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Abstract Solving dynamics problem in the frequency domain gives significant
advantages compared with solutions fully computed in the temporal domain,
but history-dependent nonlinear behaviour is an obstacle to employ that strat-
egy. A hybrid approach is proposed to solve the nonlinear behaviour in the
temporal domain while the mechanical equilibrium is solved using a frequency
strategy coupled with model-order reduction methods. In order to employ
the Fast Fourier Transform (FFT) robustly for the transient regime, artificial
numerical damping is used. The reduced-order hybrid temporal-frequency ap-
proach is investigated for two- and three-dimensional applications; it appears
as a robust and proficient technique to simulate structures under transient
dynamic loadings until failure.
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1 Introduction

Assessing the risk of failure associated with structures subjected to dynamic
loading is of particular importance in a number of applications where sensi-
tive components are subjected to vibrations. In order to decrease the compu-
tational cost of fatigue failure predictions, studies propose simpler modelling
based on an elastic solution post-processing [1,2,3]. However, such methods do
not give a detailed description of the nonlinearities and do not take the tem-
poral specifics of the loading into account. Accurately predicting the failure of
structures requires a fine description of their nonlinear behaviour until failure.
The behaviour can alternatively be described using the evolution of history-
dependent nonlinear internal variables [4]. The main drawback of such detailed
description is the need of a detailed description of the physics at stake because
it raises the need for a fine spatial and temporal discretisation leading to a
large number of degrees of freedom, whereas the computation cost of these cal-
culations needs to be relatively low to make such studies feasible. Thus, solving
a nonlinear dynamics problem requires the use of an efficient solver that can
handle both the dynamics and the nonlinear aspects for a modest calculation
cost. Moreover, in the context of risk assessment, multiple nonlinear compu-
tations are required. The solver must therefore be efficient and multi-query
friendly. The current paper focuses on the efficiency and robustness of the
solver which would also work favourably in a parametric context.

Using the frequency domain allows for very efficient computations in dy-
namics [5]. Indeed, frequency-based calculations can easily be performed in
parallel due to the independence of the frequency steps from one another.
Therefore, the computations associated with each frequency can be done si-
multaneously without the need for specific temporal domain decomposition
strategies. In addition, relying on frequency calculations may be the natural
resort when dealing with parameters that depend on the loading frequency,
such as hysteric damping [6]. In order to make the most of those numerical
benefits while taking into account the nonlinear behaviour, which is described
in the temporal domain, a hybrid temporal-frequency approach will be set up.

In addition, the lower computational cost enabled by frequency calculations
can be combined with the effectiveness of model-order reduction methods [7].
In a certain sense, the principle of reduced-order modelling in dynamics is
relatively conventional since modal computations are widely used in this field
[8,9]. In order to avoid solving an eigenvalue problem to find the eigenmodes
of the structure, the latter can instead be approximated by Ritz-vectors [10,
11]. The reduced-order basis on which the solution is sought after can also be
composed of modes other than the linear normal modes (LNM). The Proper
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Orthogonal Decomposition (POD) has been used in a dynamics context [12]
where some authors showed better approximation results than LNM superpo-
sition [13]. The POD modes are computed from previous solution fields called
snapshots which govern the reduced basis [14]. For avoiding the drawbacks of
prior (possibly costly) computations, dedicated modes can be calculated on
the fly thanks to a priori methods, therefore optimising the number of modes
computed to get a solution. Such a priori methods have already shown inter-
esting results when applied to dynamics problems. For example a space-time
Proper Generalised Decomposition (PGD) [15,16] was successfully applied to
transient problems [17] and space-time dynamics [18]. The PGD also proved
effective in a space-frequency context for acoustic problems [19,20] as well as
for structural dynamics [21,22].

Reduced-order modelling methods generally require linear equations. In a
frequency context for nonlinear elastic applications [23] and nonlinear contact
forces [24], linearisations have already been applied. Such linearisations can
also rely on a static-dynamic hybrid scheme for updating nonlinear geometrical
forces under a static assumption while applying those forces in a dynamics
framework [25].

Herein, specific attention will be put on the linearisation procedure allowing
the separation of linearised equations from nonlinear equations, as this work
aims to predict the behaviour of history-dependent nonlinear structures at a
fine scale. The focus is to introduce a LATIN-based hybrid approach consisting
of computations done partially in the frequency and temporal domains.

Indeed, the frequency domain may not be suited for the description of non-
linearities inherent to the behaviour. Evolution laws often rely on the knowl-
edge of temporal quantities [26]. Indeed, describing material nonlinearities is
incremental by nature: the mechanical state of a medium depends on the pre-
vious state of the latter and on the current load applied. A specific effort must
be made for taking advantage of frequency domain computations when dealing
with nonlinear materials and one of the objectives of the present paper is to
describe the linearisation strategy that will be used in this work.

An alternating frequency-temporal approach [27] has already been carried
out to find periodic steady-state solutions on structures with few degrees of
freedom [28,29] or where only few degrees of freedom were impacted by non-
linear forces, such as dry-friction or contact forces [30,31,32]. In order to take
into account damage-induced nonlinearities in dynamics, the proposed method
relies similarly on an alternative scheme, but it is embedded within an efficient
linearisation framework, called the LATIN method [33], already used for many
history-dependent nonlinear problems involving internal variables. It thus al-
lows complex material nonlinearities to be taken into account robustly within a
naturally non-incremental framework. Contrary to other alternating-temporal
approaches, the fundation of the proposed strategy is to offer a reduced-order
model embedded in the solver. Searching for the solution using a separation of
variables contributes to decreasing the computational cost when solving non-
linear dynamics problems. Moreover, the LATIN method has already proven
to be very favorable to be used in a parametric framework [34] which was also
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a decisive aspect in its choice. This method has been applied for dynamics
problems with visco-plastic behaviour [35] as well as for a wide range of be-
haviour nonlinearities for statics problems, including, among others, the study
of plasticity, damage evolution for quasi brittle materials, and fatigue pre-
diction [36,37,38,39,40] where computations where totally dealt with in the
temporal domain. The LATIN approach is traditionally equipped with an effi-
cient a priori model-order reduction method, using a space-time separation of
variables, the aforementioned PGD; the resulting method is the LATIN-PGD.
The proposed methodology does not use a classical time-space decomposition,
but relies on a space-frequency separation of variables that is well suited for
dynamics problems.

The efficiency of frequency computations relies heavily on the Fast Fourier
Transform (FFT) performances. To avoid overlapping issues [41] in the case of
poorly damped or even undamped systems, artificial damping [41,20] is used
in both the transfer function and the right-hand side of the problem.

The paper is organised as follows. Section 2 defines the reference problem,
including mechanical equations along with nonlinear constitutive behaviour.
The main ingredients of the LATIN-PGD, a model-order reduction method
on which the approach is based, are summarised in Section 3. The innovative
hybrid frequency-temporal approach is exposed in detail in Section 4. Section 5
investigates the performances of the method on two- and three-dimensional
applications.

2 Reference problem

The plasticity-driven damageable behaviour is described in the subsequent
subsections as well as the dynamics equations controlling the response of the
structure.

2.1 Dynamics equation

Let one consider during the time slot I = [0, T0] a body of density ρ with
spatial domain denoted Ω submitted to body forces fd and surface forces F d

on Ω and ∂Ω2 respectively, as represented in Figure 1. Displacements ud are
prescribed on ∂Ω1.

Admissibility is given by three sets [33]. The set of kinematically admissible
displacements denoted U is defined as

U =
{
u | u (x, t) ∈ H1

(
Ω,Rd

)
× L2 (I,R) ,

u̇|t=0 = 0, u|t=0 = 0 in Ω, u = ud and u̇ = u̇d on ∂Ω1} , (1)

where u is the displacement vector, u̇ the velocity and ε(u) the strain ten-
sor and with d ∈ {1, 2, 3} depending on the spatial dimension of the problem.
The corresponding homogeneous space is denoted U0, where ud and u̇d = 0.
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Fig. 1: Reference problem

The set S contains the Cauchy stress tensors denoted σ that are dynami-
cally admissible and an acceleration γ, which is linked to the primal displace-
ment variable u via the equation

γ = ü, (2)

i.e.,
S = {(σ,γ) | ∇ · σ+ fd = ργ in Ω , σ n = F d on ∂Ω2} (3)

with n the normal vector to ∂Ω2.
The solution of the problem s = (u, (σ,γ)) ∈ U × S includes both the

displacement and stress fields that satisfy the weak formulation of the dynamic
equilibrium

−
∫
Ω×I

σ : ε(u∗)dΩdt+

∫
Ω×I

fd · u∗dΩdt+

∫
∂Ω×I

Fd · u∗dSdt

=

∫
Ω×I

ρ γ · u∗dΩdt, ∀u∗ ∈ U0, (4)

as well as the constitutive relations corresponding with the material of the
body.

Similarly to a Kelvin-Voigt model, the nonlinear elasto-plastic damage
model studied herein is taken in parallel with the material damping prop-
erties (see Figure 2). The total stress σ can therefore be decomposed into
a damageable elasto-plastic part σδ and a viscous part σν so that it reads
σ = σδ + σν where σν = D : ε̇ with D being a tensor describing all vis-
cosity phenomena [42,43,44]. Nonlinearities arise from the contribution of the
elasto-plastic damage branch, including crack-closure effects.

2.2 Ductile damage model with crack-closure effect

Damage growth is governed by plasticity, which is modelled using linear kine-
matic and isotropic hardening as introduced in [45]. Isotropic damage is char-
acterised by the scalar variable D. Crack-closure effects [26,4] are described
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Fig. 2: Kelvin-Voigt model

by introducing the effective damageable elasto-plastic stress tensor σδ
eff [39]

as

σδ
eff =

σδ
d

1−D
+

[
〈σδ

H〉
1−D

− 〈−σδ
H〉
]
1, (5)

where σδ
H = 1

3Tr(σδ) and σδ
d = σδ − σδ

H1 are the hydrostatic stress and
the deviatoric part of the Cauchy stress tensor, respectively. The operator
〈�〉 = max (�, 0) gives the positive part of the quantity of interest. 1 denotes
the identity tensor and Tr(�) gives the trace of �. Thus, the Hooke relation
is conveyed by a linear relationship between the effective damageable elasto-
plastic stress and the elastic strain εe as

σδ
eff = K : εe (6)

with K representing the Hooke’s tensor.
The limit of the elastic domain is defined by the yield function fp as

fp = J2

(
σδ

1−D
−X

)
− σy −R, (7)

where J2 (�) is the von Mises equivalent stress operator and σy is the mate-
rial yield stress. When hardening occurs, the isotropic hardening variable and
the kinematic hardening tensor are denoted R and X. The yield function fp
satisfies

fp 6 0, (8)

with an elastic domain defined by fp < 0. Otherwise, when fp = 0, plasticity
occurs and the internal variables are updated.

The plasticity model considered here is a Marquis-Chaboche model [45].
The strain tensor is composed of an elastic part εe and a plastic part εp such
that

ε = εe + εp. (9)

The cumulative plastic strain p is a strictly increasing internal variable intro-
duced to describe the plasticity level. Linear hardening is given by the linear
state equations {

R = hp,

X = 2
3Cα,

(10)
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where h and C are two material coefficients and α is the kinematic internal
variable.

Normality rule leads to the following plasticity evolution laws
ε̇p = ṗ

3

2

(
σδ

eff−X
)
d

J2

(
σδ

eff−X
) ,

α̇ = ṗ (1−D)

[
3

2

(
σδ

eff−X
)
d

J2

(
σδ

eff−X
)
]
.

(11)

Damage evolution law [26] is given by

Ḋ =

{
ṗ
(
Y
S

)sd
, if ws > wD

0, otherwise
(12)

where sd and S are material parameters and Y is the elastic energy density
defined as

Y =
1

2
εe : K : εe = Rν

J2

(
σδ
eff

)2
2E

, (13)

with Rν = 2
3 (1 + ν)+3 (1− 2ν) 〈 σδ

eff,H

J2

(
σδ

eff

) 〉2 the triaxiality function, ν the Pois-

son ratio, E the Young’s modulus and σδ
eff,H the hydrostatic part of the effec-

tive damageable elasto-plastic stress tensor. ws denotes the corrected stored
energy density [26] defined as

ws =

∫
I

(Rṗ+X : α̇) dt. (14)

This energy density is compared with an energy density threshold wD, which is
a material parameter. The nonlinear behaviour is modelled using this plasticity-
driven damage model until the damage variable reaches the critical value Dc

at least at one integration point; macrocracks are initiated once this value is
reached and classical continuum mechanics is no longer adapted to describe
damage phenomena. In the following, the generic expression of the behaviour
will be referred to as σδ = H (ε (u)).

This model allows a physically detailed description of the material evolu-
tion during loading. However, it results in a strongly nonlinear problem with
a large number of degrees of freedom as it relies on a fine description of the
structural behaviour. It has been shown in [46] that in a quasi-static context
the LATIN-PGD method allows to finely describe the response of a damage-
able structure with few PGD modes. The great reducibility of such problems in
quasi-statics has motivated the investigation of their usage in a low-frequency
dynamics context. The use of such methods requires the linearisation of the
nonlinearities; the LATIN-PGD method has proven to be an efficient way to
decouple the nonlinear behaviour from the linear admissibility equations [33,
15], allowing the usage of reduced-order methods on the latter. Such decou-
pling also gives a high degree of modularity to the method.
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3 The LATIN-PGD method

The essence of the LATIN-PGD method is to separate the equations driving
the behaviour from those corresponding to the admissibility of the solution.

3.1 An iterative scheme with two alternated search directions

The LATIN method [33] consists of an iterative scheme with two alternated
search directions which estimates the solution on the whole time-space domain
at each iteration. A graphical illustration is proposed in Figure 3 and gives
a schematisation of the numerical strategy. Solutions of the nonlinear equa-
tions (equations (6),(8),(10),(11),(12)) on one side and of the linear equations
(equation (22) imposing the respect of equation (4)) on the other side define
the two manifolds Γ and Ad, respectively. The exact solution sexact lies at the
intersection of these two manifolds. The consecutive approximations of this
solution are computed alternately in Γ and Ad through the iterative scheme

s0 ∈ Ad → ŝ1/2 ∈ Γ → s1 ∈ Ad 99K

Local stage︷ ︸︸ ︷
ŝn+1/2 ∈ Γ →

Global stage︷ ︸︸ ︷
sn+1 ∈ Ad︸ ︷︷ ︸

Iteration n+1

99K . . . (15)

This iterative scheme shaping the LATIN method is first initialised by a
dynamically admissible elastic solution s0. Then, each iteration comprises two
stages, a local stage and a global stage. The nonlinear part of the constitutive
behaviour is solved on the whole time-space domain during the local stage,
while the global stage consists of solving a linear problem based on admissi-
bility conditions, also imposed on the whole time-space domain. Knowing the
estimation of the quantities sn at iteration n the solution ŝn+1/2 of the local
problem is estimated in Γ from the search direction H+. From ŝn+1/2 the so-
lution sn+1 of the global problem is sought after in Ad based on the search
direction H−, as follows

(
σδ

n+1 − σ̂
δ
n+1/2

)
−H− :

(
εn+1 − ε̂n+1/2

)
= 0,(

σ̂
δ
n+1/2 − σδ

n

)
+H+ :

(
ε̂n+1/2 − εn

)
= 0.

(16)

Those search directions provide a link between the damageable elasto-plastic
stress σδ, computed when solving the nonlinear behaviour during the local
stage and the dynamically admissible stress σ corrected during the global
stage. The iterative scheme continues until the quantity

η =

( ‖ŝn+1/2 − sn+1‖2

1/2‖sn+1‖2 + 1/2‖ŝn+1/2‖2

)1/2

(17)

is lower than a user-defined threshold ηc. The norm ‖s‖ is defined as

‖s‖2 =

∫
Ω×I

ε : K : ε dΩdt+

∫
Ω×I

σδ : K−1 : σδ dΩdt. (18)
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Fig. 3: Working principle of the LATIN method, modified from [33]

The interested reader can refer to [33] for the choice of the search directions
and a detailed description of the methodology. The following subsections give
an overview of the stages of the iterative scheme.

3.2 The nonlinear “local” stage

The local stage estimates all internal and state variables such that the con-
stitutive behaviour detailed in section 2.2 is satisfied. Considering the two
previously-defined manifolds, the local stage gives ŝn+1/2 ∈ Γ knowing sn ∈
Ad using the search direction given in equation (16) and the behaviour de-
scription. Herein, the search direction H+ is chosen such that ε̂n+1/2 = εn i.e.
H+ = ∞.

Knowing ε̂n+1/2, finding ŝn+1/2 ∈ Γ leads to solving the system


ε̂n+1/2 = ε̂

e
n+1/2 + ε̂

p
n+1/2

σ̂δ
effn+1/2

= K : ε̂
e
n+1/2

σ̂
δ
n+1/2 = H

(
ε̂n+1/2

)
.

(19)

A traditional return mapping algorithm [47] is set up so that the damage
variable D, as well as the plastic multiplier p driving the evolution of the
isotropic hardening R, the kinematic hardening X and the plastic strain εp

satisfy the equations (8), (11), (12). Because those equations are local, they
are solved independently on each Gauss point of the considered structure.

Note that the above framework is general and versatile, and that any other
behaviour could be used here.
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3.3 The linear “global” stage

From the elastic initialisation s0 ∈ Ad giving displacement prediction u0(x, t) ∈
U , displacement corrections ∆ju ∈ U0 are computed at each following global
stage to ensure that dynamic admissibility given by equation (4), is achieved.
The displacement field is approximated as

u (x, t) ≈ u0(x, t) +

n∑
j=1

∆ju︸ ︷︷ ︸
∆u

. (20)

Introducing the operator ∆n+1� defined as the correction between two suc-
cessive estimations, i.e. ∆n+1� = �n+1 − �n, the admissibility equation in
terms of correction reads

−
∫
Ω×I

∆n+1σ : ε(u∗)dΩdt =

∫
Ω×I

ρ∆n+1γ · u∗dΩdt, ∀u∗ ∈ U0. (21)

Using Equation (2) and the search direction as defined by Equation (16), we
obtain∫

Ω×I

H− : ε(∆n+1u) : ε(u
∗)dΩdt+

∫
Ω×I

D : ε(∆n+1u̇) : ε(u
∗)dΩdt

+

∫
Ω×I

ρ∆n+1ü · u∗dΩdt

=

∫
Ω×I

[(
σδ

n − σ̂
δ
n+1/2

)
−H− :

(
εn − ε̂n+1/2

)]
︸ ︷︷ ︸

f̂n+1

: ε(u∗)dΩdt, ∀u∗ ∈ U0.

(22)

One may notice that terms in the right-hand side f̂
n+1

of that equation
are known quantities at this stage. The displacement field ∆n+1u is the only
unknown at this stage, which consists basically of solving a linear dynamics
problem.

3.4 Reduced-order model implementation

The PGD model-order reduction method can naturally be introduced in the
global stage of the LATIN method, which deals with linear equations over the
space-time domain. Doing so means that the displacement correction ∆u ≈∑n+1

j=1 ∆ju computed at the n+ 1-th global stage is sought after as a sum of
modes defined as products of space functions ui and temporal functions λi(t).
After having added m PGD pairs, the displacement reads

∆u(x, t) ≈
m∑
i=1

λi(t)ui(x). (23)
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Once m > 1 PGD modes have been added, a preliminary substep of the
global stage can be inserted between both the local stage and the addition of
a new PGD pair. The substep consists of updating the previously computed
temporal modes {λi}i∈J1,mK in order to achieve dynamic admissibility while
the spatial modes {ui}i∈J1,mK are considered fixed. If this updating step proves
to be sufficient, the next LATIN iteration can be performed; if it is insufficient,
a new PGD pair is added.

The reader can refer to [48] for an overview of the methods to solve a
linear problem using the PGD. Section 4 details the calculations arising from
the PGD paradigm for the application of the methodology in the frequency
domain.

4 Hybrid frequency-temporal reduced-order approach

The main equation (22) of the problem corresponds to a linear dynamics equa-
tion whose semi-discretised in space version reads

[M ]{Ü}+ [D]{U̇}+ [K]{U} = {F}. (24)

In addition to which, initial and boundary conditions need to be specified.
It consists of a finite element problem where [M ], [D] and [K] are the mass,
damping and stiffness matrices respectively. Thus, its computation can easily
be performed in the frequency domain, as traditionally done in the litera-
ture [5], in order to benefit from all corresponding computational advantages.
Indeed, frequency-based calculations, for instance, allow for easy parallelisa-
tion of the computations. Contrary to time steps, frequency steps are not
interdependent, and the computation for each frequency step may easily be
done simultaneously on different threads of a multi-threaded chip without
the need to use specific temporal domain decomposition techniques [49,50].
Moreover, it appears that much fewer frequency steps than time steps are
needed to describe the signals dealt with. For those two combined reasons, a
frequency-based method leads to cheaper computations. In addition, the use
of a frequency-based methodology may, in some cases, be required to deal
with some frequency dependency of the material behaviour, such as hysteric
damping [6] where the damping matrix [D] would depend on the frequency.
However, the description of the nonlinear behaviour of the material can only be
achieved in the temporal domain. Thus, the decoupling feature of the LATIN
method, introduced in Section 2, is employed to jointly use the temporal and
frequency domains. Note that the FFT algorithm is very efficient. Thus, nu-
merous transfers between temporal and frequency domains do not represent a
bottleneck. The time associated with alternating between the temporal domain
and the frequency domain using the FFT and iFFT algorithms is insignificant
compared to the numerical cost of a given computation, i.e. a few tenths or
hundredths of percent of the total computational time. Technicalities of LATIN
iterations and the specific Fourier and inverse Fourier transforms involved in
the method are schematised in Figure 4. First, the elastic problem is solved on
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the frequency domain. Then, after an inverse Fourier transform, the nonlin-
ear behaviour (manifold Γ ) is approximated on the temporal domain and the
dynamic admissibility equation (manifold Ad) is solved based on a frequency
strategy. This step is enhanced with the implementation of the PGD. Again
an inverse Fourier transform is performed before the successive iteration and
the algorithm goes on until reaching convergence.

Fig. 4: Scheme of the hybrid frequency-temporal strategy

4.1 Temporal calculations of the nonlinear behaviour

The constitutive behaviour presented in section 2.2 gives a history-dependent
description of the material properties evolution. Ensuring the validity of the
von Mises yield criterion given in equation (8) at a given instant, for instance,
requires the knowledge of the isotropic and kinematic hardening R and X at
that particular instant, which depend on the loading history up to the mo-
ment in question. Similarly, knowledge of the damage variable D, which also
depends on the loading history, is needed to compute the effective damage-
able elasto-plastic stress σδ

eff described in equation (5). Solving the behaviour
equations must therefore be done in the time domain. The LATIN local stage
consists precisely in solving the problem given by equation (19), which groups
the constitutive equations as already explained. For our reference problem,
equations (8), (11), (12) are solved using a backward Euler integration scheme
and a return mapping algorithm. It can be noted that the size of the problem
depends on the number of degrees of freedom. However, these equations can be
straightforwardly parallelised as they are independent for each Gauss point.
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4.2 Frequency calculations of the admissibility equation

The dynamics part of the problem lies in the global equations leading to the
solutions on the manifold Ad. Those linear dynamics equations are well-suited
to a frequency approach which allows for very efficient calculations. Therefore,
the global stage of the LATIN scheme will take advantage of that framework.

4.2.1 Elastic initialisation

The iterative scheme begins with initialising the estimation considering an
elastic behaviour. The goal is to solve the weak form of the dynamics problem,
which was previously defined in the temporal domain by equation (4). It is
now turned into the following frequency problem:

−
∫
Ω

ε(u∗) : K : ε(u∗
ω)dΩ − jω

∫
Ω

ε(u∗
ω) : D : ε(u∗

ω)dΩ +

∫
Ω

fd · u∗
ωdΩ

+

∫
∂Ω

Fd · u∗
ωdS = −ω2

∫
Ω

ρ uω · u∗
ωdΩ, ∀u∗ ∈ U0,∀ω ∈ R+, (25)

where the angular frequency is denoted ω and uω(x, ω) is the Fourier trans-
form of the displacement u(x, t), as follows

uω(x, ω) =

∫ +∞

−∞
u(x, t) exp−jωt dt. (26)

When solving such a problem numerically, only a finite number Nt of
time steps and therefore of angular frequency steps is considered. Let Φ =
{ωi}i=J1,NtK be the finite set of angular frequencies. Then for each ωi in Φ, one
needs to solve Equation (25), leading to Nt independent problems that can be
solved separately. Hence, computations can be sped up using parallelisation.
Moreover, if the right-hand-side of the equation happens to be zero for some
of these angular frequencies, the computations for these particular frequencies
can be skipped, leading to supplementary calculation gains.

4.2.2 Calculation of the displacement correction

Once the elastic initialisation has been performed, the global stage of the itera-
tive scheme consists of adjusting a displacement correction ∆u that is dynam-
ically admissible to zero as given by equation (22) such that the displacement
field solution of the problem reads u (x, t) = u0 (x, t)+∆u (x, t) with the cor-
rection being improved at each iteration such that it reads ∆u ≈

∑n+1
j=1 ∆ju

at the (n+ 1)-th global stage. Similarly to the elastic initialisation, those steps
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are written in the frequency domain. Equation (22) is turned into∫
Ω

H− : ε(∆n+1uω) : ε(uω
∗)dΩ + jω

∫
Ω

ε(∆n+1uω
∗) : D : ε(u∗

ω)dΩ

− ω2

∫
Ω

ρ∆n+1uω · uω
∗dΩ =

∫
Ω

f̂ω
n+1

: ε(uω
∗)dΩ ∀uω

∗ ∈ U0,∀ω ∈ R+,

(27)

which is solved as multiple decoupled spatial problems. Moreover, this step is
well-suited for using model-order reduction techniques such as the PGD, which
further helps lowering calculation cost by reducing drastically the number of
degrees of freedom.

A greedy algorithm is set up in order to find the increment of the displace-
ment field ∆uω under a PGD form

∆uω(x, ω) ≈
m∑
i=1

ui(x)λi
ω(ω), (28)

where m represents the number of PGD modes used to describe the solution.

Addition of a new PGD pair

When adding a new PGD pair at the LATIN iteration n+1, the displacement
correction corresponds to the estimation of the m+1 pair comprising a space
and a frequency function. One gets

∆n+1uω = um+1λm+1
ω .

Thus, considering the addition of a PGD pair, equation (27) leads to the two
coupled equations that define the new spatial and frequency modes {um+1, λm+1

ω }
∫
Ω
ε(um+1)Hλ

m+1 ε(u∗) +
∫
Ω
ε(um+1)Dλ

m+1 ε(u∗) +
∫
Ω
um+1Mλ

m+1u∗dΩ

=
∫
Ω

∫
I
λm+1f̂

n+1
dt : ε(u∗)dΩ, ∀u∗ ∈ U0(

am+1 + jωbm+1 − ω2cm+1
)
λm+1
ω = gm+1

ω ,∀ω ∈ R+

(29)
solved using a fixed-point algorithm initialised by a user-chosen temporal func-
tion, with, 

Hλ
m+1 =

∫
I

(
λm+1

)2 H−dt

Dλ
m+1 =

∫
I
λ̇m+1Dλm+1dt

Mλ
m+1 =

∫
I
ρλ̈m+1λm+1dt

am+1 =
∫
Ω
ε
(
um+1

)
: H− : ε

(
um+1

)
dΩ

bm+1 =
∫
Ω
ε
(
um+1

)
: D : ε

(
um+1

)
dΩ

cm+1 =
∫
Ω
ρum+1 · um+1dΩ

gm+1
ω =

∫
Ω
ε
(
um+1

)
: f̂

m+1

ω dΩ.

(30)
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Estimating the new frequency modes involves spatial integrals, whereas the
estimation of the new space mode is based on temporal integrals. Indeed, for
the sake of simplicity, usual temporal integral operators are employed here as
the considered damping does not depend on the frequency. Thus the new fre-
quency mode is transformed back to its temporal counterpart at each iteration,
which is straightforward using the inverse FFT algorithm. The operators Hλ,
Dλ and Mλ of the spatial problem in equation (29) are therefore similarly
obtained by injecting the PGD form of the displacement correction from equa-
tion (23) to equation (22) as it has been detailed for the frequency modes in
equations (27) and (28). One may notice that the contribution of the previous
PGD modes is taken into account in the right-hand-side of those equations
where the quantity f̂

n+1
links the quantities computed in the LATIN global

stage n and the following local stage n+ 1/2 as follows

f̂n+1 =
(
σδ

n − σ̂
δ
n+1/2

)
−H− :

(
εn − ε̂n+1/2

)
. (31)

Updating the frequency modes

Before adding a new PGD pair to the decomposition already including m pairs,
a simple update of the frequency functions λi

ω(ω) is performed considering the
associated spatial modes ui as fixed. Such a step is achieved by solving the
problem(

AUpdate + jωBUpdate − ω2CUpdate
)
Λω = FUpdate

ω ,∀ω ∈ R+, (32)

with, for any (k, l) ∈ J1,mK2,
AUpdate

kl =
∫
Ω
ε
(
uk
)
: H− : ε

(
ul
)
dΩ

BUpdate
kl =

∫
Ω
ε
(
uk
)
: D : ε

(
ul
)
dΩ

CUpdate
kl =

∫
Ω
ρuk · uldΩ

FUpdate
ω =

∫
Ω
ε
(
uk
)
: f̂

n+1

ω dΩ

(33)

and,
Λω =

[
λ1
ω, λ

2
ω, · · · , λm

ω

]T
. (34)

Starting by updating the frequency functions may allow skipping the ad-
dition of a new PGD pair if the updating step allows sufficient progress in
the iterative scheme. Then, the LATIN iteration is significantly less expensive
than adding a new pair. A new mode is only added if the updated functions
{λi, Update}i∈J1,mK are considered too similar compared to their counterpart
{λi}i∈J1,mK prior to the updating step, i.e.

max
i∈J1,mK

( ∫
I
|λi − λi, Update|dt

1/2
∫
I
|λi + λi, Update|dt

)
6 ξc (35)

with ξc a user-defined threshold.
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The proposed method relies heavily on multiple Fourier transforms. How-
ever, the FFT algorithm is known for not being robust for signals which do
not vanish at the end of the time window. Indeed, when the damping rate is
low or if the temporal observation window is short, one may face the tran-
sient regime where FFT can lead to temporal overlapping [51]. To avoid this
numerical artefact, artificial damping is included to the global equations.

4.2.3 Artificial damping in the frequency calculation strategy

Artificial damping can be added temporarily as a computational step to over-
come the overlapping issue. This method, which offers numerical robustness
for any scenario, is inspired by the Prony transform [52] which corresponds to
a damped Fourier transform.

Consider the case where a PGD pair is added, i.e. when solving Equation
(29). The frequency problem can be written as

λm+1
ω (ω) = Hm+1

ω (ω)gm+1
ω (ω) (36)

by introducing Hm+1 as the response function of the system and gm+1 as the
forcing function as follows{

gm+1(t) =
∫
Ω
f̂n+1(t,x)ε

(
um+1

)
dΩ,

Hm+1
ω (ω) =

(
am+1 + jωbm+1 − ω2cm+1

)−1
.

(37)

Artificial damping is introduced through a modified response function

H̃m+1(t) = e−adtHm+1(t) (38)

with ad ∈ R+∗, a user-chosen parameter that will further be discussed. The
damped response function can also be evaluated without an explicit temporal
formulation but directly from its frequency counterpart [41] as

H̃m+1
ω (ω) = Hm+1

ω (ω − jad) (39)

with j the imaginary unit.
Then, the temporal solution λm+1(t) of Equation (29) satisfying

λm+1(t) =

∫
R
Hm+1(t− τ)gm+1(τ)dτ (40)

also satisfies the following modified relationship

λm+1(t) = eadt

∫
R
H̃m+1(t− τ)g̃m+1(τ)dτ, (41)

with g̃m+1(τ) = e−adτgm+1(τ) the modified forcing function. Because H̃m+1

is inherently damped, the convolution product g̃m+1 ? H̃m+1 can be easily
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performed numerically in the frequency domain. Thus, the problem of inter-
est is indeed evaluating the modified Fourier response λ̃m+1

ω (ω) through the
following problem

λ̃m+1
ω (ω) = H̃m+1

ω (ω)g̃m+1
ω (ω), (42)

which is robust and accurate even in cases where the response function Hm+1

is poorly or even not damped.
Then the initial unknown λm+1(t) is retrieved as

λm+1(t) = eadtλ̃m+1(t). (43)

The artificial damping strategy can be summarised by Figure 5.

Fig. 5: Frequency modes calculation strategy based on artificial damping

Similar strategy is used for the elastic initialisation and for each LATIN
iteration, either updating frequency modes or adding a new pair. It allows
for the accurate calculation of a transient solution on an observation time
I = [0, T0] at the end of which the structure shall still be vibrating.

5 Numerical results

The hybrid LATIN-PGD presented herein is investigated for two structures.
All the numerical examples were carried out using ROMlab [53], an in-house
software written in Matlabr language. The meshes were obtained using the
software GMSH. The graphical post-processing was done with the software
Paraview. For both cases, the material parameters are defined in Table 1.

The damping of the structure is represented via a damping matrix [D].
Herein, a Rayleigh damping matrix expressed as a linear combination of the
mass and stiffness matrices [M ] and [K] is chosen such that it reads [D] =
αr[K]+βr[M ]. The parameters αr and βr are chosen so that the damping rate
defined from the projection of the dynamic admissibility on the eigenmodes
[54] as

ξ =
1

2

(
αrω0i +

βr

ω0i

)
, (44)
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Young modulus: E = 70GPa
Poisson ratio: ν = 0.3
Density: ρ = 7000 kg/m3

Yield stress: σy = 200MPa
Kinematic hardening modulus: C = 2.211× 104 MPa
Isotropic hardening ratio: h = 0MPa
Damage threshold energy: wD = 0Jm3/kg
Damage law exponent: sd = 2
Parameter for damage evolution: S = 0.6MPa
Critical damage: Dc = 0.5

Table 1: Material parameters

is equal to 5% for the first two eigenfrequencies f1 = 30Hz and f2 = 78Hz. An
example of the evolution of the damping rate ξ as a function of the frequency
is shown in Figure 6 where both f1 and f2 are circled out.
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Fig. 6: Evolution of the damping rate as a function of the frequency. A Rayleigh
damping matrix is used with a damping rate fixed at 5 % for the first two
eigenfrequencies f1 = 30Hz and f2 = 78Hz.

In the methodology, multiple user-defined thresholds have been introduced.
In the following results, the stopping criterion was chosen such that ηc =
2× 10−3. To improve convergence, a relaxation coefficient of µr = 0.8 was also
used, as inspired by [55]; the global stage is therefore modified so that, from
the solution s̊n+1 given at the end of the PGD process, the relaxed solution
at the end of the global stage reads µr s̊n+1 + (1− µr) sn. The criterion ξc
driving the update or the addition of a new mode is adaptive with the size of
the PGD basis. Initially, it equals 1; once 5 modes have been included in the
basis, it is fixed to 0.15. This evolution allows a quick expense of the basis at
the beginning of the LATIN steps.
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5.1 Two-dimensional beam

A fixed-end beam of length Lb = 9m and width Wb = 80 cm as illustrated
in Figure 7 is investigated. It is meshed with 9, 080 T3 elements of mean size
equal to 4 cm.

Its end section is submitted to an oscillatory load Ud.

Fig. 7: Two-dimensional fixed-end beam

5.1.1 Single-frequency load

First, a single-frequency load plotted in Figure 8 and defined by

Ud(t) = Umax
d exp

−

(
10

(t− T0

2 )

T0

)2
 sin (2πf t) (45)

is considered, where the final time is T0 = 0.3125 s. Nt = 1, 024 time steps
with uniform δt ≈ 3× 10−4 s were employed, a number of time steps which is
a power of two allows to benefit at best from the FFT numerical efficiency. In
the below application, the values of the loading parameters are f = 40Hz and
Umax
d = 100mm.

The damage field in the beam at different instants is given in Figure 9.
From the initial time step, which corresponds to an undamaged structure, it
can be seen that the damage field increases first close to the solicited extremity
of the beam where the bending moment is maximum. In response to that load-
ing scenario, the beam tends to oscillate along a first-mode type of movement
therefore damage also grows close to the middle of the beam , which corre-
sponds to the location of an anti-node, where the displacement is therefore
important. The temporal evolution of damage for six Gauss points located on
the left side, the middle part and the right side of the beam (see Figure 7)
can be seen in Figure 10. It can be highlighted that up to around 0.15 s the
points on the right side (near to the application points of the load) were the
most damaged, but afterwards the critical points are the points on the left
side, near to the embedding zone. The delay is due to the time required by
stress waves to reach that zone.
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Fig. 8: Temporal load 1 - mono-frequency case

Fig. 9: Evolution of the damage field for the beam solicited with load 1 -
f = 40Hz and Umax

d = 100mm

Only nineteen iterations were required for the LATIN hybrid algorithm
to reach the convergence criterion ηc = 2× 10−3 (Figure 11). Note that the
error does not decrease monotonously. This is a traditional result when using
a Galerkin formulation for the PGD implementation as it is done here. The in-
terested reader can refer to [48] for further information on how the PGD imple-
mentation can impact the error decay. The resulting reduced model comprises
only six modes. Thus, most iterations were very cheap as they consisted in
updating the frequency modes and, for only less than a third of the iterations,
spatial computations were performed.

The six obtained spatial modes are shown in Figure 12. The first two modes
lead to global corrections whereas the following modes, shown for instance in
Figures 12g and 12k, highlight patterns at each end of the beam that follow
patterns depicted by the damage field (Figure 9). The PGD modes therefore
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Fig. 10: Damage evolution at different points of the beam (Figure 7) solicited
with load 1 - f = 40Hz at Umax

d = 100mm
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Fig. 11: Convergence of the error indicator and evolution of the number of PGD
modes with LATIN iteration for the beam solicited with load 1 - f = 40Hz
and Umax

d = 100mm

target corrections specific to the nonlinearities appearing in the structure. To
highlight the fact that the strategy allows to build modes that are specific
to the problem, the spatial PGD modes can be compared to the 6 (energeti-
cally) predominant classical linear modes; they are smoother and don’t exhibit
localised patterns.

Similarities between the spatial PGD modes and the natural eigenvectors
of the beam can be quantified through their energetic scalar product. The
obtained values are represented within the Modal Assurance Criterion (MAC)
matrix [56] shown in Figure 13. The first PGD mode matches closely the first
eigenvector. The second PGD mode, as well as the third and fifth PGD modes
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(a) PGD mode n◦1 (b) Eigenmode n◦1

(c) PGD mode n◦2 (d) Eigenmode n◦2

(e) PGD mode n◦3 (f) Eigenmode n◦3

(g) PGD mode n◦4 (h) Eigenmode n◦4

(i) PGD mode n◦5 (j) Eigenmode n◦5

(k) PGD mode n◦6 (l) Eigenmode n◦6

Fig. 12: Magnitude of PGD modes for the beam solicited with load 1 - f =
40Hz and Umax

d = 100mm compared to energetically predominant eigenmodes

have similarities with the second eigenmode while the fourth and sixth PGD
modes don’t share significantly similar information with the eigenmodes, as
they rather focus on local non-linear behaviour.
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Fig. 13: Modal Assurance Criterion Matrix of the PGD modes and the eigen-
modes for the beam solicited with load 1 - f = 40Hz and Umax

d = 100mm

It is also interesting to compare LATIN computations associated with an
adaptive PGD basis or with a fixed basis comprising the first 100 eigenvectors.
To do so, a relative error Ξ is evaluated for any iteration n of the LATIN by
comparing a reference solution Uoverkill being an overly converged LATIN-
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PGD solution considering ηc = 2× 10−4 with Un the current solution at the
n − th iteration either with a PGD approach or with a projection onto the
eigenvectors basis, as follows

Ξ =
(Uoverkill − Un)

T
[K] (Uoverkill − Un)

UT
overkill[K]Uoverkill

. (46)

The evolution of these errors with LATIN iteration is shown in Figure 14.
During the first iteration, the error is mostly attributable to the two-alternated
search direction scheme that is far from the converged solution therefore the
error given by both computations based on the eigenvector basis and the one
using the PGD is the same. But, the PGD basis provides quickly a better
estimation than the fixed basis. After ten iterations, the LATIN computation
based on the eigenbasis leads to a stagnating error. It seems that the method
does not appear to be able to decrease below that plateau. However, using the
PGD basis, the error decreases significantly below that plateau by generating
new optimised modes.
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Fig. 14: Evolution of the error with LATIN iteration using an adaptive PGD
basis or a fixed basis comprising the first 100 eigenmodes for the beam solicited
with load 1 - f = 40Hz and Umax

d = 100mm

The temporal functions associated with the spatial PGD modes are shown
in Figure 15; their frequency counterparts are given in Figure 16. It can be
seen in both figures that the first mode significantly outperforms the following
modes. On the temporal domain (Figure 15), the temporal information of the
damage evolution (Figure 10) can be clearly seen on the PGD modes. The non-
linear behaviour is significant only after 0.1 s and stagnation of some modes
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such as mode 4 can be observed after 0.2 s. It can be highlighted that this
stagnation is not for a zero-value, conveying a permanent perturbation due
to the non-linear behaviour. Note that artificial damping is therefore needed.
Indeed, even in cases where the steady-state is reached within the considered
temporal window, special care must be paid to avoid Gibbs phenomenon due
to the existence of possible residual displacements associated with nonlinear
phenomena. The frequency modes (Figure 10) show that even a simple mono-
frequency load can lead to a complex spectrum of the non-linear response. The
first mode exhibits a main contribution around 30Hz, which corresponds to
the first eigenfrequency of the structure (second and third eigenfrequencies are
78Hz and 142Hz), but the following modes show less and less this predominant
frequency band and the last modes are distributed over the frequency domain
with a tortuous spectrum as shown in Figure 15.
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Fig. 15: Six estimated temporal PGD modes for the beam solicited with load
1 - f = 40Hz and Umax

d = 100mm

0 0.1 0.2 0.3

t (s)

-3000

-2000

-1000

0

1000

2000

3000

i(t
)

Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

Mode 6

0 0.1 0.2 0.3

t (s)

-1000

-500

0

500

1000

i(t
)

Mode 2

Mode 3

Mode 4

Mode 5

Mode 6

Without mode 1

0 50 100 150

f (Hz)

10
0

10
5

10
10

P
S

D

Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

Mode 6

0 50 100 150

f (Hz)

10
0

10
5

P
S

D

Without mode 1

Fig. 16: Power spectral densities (PSD) of the six estimated frequential PGD
modes for the beam solicited with load 1 - f = 40Hz and Umax

d = 100mm



A hybrid frequency-temporal reduced-order method for nonlinear dynamics 25

Note that the study of damage evolution is mainly interesting during the
transient regime, the study has therefore been narrowed down to such a win-
dow (see Figure 10). The importance of the artificial damping in that context is
exposed in Figure 17 where the displacement along the y-axis at point PI with
xPI

= Lb/2 and yPI
= Wb/2 given by the elastic initialisation is shown. Con-

sidering a temporal computation given by a classic Newmark scheme (Figure
17(a)), the displacement steady-state is not reached at the end of the consid-
ered temporal window. A frequency computation without artificial damping
(Figure 17(b)) leads to unwanted temporal overlap rendering the solution
acausal. Adding artificial damping (Figure 17(b)) provides proficient results,
which is illustrated by the comparisons exposed in Figure 17(d).
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(b) U(t) frequency computation
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Fig. 17: Numerical effect of the artificial damping: comparison of the temporal,
non-dampened (showing unwanted artefacts) and dampened frequency com-
putations for the elastic initialisation at point PI of the beam solicited with
load 1 - mono-frequency Gaussian load with f = 40Hz and Umax

d = 100mm

In details, the artificial damping relies on the damping rate ad (see equation
(38)). That parameter value is derived from the choice of a value for the
damping coefficient d at the end of the temporal loading with ad = log(d)/T0.
The numerical influence of d has been investigated for the elastic initialisation
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for the same point of interest PI in terms of an overlapping error defined
by comparing the vertical displacement components of a temporal reference
solution Uref with a dampened frequency estimation Ufreq, as follows

ζ = max
t∈I

|Ufreq − Uref |
maxt∈I Uref

(47)
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Fig. 18: Evolution of the overlapping error ζ for dampened frequency compu-
tation with regard to the damping coefficient d for the beam solicited with
load 1 - mono-frequency Gaussian load with f = 40Hz and Umax

d = 100mm

The evolution of the overlapping error with the value of the damping co-
efficient (Figure 18) shows a strong and maximum error with the value d = 1,
which corresponds with ad = 0, i.e. without considering artificial damping.
The addition of numerical damping only improves the solution by compensat-
ing the artefact introduced by the temporal overlapping. The decrease of error
is strong by increasing the value from 1 to 100, then, it tends to stagnate. The
very weak dependence of the damping coefficient above d = 100 proves the
robustness of the method with respect to high damping values. A minimum
appears for d = 1× 103, which has then been used for all numerical results
shown in this article.

5.1.2 Bi-frequency loading

A second loading case (Figure 19), which is the sum of two sinus functions
with different frequencies, as follows

Ud(t) = Umax
d exp

−

(
10

(t− T0

2 )

T0

)2
 (sin (2πfa t) + sin (2πfb t)) . (48)

is considered such that the robustness and behaviour of the method for various
frequency spectra of the load can be studied. The final time is T0 = 0.3125 s
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Fig. 19: Temporal load 2 - bi-frequency Gaussian case

and Nt = 1024 time steps were employed. The values of the loading parameters
are fa = 40Hz, fb = 80Hz and Umax

d = 30mm.
Similar convergence behaviour as for the mono-frequency load has been

observed. It is interesting to look at the new spectrum of frequency modes in
Figure 20. Comparing with the mono-frequency case, the contribution of the
different modes are more distributed over the frequency domain, particularly
the first mode, which is composed of a large bump. It is remained that the
two first eigenfrequencies are f1 = 32Hz and f2 = 78Hz. Following modes
tend to correct the response more locally over the frequency space. Besides,
the different modes seem to equally contribute to the solution, whereas the
first mode was far more prominent than the others for the previous loading
scenario.
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Fig. 20: Power Spectral Density of the nine estimated PGD modes for the
beam solicited with load 2 - bi-frequency load with fa = 40Hz, fb = 80Hz at
Umax
d = 30mm
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5.1.3 Complex loading

In order to evaluate the versatility of the proposed method, a modified earth-
quake load shown in Figure 21 has been considered. This loading lies over
I = [0 s, 3 s] and it has been discretised uniformly with 4400 time steps (δt ≈
7× 10−4 s).
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Fig. 21: Temporal load 3 - a complex load

The load frequency fluctuates, it is high in the first second of the signal,
whereas it is relatively slow in the following two seconds. It is interesting to see
that the corrections given by the temporal modes shown in Figure 22 grasp
that information, as they give high-amplitude correction in the first second
of the simulation. The rest of the temporal domain shows rather stagnating
correction as the nonlinearities tend to stop evolving.
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Fig. 22: Temporal PGD modes for the beam solicited with load 3 - a complex
load

13 PGD modes and 35 LATIN iterations are needed to reach the stopping
criterion ηc = 2× 10−3. Comparing the PGD basis with the eigenbasis of 100
vectors in Figure 23, a similar behaviour as for the mono-frequency load 1 is
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Fig. 23: Evolution of the error with LATIN iteration using an adaptive PGD
basis or a fixed basis comprising the first 100 eigenmodes for the beam solicited
with load 3 - a complex load

observed. After eight iterations, the accuracy of the LATIN method based on
the eigenbasis stagnates to a plateau. The nonlinear behaviour is ultimately
much better described with a small number of PGD modes (5 to 13 modes)
computed on the fly than with 100 eigenvectors.

The MAC matrix (Figure 24) between the PGD modes and the eigenmodes
confirms the difference between the PGD basis and the eigenbasis. Except from
the first and fifth PGD modes which are very similar to the first and third
eigenmodes, respectively, most PGD modes largely differ from the first 13
eigenvectors.
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Fig. 24: Modal Assurance Criterion (MAC) matrix comparing the basis of PGD
modes with classical LNMs for the beam solicited with load 3 - a complex load
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5.2 Three-dimensional pipe

A three-dimensional L-shaped pipe, as schematised in Figure 25, has also been
studied. The dimensions of the structure are given in Table 2. This structure
has been meshed with 119, 682 second-order tetrahedral elements.

Middle pipe height: H1 = 3m
Top pipe height: H2 = 0.5m
Pipe mid-length: L1 = 1.86m
Pipe top length: L2 = 2m
Pipe external diameter: De = 0.5m
Pipe internal diameter: Di = 0.48m
Pipe bending radius: Rc = 0.25m

Table 2: Geometrical parameters of the pipe

Fig. 25: Three-dimensional structure with boundary conditions

The pipe is submitted to a moving-support type of loading (Figure 25). A
three-dimensional load whose components are plotted in Figure 26 is imposed
to the bottom section through the boundary conditions of the pipe, as shown
in Figure 25. More compliant conditions are applied to the top and middle
sections where displacement is only imposed in the z-direction and in the
x-direction respectively. This loading lies over I = [0 s, 9 s] and it has been
discretised uniformly with 4, 400 time steps (δt ≈ 2× 10−3 s).

Convergence behaviour is given in Figure 27. It is interesting to note that,
in that case too, only a few PGD modes, exactly 13 modes, are sufficient to
represent accurately the solution. These modes are evaluated in 35 LATIN it-
erations. Therefore, more than half of the iterations simply consist of updating
the frequency modes without adding new spatial modes.
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Fig. 26: Three-dimensional complex load applied to the pipe’s boundary con-
ditions
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Fig. 27: Evolution of the error indicator and the number of PGD modes for
the three-dimensional pipe structure solicited with a complex load

Finally, the quantity of interest, namely the damage field, can be extracted
as shown in Figure 28 and 29. It appears on the three-dimensional fields shown
in Figure 28 that damage mostly grows at the T-junction of the pipe where a
stress concentration occurs. We can observe in Figure 29 that damage grows
between 1.2 s and 2 s which corresponds to the time of occurrence of the dom-
inant peak in the load. After t = 2 s the nonlinearities stop evolving because
the structure is only stressed such that the stored energy remains below the
damage threshold. Figure 29 also shows the final damage field in the pipe on
the deformed structured at time t = 2 s with a magnification factor of 10.
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Fig. 28: Evolution of the damage field for the pipe solicited with a complex
loading

Fig. 29: Damage field in the three-dimensional pipe structure solicited with a
complex load at time t = 2 s and damage evolution at the T-junction between
the tube and the middle branch over time

6 Conclusion

An original hybrid LATIN-PGD framework has been proposed for damageable
materials in dynamics. The computations of the dynamics aspect are handled
in the frequency domain while still solving for the nonlinear behaviour in the
temporal domain. Predicting the damage evolution of a damage plastic struc-
ture under dynamic loading is possible for various load conditions. This work
shows a successful implementation of a hybrid time-frequency approach for
continuous damage mechanics. The FFT algorithm is used even with residual
displacements due to plasticity by introducing artificial damping in order to



A hybrid frequency-temporal reduced-order method for nonlinear dynamics 33

avoid Gibbs phenomena. The results also highlighted the great reducibility of
low-frequency dynamics problems with a plasticity-driven damage behaviour.
Indeed, few PGD modes are needed to represent the solution of the different
problems tackled in this paper. Fewer modes lead to fewer spatial problems to
be solved ultimately leading to a reduced numerical cost. The method appears
versatile with reduced computational cost due to the adaptive PGD basis, and
it offers a rich information with the prediction of a large set of internal vari-
ables over the full time-space domain. As stated in introduction, a perspective
to this work is to use this solver in a multi-query framework for which gener-
ating few PGD modes is an asset for computing quasi-identic solutions where
PGD basis can be reused.
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