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Contact Models in Robotics:
a Comparative Analysis

Quentin Le Lidec"", Wilson Jallet'?, Louis Montaut!-}, Ivan Laptev', Cordelia Schmid', and Justin Carpentier1

Abstract—Physics simulation is ubiquitous in robotics. Whether
in model-based approaches (e.g., trajectory optimization), or
model-free algorithms (e.g., reinforcement learning), physics
simulators are a central component of modern control pipelines
in robotics. Over the past decades, several robotic simulators
have been developed, each with dedicated contact modeling
assumptions and algorithmic solutions. In this article, we survey
the main contact models and the associated numerical methods
commonly used in robotics for simulating advanced robot motions
involving contact interactions. In particular, we recall the physical
laws underlying contacts and friction (i.e., Signorini condition,
Coulomb’s law, and the maximum dissipation principle), and
how they are transcribed in current simulators. For each physics
engine, we expose their inherent physical relaxations along with
their limitations due to the numerical techniques employed. Based
on our study, we propose theoretically grounded quantitative
criteria on which we build benchmarks assessing both the physical
and computational aspects of simulation. We support our work
with an open-source and efficient C++ implementation of the
existing algorithmic variations. Our results demonstrate that
some approximations or algorithms commonly used in robotics
can severely widen the reality gap and impact target applications.
We hope this work will help motivate the development of new
contact models, contact solvers, and robotic simulators in general,
at the root of recent progress in motion generation in robotics.

Index Terms—Physical simulation, Numerical optimization.

I. INTRODUCTION

IMULATION is a fundamental tool in robotics. Control

algorithms, like trajectory optimization (TO) or model
predictive control (MPC), rely on physics simulators to evaluate
the dynamics of the controlled system. Reinforcement Learning
(RL) algorithms operate by trial and error and require a
simulator to avoid time-consuming and costly failures on real
hardware. Robot co-design aims at finding optimal hardware de-
sign and morphology, and thus extensively relies on simulation
to prevent tedious physical validation. In practice, roboticists
also usually perform simulated safety checks before running a
new controller on their robots. These applications are evidence
for a wide range of research areas in robotics where simulation
is critical.

To be effective and valuable in practice, robot simulators
must meet some fidelity or efficiency levels, depending on the
use case. For instance, trajectory optimization algorithms, e.g.,
iLQRI[1]] or DDP [2f], [3], use physics simulation to evaluate the
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Fig. 1. Illustration of the dynamics of frictional contacts between rigid
bodies, which are governed by the Signorini condition, Coulomb’s law, and
the maximum dissipation principle. Combining these three principles leads to
the Non-linear Complementarity Problem (T3).

system dynamics and leverage finite differences or the recent
advent of differentiable simulators [4]], [S], [6l], [7], [8] to
compute derivatives. If the solution lacks precision, the real and
planned trajectories may quickly diverge, impacting de facto
the capacity of such control solutions to be deployed on real
hardware. To absorb such errors, the Model Predictive Control
(MPC) [9], [10] paradigm exploits state feedback by repeatedly
running Optimal Control (OC) algorithms at high-frequency
rates (e.g., 1kHz) [[L1], [12]. The frequency rate is one factor
determining the robustness of this closed-loop algorithm to
modeling errors and perturbations; thus, the efficiency of the
simulation becomes critical. Although RL [[13]] is considered
a model-free approach, physical models are still at work to
generate the samples that are indispensable for learning control
policies. In fact, the vast number of required samples is the main
bottleneck during training, as days or years of simulation, which
corresponds to billions of calls to a simulator, are necessary
[14], [15], [L6]. Therefore, the efficiency of the simulator
directly determines the computational and, thus, the energetic



cost of learning a control policy. Physical accuracy plays an
important role after training as well, as more physically accurate
simulations will result in a smaller reality gap to cross for the
learned policy to transfer to a real robot [14].

Many manipulation tasks can be tackled by assuming quasi-
staticity and considering only a restricted variety of contact
events [17], [18]. The recent robotics efforts, highlighted, for
instance, by the athletic motions performed by the humanoid
robots of Boston Dynamics [19], focus on very dynamic tasks
for which these simplification hypotheses cannot hold. In fact,
tasks like agile locomotion or dexterous manipulation require
the robot to quickly plan and finely exploit, at best, the contact
interactions with its environment to shape the movements [20]],
[21]], [22]. In this respect, the ability to handle impacts and
friction, physical phenomena at the core of contact interactions,
becomes fundamental for robotic simulators.

Physics simulation is often considered a solved problem
with several well-known simulators that are available off the
shelf. However, simulating a physical system raises several
complex issues that are usually circumvented at the cost of
approximations or costly computation. When simulating a
system evolving freely, rigid body dynamics algorithms [23],
[24] are now established as the way to go due to their high
efficiency. For robotics, one has to consider interactions through
contact between the robot and its environment, thus constraining
the movement. However, due to the creation of the breaking
of contacts along a trajectory, the dynamics switch from one
mode to the other, making the problem of simulating a system
with contacts and friction highly non-smooth [25]], [26], [27].
Numerical integration schemes for non-smooth systems fall into
two main categories: event-driven and time-stepping methods
[28]. Most modern robotics simulators are part of the latter
category because predicting collisions is intractable due to the
complexity of the scenes. Therefore, we will restrict our study
to this type of method.

More precisely, contact dynamics between rigid objects are
governed by three main principles: the Signorini condition
specifies the unilaterality nature of contact interactions, while
Coulomb’s law of friction and the maximum dissipation
principle (MDP) of Moreau state that friction force should
lie inside a second-order cone and oppose the movement.
Altogether, these three principles correspond to a so-called
nonlinear complementarity problem (NCP). The complementar-
ity constraints define a non-convex set while being non-smooth,
this problem is difficult to solve in general [28]].

Historically, the Open Dynamic Engine (ODE) [29] is one
of the first open-source simulators with a large impact on
the community, which was then followed by Bullet[30].
Both of them, in their original version, relied on maximal
coordinates to depict the state of the objects, and kinematic
constraints imposed by the articulations are tackled explicitly.
Such a choice leads to large-dimensional problems to solve,
impacting de facto the computational performances. To lower
the computational burden, alternative simulators rooted in
generalized coordinates, like DART [31] and MulJoCo [32],
appeared shortly after. Since then, Bullet also made this choice
the default one. In practice, these simulators are rarely used to
tackle engineering problems but rather as physics engines for

graphical purposes (Bullet) or research in the RL community
(MuJoCo). More recently, RaiSim [33]] and Drake [34] were
developed as robotic-driven software. RaiSim [33] emerged as
one of the first simulators enabling RL policies to transfer to
real quadrupedal robots. Its implementation being closed source,
we provide what constitutes, to the best of our knowledge,
the first in-depth study and open-source re-implementation of
this contact solver. Drake also demonstrated some promising
results on challenging manipulation [35] as regards the sim-
to-real requirements. Still today, the number of alternative
algorithms available is growing fast, in an effort to improve
the properties of the existing ones, in terms of accuracy and
robustness [36], [37], [38l, [6l, [39], [35], [8]. In a parallel
line of work, Isaac Gym [40] and Brax [41] simulators use
elementary contact models and rather focus on exploiting
the parallelization abilities from GPUs or TPUs for batch
computation.

In general, these simulators differ at their very core: one
should be aware of the contact modeling embedded in the
simulator they are using and how it can impact the applications
they aim at. Some high-level benchmarks of simulators exist
[42]], evaluating the whole simulation pipeline and its multiple
internal routines, e.g., rigid-body dynamics algorithms, collision
detection, and contact problem-solving. Our work closely
relates to [43]. It separately assesses the various contact
models and their associated algorithms. We achieve this by
decoupling the contact models from their implementations and
re-implemented the solvers with a unique back-end based on
the Pinocchio toolbox [24]], [44] for evaluating the dynamic
quantities and on HPP-FCL [45]], [46], [47] for computing
the collisions. We pursue the effort of [43] by studying
recent algorithms and adding advanced evaluation criteria. Our
experiments are done in both illustrative and realistic robotics
setups.

We make the following contributions:

— we make a detailed survey of contact models and their
associated algorithms, including established and more
recent robotics simulators;

we expose the main limitations of existing simulators
by inspecting both the physical approximations and the
numerical methods that are at work;

we develop an open source and generic implementation
of the main robotic contact solvers in C++;

based on our implementation and the theoretical study,
we propose quantitative criteria that allow performing an
in-depth evaluation of both physical and computational
aspects of contact models and solvers.

we explore the impacts of the simulation choices on the
practical application of MPC for quadruped locomotion.

The article is organized as follows: we first recall the
background of contact simulation: the physical principles
behind contact modeling (Sec. [[I) and the numerical algorithms
allowing us to solve the resulting equations (Sec. [[I). In the
experimental part (Sec.[[V), we propose an exhaustive empirical
evaluation of the various existing contact models and solvers
to assess both their physicality (Sec. [V-A), self-consistency

(Sec. [[V-B) and computational efficiency (Sec. [V-C). At last,



Sec. [[V-D] investigates the consequences of the contact models
in the context of quadruped locomotion. It is finally worth
mentioning that the authors are linked to the Pinocchio and
HPP-FCL open-source projects.

II. RIGID CONTACT MODELLING

We start by stating the physical principles commonly
admitted for rigid body simulation with point contact. If these
principles remain hypothetical and can still be discussed, they
have been, in general, empirically tested and are arguably better
than their relaxations. Once the modeling is done, we transcribe
these physical laws into a numerical problem, which should be
solved via optimization-based techniques to simulate a system
with contacts and frictions. We also present the various open-
source tools that allow computing all the intermediate quantities
necessary to build a physics simulator.

In this paper, we describe the state of a system with
its generalized coordinates ¢ € Q = R™. We denote by
v € T,Q = R" the joint velocity, where 7,Q is the tangent
space of Q.

Free motion. The principle of least constraint [48]], [49], [50]
induces the celebrated equations of motion:

M(q)o +b(g,v) =7 (1

where M € R™*"™ represents the joint space inertia matrix
of the system, b(q, v) accounts for the centrifugal and Coriolis
effects, and for the generalized gravity. This Lagrangian
equation of motion naturally accounts for the kinematic
constraints induced by the articulations of the rigid-body
dynamical system. When applied to a robot, i.e., a system
of multiple rigid bodies, the inertia matrix M becomes sparse.
Rigid body dynamic algorithms exploit this sparsity at best
[23]], [24] making it possible to compute the free acceleration
in a few microseconds on modern CPUs for robots as complex
as a 36-dof humanoid. As done by time-stepping approaches
[28], we will express the problem in terms of velocities rather
than accelerations, thus discretizing (I) into:

M(qt)vt+1 = M(qt)vt + (Tt — b(qt, vt))At 2)

which corresponds to a semi-implicit Euler integration scheme
[51]. More advanced implicit integrators [32], [35]], [8] come
with stability guarantees even in the presence of stiff forces.
However, as time-stepping schemes, their order of integration
is inherently degraded due to the non-smoothness of the
dynamics [52]]. For this reason, we restrict our study to a
simple scheme, as integrators are not the main focus of this
work. In the following, we often drop the instant at which
quantities are evaluated for readability purposes. We denote
the free velocity vf, which is defined as the solution of .

Bilateral contact. When the system is subject to constraints,
e.g. kinematic loop closures or anchor points, it is convenient

to represent them implicitly:
®(q) = 0. (€)

where ® : R™ — R™ is an holonomic constraint function of
dimension m, which depends on the nature of the constraint.

*(q)

Fig. 2. The separation vector ® allows formulating the non-penetration
constraint, which leads to the Signorini condition (8). This vector is computed
by the GJK or EPA algorithms, which are internal blocks of the simulator. We
refer to [56] for a tutorial introduction on the topic.

For solving, it is more practical to proceed to an index reduction
[53] by differentiating (B w.r.t. time, in order to express it as
a constraint on joint velocities:

“

where ¢ = J(¢')v'*t!t € R™ is the constraint velocity, J =
9®/5q is the constraint Jacobian explicitly formed at time ¢,
which can be computed efficiently via rigid body dynamics
algorithms [23]], [54]; and c* is the reference velocity which
stabilizes the constraint. Such a constraint (@) is enforced by
the action of the environment on the system via the contact
vector impulse A € R™. These considerations lead to Gauss’s
principle of least constraint [55], [48]. By duality, the contact
impulses are spanned by the transpose of the constraint Jacobian
and should be incorporated in the Lagrangian equations ()
via:

c—c*=0.

Mutt = Muy 4+ J "\ o)

Regarding bilateral contacts, the contact efforts, corresponding
to the Lagrange multipliers associated with the constraint
(@), are unconstrained. If a bilateral constraint is well
suited to model kinematic closures, it is not to model
interactions between the robot and its environment, which are
better represented by unilateral contacts. This paper focuses
on the latter, for which we provide a more detailed presentation.

Unilateral contact. When a system is in contact with its
environment, the non-penetration constraint enforces the signed
distance between the two objects to be non-negative [57].
Defining the separation vector as the vector of minimum norm
separating two shapes in contact [58], [56](Fig. [2), the signed
distance function corresponds to its normal component. By
overloading the notation of the bilateral case, the constraint
function ® now maps to the separation vector (Fig. [2)) and
describes a unilateral constraint:

®(g)n =0 (6)

where ®(q) € R3"¢, n,. is the number of contacts; the subscripts
N and T respectively account for the normal and tangential
components. In practice, ® can be computed efficiently via the
Gilbert-Johnson-Keerthi (GJK) [59], [47]] and the Expanding
Polytope Algorithm (EPA) algorithms[60]. GJK operates on
convex shapes, but non-convex shapes can also be handled
by proceeding to decomposition into convex sub-shapes [61]
during an offline preprocessing step. To ease the solving, one



can write (6) in terms of velocities, and supposing that shapes
are in contact, i.e. ®(q')y < 0, the Taylor expansion of the
condition (B) leads to:

ey —cy >0 (N

where ¢ = J(g")v'T! € R3"¢ is the velocity of contact points.
It should be noted that J is evaluated at ¢* as it avoids computing
® and its Jacobian several times when solving for ¢**! and v**!
which significantly decreases the computational burden. We
explain later how c}; is set to model physical effects or improve
the numerical accuracy of the solutions. As in the bilateral
case, the transpose of the contact Jacobian J spans the contact
forces, which leads again to (3) the constrained equations of
motion. Unlike the bilateral case, unilateral contacts constrain
the possible contact impulses A. In a frictionless situation,
the tangential forces are null, which implies that Ay = 0. In
addition, the contact forces A\ can only be repulsive i.e., they
should not act in a glue-like fashion (the environment can only
push and not pull on the feet of a legged robot) and, thus, are
forced to be non-negative. An impulse cannot occur when an
object takes off, i.e., the normal velocity and impulse cannot
be non-null simultaneously. Combining these conditions, we
obtain the so called Signorini condition [62] at the velocity
level [25]]:

0<Ay Lenv—cy>0. ®)

where a L b for vectors a and b means a " b = 0. However, such
a condition does not define a mapping between Ay and cy, i.e.,
the contact forces are not a function of the penetration error.
Indeed, their representation is an infinitely steep graph that
may be relaxed into a mapping via a spring damper accounting
for local deformation of the materials (see Fig. [3). Substituting,
v!*! by its expression from the Lagrangian equations (3), we
obtain a Linear Complementarity Problem (LCP) [63]:

0<An L(GA+g)y—cy >0 ©)

where G = JM~1J7 is the so-called Delassus matrix, and
g = Juf is the free velocity of contact points (the velocity
of the contact points in the unconstrained cases). It is worth
mentioning at this stage that several approaches [23], [64],
[54] have been developed in the computational dynamics and
robotics literature to efficiently evaluate the Delassus matrix.

In the case of rigid bodies — purely inelastic impacts, and
exact collision detection, i.e. ®(q)y = 0 — the reference
velocity ¢ can be set to 0. However, setting this velocity
to a non-null quantity may be useful to improve modeling
on both physical and numerical aspects. A first benefit is the
possibility of accounting for impacts that may occur when
two objects collide with non-null relative normal velocity.
The most common impact law stipulates ¢* = —ec! where
e is the restitution coefficient, which adjusts the quantity of
energy dissipated during the collision. When time-stepping
methods are employed, one cannot avoid penetration errors,
i.e. ®(q)n < 0, without using stabilization by reprojection
techniques [65] which are computationally expensive to use
in robotics due to the cost of detecting a collision. However,
it is still possible to prevent these errors from dramatically
growing over time via a Baumgarte correction [66] which sets

z\lorma,\\‘conlacl Friction force (N) T
orce (N) Coulomb law

Signorini condition relaxed Coulomb

law
relaxed Signorini
condition o~

Tangent
velocity (m/s)

Distance (m) |

Fig. 3. Both the Signorini condition (Left) and Coulomb’s law (Right) induce
infinitely steep graphs, which make the contact problem hard to solve.

¢* = kpmax(0,—®(q")y) where the Baumgarte coefficient
kp is set to be proportional to ﬁ.

In addition, in many cases in robotics, Delassus’ matrix
G is rank deficient. Such physical systems are said to be
hyperstatic, and because rank(J) > n,, several A values may
lead to the same trajectory. This under-determination can be
circumvented by relaxing the rigid-body hypothesis, e.g. the
Signorini condition, and considering compliant contacts via
a reference velocity linearly depending on A as represented
in Fig. [3] Indeed, with ¢* = —RA where R is a diagonal
matrix with non-null and positive elements only on the normal
components, called compliance and whose value is a property
of the material, the original Delassus matrix G is replaced by
the damped matrix G = G + R which is full rank. At this
stage, one should note that the physical compliance acts on the
conditioning in an equivalent way to a numerical regularization.

Friction phenomena are at the core of contact modeling,
as they precisely enable manipulation or locomotion tasks.
Coulomb’s law for dry friction represents the most common
way to model friction forces. This phenomenological law states
that the maximum friction forces || Ar| should be proportional
to the normal contact forces Ay and the friction coefficient
. Mathematically, this suggests that contact forces should lie
inside an ice cream cone whose aperture is set by the coefficient
of friction p:

reK,=][K.o (10)
i=1
where the product is Cartesian, the superscript

(i) refers to the i contact point and K,» =
{AMAER®, Ay >0, [[Ar|l2 < pDAy}. Additionally, when
sliding occurs, the maximum dissipation principle formulated
by Jean-Jacques Moreau [25]] implies that the frictional forces
should maximize the dissipated power:

Vi, )\g) = argmin 'y;':cg)

v | <p@AY

(1)

whose optimality conditions yield the following equation in
the sliding case:

, RO ,
Vi, A = — @D AD T e 1) > o.

N— (12)
e

As for the Signorini condition, Coulomb’s law does not describe
a mapping but an infinitely steep graph (Fig. [3). Relaxing this
law via viscous frictions, i.e., assuming the tangent contact



forces to be proportional to the tangent velocities, allows
defining a mapping between Ar and crp.

Combining the Coulomb’s law for friction with the Signorini
condition evoked earlier, we finally get three distinct cases
corresponding to a sticking contact point (T3a)), a sliding contact

point or a take-off (I3b):
AD e K ,if ¢ =0 (13a)
AD =0,if ¢ >0 (13b)

PARES 0K i, Ja > 0, )\E_,f) = —acg_,f) otherwise. (13c¢)

where 0K indicates the boundary of the cone. The equations
(13) are referred to as the disjunctive formulation of the contact
problem. However, such a formulation is unsuitable in practice
for solving, as the switching condition depends on the contact
point velocity c. As this quantity is an unknown of the problem,
one cannot know in which case of (I3) one is standing. For
this reason, the problem is often reformulated as a nonlinear
complementarity problem (NCP). Indeed, using de Saxcé’s
bipotential function [67] defined as:

I:(c,u) €R3 xR (0,0, ullcr|2] (14)

one can show that (T3 is equivalent to the following [27], [68]]
(Fig. [I):

Vi, Ko 5 A0 L e 4T (c@), ,M) €K. (15
In @]) K ;’; refers to the dual cone of K, such that if A € K,
and ¢ € K, then (\,¢) > 0, where (-,-) is the canonical
scalar product. It is worth noting that the relation K, = K/,
stands for second-order cones.

Eq.(13) allows defining, for each contact i € [1,nc],

the primal and dual residuals as e = distg e ()\(’))
and egi) (D +T (™, u)) respectively, where
distc is the distance function w.rt. a convex set
C. It also induces a contact complementarity criterion
e = [(AD, @ + T (¢, D). From these per-contact cri-
teria, it is then possible to introduce a well-posed absolute

convergence criterion €5 for (I3)), as the maximum of eéz),eg )

and eE ") for all i. We use this criterion as a stopping criterion
in our implementation of NCP solvers, but also as a measure
of physical accuracy in our experiments of Section [[V] All the
previous derivations were made with A\ being an impulse which
causes it, and thus the criteria €, ¢, to be proportional to the
time step At. However, it is preferable from the user-side to
have €. and ¢, not correlated to At so the precision threshold
of the simulation €, can be set independently of the time-step.
In practice, before solving we operate a change of variable to
directly work on the equivalent contact forces ﬁ. This is done
by replacing g and c* by their scaled counterpart ; and 2—1
in the formulation of (T3). For readability purposes, equations
are still written in impulse in what follows.

At this point, it is worth mentioning that the problem
(T3), which we refer to as NCP, does not derive from a
convex optimization problem, thus making its solving complex.
Alternatively, one can see the frictional contact problem as
two interleaved convex optimization problems [69]], [70], [36],

= dist g+
Kl

_mg

W

_mg

WVV

Fig. 4. Underdetermined contact problem. The left and right contact forces
are solutions of the NCP (T3) and lead to the same system velocity. Such an
undetermined problem can also occur on normal forces.

[71], [6] whose unknowns, A and v, appear in both. Other
formulations exist and we refer to [68] for a more complete
review on the NCP. Practically, the non-convexity can induce
the existence of multiple, or even an infinite number of contact
forces satisfying (I3). As mentioned earlier, this can be due to
normal forces, but tangential components can also cause under-
determination (Fig. d). In this situation, it would be preferable
for a simulator to provide the minimum norm solution in forces.
This property can prevent a simulator from exhibiting internal
friction forces compressing or stretching the objects (Fig. 4}
right). Indeed, such forces would not coincide with the forces
observed by force sensors and would rather correspond to
some internal deformations of the objects, which should thus
be considered soft and no more rigid. In the following, we will
use the term “internal forces” to denote the force component
deviating from the minimum norm solution. Additionally, these
internal forces might also be problematic as it is impossible
to characterize them. This may induce inconsistent derivatives,
which become critical in the context of differentiable simulation.

Open-source frameworks for contact simulation. To con-
clude this section, we propose to review the open-source
software that is popular in the robotics community and
that can be used for simulating contact. Simulating contact
interactions, as illustrated in Fig. 5] involves two main stages,
corresponding to the collision detection step (which objects are
in contact) and the collision resolution (which contact forces
are applied through the contact interaction). These frameworks
are enumerated in Tab. [l

More precisely, at each time step, a simulator must first detect
which geometries are colliding and compute their separation
vector ®. The GJK and EPA algorithms are widely adopted
for their low computational cost. HPP-FCL [45], [46]], [47],
an extension of the Flexible Collision Library (FCL) [72] and
libced [73] implement them efficiently. Some simulators such as
Bullet [30] or ODE [29] also re-implement the same algorithm
as an internal routine.

Once collisions are evaluated, one still requires the contact
points free velocity vy and Jacobians J to formulate (I5).
These two quantities are efficiently computed via rigid body
algorithms [23]]. The RBDL [74]] or the Pinocchio library [24]]
provide efficient implementations to evaluate them. In addition,
Pinocchio proposes a direct and robust way to compute the
Cholesky decomposition of the Delassus matrix G [54]. These
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Fig. 5. Simulation routines. When simulating rigid bodies with frictional
contacts, a physics engine goes through a sequence of potentially challenging
sub-problems: collision detection, collision resolution, and integration time
step.

TABLE I
OPEN SOURCE TOOLS FOR PHYSICS SIMULATION IN ROBOTICS.

| License API Used by
Collision detection
FCL [72] BSD C++ DART, Drake
. MuJoCo, Drake,
libced [73] BSD C++, Python FCL. Bullet, ODE
HPP-FCL [45] BSD C++, Python Pinocchio
Bullet [30] BSD C++, Python DART
ODE [29] BSD/GPL C++, Python DART
Rigid body dynamics algorithms
Pinocchio [24] BSD C++, Python
RBDL [74] zlib C++, Python
Collision resolution
MuJoCo [32] | Apache 2.0  C++, Python
DART [31] BSD 2 C++, Python
Bullet [30] BSD C++, Python
Drake [34] BSD 3 C++, Python
ODE [34] BSD/GPL C++, Python

algorithms are also embedded as internal routines in various
simulators such as MuJoCo [32], DART [31], Drake [34], Bul-
let [30] or ODE [29], but they often are only partially exposed
to the user.

Eventually, when all quantities necessary to formulate the
NCP@ are computed, the simulator has to call a solver.
Every simulator, i.e. MuJoCo [32], DART [31]], Bullet [30],
Drake [34]] and ODE [29], proposes its own implementation.
This procedure varies greatly depending on the physics engine,
as each has its own physical and numerical choices. In the
next section, we detail the existing algorithms.

TABLE I
CHARACTERISTICS OF VARIOUS CONTACT MODELS.

| Signorini  Coulomb MDP
LCP v
CCp v/ v
RaiSim [33]] v/ v
NCP v v v

ITI. ALGORITHMIC VARIATIONS OF THE CONTACT PROBLEM

As explained in the previous section, the nonlinear com-
plementarity problem (T5) does not derive from a variational
principle but can be formulated as variational inequalities
[68]. Thus, classical numerical optimization solvers cannot
be used straightforwardly to solve it. This section studies
the various approximations and algorithmic techniques in the
literature to tackle this problem. As summarized in Tab. [Tl this
section is organized into subsections describing the four contact
models most commonly used in robotics, namely the linear
complementarity problem (LCP), the cone complementary
problem (CCP), RaiSim, and the nonlinear complementarity
problem (NCP). For each contact model, we also report the
related algorithmic variants. If each tick in Tab. [III| represents
a positive point for the concerned algorithm, Sec. [[V] shows
that even one missing tick may be prohibitive and can cause a
solver to be unusable in practice. Finally, we also mention a
set of useful implementation tricks that can be used to build
an efficient simulator.

A. Linear Complementarity Problem

A first way to simplify the solving of problem (T3) is to
linearize the NCP problem by approximating the second-order
cone constraint from Coulomb’s law with a pyramid, typically
composed of four facets. This is done by replacing K,
by IN(W-) = {MAn =0, [Ar]lo < p(i))\N}. Doing so allows
retrieving a linear complementarity problem (LCP), often easier
to solve [63]. Such a problem is more standard and better-
studied than its nonlinear counterpart as it already has a long
history of applications to frictional contacts [[77], [[78], [79],
[80].

Direct methods for LCP date back to the 1960s and are
available options in well-known simulators such as ODE [29]]
and Bullet [30] which implement respectively the Lemke’s [81]]
and Dantzig’s [82] algorithms. Under specific circumstances
[83], the algorithm is guaranteed to find a solution.

Projected Gauss-Seidel. Due to its easy implementation and
its early stopping property, the projected Gauss-Seidel (PGS)
algorithm (Alg. [T) algorithm represents an attractive alternative
and was widely adopted as the default solver by many physics
engines, such as in Bullet [30]], PhysX [75], ODE [29], and
DART [31]], [7]] simulators. This iterative algorithm loops on
contact points and successively updates the normal and tangent
contact forces. Because PGS works separately on each contact
point, the update compensates for the current errors due to the
estimated forces from other contact points. Yet, as illustrated in
the experimental section [IV] this process induces the emergence
of internal forces during the solving. Moreover, Gauss-Seidel-
based approaches are similar to what is also known as block
coordinate descent in the optimization literature. As first-order
algorithms, they do not benefit from improved convergence
rates or robustness with respect to their conditioning, unlike
second-order algorithms. In parallel, the linearization of the
second-order cone causes the loss of the isotropy for friction,
as stated by Coulomb’s law. By choosing the axes for the facets



TABLE III
CHARACTERISTICS OF NUMERICAL ALGORITHMS.

\ Hard contacts ~ No internal forces  Robust  Convergence guarantees
LCP
PGS [30], [29], [75], [31] v
Staggered projections [36] v v v
CCP
PGS [76] v
MuJoCo [32] v v v
ADMM (Alg. [3) v v v v
Drake [35] v v v
RaiSim [33]] v
NCP
PGS v
Staggered projections [0] v v v

Algorithm 1: Pseudocode of the projected Gauss-Seidel
(PGS) algorithm for solving LCPs.

Input: Delassus matrix: G, free velocity: g, friction
cones: K,
Output: Contact forces: A
1 for £k =1 to n;zer do

2 for 1 =1 to n,. do

3 AW A - i (G +9)V;

4 /\%) + max(0, /\g\i,));
(4) (@) 1 (4).
T- T mifl(G(Tm)vaG(Ty)Ty) ( 9)r

6 )\(Tl) — clamp()\g),mAN);

7 end

8 end

(0

0

Fig. 6. Cone linear approximation. Linearizing the friction cone induces
a bias in the direction of friction forces. The MDP tends to push tangential
forces toward the corners of the pyramid.

of the pyramid and due to the maximum dissipation principle,
it is established that one incidentally biases the friction forces
towards the corners [84], [85]], as illustrated in Fig. @ This
error is sometimes mitigated by increasing the number of facets,
which also comes at the cost of more computations.

B. Cone Complementarity Problem.

An alternative approach consists of approximating the
NCP problem in order to transform it into a more classical
convex optimization problem. By relaxing the complementarity
constraint from (T3], one can obtain a Cone Complementarity
Problem (CCP) [86]:

K,>\LlceK; (16)

If this relaxation preserves the Maximum Dissipation Principle
(MDP) and the second-order friction cone, it loses the Signorini
condition (B). Indeed, re-writing the complementarity of (I6)
yields:

N T .
Vi, AW+ P =o, (17)

and if the i contact point is sliding, the MDP (12) leads to:

AV el = ALl 1 = 0, (18)

which is equivalent to the following complementarity condition:

AR L (e — pllei?l2)- (19)

indicates that the CCP approximation allows for simulta-
neous normal velocity and forces, contrary to (§). In practice,
this results in objects interacting at distance when contact
points are sliding. In its seminal work [86], Anitescu shows
the interaction distance to be Atu”cg) ||l It is worth insisting
on the fact that such an artifact only emerges in the case of
a sliding contact and can be mitigated, and even controlled,
with smaller time steps and sliding velocities. Moreover, it is
still under debate to determine if this behavior is prohibitive
for robotics applications.

Because CCP (I6) approximates the NCP (T3), the con-
vergence is checked via a different criterion. In fact, in the
same way, the De Saxcé correction was ignored in (I6),
a convergence criterion is obtained by removing this term
from the dual convergence criterion €4 of the NCP introduced
previously.

PGS. The PGS algorithm can be directly adapted to handle
the CCP problem [76] (Alg. 2)). In the light of what follows,
the algorithm even becomes equivalent to a projected gradient
descent which is a classical constrained optimization technique.



Algorithm 2: Projected Gauss-Seidel (PGS) algorithm
for the dual Cone Complementarity Problem (CCP)

Algorithm 3: ADMM algorithm for the dual Cone
Complementarity Problem (CCP)

Input: Delassus matrix: G, free velocity: g, friction
cones: K,
Output: Contact forces: A
1 for k = 1 to n;se,r do
2 for i =1 to n. do

(i)  \() _ 3 _ OF
R
4 A0 Projg, (A@);

5 end '
6 end

Optimization on the dual. The problem (T6) can, in fact, be
viewed as the Karush-Kuhn-Tucker conditions of an equivalent
Quadratically Constrained Quadratic Programming (QCQP)
problem:

N T
/\Ig}?u 5)\ GA+g A (20)
Once the contact problem is formulated as an optimization
problem, any optimization algorithms can be employed to
solve it and classical optimization theory provides convergence
guarantees. Here, we propose to study an ADMM algorithm
[87]] to solve (20), but Interior Point algorithms [88] could
also be used [32]. A benefit of using the family of proximal
algorithms like ADMM is their natural ability to handle the
numerical issues coming from ill-conditioned and hyper-static
cases [89], [90]. This property makes it possible to accurately
simulate hard contacts, i.e., without any shift due to compliance
R = 0, and is reported in Tab. by the "hard contacts"
column. Another by-product of such methods is the implicit
regularization they induce on the found solution, which removes
the potential internal forces. This last property is an empirical
observation resulting from the experimental section [[V] and, to
our knowledge, has not yet been proven by the literature of
proximal optimization. Therefore, it remains to be confirmed
by subsequent work.

One may argue that such algorithms require to compute G ~*
(Alg. [3] line 3) while per contact approaches repeatedly solve
for each contact point individually, and thus only require the
cheap inverse of diagonal blocks from G (Alg. [T} lines
Alg. 2} line [3] Alg. 5] line [} Alg. [6] lines [B5). However, the
recent progress [54] demonstrated the Cholesky decomposition
of G can be computed efficiently and robustly. We detail this
point later when discussing implementation tricks, at the end
of this section. Exploiting the knowledge of G~! and not the
block components as in the "per-contact" approaches mentioned
earlier allows us to capture the coupling between all contact
points.

Optimization on the primal. By reverse engineering, it is
possible to form an optimization problem on joint velocities
v whose dual would be (20). This approach is adopted in
both MuJoCo[32]] and Drake[35] and results in the following

Input: Delassus matrix: G, free velocity: g, friction
cones: K,
Output: Contact forces: A
1 Gl (G+pld) !
2 for kK =1 to nze, do
3 A~ =G Hg—pz+7):
4 z 4 proj, (A + 3);
5 v+ pA—2);
¢ end

optimization problem:

1 1 .
min §Hv—vf||?w+§||y—c (1% (21)

st. Ju—ye K,

where ||z||x = VaTXz with X > 0. Working on the
equations, this problem can be formulated as an unconstrained
optimization problem:

. 1 2 1
min l(v) = §HU - UfHM + 5”731}3“ (y(J)I% (22)

where P¢ (y) = argmin ¢, v — yll%s y(c) = —R™'(c —
¢*); and which is viable only when R is non-null. The latter
condition makes it impossible to model hard contacts. As
evoked earlier, this is equivalent to replacing G by G = G + R
in the quadratic part of (20), which is justified by a compliant
contact hypothesis. Indeed, R corresponds to a compliance,
which should be a material property of the objects involved
in the collision. However, MuJoCo arbitrarily sets this to the
diagonal of aG, where « € [0, 1] is close to 0. This choice
has no physical justification (at least, without making strong
assumptions that are not met in practice), and its only intent is
to improve the conditioning of the problem to ease the solving
and artificially make the solution unique. Moreover, R has non-
null tangential components and thus may also introduce some
tangential "compliance" which corresponds to the relaxation
of Coulomb’s law (Fig. . In fact, this should instead be
interpreted as a Tikhonov regularization term enforcing the
strict convexity of the problem to facilitate the numerics
and the existence of both the forward and inverse dynamics
computation at the cost of shifting, even more, the solution.
Drake’s algorithm [35] improves this point by providing a more
physical way of setting R.

Both Drake and MuJoCo use a Newton solver to tackle
(Alg. [). Due to the non-linearity of the second term
of (22)), this approach requires updating the inverse of the
Hessian at every iteration (Alg. @line [3). As proposed in [33],
the use of advanced algebra routines allows to reduce the
computational burden of each step. In this work, we provide
an implementation of the Newton algorithm with an Armijo
backtracking linesearch (using parameters from [35]]), which
is close to what is done in the MuJoCo and Drake simulators.



Algorithm 4: Newton algorithm for the primal Cone
Complementarity Problem (CCP)

Input: Inertia matrix: M, Jacobian of contacts: .J,
compliance: R, free velocity: vf, friction cones:
K,

Output: Joint velocity: v

1 for k =1 to n;se,r do

2 Volp  M(v—oT) — JTP,ISH (y(Jv));

3 H <+ M+ JTVUP,?M(y(Jv))J ;

4 Av <+ —H™'V,1, ;

5 a « argming I, (v + SAv) ;

6 v v+alv

7

C. Raisim contact model

A contact model introduced in [91] and implemented
in the RaiSim simulator [33] aims at partially correcting
the drawbacks from the CCP contact model exploited in
MuJoCo [32] and Drake [34]. As explained earlier, the CCP
formulation relaxes the Signorini condition for sliding contacts,
leading to positive power from normal contact forces. The
contact model proposed in [91] fixes this by explicitly enforcing
the Signorini condition by constraining @ to remain in the
null normal velocity hyper-plane V]E; ) = {)\|G§\?))\+ gj(\zf) =0}
where §9 = g0 4+ 37, GEDAG) is the i contact point
velocity as if it were free. Here, we generalize the use of the
subscript and the superscript introduced previously to matrices,
where a second superscript (or subscript) corresponds to a
slicing operation on the columns e.g. G(¥) € R3*3 denotes
the sub-block of GG whose rows are associated to the i contact
and columns to the j™ contact. For a sliding contact point, the
problem becomes:

LyTaoy ¢ ARADY (23)

min

XeK NV
The new problem (23) remains a QCQP and [33]] leverages
the analytical formula of the ellipse K i) N Vjs,z ) in polar
coordinates to tackle it as a 1D problem via the bisection
algorithm [92]] (Alg. 5] line [I0). We refer to the original
publication for a more detailed description of the bisection
routine [33].

This approach implies several drawbacks. Indeed, it requires
knowing whether a contact point is sliding, which cannot be
known in advance as the contact point velocity depends on the
contact forces. Thus, some heuristics, based on the disjunctive
formulation of the contact problem (T3], are introduced to try
to guess the type of contact which will occur, i.e. take-off
(Alg. ] line [5), sticking (Alg. ] line [7) or sliding (Alg. [3
line [9). Such heuristics may be wrong, which may cause the
algorithms to get stuck and lose convergence guarantees. This
effect is strengthened by the caveats of the per-contact loop,
which additionally make RaiSim not robust to conditioning and
prone to internal forces. Eventually, if adding the constraint
A ¢ VJS; ) allows retrieving the Signorini condition from the
CCP model, it also induces the loss of the maximum dissipation

Fig. 7. Bisection algorithm. When the contact point is sliding, )\7%) (Alg.
line [)) lies outside the friction cone Ku(,;) , leading to a non-null tangential

contact velocity c® . In this_case, RaiSim solves @]) This is equivalent to
finding the A € K ;) N VIE; ) which is the closest to )\7%) under the metric

defined by G(?9)_ The constraint set being an ellipse, the problem boils down
to a 1D problem on 6 using polar coordinates. This figure is inspired from
Fig. 2 of [33].

principle. Writing the Karush Kuhn Tucker (KKT) conditions
of the problem (23) and some algebra manipulations yields:

)24 (@
pt ASV) (#1)

NG (@)

cp’ X —Ap — @) (24)
NN
which contradicts (12).

The problem solved by RaiSim depends on the contact mode,
e.g. (23) is solved only for a sliding contact and would require
the computation of the unknown dual variable. Therefore, it is
more complex to define a proper convergence criterion than
in previous cases and (I6). In this respect, either a fix-
point criterion i.e the distance between two consecutive iterates,
or the previously defined NCP criterion (T5) can be used to
coarsely monitor convergence. We chose the latest in order to

have a criterion homogeneous to the ones used for (I3) and

(T6).

D. Tackling the NCP

Despite the non-smooth and non-convex issues described

previously, some simulation algorithms aim to directly solve
the original NCP problem [79], [68I], [37], [8].
PGS. The PGS algorithm exploited for LCP and CCP problems
can easily be adapted to the NCP case by changing the
clamping step (Alg. [T}line [6) or the normal projection (Alg.
line @) for a horizontal projection on the cone (Alg. [f] line [6).
However, it is worth noting that such approaches have fewer
convergence guarantees than their relaxed counterpart [27]. As
with every Gauss-Seidel approach, the methods inherited from
the sensitivity to ill-conditioning and spurious internal forces.

Staggered-projections. The staggered projections (Alg.
approach, appearing in [69], [70] and implemented in a
simulator in [36], [6], proceeds by rewriting the NCP as
two interleaved optimization problems. This interconnection is



Algorithm 5: Per-contact bisection algorithm

Algorithm 7: Staggered projections algorithm

Input: Delassus matrix: G, free velocity: g, friction
cones: K,
Output: Contact forces: A, velocity: v
1 for k = 1 to n;ze,r do

2 for i =1 to n. do
3 G« g 4 Z#i G \G),
4 A —gn T,
5 if g%) > 0 then
// takeoff
6 A0
7 else if /\5,20) € K, then
// stic;ion
8 A AW,
9 else
// sliding
10 M\* < bisection(G ) (), K, @, )\1(,?);
11 end
12 A (1 —a)A® +a);
13 a +— ya+ (1 —y)min ;
14 end
15 end

Algorithm 6: Projected Gauss-Seidel (PGS) algorithm
for Non-linear Complementarity Problem (NCP)

Input: Delassus matrix: G, free velocity: g, friction
cones: K,
Output: Contact forces: A, velocity: v
1 for £k =1 to n;se,r do

2 for : =1 to n. do
: A A0 - L (GA+ 9N
, NN
4 )\g\l,) + max(0, )\S\?);
(i) @ _ 1 OF
5 /\T < )\T mln(G(TL:)TLvG(TZ)Ty) (GA+g)T ’
6 A Proj, Ao AD);
7 end
8 end

solved via a fix-point algorithm that repeatedly injects one
problem’s solution into the formulation of the other. The
staggered projection algorithm has no convergence guarantees
but was heavily tested and seems, in practice, to converge most

of the time in a few iterations (typically five iterations [6]).

Solving a cascade of optimization problems allows the use
of robust optimization algorithms (e.g., ADMM), but remains
more costly than other approaches.

E. Implementation details

In practice, the performances of contact solvers can be
improved by a few simple tricks.

Warm-starting the solver by providing the contact forces from
the previous time step allows to greatly reduce the required
computation. Indeed, in the case of a persisting contact between

Input: Delassus matrix: G, free velocity: g, friction
cones: K,
Output: Contact forces: A, velocity: v
1 for k = 1 to n;ze,r do

2 | gn g7 +GNTATS

3 AN ¢ argminy s INTGNA+ gn N

4 gr < gr + GrnAN;

5 Ar < arg minIW“HSNM%) %)\TGT)\ +gr' N
6 end

two objects, the contact forces are being cached and reused
as an initial guess when solving for the contact forces of the
next time step. This relies on the ability of the contact solver
algorithm to be warm-started. This excludes Interior Point [8S]]
algorithms, as they would only benefit from an initial guess
close to the so-called central path [89]]. By contrast, the feasible
set of contact forces may change from one time step to the
other, even in the case of a persisting contact point. On the
opposite, ADMM and, more generally, Augmented Lagrangian
(AL) methods can naturally be warm started: not only the
primal (i.e., contact forces) and dual (i.e., contact velocities)
variables, but also the proximal parameter is initialized with
the previous values.

Cholesky computation. In addition, second-order algorithms
can further exploit the recent progress in rigid body algorithms
[54]]. This work takes advantage of the sparse structure of the
kinematic chains in order to efficiently compute the Cholesky
decomposition of the Delassus matrix G. This approach is
robust enough to handle the case of hyperstatic systems
and reduces the cost of the computation of matrix-vector
products involving G~ (Alg. [3| line . This also indicates
that evaluating G from its Cholesky decomposition, as required
by per-contact approaches, actually constitutes an additional
cost.

Proximal parameter adaptation. In the context of ADMM
(Alg. B), the algorithm from [54] can also be favorably
combined with the adaptation of the proximal parameter. Indeed,
updating the regularized Cholesky can be done at almost no
cost by using [54]. In our implementation, we follow the work
from [93] to detect when and how p should be adapted. More
precisely, whenever the primal residual is significantly greater
than the dual one (a threshold for the ratio has to be set, a
typical value being 10), p should be increased in order to
better enforce the constraint of the problem and thus, reduce
the primal residual. The proximal parameter p is then updated
via a spectral rule which multiplies it by x%%°, x being the
condition number of the Delassus matrix, defined as the ratio
between the largest and the smallest eigenvalues. Conversely,
whenever the dual residual dominates the primal one, p should
be decreased by dividing it with the same factor. Alternatively,
we could use a linear update rule for p as it is done in OSQP
[94] which would be less efficient in the case of ill-conditioned
problems.



Fig. 8. Robotics systems used for the experiments. The Solo-12 quadruped (Left), the Talos humanoid (Center), and the Allegro hand (Right) allow to
respectively exhibit locomotion, high-dimensional, and manipulation contact scenario.

Over-relaxation. Additionally, over-relaxation is often em-
ployed to accelerate the convergence of both Gauss-Seidel
and ADMM algorithms. This technique applies the following
update:

Al + (1 —a)), (25)

where « € ]0,2[ and A~ denotes the previous iteration. For
a > 1, over-relaxing consists of an extrapolation step and
should be carefully used, as it may also hinder convergence.
Typically, setting o to 0.8 improved convergence of the PGS
algorithm.

IV. EXPERIMENTS

In this section, we evaluate the performances and behaviors
of the formulations explained in Sec. [[l} To fairly compare
and benchmark the various algorithmic formulations, we
have implemented them in a unified C++ framework called
ContactBench. In the following, we denote by RaiSim and
Drake our re-implementation of the contact solvers described
in the corresponding papers [33]], [35]. For Drake, it is worth
noting that our implementation uses a backtracking line-search
with an Armijo condition instead of the line-search proposed
in the original paper [35]. Our framework extensively relies on
the Pinocchio library [24] for rigid body algorithms and HPP-
FCL [45], [56] implementation of GJK and EPA for collision
detection. ContactBench will be released as open-source upon
article acceptance.

Several factors may hinder the correctness and accuracy of
simulators based on time-stepping methods:

i) the low accuracy of the solver of the contact problem;

ii) the limitation from the contact model itself;
iii) or the numerical integration due to the time discretization
scheme.

In this section, we first evaluate the error from sources
i) and ii) (Sec. [V-A). The source of error i) is evaluated
by measuring the time taken to reach a given accuracy. The
errors from ii) are analyzed by measuring the residual for
an (approximately) infinite time budget. We further assess 1)
and iii) by examining the sensitivity of the contact solvers
with respect to respectively the stopping criterion value €,
and the time-step At (Sec. [[V-B). Sec. evaluates their
computational efficiency. Finally, Sec.[[V-D] explores how the
contact models and their implementations can impact the final
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Fig. 9. Trajectory of a cube sliding on a plane. The cube is initialized
with an initial tangential velocity along the x-axis. Right: The bias of friction
forces (Fig@) introduces a tangential velocity along the y-axis, which deviates
the cube from the expected straight-line trajectory.

robotics applications, in the case of the MPC for quadruped
locomotion.

Except where expressly indicated, we use the following
values for the solvers parameters: €,p5 = 1075, njer = 10*
and At = 1ms. For the ADMM algorithm, the proximal
parameter p is adapted dynamically as previously detailed

(Sec. [II-E).

A. Evaluation of physical correctness

LCP relaxation. The linearization of the friction cone loses the
isotropy and biases the friction forces towards some specific
directions, as shown in Fig.[6] This observation has already been
raised in the literature [84]], [93], [85, [6], [8]. As expected, the
bias on the contact forces significantly impairs the simulation
by deviating the trajectory of the simulated system (Fig. [9).

CCP relaxation. As detailed previously, the CCP contact model
relaxes the Signorini condition. As shown in Fig.[T0] this results
in non-null normal contact forces and velocities when a contact
point is sliding. As a consequence, the contact points start to
bounce, which modifies the trajectory of the system (Fig. [I0]
left), which also impacts the overall dissipated energy (Fig. [I0}
right). The model adopted by Raisim aims at correcting this
undesired phenomenon by enforcing the Signorini condition but
still does not match the analytical solution due to its relaxation

of the MDP (24) (Fig. [T0] right).

Underdetermined contact problems. Underdetermination
occurs when infinite combinations of contact forces lead to
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Fig. 10. A cube is initialized on a plane with a tangential velocity along
the x-axis, similarly to the case studied in Fig. 0] Left: The CCP contact
model relaxes the Signorini condition, which induces unphysical forces leading
to the vertical bouncing of the cube. Right: From the MDP, it is possible to
determine the evolution of the energy of the system analytically and compare it
to what is computed by the various simulation algorithms. The CCP relaxation
induces a significant gap with the analytical solution. The RaiSim contact
model narrows this gap but dissipates less power than expected, as it does not
always enforce the MDP. The NCP formulation, solved using the PGS solver,
is the only formulation that closely matches the expected analytical behavior
of the system.
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Fig. 11. Applying a linearly growing force along the x-axis to a cube on a
plane. Left: The cube is at stiction before it starts sliding after approximately
0.25s. The tangential velocity differs depending on the contact model: CCP
induces some bounces which occasionally dissipate energy during impacts,
while RaiSim violates the MDP leading to contact points sliding faster than in
the case of NCP. Right: At stiction, multiple combinations of tangential forces
may lead to the same trajectory. There are four curves for each contact model,
each curve accounting for the y-component from one of the four contact
forces on the cube. Gauss-Seidel-like solvers, e.g. RaiSim and PGS, exhibit
internal forces "stretching" the cube at stiction before the MDP enforces these
forces to disappear when the cube starts to slide. RaiSim relaxes the maximum
dissipation principle so the friction forces are not opposed to the movements,
and internal forces persist when the cube is sliding. Eventually, ADMM avoids
injecting spurious internal forces even at stiction.

the same trajectory. These artifacts happen on the normal
and tangential components of contact forces, as depicted in
Fig.[I1] As shown in Fig.[T1] the solution found depends on the
numerical scheme. We observe that the per-contact approaches
(Alg. 23] and [6) exhibit spurious internal forces at stiction,
values which are not controlled by the algorithms. On the
opposite, the algorithms working directly on the global contact
problem with a proximal regularization (Alg. 3] and [7) seem to
avoid injecting such artifacts in the contact forces (Fig. [TT).
As future work, it would be interesting to investigate the theory
behind the latter conjecture.

This phenomenon may seem innocuous as forward dynamics
are not affected. However, it makes the inverse dynamics ill-
posed, as there is no way to predict such numerical artifacts.
Additionally, in the context of differentiable physics, we believe
these spurious contact forces may catastrophically impact the
computation of derivatives, but we also leave this study as
future work. Finally, it is worth mentioning that such under-
determined cases are ubiquitous in robotics (e.g., legged robots

making redundant contact with their environments).

Robustness to ill-conditioned contact problems. More
generally, the contact problem becomes challenging when the
ratio between the biggest and the smallest eigenvalue of the
Delassus matrix grows. The experiment of Fig. [T2] exhibits the
convergence issues of per-contact approaches when simulating
systems with a strong coupling between the different contact
points, which causes large off-diagonal terms on the matrix
G. In this situation, the latter approaches hit the maximum
number of iteration before convergence, leading to unrealistic
trajectories. Such a behavior can be expected as supposing
the matrix to be diagonally dominant is a classical hypothesis
ensuring the convergence of Gauss-Seidel methods. On the
contrary, the proximal algorithms account for off-diagonal terms
of GG, and only rely on a regularized inverse of G (Alg.
line [T), and thus robustly converge towards an optimal solution.
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Fig. 12. Simulation of ill-conditioned systems. Left: Stacking a heavy
cube (10%kg) on a light one (10~3kg) makes the problem ill-conditioned
and, therefore, not solvable via per-contact algorithms (CCP/PGS, NCP/PGS
and RaiSim) which results in the violation of the contact complementarity
criterion (I3). By contrast, the ADMM, staggered projections and Newton
approaches appear to be robust in this case. Right: The accuracy of the
simulators improves when the ratio between the masses of the two cubes gets
close to one. The ADMM and Newton algorithms are less affected by this
ratio than PGS.

Effects of compliance. As demonstrated by Fig. the
normal forces vary linearly with the compliance parameter
R. Moreover, adding compliance to the tangential components
induces the vanishing of dry friction, resulting in tangential
oscillations instead of a null velocity. These compliant effects
regularize the infinitely steep graphs due to the Signorini
condition and Coulomb’s law and replace them with locally
linear mapping, which also eases the numerics. Therefore, the
compliance added in MuJoCo has no physical purpose and
should be considered a numerical trick designed to circumvent
the issues due to hyper-staticity or ill-conditioning at the cost
of impairing the simulation.

B. Self-consistency of the solvers

The accuracy of simulators can be affected by the numerical
resolution induced by two "hyper-parameters": the value of the
stopping criterion for the contact solver desired accuracy (€qps)
and the time-step value (At). We measure their effect on
the simulation quality when varying them independently. A
simulator is said to be self-consistent when this deviation
remains limited.

Time stepping simulators are sensitive to the choice of the
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spurious internal forces in the under-determined cases.

time-step At. Here, we intend to assess the self-consistency
of the various contact solvers by examining their deviation
when At grows. Because time discretization also affects the
collision detection process, our study is done on the trajectory
of a cube dragged on a plane by a growing tangential force and
whose contact points should remain constant. This scenario
also allows to asses both sticking and sliding modes. For each
simulator, a trajectory g obtained by simulating the system
with a small time-step (At = 10~2ms) serves as a reference
to compute the state consistency error along the trajectories
simulated with larger time-steps (Fig. [I3). The deviation from
the reference trajectory is quantified via the integral consistency
error defined as Zf:o llg™ — q7||At.
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Fig. 14. Self-consistency w.r.t. time-stepping when simulating a cube
dragged on a plane by a growing tangential force. The CCP contact model
appears to be more sensitive to the time step At. This sensitivity can also be
observed through the evolution of mechanical energy.

Looking at Fig. [T4] we observe that the CCP contact model
is more sensitive with respect to the time step in the considered
scenario. Indeed, because CCP relaxes the Signorini condition,
the cube slides at a height proportional to At. Similarly,
as shown by Fig. [I4] the energy evolution of the system
simulated via NCP and RaiSim models is only a little modified
when increasing At while CCP leads to a nonphysical and

inconsistent behavior.

Stopping criterion. As done in the case of the time-stepping,
the sensitivity to the stopping criterion is evaluated by mea-
suring the integral consistency error with respect to a high-
resolution (eq, = 107Y) reference trajectory (Fig. . As
demonstrated by Fig. [I5] the solvers appear to have different
behaviors when their stopping criteria are modified. The gap
between trajectories generated via the NCP contact models
stays almost constant to a low value. Trajectories obtained via
RaiSim significantly deviates when ¢, is increased, while
those resulting from CCP grows quickly from a low to a high
consistency error. This reveals the importance of setting €,ps
to control the consistency of simulation with CCP. In addition,
Fig. [I5] demonstrates that the NCP model robustly simulates
the mechanical energy evolution, which is not true for the CCP
and RaiSim models. In particular, as the accuracy of RaiSim is
relaxed, due to its approximation @ the error on the MDP
becomes uncontained leading to a reduced energy dissipation.
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Fig. 15. Self-consistency w.r.t. stopping criteria when simulating a cube
dragged on a plane by a growing tangential force. Dropping the solver
accuracy hardly affects the energy evolution when using NCP/PGS. On
the contrary, the energy of trajectories from the CCP/ADMM and RaiSim
algorithms is more spectacularly impacted.



C. Performance benchmarks
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Allegro hand, so the trajectories are not static. The contact solvers are tested
in both cold-start (Left) and warm-start (Right) modes. We simulate the
same trajectories to evaluate the benefit of warm-starting, but we use the
solution of the previous time step as an initial guess. This leads to significant
improvements in the computational timings.

As evoked earlier, in addition to being physically accurate,
it is also essential for a simulator to be fast, which, in
general, constitutes two adversarial requirements. To evaluate
the computational footprint of the various solvers, we measure
both the number of iterations and the time taken to reach
a fixed accuracy on dynamic trajectories involving robotics
systems (Fig. [).

Looking at the number of iterations required to converge
(Fig. [T6), PGS approaches appear to be reasonably fast to
reach mild accuracy (ens = 107°) while they eventually
saturate before reaching high precision in complex scenarii
(Fig. @ bottom). We show later this can be unsufficient for
challenging tasks (Fig. [I9). On the other hand, ADMM, Newton
and Staggered Projections algorithms can find high accuracy
solutions using only a few, but more costly, iterations.

The latter analysis does not account for the per-iteration
computational cost, so we report a study on final timings in
Fig. [T7] When the contact solvers are cold started, we observe
that the second-order optimization techniques [32], [33] are
less efficient than the PGS solvers and their cheap per-contact
iterations (Fig. [I7] left). The advanced first-order algorithms

like ADMM (Alg. B) working on the dual CCP problem
(20) stands in-between as they leverage the very efficient
Featherstone algebra for the computation of the Cholesky
factorisation of G (Sec. [[lI-E). However, leveraging the solution
from the previous time step to warm-start the solvers — a
common strategy in practice — allows for significantly reducing
this gap (Fig. [T7] right). Therefore, regarding the study of
Sec. a trade-off appears for algorithms like ADMM,
which treat all the contact points globally. In practice, they
might be slower than their PGS counterpart while they benefit
from better behaviors on ill-conditioned problems.

D. MPC for quadruped locomotion

The previous examples already illustrate the differences
among the various simulators in terms of both physical accuracy
and computational efficiency. However, such scenarios may not
represent the richness of contacts in practical robotics situations.
For this purpose, we use the implementation of MPC on the
Solo-12 system introduced in [96] to generate locomotion
trajectories on flat and bumpy terrains. These experiments are
designed to involve a wide variety of contacts (i.e., sticking,
sliding, and taking-off) and see how the simulation choices
impact the final task (i.e., horizontal translation of the robot).
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Fig. 18. MPC for locomotion on a flat terrain (Top left). The target horizontal
translation velocity of the base is similarly reached by the controller with the
different simulators (Top right). However, they do not equally respect the
contact complementarity criterion @) (Bottom left). Per-contact approaches,
e.g. PGS and RaiSim, are more efficient (Bottom right).

For a flat and barely slippery (1 = 0.9) ground, we observe
that the choice of simulator hardly affects the base velocity
tracked by the MPC controller (Fig. [T8] top right). In this case,
the contacts are mainly sticking, leading to low violation of
the NCP criterion (T3 (Fig. [I8] bottom left).

When the terrain is bumpy (roughness of 10~'m) and
slippery (@ = 0.3), the locomotion velocity generated from
the RaiSim and CCP models significantly deviates from the
NCP one (Fig. [I9] top right). This can be expected, in light
of our previous study, as both the RaiSim and CCP contact
models make physical approximations when contact points
are sliding (Fig. [T9] bottom left). However, we occasionally
observe that NCP/PGS also violates the NCP criterion (T3)
(Fig. @, bottom left) but for a different reason: PGS was not
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(T3) for the RaiSim and CCP contact modelings (Bottom left). The complexity
of contacts also hampers the solvers and reduces the gap between per-contact
and ADMM approaches (Bottom right).

able to converge before the maximum number of iterations
was reached. Therefore, Gauss-Seidel like approaches appear
to be sufficient for mild conditions (Fig. [T8) but are not robust
enough to ensure convergence of the simulation when the
locomotion tasks becomes more challenging (Fig. [T9). This also
causes increased computations from the solvers, particularly
for RaiSim (Fig. [T9] bottom right). These observations indicate
that the low-level choices of the contact solver may induce
significant differences in the high-level behaviors of locomotion
controllers on complex terrains.

V. DISCUSSION AND CONCLUSION

NCP is known to be complex to solve and thus is often
relaxed to find approximate solutions. In this article, we report a
deeper study on how the various rigid contact models commonly
employed in robotics and their associated solvers can impact
the resulting simulation. We have notably established and
experimentally highlighted that these choices may induce
unphysical artifacts, thus widening the reality gap, leading
to unrealistic behaviors when the simulator is later used for
practical robotics applications. Our experiments show that there
is no fully satisfactory approach at the moment, as all existing

solutions compromise either accuracy, robustness, or efficiency.

This indicates that there may still be room for improvements
in contact simulation. It is also worth mentionning that, for
robotics, simulation samples of lesser but controlled accuracy
are already valuable for many applications, e.g. RL and MPC,
while a failed simulation represent a waste of ressources. This
paper showcases that situations prone to failure of simulation
are not only corner cases but can become quite common when
adressing challenging tasks such as locomotion. This justifies
the emphasis put by modern simulators [32], [37], [33] on
robustness when modeling contacts and implementing the
associated solvers.

Beyond contact simulation, differentiable physics constitutes
an emergent and closely related topic. However, the impact of

forward simulation artifacts on gradient computation remains
unexplored. In particular, some of the relaxations at work,
e.g. the artificial compliance added in MuJoCo, result in
crucial differences in gradients, which then affect downstream
applications like trajectory optimization [97], [98]. We leave
the study of the various existing differentiable simulators [5]],
[61, 71, (991, [8]] through this lens as future work.

For all these reasons, we believe it would be highly beneficial
for the robotics community to take up such low-level topics
around simulation, as they could lead to substantial progress
in the field. The work of [43] is an inspiring first step in this
direction. With this article, we intend to go further by also
providing open-source implementations and benchmarks to the
community.
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