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): 2321-2330, 2016) in their study of pulse propagation within blood vessels and by Colombaro et al. (Meccanica 52(4-5):825-832, 2017) in their work on the Bessel models of linear viscoelasticity.

Introduction

Porous media are well-known for their sound absorption properties and can be found in soundproofing systems of recording studios as well as in the walls of aircraft turbojets, for example. Modeling their physical behavior has been the subject of many papers based either on Biot's theory of poroelasticity or on the Crandall model of acoustic impedance for cylindrical tubes. The latter was notably used by Maa [START_REF] Maa | Potential of microperforated panel absorber[END_REF] for the study of micro-perforated panel (MPP) absorbers, devices that became popular for their robustness in harsh environments such as aircraft engine nacelles.

The expression of the Crandall model of impedance contains a ratio of (transcendental) Bessel functions. Recently, MATLAB codes have been developed to approximate Bessel functions with complex arguments. However, the historical difficulty in accurately evaluating them near zeros [START_REF] Hart | Computer approximations[END_REF] has motivated the acoustic community to make use of polynomial approximations of the model at low and high frequencies instead. In an intermediate range of frequencies, polynomial ad hoc functions whose limiting values respect these approximations are typically used. Alternative expressions have been derived based on continued fraction approximations [START_REF] Bilbao | Passive models of viscothermal wave propagation in acoustic tubes[END_REF][START_REF] Thompson | Analog model for thermoviscous propagation in a cylindrical tube[END_REF]. Such an approach proves useful for time-domain numerical simulations but might present either slow convergence to the exact form (i.e., high approximating order is required if wideband accuracy is desired) [START_REF] Thompson | Analog model for thermoviscous propagation in a cylindrical tube[END_REF] or lack of flexibility: indeed, a reoptimization has to be performed at each change of temperature, tube radius, frequency range of interest or cost function [START_REF] Bilbao | Passive models of viscothermal wave propagation in acoustic tubes[END_REF].

In this paper, an exact representation of the impedance of an acoustic tube as a series of high-pass filters in the frequency domain is proposed. The method applied herein relies on the computation of a timedomain kernel h(t) from its Laplace transform H(s) by means of the Bromwich integral:

where c is any real abscissa such that all singularities of H lie in the left-half plane ℂ - 0 ∶= {s ∈ ℂ, ℜe(s) < 0} . It was also used by Giusti and Mainardi [START_REF] Giusti | A dynamic viscoelastic analogy for fluid-filled elastic tubes[END_REF] in their study on the effects of blood viscosity on the propagation of a pulse within a vessel. They showed that the time-domain counterpart of a so-called relaxation memory function could be represented as a Dirichlet series depending only on the zeros of the Bessel function of the first kind of order 0. This technique was also applied by Colombaro et al. [START_REF] Colombaro | A class of linear viscoelastic models based on Bessel functions[END_REF] in their study of the Bessel models of linear viscoelasticity. More mathematical discussions around it can be found in other works by these authors [START_REF] Colombaro | Bessel models of linear viscoelasticity[END_REF][START_REF] Giusti | On infinite series concerning zeros of Bessel functions of the first kind[END_REF].

In the scope of the acoustics of MPPs, such an alternative representation is of great numerical interest, since the evaluation of the ratio of Bessel functions is no longer necessary and suitable approximations of the impedance on a frequency range of interest can be easily found by series truncation.

The paper is structured as follows: Sect. 2 is dedicated to briefly recall the assumptions behind the Crandall model and the derivation of the original impedance

h(t) = 1 2j lim R→∞ ∫ c+jR c-jR
e st H(s) ds , expression in the Laplace domain; Sect. 3 shows how to achieve a series representation for it; in Sect. 4 the authors compare the original expression and its (truncated) series representation over a wide frequency range and also perform a parametric analysis on the latter. In the Appendix, a plot of the principal value of the argument of the non-dimensional model locating its zeros and poles is provided.

Physical modeling

In this section, the original model is written in the Laplace domain, along with a recall on its assumptions.

A useful result

Irving B. Crandall [START_REF] Crandall | Theory of vibrating systems and sound[END_REF] derived an expression for the transfer impedance of a cylindrical perforation in which an acoustic wave is travelling and undergoes viscous effects at the wall (see Fig. 1). It can be stated as follows, ∀s ∈ ℂ�P Cr :

where (s) ≡ √ s 0 ∕ is a complex-valued wavenum- ber related to viscous diffusion; z 0 is the air character- istic impedance, 0 the air density, its dynamic viscosity, is the distance between the two sections used for defining the transfer impedance (any effect due to the finite length of the perforation is neglected), d its diameter, and I 1 and I 0 are the modified Bessel func- tions of the first kind of order 1 and 0, respectively. In Eq. ( 1), P Cr corresponds to the set of poles of ẐCr .

(1)

ẐCr (s) = z 0 2 (s) 1 - 2 (s) d∕2 I 1 ( (s) d∕2) I 0 ( (s) d∕2) -1
, Fig. 1 A cylindrical hole with cross-section S. The unit vector points outward the fluid medium (and inside the hole)

Derivation of the result

This section is dedicated to show how Eq. ( 1) arises from the solution of the linearized momentum equation for an axisymmetric Stokes flow. In a Stokes regime, fluid flow is incompressible, such that the density 0 is assumed to be a constant and the mass continuity Navier-Stokes equation reads where U is the flow velocity field. Moreover, in a Stokes flow, the inertial forces are small when compared to the viscous forces. By eliminating the inertial terms from the momentum Navier-Stokes equation, one obtains where P is the pressure field. Under linear acoustics, one can express velocity and pressure fields respectively as U ≡ + u and P ≡ P 0 + p , where ||u|| ≪ || || and p ≪ P 0 are small perturbations to the uniform velocity and to the uniform pressure P 0 of a steady medium. This leads to the following linearized mass and momentum equations:

As stated in Sect. 2.1, the Crandall model of impedance concerns cylindrical perforations, such that the use of a cylindrical coordinate system is preferred. Besides, an axisymmetric flow parallel to the cylinder walls is considered, such that the acoustical velocity field is independent from the azymuthal direction and can be expressed as u ∶= u(r, z, t)e z , where r is the radial distance from the center of the cylindrical tube, z is the height and t is the time coordinate. Additionally, the acoustical pressure field is assumed to be uniform over the cylinder cross-section and must vary linearly along its length. Under these conditions, Eqs. ( 4)-( 5) read ( 2)

⋅ U = 0 , (3) 0 t U = -P + ∇ 2 U , (4) ⋅ u = 0 , (5) 0 t u = -p + ∇ 2 u . (6) z u = 0 ,
where (p 2p 1 ) is the (time-dependent) pressure dif- ference between both sides of the tube. It is worth noting that the viscosity is normally independent of this pressure difference. Liquids under extreme pressure can experience an increase in viscosity, but such a situation is outside the scope of the model studied here. Finally, a no-slip boundary condition at the cylinder walls is considered.

By applying the Laplace transform, the solution may be expressed as, for r ∈ [0, d∕2], z ∈ [0, ]: from which Eq. ( 1) can be deduced, since where ⟨⋅⟩ S is the cross-section surface average operator.

Indeed, since where identity ( * ) stems from relations §9.6.26 and §9.6.27 in Abramowitz and Stegun [START_REF] Abramowitz | Handbook of mathematical functions: with formulas, graphs, and mathematical tables[END_REF], one obtains from which Eq. ( 1) proves straightforward. By making use of the recurrence relation (see §9.6.26 in Abramowitz and Stegun [START_REF] Abramowitz | Handbook of mathematical functions: with formulas, graphs, and mathematical tables[END_REF]) [START_REF] Giusti | A dynamic viscoelastic analogy for fluid-filled elastic tubes[END_REF] 

0 t u = -(p 2 -p 1 )∕ + ∇ 2 u , (8) û(r, z, s) = - 1 2 (s) 1 - I 0 ( (s) r) I 0 ( (s) d∕2) ( p2 -p1 ) , (9) ẐCr ∶= - 1 z 0 ( p2 -p1 ) ∕ ⟨û⟩ S , (10) 
⟨I 0 ( (s) r)⟩ S ∶= 1 S � S I 0 ( (s) r) dΩ , = 1 d 2 ∕4 � d∕2 0 I 0 ( (s) r) 2 r dr , = 1 2 (s) d 2 ∕8 � (s) d∕2 0 s � I 0 (s � ) ds � , ⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ ( * ) ≡[s � I 1 (s � )] (s) d∕2 0 (11) ⟨û⟩ S = - 1 2 (s) � 1 - 2 (s) d∕2 I 1 ( (s) d∕2) I 0 ( (s) d∕2) � , ( 12 
) I n-1 (s) -I n+1 (s) = 2n s I n (s) ∀s ∈ ℂ, ∀n ≥ 1,
it is possible to rewrite Eq. ( 1) more simply as

Series representation

In this section, the derivation of an alternative expression of the Crandall impedance as a series of high-pass filters depending only on the zeros of the Bessel function J 2 is presented. In Sect. 3.1, for the sake of sim- plicity, one derives the series representation for a nondimensional formulation of the resulting expression. Finally, Sect. 3.2 presents the series representation of the Crandall impedance in both Laplace and time domains after re-injection of the physical constants into the non-dimensional formulation.

Derivation for a non-dimensional model

For the sake of simplicity, the derivation is first performed on a model which replaces all physical constants in ẐCr by unity:

The following statements hold:

Statement 1.
All the poles of Ẑnon-dim are negative reals (i.e., P non-dim ⊂ ℝ -). Let ∈ P non-dim . Rela- tion §9.6.3 by Abramowitz and Stegun [START_REF] Abramowitz | Handbook of mathematical functions: with formulas, graphs, and mathematical tables[END_REF] ensures that 0 = I 2 ( √ ) = -J 2 (j √ ) . Let J ∶= {(j 2,k ) k∈ℕ } be the set of increasing positive zeros of J 2 (note that {(±j 2,k ) k∈ℕ } ∪ {0} is the set of all zeros of J 2 ). By choosing the principal branch of the square root function (i.e., ∀s ∈ ℂ, Arg √ s ∈ ] -∕2, ∕2] ), one concludes that Arg j √ ∈ ]0, ] and so j √ ∈ J . Therefore, Statement 2. For large modulus, the following asymptotic expansion holds:

Ẑnon-dim (s) ∼ s + 2 √ s + o(1)
, hence lim s→∞ Ẑnon-dim (s) = +∞ . From the asymp- totic expansion for large arguments of I n presented in (13)

ẐCr (s) = z 0 2 (s) I 0 ( (s) d∕2) I 2 ( (s) d∕2) ∀s ∈ ℂ�P Cr . ( 14 
) Ẑnon-dim (s) ∶= s I 0 ( √ s) I 2 ( √ s) (s ∈ ℂ�P non-dim ). ( 15 
) P non-dim = {(-j 2 2,k ) k∈ℕ } ⊂ ℝ -. §9.7.
1 in Abramowitz and Stegun [START_REF] Abramowitz | Handbook of mathematical functions: with formulas, graphs, and mathematical tables[END_REF], it is possible to conclude that

In complement to Statement 1., it is worth noting that Ẑnon-dim is a single-valued function (and so it does not present any branch cut), in spite of its dependence on the square root function. This can be seen from the ascending series representations of I 0 ( √ s) and I 2 ( √ s) . Indeed, ( 16)

non-dim ∼ s 1 + 1 8 √ s + o 1 √ s 1 -15 8 √ s + o 1 √ s , ∼ s 1 + 1 8 √ s + o 1 √ s 1 + 15 8 √ s + o 1 √ s , ∼ s 1 + 2 √ s + o 1 s , ∼ s + 2 √ s + o(1) s→∞ ----→∞ .
Fig. 2 Closed integration path typically used for the Laplaceinversion of meromorphic functions with no branch cut. The integral over Γ R vanishes when R → ∞ in case Jordan's lemma applies (see §1.4 in Duffy [START_REF] Duffy | Transform methods for solving partial differential equations[END_REF]). The singularities of the function are highlighted by crosses following relation §9.6.10 in Abramowitz and Stegun [START_REF] Abramowitz | Handbook of mathematical functions: with formulas, graphs, and mathematical tables[END_REF]. On the one hand, Statement 1. ensures that Ẑnon-dim can be Laplace-inverted. On the other hand, Statement 2. makes it impossible to apply Jordan's lemma on the Bromwich integral (see Fig. 2). One is led rather to invert Ẑmod (s) ∶= Ẑnon-dim (s)

s -1 ≡ I 0 ( √ s) I 2 ( √ s) -1 . Since Ẑmod (s) ∼ 1∕ √ s as s → ∞
, this function is eligible to the application of Jordan's lemma.

The set of poles of Ẑmod is P non-dim ∪ {0}.

For t > 0 , the computation of the Bromwich inte- gral by Cauchy's residue theorem then leads to as the associated time-domain kernel.

Alternatively, in the Laplace-domain:

for s ∈ ℂ�P non-dim .

The original expression [START_REF] Monteghetti | Design of broadband time-domain impedance boundary conditions using the oscillatory-diffusive representation of acoustical models[END_REF] involves the square root function s ↦ √ s , which usually gives rise to a branch cut on ℝ -. But, thanks to (19), the singu- larities of Ẑnon-dim are reduced to a countable set of poles localized in ℝ -.

Back to the original model

By introducing the physical constants c 1 ∶=

𝜌 0 z 0 > 0 and c 2 ∶= √ 𝜌 0 𝜂 d 2 > 0 , one shows that for s ∈ ℂ�P Cr , with P Cr = {(-j 2 2,k ∕c 2 2 ) k∈ℕ } ⊂ ℝ -, ẐCr admits the representation (17) Ẑnon-dim (s) ∶= s I 0 ( √ s) I 2 ( √ s) = 2 ∑ ∞ k=0 (s∕4) k (k!) 2 ∑ ∞ k=0 (s∕4) k k!(k+1)! , (18) 
z mod (t) = Res( Ẑmod (s) e st ;s 0 = 0)

+ ∞ ∑ k=1 Res( Ẑmod (s) e st ;s k = -j 2 2,k ) , = 8 + 4 ∞ ∑ k=1 e -j 2 2,k t , (19) Ẑnon-dim (s) = s + 8 + 4 ∞ ∑ k=1 s s + j 2 2,k ,
In the time domain, with input u, one has:

where the causal impulse response reads:

Numerical application

Series truncation for the numerical use of representation ( 20) is investigated: first, in Sect. 4.1 the effect of truncation is analyzed, and second in Sect. 4.2, a parametric study is provided when the model parameters vary in a physically meaningful range of interest.

Comparison between the series representation and its approximation

By taking a finite number of zeros of the Bessel function J 2 and with the parameter values indicated in Table 1, Bode diagrams of ẐCr and of its approxi- mated representation through series truncation are illustrated in Fig. 3a. Besides, the real and imaginary parts of ẐCr (j ) and of its approximated form are plotted in Fig. 3b. Finally, Fig. 3c shows a plot of the absorption coefficient taken as 1 -| (j )| 2 , with (j ) ∶= ẐCr (j )-1 ẐCr (j )+1

. The curves related to the exact representation ẐCr are obtained from Eq. (20) using MATLAB with its full numerical precision. On the one hand, at low frequencies ( f < 100 Hz), it is possible to see that the approximated form (20)

ẐCr (s) = c 1 c 2 2 Ẑnon-dim (c 2 2 s) = c 1 s + 8 c 1 c 2 2 + 4 c 1 c 2 2 ∞ ∑ k=1 s s + j 2 2,k ∕c 2 2 . ( 21 
) (z Cr ⋆ u)(t) = c 1 u � (t) + 8 c 1 c 2 2 u(t) + 4 c 1 c 2 2 ∫ t 0 h(t -𝜏) u � (𝜏) d𝜏, (22) h(t) ∶= ∞ ∑ k=1 exp - j 2 2,k c 2 2 t , for t > 0 .
approaches the exact one even when any series term is considered, which is expected since the series is a sum of high-pass filters. On the other hand, at high frequencies ( f > 100 Hz), discrepancies are observed for a small number of filters ( k = {0, 1} ), specially in the plots of the real part (Fig. 3b) and of the absorption coefficient (Fig. 3c). It is however worth noting that only k = 10 filters already provide a satisfactory approximation, which enforces the low-numericalcost aspect of such a method. Indeed, this approach does not require any optimization procedure as compared to other works [START_REF] Bilbao | Passive models of viscothermal wave propagation in acoustic tubes[END_REF][START_REF] Hélie | Representations with poles and cuts for the time-domain simulation of fractional systems and irrational transfer functions[END_REF][START_REF] Monteghetti | Design of broadband time-domain impedance boundary conditions using the oscillatory-diffusive representation of acoustical models[END_REF].

Asymptotic behaviors for the Crandall impedance can also be extracted from the representation (20): at very low frequencies ( f ≪ 10 Hz), ẐCr behaves like

s ↦ 8c 1 ∕c 2 2 , whereas s ↦ c 1 s + (2c 1 ∕c 2 ) √ s + 8c 1 ∕c 2 2
approximates it at frequencies beyond 10 4 Hz. Nev- ertheless, interest on its asymptotic behavior at very high frequencies is likely to be diminished by the fact that the incompressibility condition underlying the Crandall model is violated at such a wide range of frequencies.

The Stokes number St ∶= �c 2 √ s� = c 2 √ (a nondimensional quantity proportional to the ratio of the tube diameter to the acoustic boundary layer thickness) varies from 0.305 to 9.65 in the frequency range considered for the numerical experiments ( f ∈ [10 1 , 10 4 ] Hz -3 decades). For Stokes num- bers above value St crit = 10 , viscothermal losses could be neglected and the flow would be considered as adiabatic, a situation out of the scope of the model's assumptions.

Parametric study

Finally, a parametric analysis on the truncated series representation of ẐCr for varying values of perforation length ( ), diameter (d) and temperature has been performed. More precisely, by taking the parameter values from Table 1 as reference, Bode diagrams, real/imaginary part plots and absorption coefficient It was noticed that the model is very robust to changes in the perforation length . This is expected as the impedance ẐCr varies linearly with this param- eter. Varying the temperature in the reported range also has small impact in the plots. A more complex dependence is observed for d, which motivates Fig. 4, showing the relative errors on the Bode plots of the approximated form with respect to the exact one for different numbers of series terms ( k = {1, 5, 9}).

For a given value of k, the observed trend in the magnitude plots can be explained as follows: the Table 1 Parameter values for numerical simulations comparing expressions (1) and (20) for the Crandall acoustic impedance of a cylindrical tube filled with air; 0 , and z 0 are physical constants for air at 20 larger the diameter d, the shorter the stopband of the model's transfer function (see Fig. 5), and since the truncated series better approximates the exact form in the stopband (low frequencies) than in the passband (high frequencies), the error on magnitude must overall increase with the perforation diameter.

For the phase plots, however, the same trend is no longer observed, to which clear explanation proves difficult to find. Additionally, as k increases, the errors on magnitude and phase decrease for all values of d, as expected.

Conclusions

In this paper, a new expression for the acoustic impedance of a cylindrical tube undertaking an axisymmetric and normally incident unsteady Stokes flow is presented. The exact representation of the Crandall impedance as a series of high-pass filters depending only on the zeros of the Bessel function J 2 is of practical interest, since passage to time domain for numerical simulations is made easier than with the classical expression, and such a development can be embedded into the well-known Maa model for MPPs used in sound absorption mechanisms. Moreover, in the frequency domain, the use for numerical simulations of ad hoc connection functions linking the polynomial asymptotic behaviors of the Crandall impedance at high and low frequencies is no longer required.

Finally, the method applied herein relates to retrieving the so-called oscillatory-diffusive representations of causal kernels extensively studied in Hélie and Matignon [START_REF] Hélie | Representations with poles and cuts for the time-domain simulation of fractional systems and irrational transfer functions[END_REF], in Monteghetti et al. [START_REF] Monteghetti | Design of broadband time-domain impedance boundary conditions using the oscillatory-diffusive representation of acoustical models[END_REF] and in Moufid et al. [START_REF] Moufid | Energy analysis and discretization of the time-domain equivalent fluid model for wave propagation in rigid porous media[END_REF] that can be used for other models of acoustics materials as well, such as the equivalent fluid ones for porous media (e.g., the Johnson-Champoux-Allard-Pride-Lafarge model [START_REF] Lafarge | Dynamic compressibility of air in porous structures at audible frequencies[END_REF]). (see §9.6.26 and §9.6.27 in Abramowitz and Stegun [START_REF] Abramowitz | Handbook of mathematical functions: with formulas, graphs, and mathematical tables[END_REF]), it is easy to notice the following: between two given consecutive zeros of I 0 ( √ s) , a sign change of I 1 ( √ s) takes place thanks to Eq. ( 24) and to the continuity of Bessel functions; as I 2 ( √ s) and I 1 ( √ s) assume opposite signs at a root of I 0 ( √ s) because of Eq. ( 23), one concludes that I 2 ( √ s) undertakes a sign change in between the two consecutive zeros of I 0 ( √ s) and hence a root of I 2 √ s) (i.e., a pole of Ẑnon-dim ) must lie in between.

Poles-zeros interlacing seems to be a common feature for diffusive kernels with positive weights. This can be seen on the most simple rational ones: for instance, for some 𝜉 1 > 0 , 𝜉 2 > 0 , 0 ≤ ≤ 1 , the following convex combination of low-pass filters where ∶= (1 -) 1 + 2 , presents poles at s = {-1 , -2 } and a zero in between at s = -. 

ĥ ∶ ℂ�{-1 , -2 } → ℂ s ↦ s + 1 + 1 - s + 2 ≡ s + (s + 1 )(s + 2 ) ,
An example of similar behavior among irrational functions is given by H (s) ∶= tanh( √ s∕ )∕ √ s for some 𝜀 > 0 , discussed in Mignot et al. [13]. Moreo- ver, this paper shows a very interesting fact: the function's intertwined poles and zeros in ℝ -become a branch cut in the limiting process leading towards 0, the limit transfer function being H 0 (s) ∶= 1 √ s .

Fig. 3

 3 Fig. 3 In (a): Bode diagrams in the frequency range [10 1 , 10 4 ] Hz (3 decades) for the exact and approximated representations of the transfer function related to the Crandall model of impedance; k = {0, 1, 10} zeros of the Bessel function J 2 have been used for the computation of the truncated series sum. In (b): Plots of the real and imaginary parts of ẐCr and its truncated series approximated representations. In (c): Absorption coefficient as a function of the frequency ▸

⋅ m - 3 1.82 ⋅ 10 - 5 1 Fig. 4

 310514 Fig.[START_REF] Colombaro | A class of linear viscoelastic models based on Bessel functions[END_REF] Plots of the relative errors on magnitude (top) and phase (bottom) of the approximated series representation with respect to the exact form for different numbers of series terms ( k = {1, 5, 9})

Fig. 5

 5 Fig. 5 Magnitude plots highlighting the evolution of the stopband of ẐCr as the diameter d increases, for k = 9 series terms
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Appendix: Poles and zeros in the non-dimensional model

In this Appendix, we are interested in the poles-zeros location in the complex plane of the non-dimensional model Ẑnon-dim .

Figure 6 shows a contour plot of the principal value of the argument of Ẑnon-dim (s) within a given domain of the complex plane. The set of poles is P non-dim ∶= {(-j 2 2,k ) k∈ℕ } ⊂ ℝ -while the set of zeros is {(-j 2 0,k ) k∈ℕ } ⊂ ℝ -. This plot suggests that the poles and zeros of Ẑnon-dim are intertwined. Indeed, using the following relation Publisher's Note Springer Nature neutral with regard to jurisdictional claims in published maps and institutional affiliations.