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An axiomatic approach to a ‘broad class of fuzzy measures in the sense of Sugeno is presented via the concept of
triangular norm (s-norm for short). Fuzzy measures are actually set functions which are monotonic with respect to
set inclusion. Triangular norms and conorms are semi-groups of the .unit interval which have been thoroughly
studied in the literature of functional equations. The proposed class encompasses probability measures, Zadeh's
possibility measures and the dual notion of necessity measures. Any set function of the class can be expressed in
terms of a density, and constructively defined out of this density. This feature makes the proposed framework
attractive from a practical point of view for the representation and manipulation of subjective evidence. The link
between f-norm and t-conorm based set funciions and Shafer’s belief functions is investigated. -

I\'Di:.}\ TERMS: Triangular norm; probability; pObﬁiblhl}' nccessuy, belief function; fuzzy measure; fuzzy set;.

urcertainty.

L INTRODUCTION . -
The term “fuzzy measure” was coined by
Sugeno® in 1972 to denote a mapping from a o-
algebra to the unit interval whose key property is
monotonicity with respect to set inclusion.

Obviously, this property is far weaker than the -

usual additivity property of probability measures.
‘In other words, a fuzzy measure is not a measure
in the sense of classical mathematics, and a
probability measure is a particular case of a fuzzy
measure. In 1977, L. A. Zadeh®® introduced a
noticeable family of fuzzy measures, named
“possibility measures”, which proves to be

tA joint and extended version of two unpublished papers
(Prade,”' Dubois*) respectively presented at a  CNRS
Round Table at the University of Lyon, France (June 1980)
and at the Second International Seminar on Fuzzy Sets, Linz,
Austria (September 1980).
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very relevant for representing some aspects of
natural languages.i Independently, Shafer®®
developed a class of fuzzy measures called belief

functions, which are, roughly speuaking,
superadditive probabilities. All of the afore-
mentioned authors share the purpose of

representing subjective evidence or uncertainty in
the form of numerical values and finding rational
rules for combining these values while dropping
the too restrictive probabilistic setting.

Triangular norms come from the study of
statistical metric spaces. They can be encountered
in the Menger triangle inequality’”-2°

Fpr{x + .}.j g T(qu{x )‘ Fq:’(,v)) y

iStrictly speaking, possibility measures on non-finite
domains are [uzzy measures (see definition in JIL.1) only
under suitable conditions on the associated possibility
“distribution™ {density).
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where F,,, F,,, F, are probability distribution
functions of random variables which represent
distances between locations p and r, p and g, ¢
and r respectively, and T is a triangular norm,
Le. a semi-group operator of the unit interval
satisfying some additional requirements, which
are recalled in a further section. It is worth
noticing that in his works on probabilistic
geometry Menger,'® in a paper written in French,
was the first to coin the term “ensemble flou”
(the French counter-part of the English term
“fuzzy set”), which he later translated into “hazy
set” (Menger'®). According to Menger, a
“probability of membership” is assigned to each
element. In Zadeh’s framework, the right concept
is rather a “possibility of membership.”

That both Zadeh and Sugeno on the one hand,
and Menger on the other hand, make use of such
a term as “fuzzy” (or some synonym) should not
be regarded as a fortuitous event. The purpose of
this paper is to demonstrate that quite general
class of fuzzy measures can be defined in a very
natural way via the concepts of triangular norms
and conorms. The latter appear as soon as we
admit the following assumption; the grade of
uncertainty of a union of disjoint (mutually
exclusive) events can be obtained by combination
of the grades of uncertainty of each of the events.
Besides it i1s worth noticing that a triangular
norm (resp:conorm) also provides a good model
for fuzzy-set-theoretic intersections (resp:union),
as will be briefly shown later. One of the
problems in dealing with monotonic set functions
is that they are very difficult to handle at a
practical level, because they do not necessarily
derive from some sort of a density. Shafer meets
the same problem with his approach. Sugeno3°
had to resort to a special parametered family of
set functions and arbitrary combination rules.
The proposed approach directly faces this
difficulty by laying bare the most general
combination rules for grades of uncertainty of
events. In other words, t-norm or t-conorm based
set functions underlie a density from which they
can be constructively generated.

After some background on triangular norms
has been recalled, triangular norm and conorm
based set functions are successively investigated.
It is proved that some of these set functions
simultaneously stem from a t-norm and a t-
conorm. In each case, the “densities” are
exhibited. Lastly, an attempt to build a bridge
between Shafer’s approach and ours is provided.

II. TRIANGULAR NORMS AND CONORMS

In this section, we briefly survey some material in
functional equations which are helpful for the
derivation of our results.

1. Triangular Norms

DEFINITION 1 (Menger!”) A triangular norm T
(a t-norm for short) is a two place real-valued
function whose domain 1s the unit square [0,1]
x[0,1], and which satisfies the following
conditions

Tz T(O 0)=0;T(a,1)=T(1,a)=a
(boundary conditions)

T2:T(a,b)<T(c,d) whenever a<c; b=<d
(monotonicity)

T3:T(a,b)=T(b,a) (symmetry)
T4:T(a, T(b,c))=T(T(a,b),c) (associat_ivity)

It is patent that T is a semi-group of [0, 1] with
identity 1

N.B. Let A and B be two fuzzy sets (Zadech>*)
over a universe X, i.c. membership functions g,
and Jig:X—[0,1] are given. The membership
function of the intersection 4B can be point-
wisely defined as pyp=1(p4, ttg). It Is easy to see
that T1 through T4 are reasonable requirements
for the mapping I. Such axioms are a subset of
those given by Bellman and Giertz?. Thus a ¢-
norm is a very general model for fuzzy set
intersection (see Refs. 1, 5, 14, 22).

Simple, but important triangular norms are the

minimum operator (min (a, b)) the product
operator (a.b), the so-called T, operator
max (0,a+b—1), the so-called T, operator

(defined by the boundary condition and T, (a, b)

=0, ¥(a,b)€[0,1)2).

We have the following inequality

T.(a,b)smax(0,a+b—1)<a.b=<min (a,b) (1)
Moreover, for any t-norm T, it holds:

T.(a,b)=T(a,b)<min (a,b) (2)

Strong results have been obtained for
characterizing a large class of t-norms by means
of one place functions. Namely, Ling!® has
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proved that for any continuous t-norm satisfying
the Archimedean property TS5

T5:T(a,a)<a, VYae(0,1)

there exists a continuous and decreasing function
S:[0,1]1-[0, + o] such that

T(a,b)=f*(f(a)+f (b)) 3)
where f* is the pseudo-inverse of f, defined by

1 for a€f0,f(1)]
fHa)=< f~'(a) for ae[f(1),(0)] (4)
0 for ae[f(0), + o]

Note that “min” does not satisfy TS. Actually,
min cannot be represented according to (3). f is
called an additive generator of the t-norm T and
is defined up to a positive multiplicative constant.

In the following we shall focus on two sub-
classes of continuous Archimedean t-norms:

— the strict t-norms ie. continuous (-norms
which are strictly increasing in each of their
places. Schweizer and Sklar’® have proved
that any strict t-norm generator is such that
f(0)= 400, and f(1)=0. The corresponding ¢-
norm is : L

T(a,b)=f "*(f(a)+f (b)) 15

The typical strict t-norm is the product
operator.

— The t-norms generated by functions f such
that f(0) is finite and f(1)=0. Note that given
a sequence {a;};.n of numbers in (0, 1), there is
some noeN such that )72, f(a;)>f(0), so
that T(ag,ay,...,4,,)=0 for a finite number
ng, so that T can be called a nilpotent t-norm.

The typical nilpotent t-normis T,.
N.B. Schweizer and Sklar?® also provide a

multiplicative representation for strict t-norms;
stating h=e"7 in (5) yields

T(a,b)=h""(h(a).h(b)) (6)
where h, a one-place strictly increasing [0, 1]

—[0, 17 mapping with h(0)=0, h(1)=1, is called
a multiplicative generator.

2. Triangular Co-norms

The dual class of mappings can be obtained by
changing the boundary condition T'1 into

S1.5(1, J=1:5(0.a)=5(a,0)=qa

DEFINITION 2 A mapping S satisfying S1 and
T2-T4 is called a triangular conorm (t-conorm).

Any t-conorm § can be generated from a -
norm T through the transformation

S(a,b)=1—T(1—a,1—b) (7)

and conversely. For instance, transforming the
four basic t-norms min (g, b), ab,max (0.a+bh—1),
T, respectively yields max(a,b), a+b—ab,

(“probabilistic sum™) min(l,a+b) (“bounded

.sum”), and T (defined by S1 and S(a.b)=1

¥(a,b)€(0,11%). S and T in (7) are said to be dual
operators.

A strict t-conorm is a continuous (-conorm
which is increasing in both places. If fis a strict
t-norm additive generator then ¢(-)=f(1—-) is
a strict conorm additive generator. The
corresponding conorm is @ Y(o(.)+¢(.)).
Similarly k=e™ ¢ is a strict conorm multiplicative
generator. The dual of a nilpotent t-norm will be
called a nilpotent t-conorm; a+b—ab and
min (1,a+b) are typical strict and nilpotent t-
conorms, respectively.

N.B. Conorms can be used for modelling fuzzy
set unions, of course.
3. Negations

Searching for an extension of the usual fuzzy set

complementation (uz(x)=1—p(x)), Trillas*!
proposed the following axioms.
DEFINITION 3 A negation is a mapping
C:[0,1]—[0,1] such that

£l Cl01=1

C2 C is involutive i.e. C(C(a))=a

C3 C is strictly decreasing

C4 C is continuous.

t-norm, thenS(.. .}

{5 sl 1 iy is a
=C[T(C(.),C(.))] is a t-conorm and conversely
T(.,.)=C(S[C(.),C(.)])- S and T are said to be
C-dual operators (Alsina et al.’).

Trillas®! has proved that for any negation C.
there is @ mapping ¢ from [0,1] to [0. + %] such
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that ((0)=0, t(1)<+x. r is continuous and
increasing and

Cla)y=1""(t(1)—rt(a)) (8)

Note that there is always a unique number
s=(0.1) such that C(s)=s, and we can check s
=t~ (¢(1)2). Moreover, if C is a negation, then
1—C(l—.) s also a negation, distinct from C
gencrally.

A negation generator ¢t can be related to t-
norms and r-conorms, since it is patent that the
mapping f(.)=t(1)—¢(.) is a nilpotent-t-norm
generator and that ¢(.)=t(.) is a nilpotent t-
conorm generator. Conversely, if f is a nilpotent
t-norm generator, then t(.)=f(0)—f(.) is a
negation generator.

Then, a given negation generator t generates a
t-norm and its C-dual t-conorm by stating

C=t"1(t(l)—1)
T={*(f(.)}+f(.)) where f=t(1)—t¢ (9)
S=C-dual of T=t*(t(a)+1¢(b))

If (C.T,S) all come from a generator ¢, it is easy
to check that :

Vae[0.1]. T(a,C(a))=0; S(a,C(a))=1 (10)
In a multivalued logic language. the contradiction

and excluded middle laws hold. Conversely, for
any nilpotent r-norm T (resp. t-conorm S),

- there exists a negation C and a t-conorm S (resp.

t-norm T) such that (10) holds, (applying (8) and
(9)). For instance, max(0,a+b—1), min(l,a
+b), and 1—a stem from t{a)=a.

4. Examples of Parametered Families

Starting from a  parametered mapping
which can act as an additive generator for a t-norm,
we can build a parametered family & of t-norms
and the dual family % of t-conorms
(in the sense of (7). If the t-norms of # are
nilpotent, there exist an associated family &
of negotions and an associated family & (%)
of C-dual t-conorms (in the sense of (8) and
(9)): then, another family 4" of negations and the
associated family #(%’) of C-dual t-norms (in the

sensc of (8) and (9)) can be derived directly from
the t-conorms of &. We have €' ={I—-C(l -
—.)|Ce%}.

In the following some noticeable [amilies are
reviewed; their choice is motivated by historical
reasons or by remarkable properties.

— The T, family (Schweizer and Sklar?7)

T,(a,b)=[max (0,a P +b"7—1)] V7, pPeR

with the convention Ty,=product. For p finite
and p=0, T, is a strict t-norm; for p<0 it is a
nilpotent t-notm. Moreover, T_, =T, T, . =min,
Fog=Tp

— The Sugeno family (Sugeno??)
S;(a,by=min(l,a+b+iab), iz —1

for 2> —1 it is a nilpotent t-conorm. S_, is the

probabilistic sum, S, is the bounded sum, S_ is

*
¥ s

— The Hamacher produ-ct (Hamacher'?)

b
H(a,b)=- i

., 120
7+ (1 —y)a+b—ab) i

For y<ec, it s a strict t-norm. Hy(a, b)={ab/(a
+b—ab)), H, is the product, and H, ,=T,. For .
y=2, the associated t-conorm is the Lorentz
operator (a+b/1+ab). The Hamacher product is

the only strict Archimedean f-norm which can be
written under the form of a rational function.

— The Frank family (Frank®)

a Bl
(s"—1)(s 1)} sy

,b)=Log,| 1
Fyla,b) om[ + —

F, is a strict t-norm for c0>s>0. Fy=min; F,
= product, F*oo: 7

Moreover the only r-norms T which satisfy

T(a,b)+S(a,b)=a+b

where § is the dual of T, are the f-norms of
Frank’s family (see the cited paper) or their
ordinal sums (see Annex 1).
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—- The Yager family (Yager®?)

)f;(ﬂ,b)—*—l—min(l,l:(l—a)‘?+(1~b)q]”q) 420

Y, is. a nilpotent ?—norm, for gl =T Y.
=min; Y,=T,.

—A  non-Archimedean family
Prade’)

(Dubois and

ab

o,(a,b)=———
(@,.2) max (a, b, «)

o, 18 a t-norm without additive generator. g,
=min (a,b); o, =a.b. It is easy to see that more
generally

o.(a,b)=min(a,b) Va,b:max(a,b)=x

:ﬂ V(a, b)e[0,2]?

£l
X

g, 1s an ordinal sum based on product (see Annex
1 for the definition of the notion).

The Annex 2 is devoted to the exhibition of
generators, dual and examples
operators for each of the above mentioned
families. One worth-noticing point is that the C-
dual of Schweizer and Sklar’s t-norm is the dual
of Yager’s. The same holds, exchanging dual and
C-dual. Here, the two associated negations are
exchanged in the transformation C(.)—1-—CJ[1

= ()]

IIT SET FUNCTIONS BASED ON A
TRIANGULAR CONORM

1. Fuzzy Measures

Let X be a set, assumed to be finite, for the sake
of simplicity.

The cardinal of X is n.

A fuzzy measure, in the sense of Sugeno®? is a
mapping g from a o-algebra f of X to [0,1],
such that '

i) g(2)=0;
i) g(X)=1
iii) VA€, VBep, fACB, then g(4)<g(B).

N.B. When X is no longer finite, a continuity

of (C:dual.

axiom is added:

iv) if {A;}; is a sequence of nested subsets (i,
A, €A, or Vi, A;24;4,), then

lim g{AE}:-g( lim A,v).'

i—=+x i—++ o

In the following f§ is taken as the set of subsets
of X, denoted 2(X). A fuzzy measure can be
interpreted as follows: g is supposed to be

- associated with some parameter ¥ whose range is

X, and whose accurate value is unknown. g,(A4)
is ‘viewed as the grade of (possibly subjective)
(un)certainty of the event “the value of u belongs
to A", Namely, if weA (resp:uéA) is a known
fact then g,(A)=1 (resp:0). Note that the
converse is not assumed to be true. Axioms (i)
and (i) should be regarded as a consequence of
ueX and u does bear a value, respectively.
Axiom (iii) means that wued is at least as
uncertain as weB as soon as A is part of B.
Clearly, the class of fuzzy measures subsumes
that of probability measures. A fuzzy measure is
not a measure in the usual sense.

It is important to be aware that such an
interpretive framework is quite different from the
fuzzy set interpretive framework. In the latter, the
set 1s not well-defined, has no definite boundaries,
and the grade of membership of well located
elements x of X is assessed by pu,(x). Here, the
set A is crisp, but the value of u is unknown.

2. Arrival of Conorms

Triangular conorms are very naturally met as
long as we take for granted the following basic
assumption regarding the fuzzy measure g:

if AnB=g, then g(4UB)=g(A)xg(B) (11)

where = is some operator under which [0, 1] is
closed.

Equation (11) expresses that the grade of
uncertainty of the union of disjoint events 4 and
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B only depends upon the grade of uncertainty of
A, and the grade of uncertainty of B. For
instance, a probability measure satisfies (1 1) when
* Is the sum. The basic assumption can be viewed
as a natural requirement which is used in other
contexts such that information theory (Kampé de
Férict'!). Equation (11) is crucial for easy
manipulation of fuzzy measures, since it permits
getting the grades of uncertainty of composite
events out of that of elementary ones. For
instance, Sugeno®® had to use *=§, in order to
be able to use fuzzy measures in applications. On
the contrary, we try to keep the combination of
information as general as possible.

However, the algebraic structure of #(X)
induces compatibility constraints on *, as is now
demonstrated, by the following remarks:

+The associativity and commutativity of set
union lead to require the associativity and
commutativity of =

+9(A)=g(A v Q)=g(A)+g(T)=g(4)=0
hence, Yae[0,1],a*x0=q.

+Let (A,B) and (C,D) be two pairs of disjoint
subsets of X such that A=C, BED (hence
§(A)=¢(C) and g(B)<g(D)), then

8(A U B)=g(A)+g(B)<g(CUD)=g(C)sg(D).
As a result = should be non-decreasing in each
place; particularly 1#1=1,

It is then obvious that in (11) the combination
operator cannot be but a triangular conorm. If X
were not [inite, the continuity of g claims for the
continuity of .

3. Properties of Conorm Based Set Functions

As a consequence, the following inequalities hold:

VA,B, AnB==

max (g(A), g(B)) =g(4 L B) <T*(g(4), g(B))

However, the first incquality is valid as soon as g
is a fuzzy measure, for any pair of subsets 4 and
B. This is due to axiom (iii). Besides (L1) can be
extended to non-disjoint events:

D. DUBOIS AND H. PRADE

PROPOSITION 1 If = is a conorm and g(F)=0,
then (11) is equivalent to

VA,BS X, g(AuB}*g[AmB)=g{A}*g(BJ(I2)

Proof (12)=(11) is obvious. To prove the
converse, we first express AU B and B as a union
of disjoint events: AUB=AuU(dnB); B
=(ANB)u(AnB) where A denotes the
complement of 4 in X. Then

g(AuB)+g(AnB)=(g(A)*g(An B))*g(4n B)
=g(4)*g(B)

using the associativity of *

Q.ED.

Another interesting consequence of (L) s
choosing B=A4

3

VASX, gld)xg(A)=1 (13)

Lastly, a conorm based set function g is
uniquely defined by the knowledge of the conorm
* and the values oi g over the setdof singletons of
X. Indeed, let X={x,...x,}, g:=g({x}) and 4

=g %)

8.(4d)=g, U {xij}):gil*giz'--*gfp (14)

=1,p

where the notation 8+ means “g, derives from *7,
and the associativity of = is used. In order to
meet axiom (ii), the g’s must satisfy

gl*gl*"'*gr::l' (15)

This 1s always trivially satisfied if g;=1 for some
x;€ X. Equation (15) must be considered as a
normalization similar to the one for probability
densities. It is the ability of conorm based “set
functions to be defined completely by a reduced
set of data (the “density” {g;}; and the conorm)
which makes this concept attractive for practical
use.

4. Examples

Choosing the bounded sum axb=min(l,a-b)
(I1) yields

ACB=gi=g(AUB)=min (1, g(4) +g(B))
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Decomposing A4 as a disjoint union of
singletons, we get

g_+(A)=min(1, x g({X}))

xe A

(15) reads 7., g;=1; letting this expression be
an equality, we clearly recover probability
measures. Similarly, letting a*b=max (a, b) (12)
yields with g=TI

VA,YB I1(AU B)=max (I1(4), [1(B))

In other words, Zadeh’s possibility measures

are recovered. On the contrary, the probabilistic
sum a+b—ab does not lead to a well-known
family of set functions and what is paradoxical,
certainly not to probability measures. Such set
functions are of the S, family, i=1, which
‘Sugeno does not deal with. For possibility
measures (13) reads

max (g(A4), g(4))=1 (16)
and (15) reads
max g;=1 7
i=1,n =

Using the probabilistic sum (a+b=a+b—=ab)
for * (13) reads:

(1-g(4)) (1-g(4))=0 (18)

which is obviously equivalent to max (g(4), g(A))

"~ =1; note that (16) implies (17) (this can be
shown by splitting 4 if g(4)=1 until some
singleton is isolated).

5. More properties

The following results indicate some classes of
conorms  which  generate set functions
satisfying (16). )

PROPOSITION 2 If * is a strict conorm, then g,
is such that max (g, (A4), g, (4))=1.

Proof Let k be a multiplicative generator of
*, 1.e. k is a decreasing [0,1]-[0,1] mapping
with k(0)=1, k(1)=0.

8(A)xg(A)=1=k™"(k(g(4)). k(g(A) =1

whence
k(g(4)).k(g(4))=0, i.e. one of g(A4), g(A)is 1
Q.ED.

Set functions generated by the dual of Hamacher
product, of Frank t-norm or of T, for p>0
exemplify Proposition 2.

PROPOSITION 3 If * is a conorm smaller than or
equal to the probabilistic sum (axb=a+b—ab),
then max (g, (4), g,(4))=1.

Proof

1=g,(A)*g,(A)S g, (A)+g,(A)—g, (A) ¢, (A)
1

Al

the last inequality stems from g*'{A)_‘:;; l.og.(4)
=1. Thus (18) holds for g,. Q.E.D.

The dual of the r-norms g, (see Annex 2) satisfy
Proposition 3. Note that o, is not a strict -norm.

All set functions compatible with Proposition 2
or 3 have densities such that g,=1 for some
x; € X. The normalization condition (15) is, in this
case, strictly equivalent to max;_, ,g;=1. Since
they behave similarly to possibility measures, set
functions verifying (16) can be called “pseudo
possibilities™.

As a consequence these set functions are such
that g(A)+g(A)=1. However, the next
proposition indicates that this inequality holds
for a broader class.

PROPOSITION 4 If * is a conorm IsmaHer than or
equal to the bounded sum (axb<min(l,a+b))
then g,(4)+g,(A)=1.

Proof

1=g,(A)*g,(4) Smin (1,g,(4) +g,(A)

-

QED.

PROPOSITION 5 [f = is a nilpotent conorm whose
additive generator is t then t(g(A ))+t(g(A))
=t(1).

Proof Let asxb=t*(t(a)+1t(bh)) where ¢ is a
continuous increasing mapping from [0.1] to
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[0.e(1)] and ¢* is the pseudo inverse of t, such
that

Ma)y=t" ‘(a) if a=t(1)
s if a1
Hence, g(A)*g(4)=1 reads
t(g(4))+1(g(4))z¢(1)

Let us give some examples:
Sugeno®® considered the family of fuzzy
measures defined by:

if Al’\B:@,
then

g:(AUB)=g,(A)+g;(B)+ /- 8.(4)-g.(B)
>—1

(19)

S

It is clear that, noticing gi(X)=1, the g, are
based on the conorm §,, ie. (19) is a particular
case of

if AriB={

g(duB)=min(l, g(4)+g(B)+4g(4)g(B)).

For 72<0, these set functions satisfy g(A4)
+g(Ad)2 L,

Similarly, the family of conorms defined by
axb=min(1,(a*+b%9'9), ¢>0 underlies set
functions such that

[g(A)]*+[g(A))*=1

Proposition 4 applies only if g=1.
Note that the normalization condition of a
nilpotent conorm based set function reads

tg)zt(1) (20)

™=

i=1

It

1.e.

1
Y i *:Si, I((IJ:ELII(I‘F/?.ﬂ) A>0

and ] (14+/g)=1+1 holds

i=1l.n

Q.ED.

the equality corresponds to the g.s

normalization condition (Sugeno?°)

. for ==Y, (Yager's family) t(a)=a"

and ) g?=1 holds.

i=1

Lastly, the weakest constraint relating g(4) and
g(A), for any conorm # is VA X, g(4)=0=>g(1)
=1, which is a consequence of g(4)+g(A)=1.
Particularly, T¥-based set functions only satisfy
this weak condition. Their normalization
condition is 3k, g; =1 or 3k, 3I+E, g,>0 and
g,>0.

IV SET FUNCTIONS BASED ON T-NORMS

Let g be a fuzzy measure on X, and let C be a
negation. We can build the set-function 2c
defined by

-VA € X, 9dA)=C(g(A) (21)

It is clear that g is also a fuzzy measure, 1.e. it
satisfies axioms (i)(iii). Now assume g is based
on a conorm *. As a consequence g. is ruled by
an axiom which is dual to (11):

PROPOSITION 6 VA,BSX, if AuB=X,
then

gc(AnB)=g-(A4)1 g-(B) (22)

where L is a t-norm, the C-dual of the conorm .
Proof AUB=X can be written AnB=g.

Hence, g(4UB)=g(4)=g(B). But using (21) and
C involutive, it comes

Clgc(AnB)]=C[gc(A)]*C[g.(B)]

1.e.

8c(AN B)=C[C[gc(4)]*C(gc(B))]
=gc(A4) Lge(B)

.~ Q.E.D.
A set-function g is said to be based on a t-norm

if it is a fuzzy measure which satisfies (22) for
some f-norm L.
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t-norm based set functions have properties
similar to those of conorm based set functions.
More specifically, the following statements are
true:

If g is based on 1, then, corresponding to (12)

VA, VBSX, g(AUB)Lg(AnB)=g(4)Lg(B)
(23)

. corresponding to (13), with B=4

g(4) Lg(A)=0 (24)

g(A) can be uniquely defined from the

knowledge of g(X— {\ for: all xsX,
Denoting g(X —{x;})= andA W e Xk

g(A)=g( N &x- {.\-}))zg-,.w 1g 1. Lg
xgAd
(25)

where A=

(’rl

co-density of g.

-

L

Voo Braiy s 8 valled ke

. The normalization condition of the co- density
is obtained by stating g{@J—O which reads

glJ_ng_...J_gn=0. = 28]
this condition is trivially satisfied as soon as g;
=0 for some i.

. if 1 is a 'strict r—norm then min(g(4), g(4))
=0, for all A.

. if L is between min and product (min(a,b)
2albza.b) then
g(A))=0, forall A.

if g is such that min (g(A), g(4))=0 for all A,
their normalization condition (26) is equlvalent
to min;_, , g, =0, i.e. ;=0 for some i.

min (g(A4),

if L is between min and T, (min(a,b)=ab
2max(0,a+b—1)) then g(A)+g(4)<1

if L is a nilpotent r-norm whose additive
generator is f, then

S(g(A))+(g(A)=2f(0); ¥ f(G)= f(0).
i=1 :

- for any t-norm based set function, if g(A)=
then g(A)=0.

. Il g is based on a conorm *, then g, has a co-
density g;=C(g;), Vi=1,n. This is just because
& =gc(X — {x;}))=C(g({x;}))=C(g,). Morcover,
if g,*¢,...%g,=1 (normalization), then

-‘Dn] O

ie. g is normalized if and only if g. is
normalized. In other words, from a given
density, a conorm and its C-dual, we can build
two set-functions.

- Choosing L=min, (23) yields 2(AnB)
=min (g(4), g(B)), VA,BS X. We find a special
class of belief fum:uons called “consonant” beljef
functions by Shafer?®,

They are dual of possibility measures. and as
suggested by Dubois and Prade® can be named
“necessity measures” since the necessity N(4) of
an event is the grade of impossibility of the
opposite event (=C(T1(4)). See Prade®* for a
more detailed justification. Zadeh®” also calls
such measures “certainty measures”. They were
actually discovered by Shackle®®. an English
economist who interpreted N(d) as the grade of
potential surprise of the event 4. All r-norm

Clgy )L... LGl )=Clp %...

~ based fuzzy measures g such that min(g(4), g(4))

=0 can be called pseudo necessity measures.
Choosing L =T, yields

g(A n B)=max(0, g(4)+¢(B)—1), if AUB=X (27)

the normalization condition reads ) 7., §;<n—1.
Probability measures obviously satisfy (27), and
are part of this class.

Choosing L =product does not yield
something very well-known in spite of its
simplicity. Lastly, as an example of parametered
family, we can consider

g(AnB)=T,(g(4),g(B)), for AuB=X;

for p<0, T, is a nilpotent t-norm. The

- . P - . -
normalization condition is

[\/j;:

(8) *=n—1.

1

V FUZZY MEASURES DERIVING FROM A
T-NORM AND A CONORM

Given a conorm based fuzzy measure and a
negation C, there may happen that

VASX, g (A)2Clg(A))=g(4)  (28)
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For instance, if g is a probability measure, then
Cla)=1—a and (28) translates into g(A)+g(A)
=1. Equation (28) expresses that g(A4) and g(4)
are dependent quantities, in that the knowledge
of g(A) is equivalent to the knowledge of g(A).
Such fuzzy measures can be called “pseudo
probabilities™, and are the topic of this section.

1. Characterization

First, we notice that if there is a [0.17-[0,1]
continuous mapping C such that V4, g(4)
=C(g(4)), then C is a negation in the sense of
Definition 3.

Indeed

C0)=C(g(X))=g(X)=1
g(A)=C(g(A))=C(C(g(A4))),
hence C is involutive

If ASB then g(d)=¢(B) and g(A)=<¢(B) hence
C is non-increasing; non-increasingness of an
involutive mapping implies its decreasingness.

In other words, if g is based on a conorm =
and V4, g(4)=C(g(4)), then g is also based on a
t-norm L such that

alb=C(C(a)xC(h)) (29)

The same holds replacing ¢-norm by t-conorm
and conversely.

More gencrally, a fuzzy measure is said to be.
bused on a r-norm L and a t-conorm # if and
only if

1) g(F)=0

i) g(X)=1

iii) VA,VB,AmB=,®:"g(A\JB):g(A)*g(B]

iv) VA,VB,AuBzX::ag{AnB)zg{A)_Lg(B)
(30)

As will be seen in the following there are pairs
(*. L) which cannot be candidate for the
gencration of a single fuzzy measure.

Note that a consequence of (30) is, taking B

VASX. g(4)*g(A)=1, g(4) Lg(A)=0 (31)
this implies g(4)=0 is equivalent to g(4)=1.

PROPOSITION 7 Assume * is between max and
probabilistic sum, or a strict conorm then for any
t-norm L, if g is based on * and L, it is a Dirac
measure, i.e.

x0€X,9(4)=01if x4 ¢ A4, g9(4)=1 if xeed

Proof 1If = is between max and probabilistic
sum, then from  Proposition By, N
max (g(4),g(4))=1 the same holds from
Proposition 2 if % is a strict conorm. In both
cases (31) implies VA, g(d)e{0,1}. The only
possible candidate is a Dirac measure.
: Q.E.D.

In other words, fuzzy measures based on- a -
conorm compatible with Proposition 7 cannot
be based also on & tf-norm, except being
something  trivial.  Consequently, conorms
between max and probabilistic sum, and strict
conorms cannot generate pseudo probabilities,
ie. there is no negation C such that (28) holds;
this is quite consistent with the fact that such
conorms generate pseudo possibilities. Similarly,
t-norms between product and min and strict t-
norms generate pseudo necessities and can never
generate pseudo probabilities, nor fuzzy measures
such that (30) holds, except Dirac measures.

PROPOSITION 8  If a fuzzy measure g is based on
a nilpotent conorm = with generator t, and is such
that )7 1(g;)=t(1), then g is also based on the
C-dual of the conorm, say the t-norm 1, where C
is generated by t.

Proof If the normalization condition of g (20)
holds with equality then, denoting A={x; ...x, }
1 -
a non _empty subset of X, =

g(A)=r*C_i t(g,-,.))=r“(r(1)— Z r(gf,.))'

=1 ji=p+1

zr“(z(l}—r[r“‘ i t(gij}):D
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Hence g, based on the C-dual of # is nothing
but g. Q.E.D.

From a pair of C-dual nilpotent operators =
and 1 and a density {g,i=1,n} such that
Di-1t(g)=t(1), where t generates C, * and L,
we only give birth to a single set function, which
is a psecudo probability.

On the contrary, starting from a pair of
operators * and L such that

—either = is a strict conorm and 1 the dual -
norm. :

—or * is between max and probabilistic sum and :

L the dual t-norm and a density {g;,i=1,n}
satisfying max;_, ,g=1, we give birth to a
pseudo possibility measure and a pseudo
necessity measure.

2. Examples _
. Pseudo possibilities and necessities

. The t-nerms H, (Hamacher), F, (Frank). T,(p
>0) are strict. They gencrate families of
pseudo necessity measures, and their dual
families of pseudo possibility measures. For the
family o, of r-norms located between min and
product, and the dual family, the same holds.

Particularly, from {gI i=1,n} such that 3i: g
=1, “max” and “min” yields the set functions I1
and N defined by

VA, TI(4)=sup g,

-xiszt

(possibility measures, Zadeh?®)

N(A)=1-TI(4)= inf 1—g,
x.¢gd
(Necessity measures, Shafer,?® Dubois and

Prade;®

also called certainty measures by Zadeh3”)

. A nilpotent conorm family : Sugeno’s S,
Stating A=B in (19) yields, for the S,-based set
function g;

gi(A)+ g (A)+4g,(4).g,(A)=1  (32)

whence

(A
24( )—_—g_('" )

G gid) CcAelA) V> 1)

Ln
Led

ie. we find Sugeno’s negation C,(a)=(1—a)/(l
+4a).g; is also based on the C,-dual of S, ie
the t-norm

which can be found directly by using (19) and
(12). More specilically,

1

ﬂ.+1{g"( )+8:(A)=1+4+2g,(A)g,(4))=0

if and only if -(32) holds. The case 7=0
corresponds to probabilitv measures

N.B. The dual of §; is max(0,(/+1)a+h—1)
—Aab). This t-norm generates the sei-function
g5 such that

gi(d4)=1—g;(4)
and we have. if (19) holds. from (23)
VAVB, (#.+1)(gi(dnB)+ g, (AuB)—1)
—1gi(AnB)gi(AuB)
=(A+1)(g:(4) +g.(B) —1)—Agi(A)g3B)

if AnB= we get

it , A
gfz(AUBJ=g;.(A)-i-g;.(B)—-—Jr—l‘gA(A)m B)
_;\-

Lt

ie. "gi=g, with pu=

In other words, the dual of S, generates a set
function of the same family as S,-based set
functions. Namely, it is a S,-based set function
with p=(—/2/1+2). Of course g+ g,. except if 2

Yager’sfamify of nilpotent t-norms

The family Y, generates set functions which are
also based on the C-dual family of ¥ i othie
conorms _

axb=1—max(0,(1 —¢)+(1—b)*— 1)1,

If g, is such a set function we have

gAA)=1-31—(1—g (4.
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Note that the dual of ¥, is min(l,a%+b%)"4,;
denoting p= —gq, this family is the C-dual of
Schweizer and Sklar’s T, family for p<0. Hence,
the dual of Y, generates a set function gr, based
both on T, and its C-dual for p<0;

we have
I—g(A)=gr_(4)=1-g;_(AF.

3 Summary and Unsolved Questions

The following figure sums up the various classes
of fuzzy measures encountered in this study, and
points out the inclusion of sub classes.

like and necessity-like meanings, respectively
(possibility greater than necessity). Another
question is more generally to compare g and g,
in the same spirit: when g+#g., is there some
inequality between them?

There is also a need for extending the
presented framework to infinite universes. Let us
hint some research lines for X =R. Let p be a
mapping R—R”, which will denote a density. We
can evaluate

The probability of an interval [a,b]=A4 :P(A)

=[?p(x)dx where p satisfies the identity
e pvie=1.

FUZZY MEASURES (FM) EXCEPT DIRAC MFASURES. ON FINITE DOMAINS

T - NORM BASED FM

NILPOTENT CONORM BaseD P

PSEUDO NECESSITY
min(g(a),gia)) = o

| NECESSITY

PSEUDD PROBABILITY
g(a) = ClaiR})

PROBABILITY ;

PSEUDO POSSIBILITY
max(g(a), g(R)) =4

POSSIBILITY ’

MILPATENT T Nn2: sasen FM

CCNORM BASED FM

Unsolved  questions
classification include:

regarding such a

—1If g is based on a t-norm L and a conorm *,
and i1s not a Dirac measure, does there exist a
negation C such that g(4)=C(g(4))?

We already know the answer for set functions
concerned by Proposition 7, ie. pseudo
possibilities and pseudo necessities make disjoint
classes (except for Dirac Measures). Besides, if g
is based on a conorm smaller or equal to the
bounded sum, denoting g the set function based
on the dual of the conorm, ie. g(4)=1—g(4) it
is clear from Proposition 4 that

g(A)=§(A), VA<X.

Hence, g and g are still consistent with possibility-

The possibility of an interval A:p is now such
that

supp=1, and I1(4)=sup p(x)

xeAd

The necessity of 4:p is still such that

'ﬁip p=1 and N(4)=inf1-p(x)
x¢ 4

We can extend these definitions when g is:

—a strict conorm based set function:p is such
that supp=1; define -

[ f(x)=exp[Ln(f(x))dx

xed
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for f positive, whenever the integral exists,

‘Let k be a multiplicative generator of the strict
conorm; then:

gA)y=kY ] k(p(X)))

—a strict t-norm based set function:p is such
that supp=1. Let h be a multiplicative
generator of the t-norm; then

g(A)y=h" 1( I;L h(p(x)))

—a set function derived from nilpotent t-norm
and conorm; if ¢t is the additive conorm
generator, then the density p must satisfy

+

| r(p(x))dx:i(_l)

-
and we have

b
ylA)y=1" ‘[J' t{p(x)) d_\].

a

V RELATIONSHIP WITH OTHER
APPROACHES TO FUZZY MEASURES

In this section an attempt is made to exhibit
links between the proposed framework and other
approaches which can be found in the literature
to tackle the same problem. :

1. Shafer’s theory of evidence _

A belief function according to Shafer?® is a
mapping Bel (as belief) from 2(X) to [0,1] such
that
i) Bel(@)=0,
. 11) Bel(X)=1 : (34)
i) VA, i=1,n,

Bel(

Cu

Ai) = i Bel(A,)
1 i=1

I

-y Bel(4;n4;)....

i<j

A

+(__ 1)n+l Bel(

=1

Ai) (35)

for all n.

(]
[

Axiom (iii) is called monotonicity of order
Forn=2,A,=A4, A,=B, we get

Bel(A U B)=Bel (4)+ Bel(B) - Bel (AN B)(36)

One of the main results of Shafer?® is the
following characterization of belief functions: A
belief function is uniquely defined through the
specification of a mapping m:2(X)—-[0.1] called
basic probability assignment, satisfying:

m(F)=0, » m(A)=1 (37)

AeA1X)

and we have

Bel(A4)= Z m(B),

Bc

VAcC X (38)

Equivalently m is obtained from Be] by

m{d)= ) (—1)""%Bel(B)+ (39)
B=

=4

The quantity P1(d)=1-Bel(4) satisfies (36)
with the reversed inequality, and is also uniquely
characterized by means - of the basic
assignment m:

Pl)= ¥ mB (40

B:BnA=g

Clearly we have P1(4)2Bel(A4), P1(A) is called a
plausibility function.

Banon? proved that belief and plausibility
functions are fuzzy measures. Moreover, using
(36), the following identity holds:

max (0, Bel (4) + Bel (B)—1) < Bel (AnB)

=min(Bel(4), Bel (B)) (41)
Similarly:
max(P1(4), P1(B))<P1(AuUB)
7 <min(1,P1(4)+P1(B)) (42)
Let us investigate which t-conorm .or f-norm
based set functions are belief or plausibility
functions.

The upper limit in (41) yields a belief function
which is a necessity measure.

14| denotes the cardinality of the set A.
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The lower limit in (42) yields a plausibility
function which is a possibility measure.

If (35) holds with equality, probability
measures arc recovered which are the only ones
to be both a belief function and a plausibility
function.

Further
definition:

results motivate the following

A t-norm L is said to be distributive if and only
if

(a+b—alb)lc=alc+blc—alblc (43)

The same definition applies to t-conorms. Frank®
proved that the only possible distributive t-norms
are min, product and their ordinal sums (for
instance the o, family). Dual results hold for
conormes.

PROPOSITION 9 Set  functions  based  on
distributive t-norms (resp:conorms) are belief
(resp . plausibility) functions.

Proof Tt consists mainly in proving that if g is
based on a distributive t-norm then

VA,m(A)= Y (;1)1A*B!gg3)

Bco A

defines a basic probability assignment. See Annex
3 for a complete proof; if g is a belief function
then 1—g(A), based on the dual r-conorm is a
plausibility function. Q.E.D.

For instance fuzzy measures based on product
(or probabilistic sum) are belief functions
(plausibility functions).

Another noticeable class of fuzzy measures is
tbe one based on the Sugeno family of conorms
S;. Banon? proved that for 2120, g, based on S,
is a belief function. The basic assignment is

VA, m(4)=M"T] g,

xI.EA

For ie(—1,0], g, is a plausibility measure
(Prade,?® Dubois-Prade®), because 1—g,(4) is
based on S,,u=(—4/1-+1). From Proposition 9,
we know that this result still holds when 1= —1.

Other links between Shafer’s theory and the
approach of this paper would be worth
discovering: due to (41) and (42) we know that
there are some t-norm (resp:t-conorm) based set

functions which are not belief functions. For
instance g such that

AUB=X=g(ANB)= Tw'(g(A),g(B)}
(resp: AnB=J=g(AUB)=T%(g(A), g(B))).

However, it is not known yet what are the
belief functions which fit our framework, nor
what conorm or t-norm based set functions are
belief or plausibility functions.

2. Participation measures

Tsichritzis®* studied so-called participation
measures, which are fuzzy measures h such that
h(4)+h(A)=1. This concept was motivated by
the general definition of some evaluation index
for the extent to which a subset A “participates”
in X. An example of participation measure is a
probability measure. Such a set function h is
easily built from a fuzzy measure g by stating '

g(4)+1—g(A)
2

h(A)= - (44)

It can be checked that h(4) is a participation
measure. Moreover if g is a possibility measure
then h coincides with the concept of truth-value in
some many valued logics (cf. Prade??). Note that
we can choose g=h in (44) so that (44) is a
characteristic form of participation measures.

The following fuzzy measures are clearly not
participation measures
. pseudo probabilities, 1e. conorm-based set

functions such that g(A4)=C(g(A4)) for some C,

except probability measures

. pseudo possibilities, i.e. conorm-based set
functions such that Y4 max(g(4), g(A)=1,
except Dirac measurcs. '

pseudo necessities, i.e. t-norm-based . set
functions such that VA min(g(4),g(4))=0,
except Dirac measures. :

CONCLUSION

A general class of fuzzy measures has been
proposed and described for the combination of
uncertain pieces of information. The most salient
features of this framework are its intuitive appeal,
its  generality, and yet computational
attractiveness. It is intuitive because it stems from
the simple idea of combining disjoint pieces of
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information. It is general because the only
requirements are the compatibility of this
combination’ with natural properties of set-
theoretic operators. It is computationally
attractive because any fuzzy measure of the
concerned class, can be point-wisely defined, and
constructively built up.

Two main types of fuzzy measures belong to
this class. On the one hand, those for which the
knowledge concerning an event is only weakly
linked with the knowledge concerning the
opposite event: for instance, the pseudo-
possibility measures and their dual, the pseudo-
necessity measures. On the other hand, those for
which the knowledge concerning an event
determines in a unique way the knowledge
concerning the opposite event: here we get
pseudo-probability measures. The links between
the approach based on t-norms and conorms and
Shafer’s theory of evidence have been pointed
out, although not completely clarified yet. One
noticeable detail is that some belief functions
different from probability measures are pseudo-
probability measures, ie. Bel(4) uniquely
determines Bel(A). An example has been
provided by means of Sugeno’s conorm based
fuzzy measure.

It seems that t-norms have an important role
to play in the forthcoming theories of uncertainty
and vagueness, aimed at enlarged computerized
information processing. In the sole fuzzy set
theory, apart from supplying a general model of
fuzzy set theoretic union and intersection
(cf.section]), and a unifying framework for
possibility and probability measures, t-norms and
t-conorms are also proved as a useful tool for the
setting of fuzzy c-algebras (cf. Klement!Z:13:14:15),
and the study of fuzzy arithmetic when the
involved variables interact (cf. Dubois and
Prade®)). Lastly, the by now well-known
extension principle stated by Zadeh,** extending
in a “possibilistic” fashion, ordinary mappings to
mappings having fuzzy arguments, can be
generalized using r-norms and conorms. It is then
possible to encompass into a single theory, for
instance both the addition of fuzzy numbers
(Dubois and Prade®) and that of random
variables through a convolution.
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ANNEX 1 ORDINAL SUMS

Let {7," be a countable family of non-
overlapping, closed, proper subintervals of [0,1].
With each 7 ,=[a,b,], associate a t-norm T,
such that Vxe(0,1), T (x,x)<x. Let T be a _
function defined on [0, 1]* via

T(x,y)=
x—a, y—a,
O g (e D 4 = 2
a,+(b, a,,]_ n(bn_an,bn_an), (x,y)e [an,bﬂ]
n=12_
min (x,y) otherwise

T is called the ordinal sum of the T.’s. T is a t-
norm. More details can be found, for instance in
Frank® from whom we borrow the above definition.
Ordinal sums of conorms can also be defined in
the same fashion, but changing min into max in
the above statement and T, in S, with Yxe (0, 1),
S,(x;x)>x.

g, Is an ordinal sum of the product. We have

ab

P L S
% i) max (a, o, b)

Let 7;=[0.2], n=1; T;—product

Xy (x—0\ (¥y—0
—in [0,«]? cr,(x,_\-']zgzU-i-;c.(x 0) -('1 )
% %—0 x—0

—in [«,1]% o,(x, y)=min (x, )

—in [0,0] x[a,1] or [« 1]x[0,«] G.(x,y)
=min(x, ).

Q.ED.

The dual of 6, is an ordinal sum of the

probabilistic sum.
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ANNEX 3 SET FUNCTIONS BASED ON
DISTRIBUTIVE T-NORMS ARE BELIEF
FUNCTIONS

A distributive r-norm is, from Frank® an ordinal
sum of products, otherwise min, or product
themselves. Hence, a distributive t-norm lies
“between product and min, and generates pseudo-
necessity measures. Let g be such a fuzzy
measure. We have proved that its codensity {g; ]1
=1,n} is such that

Jiig,=0

Let Kr{x;lg;-——{}}. The elements of X can be
ordered such that

K={xm+;_s---axn}-

Obviously,
oA =Dk,
since g(4)= 1 §.
xgd
Let
mA)= ¥ (-)*%B). O

B4

Whenever g(4)=0, it implies m(4)=0. So m
need to be evaluated for all subsets 4 of the form
Kud, withKnd'=g.

Note that :

mK)= L §=0
i=1.m

where L is the t-norm generating g.
Slmlldriy, Vje[1,m] (where l—1 m] denotes the
set { .m})
m{f;u{x;}):~ L og+ L £20

i=1,m i=1,m
iFj

( L g standsfor g, L...1%,)

i=1,m

To establish the positivity of m(KwA’) when
A" is more than a singleton we need the following
lemmas:

LEMMA | If L is a distributive t-norm, then the

operator * defined by axb=a+b—alb is
associative, and it is positive.

Proof
(axb)*c=(u+b—alb)+c—(a+b—alb)lc

=a+b+c—alb— alc—bic+aLch
ax(bxc)

using the associativity and distributivity properties

of L. The positivity of a*b when (g, b)e[0,17% is
obvious. Q.E.D.

LEMMA 2

YneN*,¥(a...a,)e[0, 17, Vbe[0, 1]

S,=bl(a,*a,*...xa,)

Proof S,=bl(a,*a;...xa,_,*(a,_,*a,))
usiﬁg associativity of %
bt L (i iyl i)

n

)

assuming Lemma 2 holds at order n—1.

with A;=a;, iS£n-2, 4,_,=a ®a,

=3 (=1y"1 Z

i=1

;__ :n

r‘

All terms L A; involving A4, _, can be changed
jel
as follows

bi(i Aj)zbi( 5 = aj),!_(aﬂ_1
jer jeb~{n—1}

ta—a; i lat)

jel je(l—{n—1})uin}

—biaj

jeluini



using the distributivity property. Inserting the
above term into S, yields the result. The
recurrence is valid since Lemma 2 is obvious for
a=1 Q.E.D.

It is now easy to figure out that from (1), when
A=K u{x,...x.}, then

m(A)=) (-1 Y 1 g (k=m)

IiLE] jel
fl=k—i j=m

Noting G, =gy L §iszl... L&,

ip

m(A)=G, — Z(—l)_l Z Dj)‘LGk
i=1 JC’IR
Uj=i
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=G — Gl (g ... %3) 20, Vk using
Lemma 2; L
for k=m, A'=K and m(X)=g,%...%g,,=0.

Lastly,

Y m(d)=1

A=X

m(J)=0

because g(¥)=0 and g()i )=1 respectively.
Thus, m(A) is a genuine basic assianment, and
g is a belief funcuon Q.E.D.

N.B. When L =product

m(A)=
(I—%) * (1

_g_l)"".(I—gk)'§k+1'gk+3"’gm
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