A port-Hamiltonian formulation for the full von-Kármán plate model Andrea Brugnoli * , Denis Matignon * * ISAE-SUPAERO, Université de Toulouse, France Summary. In this contribution, a port-Hamiltonian reformulation of the full von-Kármán dynamical model for geometrically non- linear plates is detailed, including the collocated boundary control and observation. Starting from the canonical equations, a set of variables is chosen so as to make the total energy quadratic. The model, reformulated in these variables, highlights a port-Hamiltonian structure ruled by a state-modulated interconnection operator.

Classical model

The classical full von-Kármán dynamical model is presented in [START_REF] Bilbao | Conservative numerical methods for the full von kármán plate equations[END_REF]. The problem, defined on an open connected set Ω ⊂ R 2 , takes the dimensionless form

ü = Div N , ẅ = -div Div M + div (N grad w), N = Φ(ε), M = Φ(κ), ε = Grad u + 1/2 grad w ⊗ grad w, κ = Grad grad w, (1) 
where u ∈ R 2 is the in-plane displacement, w is the vertical displacement, ε is the in-plane strain tensor, κ is the curvature tensor, N is the in-plane stress resultant and M is the bending stress resultant. The notation a ⊗ b = ab denotes the dyadic product of two vectors. The div operator is the divergence of a vector field, and grad the gradient of a scalar field. The operator Grad = 1 2 ∇ + ∇ designates the symmetric part of the gradient (i. e. the deformation gradient in continuum mechanics). For a tensor field U : Ω → R 2×2 , with components U ij , the divergence Div(U ) is a vector, defined column-wise as

Div(U ) := 2 i=1 ∂ xi U ij , ∀j = {1, 2}.
The linear tensor mapping Φ is positive and preserves symmetry:

Φ(A) = ν Tr(A)1 + (1 -ν)A, A = A =⇒ Φ(A) = Φ(A) , where 1 = Diag(1, 1).
The total energy of the model (Hamiltonian functional)

H = 1 2 Ω u 2 + ẇ2 + N . . ε + M . . κ dΩ, where A . . B = Tr(A B) (2) 
consists of the kinetic energy and both membrane and bending deformation energies. This model proves conservative, see [START_REF] Bilbao | Conservative numerical methods for the full von kármán plate equations[END_REF]. Indeed, this implies that a port-Hamiltonian realization of the system exists. We shall demonstrate how to construct a port-Hamiltonian realization, equivalent to (1).

The equivalent port-Hamiltonian system (pHs)

To find a suitable port-Hamiltonian system, we first select a set of new energy variables to make the Hamiltonian functional quadratic. The selection is the same as for both the linear plate problems in Brugnoli et al. [2019a,b]:

α u = u, α w = ẇ, A ε = ε, A κ = κ. ( 3 
)
The energy is quadratic in these variables

H = 1 2 Ω α u 2 + α 2 w + Φ(A ε ) . . A ε + Φ(A κ ) . . A κ . (4) 
By computing the variational derivative of the Hamiltonian, one obtains the so-called co-energy variables:

e u := δ αu H = u, e w := δ αw H = ẇ, E ε := δ Aε H = Φ(A ε ), E κ := δ Aκ H = Φ(A κ ). (5) 
Before stating the final formulation, consider the operator

C(w)(•) : L 2 (Ω, R 2×2 sym ) → L 2 (Ω) acting on symmetric tensors C(w)(T ) = div(T grad w). ( 6 
)
Proposition 1 The formal adjoint of the C(w)(•) is given by

C(w) * (•) = - 1 2 [grad(•) ⊗ grad(w) + grad(w) ⊗ grad(•)] . ( 7 
)
Proof 1 Consider a smooth scalar field v ∈ C ∞ 0 (Ω) and a smooth symmetric tensor field

U ∈ C ∞ 0 (Ω, R 2×2 sym ) with compact support. The formal adjoint of C(w)(•) satisfies the relation v, C(w)(U ) L 2 (Ω) = C(w)(v) * , U L 2 (Ω,R 2×2 sym ) . (8) 
The proof follows from the computation

v, C(w)(U ) L 2 (Ω) = v, div(U grad w) L 2 (Ω) ,
Integration by parts,

= -grad v, U grad w L 2 (Ω,R 2 ) , Dyadic product properties, = -grad v ⊗ grad w, U L 2 (Ω,R 2×2 sym ) , Symmetry of U , = -1/2(grad v ⊗ grad w + grad w ⊗ grad v), U L 2 (Ω,R 2×2 sym ) . (9) 
This means

C(w) * (•) = - 1 2 [grad(•) ⊗ grad(w) + grad(w) ⊗ grad(•)] , (10) 
leading to the final result.

The pH realization is then given by the following system

∂ ∂t     α u A ε α w A κ     =     0 Div 0 0 Grad 0 -C(w) * 0 0 C(w) 0 -div Div 0 0 Grad grad 0         δ αu H δ Aε H δ αw H δ Aκ H     , (11) 
The second line of system (11) represents the time derivative of the membrane strain tensor. To close the system, variable w has to be accessible. For this reason, its dynamics has to be included. The augmented system reads

∂ ∂t       α u A ε w α w A κ       =       0 Div 0 0 0 Grad 0 0 -C(w) * 0 0 0 0 1 0 0 C(w) -1 0 -div Div 0 0 0 Grad grad 0       J       δ αu H δ Aε H δ w H δ αw H δ Aκ H       . (12) 
Given the results in Brugnoli et al. [2019a,b] and Proposition 1, the operator J is formally skew-adjoint. If only the kinetic and deformation energies are considered, it holds δ w H = 0. In general this terms allows accommodating other potentials, for example the gravitational one. Suitable boundary variables are then obtained considering the power balance

Ḣ = γ 0 e u , γ ⊥ E ε ∂Ω + γ 0 e w , γ ⊥⊥,1 E κ + γ 0 (E ε n • grad w) ∂Ω + γ 1 e w , γ ⊥⊥ E κ ∂Ω , (13) 
where γ 0 e u = e u | ∂Ω is the Dirichlet trace, γ ⊥ E ε = E ε n| ∂Ω is the normal trace (n is the outward normal vector), γ ⊥⊥,1 E κ = -n • Div E κ -∂ s (n E κ s)| ∂Ω is the effective shear force at the boundary (s is the tangent versor at the boundary), γ 1 e w = ∂ n e w | ∂Ω is the normal derivative trace and γ ⊥⊥ E κ = n E κ n is the normal to normal trace. The boundary conditions are consistent with the ones assumed in [START_REF] Puel | Global existence for the full von kármán system[END_REF] for deriving a global existence result for this model.

Conclusions

We have presented a pHs formulation of the full von-Kármán model. The dynamics of the system exhibits a state modulated interconnection operator, while the energy remains quadratic in the chosen variables. Of particular interest is the discretization of such a model for simulation and control purposes. The Partitioned Finite Element Method (PFEM), an extension of mixed finite elements to pHs, seems to be particularly suitable to achieve a structure-preserving discretization of this model, as in Cardoso-Ribeiro et al. [2020] for the 2D Shallow Water Equation, which exhibits the same kind of polynomial nonlinearity.