to unravel these questions. The 
development of culture collection such as the freely acces-
sible Antarctic Bacterial Culture Collection (https:// zenodo. 
org/ record/ 57637 24) would support these efforts.

An algal community at the ice/snow interface may have 
optimal irradiance for growth but is often restricted by 
nutrient supply. The infiltration of seawater and/or seawater 
flooding events in the snowpack result in slush formation; 
this process can provide additional macro-nutrients from 
seawater to induce algal development in slush (e.g. Arrigo 
et al. 1997; Thomas and Dieckmann 2002). This nutrient 
supply, together with high irradiance and DFe concentrations 
(2.2 nmol  L−1), might stimulate the biological drawdown of 
DFe in slush. Such stimulation is supported by our incuba-
tion experiments with slush sampled on Day 22, when a 
high  Feintra uptake rate was observed (203 pmol Fe  L−1  d−1). 
This  Feintra uptake rate in the slush is similar to the highest 
 Feintra uptake rate measured in the bottom sea-ice samples 
on Day 32 (194 pmol Fe  L−1  d−1). Unlike the bottom ice 
assemblage where large diatoms dominated, the small size 
fraction (0.8–10 µm) contributed to over 80% of the  Feintra 
uptake in the slush sample. Although no samples were col-
lected to confirm this suggestion, the slush community was 
most likely colonized by Phaeocystis, as single cells, that 
dominated in terms of biomass and abundance in the top 
sea-ice samples collected during the time series (Fig. 3a).

Is the decrease of DFe concentration in bottom sea 
ice due to brine drainage or biological uptake?

The ISPOL Fe time series study carried out in the western 
Weddell pack ice during spring–summer demonstrated a 

marked decrease of the initial DFe stock in sea ice over a 
32-day period, especially in bottom sea ice (Fig. 2a). This 
decrease was mirrored by an increase in  Feintra uptake in 
bottom sea ice (Fig. 4). This finding begs the question: 
was DFe lost through brine drainage or biological uptake? 
Using the maximum  Feintra uptake rate of 194 pmol Fe  L−1 
 d−1 measured in bottom sea ice, we estimated that it would 
take 5 months for sea-ice algae to exhaust the stock of DFe. 
Our data coupled with the increase in DFe concentration in 
the under-ice water column, therefore support the previous 
hypothesis that the decrease in DFe concentration witnessed 
in sea ice during the ISPOL time series was due primarily to 
brine drainage (Lannuzel et al. 2008), not biological uptake.

Conclusion

This study is the first to describe the dynamics of biologi-
cal Fe uptake in the sea-ice environment. Our results point 
towards to several key considerations for the polar biogeo-
chemical community. Intracellular Fe uptake rates, both 
absolute and normalized to C uptake and POC, are highly 
variable in space and time during the melting season, with 
the slush and under-ice seawater showing the highest and the 
lowest  Feintra uptake rates, respectively. The range of  Feintra 
uptake rates by sea-ice algae (6–194 pmol Fe  L−1  d−1) how-
ever extends to higher values than those reported in Fe-rich 
sub-Antarctic surface waters. The most striking result from 
our experiments is the overconsumption of Fe relative to C 
assimilation by sea-ice diatoms. The fourfold increase in the 
 Feintra: C uptake ratio is likely due to enhanced uptake by 
small diatoms as the season progressed. > 90% of the total 
uptake of Fe in our samples was not intracellular; this result 
highlights the need for modellers to account for extracel-
lular Fe in the parameterisation of sea-ice biogeochemical 
models. The extracellular Fe reservoir may be aided by the 
presence of EPS which act as organic ligands and increase 
Fe bioavailability. Whilst we cannot assess if this pool of Fe 
is an extracellular storage mediated by the cells, an indirect 
effect of the presence of EPS for other purposes (e.g. cryo-
protection) or a combination of both processes, our findings 
do have important biogeochemical and ecosystems implica-
tions. Diatoms favour C export and drive biogeochemical 
fluxes (Buesseler 1998), meaning that the high Fe:C ratio 
measured in our study may strongly affect upper ocean recy-
cling and export of Fe and C in sea-ice-covered environ-
ments. Therefore, we encourage future modelling research—
that link Fe and C cycling to changes in sea-ice extent—to 
consider these new findings to help further improve their 
predictive capabilities.
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