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Neutral Acoustic Wave Modes in Supersonic Impinging Jets

I. Introduction

S INCE the seminal work of Powell in 1953 [1], it has been shown that jets impinging on a flat plate can generate intense acoustic tones in some cases. These tones are due to an aeroacoustic feedback loop mechanism composed of aerodynamic disturbances convected downstream and acoustic waves propagating from the flat plate to the nozzle. Several experiments have investigated the properties of this feedback mechanism. In the subsonic regime, Ho and Nosseir [START_REF] Ho | Dynamics of an Impinging Jet. Part 1. the Feedback Phenomenon[END_REF] and Nosseir and Ho [START_REF] Nosseir | Dynamics of an Impinging Jet. Part 2. The Noise Generation[END_REF] studied impinging round jets with different nozzle exit Mach numbers ranging from 0.3 up to 0.9. This allowed the authors to develop a model of the aeroacoustic feedback loop predicting the frequencies of the tones. In the supersonic regime, several researchers studied the feedback loop mechanism with, among others, Krothapalli et al. [START_REF] Krothapalli | Flow Field and Noise Characteristics of a Supersonic Impinging Jet[END_REF], Henderson et al. [START_REF] Henderson | An Experimental Study of the Oscillatory Flow Structure of Tone-Producing Supersonic Impinging Jets[END_REF], Risborg and Soria [START_REF] Risborg | High-Speed Optical Measurements of an Underexpanded Supersonic Jet Impinging on an Inclined Plate[END_REF], and Mitchell et al. [START_REF] Mitchell | The Visualization of the Acoustic Feedback Loop in Impinging Underexpanded Supersonic Jet Flows Using Ultra-High Frame Rate Schlieren[END_REF]. In some cases, a feedback mechanism similar to that encountered in subsonic jets was obtained. In addition, this feedback loop mechanism was observed to occur very often when the jets were ideally expanded but with less occurrence and only for certain nozzle-to-plate distances when they were not.

To better understand why a supersonic impinging jet is likely to induce an aeroacoustic feedback loop mechanism and its properties or not, large theoretical efforts have been devoted to the feedback loop mechanism, and in particular the acoustic one. Indeed, the downstream part of the aeroacoustic feedback consists of growing aerodynamic disturbances originating from the thin shear layer at the nozzle exit and convected downstream by the flow. But, its upstream part, involving acoustic waves propagating from the plate up to the nozzle, is less obvious. In the feedback loop model introduced by Ho and Nosseir [START_REF] Ho | Dynamics of an Impinging Jet. Part 1. the Feedback Phenomenon[END_REF], these waves lie outside of the jet column; whereas they belong to the family of the subsonic acoustic modes of the jet based on the works ofTam and Ahuja [START_REF] Tam | Theoretical Model of Discrete Tone Generation by Impinging Jets[END_REF]. In the latter case, the waves propagate inside the jet column, with this analysis being compliant with the experimental observations from Lepicovsky and Ahuja [START_REF] Lepicovsky | Experimental Results on Edge-Tone Oscillations in High-Speed Subsonic Jets[END_REF] and discussed by Umeda et al. [START_REF] Umeda | Discrete Tones Generated by the Impingement of a High-Speed Jet on a Circular Cylinder[END_REF] for jets impinging on a circular cylinder. In their theoretical approach, Tam and Ahuja [START_REF] Tam | Theoretical Model of Discrete Tone Generation by Impinging Jets[END_REF] calculated the dispersion relations of these subsonic acoustic modes (called neutral subsonic acoustic modes because they have no amplification) of round jets. This model is based on a three-dimensional infinitely thin shear-layer vortex sheet model (representing the shear layer between a high-speed jet flow and an ambient flow at rest) that provides allowable frequency ranges for the corresponding aeroacoustic feedback loop tones and the axisymmetric (breathing) or helical nature of the modes. The authors obtained tone frequencies from the analytical model that matched the experimental data available for round jets impinging on a flat plate at exit Mach numbers lying between 0.7 and one. In the same way, Tam and Norum [START_REF] Tam | Impingement Tones of Large Aspect Ratio Supersonic Rectangular Jets[END_REF] obtained the dispersion relations of these waves for supersonic planar jets; the authors found that the upstream-propagating subsonic acoustic modes are confined in narrow ranges of allowable frequencies. They also showed that the two first tones' frequencies emerging in the acoustic spectra measured experimentally by Norum [START_REF] Norum | Supersonic Rectangular Jet Impingement Noise Experiments[END_REF] for supersonic rectangular jets of large aspect ratios fall very close to these allowable ranges. More precisely, the lower and upper tone frequencies, respectively, associated with symmetric jet oscillation modes and with antisymmetric oscillation modes were located in or very near the frequency ranges of the first symmetric and antisymmetric upstream-propagating acoustic modes. More recently, similar observations were reported by Gojon et al. [START_REF] Gojon | Investigation of Tone Generation in Ideally Expanded Supersonic Planar Impinging Jets Using Large-Eddy Simulation[END_REF] for ideally expanded supersonic impinging planar jets and by Bogey and Gojon [START_REF] Bogey | Feedback Loop and Upwind-Propagating Waves in Ideally Expanded Supersonic Impinging Round Jets[END_REF] for ideally expanded supersonic impinging round jets using large-eddy simulations (LESs). In those works, based on vortex sheet models, the authors were able to predict the most probable tones of the jets, their frequencies, and the symmetry of the corresponding jet oscillations. For free screeching jets, Gojon et al. [START_REF] Gojon | Oscillation Modes in Screeching Jets[END_REF], Edgington-Mitchell et al. [START_REF] Edgington-Mitchell | Upstream-Travelling Acoustic Jet Modes as a Closure Mechanism for Screech[END_REF], and Gojon et al. [START_REF] Gojon | Antisymmetric Oscillation Modes in Rectangular Screeching Jets[END_REF] applied this same approach to nonideally expanded round and planar supersonic screeching jets and were able to retrieve the frequencies of the tones, the symmetric/antisymmetric or axisymmetric/helical nature of the modes, and the shapes of the pressure disturbances in the jet with reasonable agreement [START_REF] Gojon | Oscillation Modes in Screeching Jets[END_REF]. This would suggest that the vortex sheet model applied to the equivalent ideally expanded jet can be used to study nonideally expanded jets. Finally, recently, Varé and Bogey [START_REF] Vare | Mach Number Dependence of Tone Generation in Impinging Round Jets[END_REF] evidenced the neutral waves as closing the feedback loop mechanism in impinging round jets for different Mach numbers ranging from 0.6 to 1.1 and a nozzle-to-plate distance set to eight nozzle radii. All of this evidence made it possible to give more strength in the origin of the tones coming from these subsonic acoustic modes of the jet proposed by Tam and Ahuja [START_REF] Tam | Theoretical Model of Discrete Tone Generation by Impinging Jets[END_REF].

The purpose of this Note is to identify whether this model can apply to supersonic impinging jets by using LES data of different supersonic impinging jets: a rectangular ideally expanded jet with an infinite aspect ratio, a round ideally expanded jet, and a round underexpanded jet. The analysis is performed by comparing the different results provided by the vortex sheet model against the LES results, namely, the allowable Strouhal number ranges (frequency ranges) of the tones (through the dispersion relation); the symmetric/antisymmetric nature of the mode; and the shape of the disturbance in the jet, which is also known as the eigenfunction in the model. The Note is organized as follows: Sec. II introduces the vortex sheet model for rectangular and round geometries; Sec. III describes the configurations and the LESs used to assess the vortex sheet model; and Sec. IV presents the comparison between the vortex sheet model and the LES data for the different jet configurations studied.

II. Modeling of the Feedback Waves in an Impinging Jet

The purpose here is to introduce the vortex sheet model and the corresponding upstream-propagating neutral wave modes. Details about the analytic derivation are provided for two-dimensional rectangular jet configurations (which is a reasonable approximation for jets with a large or infinite aspect ratio, as in the present LES of the planar case). For round jets, the final form of the equations is provided because it relies on similar assumptions and decomposition as for the planar geometry. For the nonideally expanded round jets, based on the aerodynamic and geometrical features of the underexpanded jet, a fictive ideally expanded jet is defined to use the model derived for ideally expanded round jets.

A. Ideally Expanded Planar Jet

The basis of the vortex sheet model introduced by Tam and Norum [START_REF] Tam | Impingement Tones of Large Aspect Ratio Supersonic Rectangular Jets[END_REF] is to consider a two-dimensional rectangular jet of height h j , velocity u j , and Mach number M j bounded by two infinitely thin vortex sheets, as shown in Fig. 1. The vortex sheets are supposed to represent the shear layers developing downstream of the nozzle. Let p ext x; y; t and p int x; y; t be the pressure associated with the disturbances outside and inside the jet and ζx; t be the vertical displacement of the vortex sheets. By starting from the linearized equations of motion of a compressible inviscid flow, it can be shown that the governing equations and boundary conditions for p ext , p int , and ζ are

∂ 2 p ext ∂t 2 -a 2 0 ∂ 2 p ext ∂x 2 ∂ 2 p ext ∂y 2 0 h j ∕2 ≤ y or y ≥ -h j ∕2 (1) 
∂ 2 p int ∂t 2 u 2 j ∂ 2 p int ∂x 2 -a 2 j ∂ 2 p int ∂x 2 ∂ 2 p int ∂y 2 0 -h j ∕2 ≤ y ≤ h j ∕2 (2) 
where a 0 , a j , ρ 0 , ρ j , and u j are, respectively, the speed of sound outside and inside of the jet, the gas densities outside and inside of the jet, and the jet velocity. At y h j ∕2,

p ext p int (3) 
∂ 2 ζ ∂t 2 - 1 ρ 0 ∂p ext ∂y (4) 
∂ 2 ζ ∂t 2 u 2 j ∂ 2 ζ ∂x 2 - 1 ρ j ∂p int ∂y (5) 
At y 0, where k is the wave number, and ω is the angular frequency. Based on this solution form that uses the separation of variables, the correct solution is to treat the separation constants k and ω in Eq. ( 7) as complex Fourier-Laplace transform variables. This approach follows the one of Tam and Hu [START_REF] Tam | On the Three Families of Instability Waves of High-Speed Jets[END_REF] for the neutral waves developing in round jets. Fourier and Laplace transforms of functions f and g as well as their inverses are defined as

∂p
fk 1 2π Z ∞ -∞ fxe -ikx dx fx 1 2π Z ∞ -∞ fke ikx dk (8) gω 1 2π Z ∞ -∞ gte iωt dt gt 1 2π Z Γ gωe -iωt dω (9)
The inverse Laplace transform contour Γ in the ω plane is a line in the complex ω plane parallel to the real axis. To satisfy the causality condition, Γ must be in the upper half-ω plane above all poles and singularities. The approach based on the Fourier-Laplace transform without the use of separated variables has been used recently by Tam and Chandramouli in jet-plate interaction [START_REF] Tam | Jet-Plate Interaction Tones Relevant to Over-the-Wing Engine Mount Concept[END_REF][START_REF] Tam | Corrigendum to 'Jet-Plate Interaction Tones Relevant to Over-the-Wing Engine Mount Concept[END_REF]. Substitution of Eq. ( 7) into Eqs. (1-6) and eliminating ξ, pint and pext are given by the solution of

d 2 pint dy 2 -ω -u j k 2 ∕a 2 j -k 2 pint 0 -h j ∕2 ≤ y ≤ h j ∕2 (10) 
d 2 pext dy 2 -k 2 -ω 2 ∕a 2 0 pext 0 h j ∕2 ≤ y or y ≥ -h j ∕2 (11) 
with the set of boundary conditions at y h j ∕2, pint pext (12)

1 ρ j ω -u j k 2 d pint dy 1 ρ 0 ω 2 d pext dy (13) 
and, at y 0, d pint dy 0 for symmetric modes pint 0 for antisymmetric modes [START_REF] Bogey | Feedback Loop and Upwind-Propagating Waves in Ideally Expanded Supersonic Impinging Round Jets[END_REF] The mathematical solution of Eqs. ( 10) and ( 11) with boundary conditions Eqs. [START_REF] Norum | Supersonic Rectangular Jet Impingement Noise Experiments[END_REF][START_REF] Gojon | Investigation of Tone Generation in Ideally Expanded Supersonic Planar Impinging Jets Using Large-Eddy Simulation[END_REF][START_REF] Bogey | Feedback Loop and Upwind-Propagating Waves in Ideally Expanded Supersonic Impinging Round Jets[END_REF] involves two square-root functions in the complex k plane. Square-root functions are multivalued functions. As such, they are not allowed in a physical solution unless they are first made single valued mathematically. To obtain such a single-valued solution, branch points and branch cuts need to be inserted in the complex k plane to ensure that boundary conditions are satisfied for any point k in the complex k plane and to make sure that the branch cuts will not interfere with the inverse k contour. Based on the detailed approach from Tam and Hu [START_REF] Tam | On the Three Families of Instability Waves of High-Speed Jets[END_REF], the branch cuts of

η ext k 2 -ω 2 ∕a 2 0 and η int ω -u j k 2 ∕a 2 j -k 2 are taken to be - 1 2 π < argη ext < 1 2 π; 0 < argη int < π (15) 
Then, considering first the symmetric modes, the solution of Eq. ( 10) that satisfies the symmetric condition in Eq. ( 14) is The solution of Eq. ( 10) that satisfies the antisymmetric condition in Eq. ( 14) is

pint A s cosω -u j k 2 ∕a 2 j -k 2 1∕2 y (16) 
pint A a sinω -u j k 2 ∕a 2 j -k 2 1∕2 y (17)
Finally, the solution of Eq. ( 11) that satisfies the outgoing wave or boundedness condition as y → ∞ is

pext A o exp-k 2 -ω 2 ∕a 2 0 1∕2 y (18) 
In solutions of Eqs. [START_REF] Edgington-Mitchell | Upstream-Travelling Acoustic Jet Modes as a Closure Mechanism for Screech[END_REF][START_REF] Gojon | Antisymmetric Oscillation Modes in Rectangular Screeching Jets[END_REF][START_REF] Vare | Mach Number Dependence of Tone Generation in Impinging Round Jets[END_REF], A s , A a , and A o are arbitrary constants. The substitution of these solutions into the equality of pressure and the derivative at the borders of the jet of pint pext and

1 ρ j ω -u j k 2 d pint dy 1 ρ 0 ω 2 d pext dy
gives the following dispersion relation Dω; k, which links the wave number k to the angular frequency ω for the symmetric modes:

Dω; k ω -u j k 2 ∕a 2 j -k 2 1∕2 ρ 0 ω 2 k 2 -ω 2 ∕a 2 0 1∕2 ρ j ω -u j k 2 -cotan ω -u j k 2 ∕a 2 j -k 2 1∕2 h j 2 0 (19)
Similarly, the dispersion relation for the antisymmetric modes is

Dω; k ω -u j k 2 ∕a 2 j -k 2 1∕2 ρ 0 ω 2 k 2 -ω 2 ∕a 2 0 1∕2 ρ j ω -u j k 2 tan ω -u j k 2 ∕a 2 j -k 2 1∕2 h j 2 0 (20) 

B. Ideally Expanded Round Jet

The dispersion relations using a vortex sheet model for a round jet that are introduced in this section follow the initial derivation provided by Tam in 1971 [START_REF] Tam | Directional Acoustic Radiation from a Supersonic Jet Generated by Shear Layer Instability[END_REF] and used later by Tam and Hu in 1989 [START_REF] Tam | On the Three Families of Instability Waves of High-Speed Jets[END_REF]. A three-dimensional vortex sheet model is considered in the cylindrical coordinate system (r; θ; x) that is centered at the axis of the jet with the x axis pointing in the direction of the flow. The pressure fluctuations and radial displacement are assumed to be separable solutions of the form 2 

Imposing the pressure fluctuations inside and outside of the jet from Eq. ( 21) on the mean flow consisting of the linearized continuity, momentum, and energy equations of a compressible inviscid fluid, the corresponding set of equations with the boundary conditions is

∂ 2 p ext ∂t 2 -a 2 0 1 r 2 ∂ 2 p ext ∂ 2 θ ∂ 2 p ext ∂ 2 z 0 ( 22 
)
∂p int ∂t 2 u 2 j ∂p int ∂x 2 -a 2 j 1 r 2 ∂ 2 p int ∂ 2 θ ∂ 2 p int ∂ 2 z 0 ( 23 
)
and

p int p ext ; -1 ρ 0 ∂p ext ∂r ∂ 2 ξ ∂t 2 ; - 1 ρ j ∂p ext ∂r ∂ξ ∂t 2 u 2 j ∂ξ ∂x 2 (24)
To ensure single-valued solutions, the branch cuts of η 0 and η 1 are taken to be (from Tam and Hu [START_REF] Tam | On the Three Families of Instability Waves of High-Speed Jets[END_REF])

- 1 2 π < argη ext < 1 2 π; 0 < argη int < π ( 25 
)
where it is recalled that η ext k 2 -ω 2 ∕a 2 0 1∕2 and η int ωu j k 2 ∕u 2 jk 2 1∕2 . Tam and Hu [START_REF] Tam | On the Three Families of Instability Waves of High-Speed Jets[END_REF] obtained the following solution for the pressure disturbances in the jet and the dispersion relation:

pint H 1 n iη ext D j 2 J n η int r J n η int D j 2 ( 26 
)
Dω; k ≡ iη ext ρ o ω 2 J n η int R j H 1 0 n iη ext R j - η int ρ j ω -u j k 2 H 1 n iη ext R j J 0 n η int R j 0 (27)
where J n is the Bessel function of order n, H 1 n is the nth-order Hankel function of the first kind, and ()' denotes the derivative. It can be noted that n 0 refers to the first axisymmetric mode and n 1 to the first azimuthal mode (helical).

C. Underexpanded Round Jet

For an underexpanded round jet, the pressure at the outlet of the nozzle is progressively expanded to the ambient pressure through a system of shock cells. Because of the shock cells, the jet diameter and the Mach number within the jet can vary largely. Because the vortex sheet model is based on a constant jet diameter and Mach number, a fictive ideally expanded jet based on the underexpanded jet is defined to be more compliant with this analytical model. Indeed, the equivalent, ideally expanded jet provides constant quantities that are good estimators of the values around which the real underexpanded jet will vary. This process consists of calculating a value of the Mach number at the nozzle exit that would enable an ideal expansion from the exit pressure p e to the ambient pressure. Based on the isentropic relations

p r ∕p e 1 γ -1 2 M 2 e γ∕γ-1
and the nozzle pressure ratio (NPR), this value of the Mach number M j can be obtained through

M j 2 γ -1 NPR γ-1∕γ -1 s (28)
Based on this value of Mach number and using stagnation temperature of the jet T t , pressure in the ambient medium p 0 and geometrical diameter of the underexpanded jet D, the equivalent ideally expanded jet can be obtained. The values of static temperature T j , density ρ j and diameter of this equivalent jet are:

T j T t 1 M 2γ-1∕2 j ( 29 
)
ρ j p 0 rT j (30) 
u j M j γrT j p (31)

D j D 1 M 2 j γ -1∕2 1 γ -1∕2 γ1∕4γ-1 1 M 1∕2 j (32)
In the analysis, the use of this equivalent, ideally expanded jet will modify the jet diameter to D j 0.002208 m (as compared to the geometrical diameter of D 0.002 m) for the underexpanded jets simulated with the LES. Also, the effect of the shock cells in the jet is not taken into account in the analytical vortex sheet model, whereas they indeed occur in the LES.

III. Configurations and Numerical Simulations

For each of the different configurations (ideally expanded planar jet, ideally expanded round jet, and underexpanded round jet), four nozzle-to-plate distances are available in the LES database. In the present study, one simulation is used for the planar and round ideally expanded jet and two simulations for the underexpanded jet. The choice of the nozzle-to-plate distance has been made such that the tones would emerge clearly from the broadband part of the acoustic spectra and with a sufficiently large nozzle-to-plate distance to have a good wave-number resolution because it is important to obtain accurate eigenfunctions in the LES for the comparison against the vortex sheet model.

A. Planar Ideally Expanded Jet

The planar impinging jet flow configuration originates from a planar straight nozzle with a height of h j 0.002 m, a width of l 3.25h j in the spanwise direction, and for which the lips are 0.5h j thick in an ambient medium at a temperature of T 0 293 K and pressure of p 0 10 5 Pa. The nozzle-to-plate distance is set to 5.5h j . At the nozzle exit, the jet is ideally expanded, with a Mach number of M j u j ∕a 0 1.28 and a Reynolds number of Re u j h j ∕ν 5 × 10 4 , where ν is the kinematic molecular viscosity (the stagnation temperature being equal to the ambient temperature); see Fig. 2 (left). More details can be found in the work of Gojon et al. [START_REF] Gojon | Investigation of Tone Generation in Ideally Expanded Supersonic Planar Impinging Jets Using Large-Eddy Simulation[END_REF].

B. Ideally Expanded Round Jet

The ideally expanded round jet originates from a straight pipe nozzle with a diameter of D j 0.002 m, for which the lip is 0.05D j thick, in an ambient medium at a temperature of T 0 293 K and a pressure of p 0 10 5 Pa. A nozzle-to-plate distance of 4D j is considered. At the nozzle exit, the jet is ideally expanded, has a Mach number of M j u j ∕a j 1.5, and has a Reynolds number of Re j u j D j ∕ν 6 × 10 4 ; see Fig. 2 (center). More details can be found in the work of Bogey and Gojon [START_REF] Bogey | Feedback Loop and Upwind-Propagating Waves in Ideally Expanded Supersonic Impinging Round Jets[END_REF].

C. Underexpanded Round Jet

The underexpanded round jet originates from a pipe nozzle with a diameter of D 0.002 m, for which the lip is 0.05D thick, with a nozzle pressure ratio of NPR p t ∕p 0 4.03 and a temperature ratio (TR) of TR T t ∕T 0 1, where p t is the stagnation pressure and T 0 is the ambient temperature. Two nozzle-to-plate distances are considered: 3.6D and 4.66D. The jet is underexpanded and has a fully expanded Mach number of M j u j ∕a j 1.56; an exit Mach number of Me u e ∕a e 1 (i.e., it simulates a jet exiting from a convergent nozzle), where u e and a e are the velocity and speed of sound in the jet at the nozzle exit; and u j and c j are the velocity and speed of sound in the equivalent ideally expanded jet, respectively. Its Reynolds number is equal to Re j u j D j ∕ν 6 × 10 4 ; see Fig. 2 (right) for the nozzle-to-plate distance of 4.66D j . More details can be found in the work of Gojon and Bogey [START_REF] Gojon | Flow Structure Oscillations and Tone Production in Underexpanded Impinging Round Jets[END_REF].

D. Numerical Methods

The different jet cases have common features that can be described as follows: At the nozzle inlet, a Blasius laminar boundary-layer profile and a Crocco-Busemann profile are imposed for the velocity and density. To generate velocity fluctuations at the nozzle exit, lowamplitude random vortical disturbances are added in the nozzle boundary layer.

The unsteady compressible Navier-Stokes equations are solved by using an explicit six-stage Runge-Kutta algorithm for time integration and a low-dispersion explicit 11-point finite differences scheme for spatial derivation (fourth-order accurate) [START_REF] Bogey | A Family of Low Dispersive and Low Dissipative Explicit Schemes for Flow and Noise Computations[END_REF][START_REF] Berland | High-Order, Low Dispersive and Low Dissipative Explicit Schemes for Multiple-Scale and Boundary Problems[END_REF]. At the end of each time step, in order to reduce grid-to-grid oscillations and to relax turbulent energy from scales at wave numbers close to the grid cutoff wave number, a sixth-order 11-point filtering [START_REF] Bogey | A Shock-Capturing Methodology Based on Adaptative Spatial Filtering for High-Order Non-Linear Computations[END_REF] is applied to the flow variables. This filtering acts as a subgrid-scale model in the LES [START_REF] Bogey | A Family of Low Dispersive and Low Dissipative Explicit Schemes for Flow and Noise Computations[END_REF][START_REF] Bogey | Turbulence and Energy Budget in a Self-Preserving Round Jet: Direct Evaluation Using Large Eddy Simulation[END_REF][START_REF] Fauconnier | On the Performance of Relaxation Filtering for Large-Eddy Simulation[END_REF][START_REF] Kremer | Large-Eddy Simulation of Turbulent Channel Flow Using Relaxation Filtering: Resolution Requirement and Reynolds Number Effects[END_REF]. The radiation conditions of Tam and Dong [START_REF] Tam | Wall Boundary Conditions for High-Order Finite-Difference Schemes in Computational Aeroacoustics[END_REF] are applied at the inflow and on lateral boundaries of the computational domain. A sponge zone combining grid stretching and Laplacian filtering is also employed in order to damp the turbulent fluctuations before they reach the lateral boundaries. No-slip adiabatic conditions are imposed at the nozzle walls and at the flat plate. Periodic boundary conditions are applied at both sides of the domain in the transverse direction z for the planar jet. A shock-capturing filtering is also applied in order to avoid Gibbs oscillations near shocks for the underexpanded cases. It consists of applying a conservative second-order filter at a magnitude determined at each time step using a shock sensor [START_REF] Bogey | A Shock-Capturing Methodology Based on Adaptative Spatial Filtering for High-Order Non-Linear Computations[END_REF].

The simulations have been performed using an OpenMP-based (programming interface for parallel computing) in-house solver, and a total of 200,000 iterations were computed in each case after the transient period. For the planar jet, the temporal discretization is equal to Δt ∼ 0.003h j ∕u j , yielding to a simulation time of t sim ∼ 600h j ∕u j . Similar numbers of convective times are simulated for the round jets. The mesh is composed of around 250 × 10 6 points for the planar jet, 240 × 10 6 points for the ideally expanded round jet, and between 200 × 10 6 and 217 × 10 6 points for the underexpanded round jets (3.6D and 4.66D).

IV. Assessment of the Vortex Sheet Model

Using LES Data

In the following, remember that the subscript j refers to the equivalent, ideally expanded jets. For the planar and round ideally expanded jets, it corresponds simply to the geometrical/aerodynamic quantities defined previously; whereas for the underexpanded jet, the transformation from the geometrical/underexpanded aerodynamic quantities to the equivalent, ideally expanded jet can be obtained from Eqs. [START_REF] Fauconnier | On the Performance of Relaxation Filtering for Large-Eddy Simulation[END_REF][START_REF] Kremer | Large-Eddy Simulation of Turbulent Channel Flow Using Relaxation Filtering: Resolution Requirement and Reynolds Number Effects[END_REF][START_REF] Tam | Wall Boundary Conditions for High-Order Finite-Difference Schemes in Computational Aeroacoustics[END_REF][START_REF] Fiore | Spectral Proper Orthogonal Decomposition of Coupled Hydrodynamic and Acoustic Fields: Application to Impinging Jet Configurations[END_REF](32). The sound pressure levels (SPLs) obtained at x 0 and y 1.5h j for the planar jet, x 0 and r D j for the ideally expanded round jet, and x 0 and r D for the underexpanded round jets are displayed in Fig. 3 as a function of the Strouhal number St. The frequencies of the tones, for which the levels are at least 5 dB higher than the broadband noise level, are given in Table 1. In addition, the nature of the modes (symmetric or antisymmetric oscillation) for the planar jet and axisymmetric or helical oscillation for the round jets is also provided in same table. This information, which is available in prior publications [START_REF] Gojon | Investigation of Tone Generation in Ideally Expanded Supersonic Planar Impinging Jets Using Large-Eddy Simulation[END_REF][START_REF] Bogey | Feedback Loop and Upwind-Propagating Waves in Ideally Expanded Supersonic Impinging Round Jets[END_REF][START_REF] Gojon | Flow Structure Oscillations and Tone Production in Underexpanded Impinging Round Jets[END_REF], has been obtained by looking at the symmetry of the phase fields after having applied a Fourier transform to two-dimensional snapshots of the LES. Several tones are found to emerge over the broadband part of the spectrum. These tones, which are observed in the near-nozzle acoustic spectra, are also present at the same frequencies in the velocity spectra in the shear layer (see the work of Fiore et al. [START_REF] Fiore | Spectral Proper Orthogonal Decomposition of Coupled Hydrodynamic and Acoustic Fields: Application to Impinging Jet Configurations[END_REF]), highlighting a coupling between the jet flow structures and the upstream-propagating pressure waves. The purpose is to analyze whether or not the aeroacoustic feedback loop mechanism of some of these tones can be closed by the neutral waves described by the vortex sheet model (i.e., whether or not the upstream-propagating sound waves correspond to the neutral waves).

A. Planar Ideally Expanded Jet

The first two tones in terms of frequency for the planar jet correspond to two tones, St1 and St2, with the first being symmetric and the second antisymmetric at St 0.119 and St 0.19, respectively, followed by three subsequent tones (St3 to St5), which are combinations of the second tone, St2: St3 (2St2), St4 (3St2), and St5 (4St2). This behavior follows the experimental observations and analysis of Tam and Norum [START_REF] Tam | Impingement Tones of Large Aspect Ratio Supersonic Rectangular Jets[END_REF]. Indeed, the tones St3 to St5 are the combination tones of two basic frequencies. The lower of the two tones in terms of frequency is invariably associated with a purely symmetric feedback instability wave mode of the jet (St1), the higher frequency being associated with a purely antisymmetric (St2) feedback instability wave mode of the jet. The solutions of the dispersion relations [Eqs. [START_REF] Tam | Jet-Plate Interaction Tones Relevant to Over-the-Wing Engine Mount Concept[END_REF] and [START_REF] Tam | Corrigendum to 'Jet-Plate Interaction Tones Relevant to Over-the-Wing Engine Mount Concept[END_REF]] calculated for the present jet at M j 1.28 (the total temperature of the jet has been assumed to be the same as the ambient temperature, i.e., the cold jet) are shown in Fig. 4 as functions of the Strouhal number and the wave number. Three symmetric neutral acoustic wave modes referred to as S1, S2, and S3 appear in Fig. 4 (left). In the same way, three antisymmetric modes denoted by A1, A2, and A3 are found in Fig. 4 (right). The upstream-propagating wave modes that are supposed to close the feedback loop mechanism have a negative group velocity (dω∕dk < 0) or negative slope in the ωk plane (red part of each mode in Fig. 4). The upper limit of each band is defined by the maximum point of the dispersion curve of the particular mode (top of the slope in Fig. 4). For the lower limit, based on this same line in the k -ω plane, the first terms of Eqs. ( 19) and ( 20) become infinite. To satisfy the dispersion relation, therefore, the second term must also tend to infinity. This requires the argument of the tangent (or cotangent) function to be equal to an integer plus one-half times π (integer times π). For the symmetric and antisymmetric modes, this leads to

ω -u j k 2 ∕a 2 j -k 2 1∕2 h∕2 n -1π (33) ω -u j k 2 ∕a 2 j -k 2 1∕2 h∕2 n -1∕2π (34) 
From these maximum and minimum Strouhal numbers of each mode, which are taken from these dispersion curves, the allowable frequency ranges obtained for the symmetric and the antisymmetric upstream- 
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propagating neutral wave modes can be represented as functions of the Mach number M j and are shown in Fig. 5. In this same figure, the tones from the LES have been reported for the corresponding Mach number of M j 1.28. The five first tones in the level obtained in the LES lie in the first, second, and third symmetric modes and the first and second antisymmetric modes. The symmetric/antisymmetric nature of the tones agrees well with the nature of the modes obtained by performing a two-dimensional Fourier transform of the flow from the LES and gathered in Table 1. Indeed, in the LES, it was found that the first tone at St 0.12 is related to a symmetric oscillation mode of the jet and that St 0.19 is linked to an antisymmetric one. Similarly, it can be seen that the tones at St 0.38 and St 0.76 correspond to antisymmetric oscillation modes of the jet and that St 0.57 is associated with a symmetric one. Moreover, for each of the symmetric/antisymmetric modes, based on the wave number k and the angular frequency ω, it is possible to obtain the eigenfunction distributions as a function of the distance from the jet center y based on Eqs. ( 16) and ( 17), the jet velocity u j , and the speed of sound in the jet a j being known. The value of the constants A s and A a in Eqs. ( 16) and ( 17) are set so that the maximum value of the eigenfunction will be equal to unity. Each of these modes is obtained for the maximum allowable Strouhal number of each mode, but the results are similar for other positions on the same mode. In the LES, straight lines are defined between the nozzle and the flat plate from the center (y∕h j 0) to the borders of the jet as y∕h j 0.5. Over each of these lines, a two-dimensional discrete Fourier transform (DFT) is performed (in time, using 3280 instantaneous snapshots of pressure; and in space, in the x direction from the nozzle to the flat plate composed of 1800 points). For each of the lines at a y position, it is possible to draw wave-number/frequency (k, St) diagrams, as for the neutral wave model where only the left-hand side of the diagram (upstream-propagating waves) was represented (see Fig. 4). The (k, St) diagram obtained in the LES at the center (y∕h j 0) and at the upper border of y∕h j 0.5 of the jet be seen in Fig. 6. This diagram displays two main lines, with each of them having the same phase velocity (ω∕k): a first line corresponding to a wave propagation at 0.64u j that can be associated with the aerodynamic (vortical) structures from the jet shear layer propagating downstream (aerodynamic part of the aeroacoustic feedback loop propagating downstream). A second line can be displayed that corresponds to low-frequency waves that have negative propagation velocities (ω∕k -a 0 ), indicating upstream-traveling waves in the shear layers of the jet that are supposed to be the neutral waves in the LES and close the aeroacoustic feedback loop. Thus, in the LES, for each tone, the amplitude of the eigenfunction is obtained by storing the amplitude from the DFT at the intersection between the neutral wave line ω∕k -a 0 and the corresponding horizontal line characterizing the frequency of the tone. The corresponding comparison of the eigenfunctions between the theoretical ones and the ones obtained with the LES is shown in Fig. 7. A good agreement can be observed for the first symmetric and antisymmetric modes. For the second and third symmetric modes and the second antisymmetric mode, the shapes of the modes from the LES match the theoretical curves except the amplitude of the modes do not cancel at the nodes as in the vortex sheet model.

B. Round Ideally Expanded Jet

For the round, ideally expanded jet, in a similar manner to the planar jet, from the maximum and minimum Strouhal numbers of each mode [which are taken from the dispersion curve solutions of Eq. ( 27)], the allowable frequency ranges obtained for the axisymmetric (n 0) and the first azimuthal mode (n 1, helical oscillation) upstreampropagating neutral wave modes can be represented as a function of the Mach number M j and are shown in Fig. 8. In this same figure, the tones obtained from the LES have been reported for the corresponding Mach number of M j 1.5. The tones that fall into an axisymmetric or helical mode with the proper symmetry have been reported in blue, and those that fall outside have been reported by crosses. Converse to the planar case, all the tones do not necessarily fall into the allowable frequency ranges from the vortex sheet model, indicating that some of the tones may not necessarily be closed by neutral waves. Also, different from the planar case that displayed both symmetric and antisymmetric modes, all the modes for the round, ideally expanded jet that fall in the allowable range are axisymmetric. Similar to the planar case, oscillation modes associated with those frequencies from the vortex sheet model are compared against phase fields from the Fourier transform available in the work of Bogey and Gojon [START_REF] Bogey | Feedback Loop and Upwind-Propagating Waves in Ideally Expanded Supersonic Impinging Round Jets[END_REF] and gathered in Table 1. For the three frequencies of interest, the oscillation mode of the jet in the LES is also a symmetric one. To check that the modes that fall in the allowable range of frequency of the vortex sheet model are indeed neutral wave modes, the eigenfunctions from the theoretical model have been plotted based on Eq. ( 26) and from the LES by following the same procedure as for the planar case. The corresponding plots can be seen in Fig. 9. As for the planar case, the eigenfunctions obtained with the LES for the modes in the allowable frequency ranges match the theoretical curves well, with the LES matching the bump shapes well for the tones of St1, St4, and St8.

For the tones that fall outside of the allowable frequency ranges (St2, St3, St5, St6, and St6), because the modes are not in axisymmetric/ helical allowable frequency ranges, the analytical eigenfunctions have been plotted by following the symmetry of the corresponding eigenfunction in the LES. For these tones, the matching of the eigenfunctions with the model is less clear as compared to the tones that fall in the allowable frequency ranges.

C. Round Underexpanded Jets

For the underexpanded jets, the same (M j , St) diagram is used as for the ideally expanded jet. However, the equivalent ideally expanded Mach number of the jet is calculated from Eq. ( 28) with NPR 4.03 giving M j 1.56. The corresponding (M j , St) diagrams with the vertical line at M j 1.56 for the two nozzle-to-plate distances studied are shown in Fig. 10. For case 3.6D, two tones emerge in the LES and lie in the helical frequency range (H1) for the first tone, St1, and in the axisymmetric frequency range (S2) for the second tone, St2. The first tone is indeed helical based on the phase of the mode at this frequency obtained with the DFT algorithm (see Table 1) and described by Gojon and Bogey [START_REF] Gojon | Flow Structure Oscillations and Tone Production in Underexpanded Impinging Round Jets[END_REF]. For the St2 tone, the DFT algorithm applied to LES data indicates that the tone is also helical and does not agree with the vortex sheet model. The corresponding theoretical eigenfunctions associated with the two tones have been plotted in Fig. 11, with the eigenfunction obtained in the LES reported in same figure. The theoretical curve is obtained using the one for the ideally expanded jet [Eq. ( 26)] but by adapting the diameter with Eq. (32). A fair agreement is observed for the first tone, St1, as compared to the analytical model. For the St2 tone with the unexpected symmetry with respect to the analytical model, the eigenfunction from the LES does not predict the change of slope at r∕D j 0.42.

For the larger nozzle-to-plate distance of 4.66D, the only tone obtained in the LES has been reported in Fig. 10 (right) and lies in an area associated with a helical mode. The oscillation mode associated with this frequency is found to be helical using the phase field at this frequency from the work of Gojon and Bogey [START_REF] Gojon | Flow Structure Oscillations and Tone Production in Underexpanded Impinging Round Jets[END_REF]; see Table 1. The corresponding theoretical eigenfunction associated with the first azimuthal mode has been plotted in Fig. 12 with the eigenfunction obtained in the LES reported in same figure. The maximum of the eigenfunction in the LES is reached later (r∕D j 0.35) as compared to the theoretical one (r∕D j 0.25), but the general shape is in good agreement with the neutral wave model.

V. Conclusions

In this Note, the origin and the properties of the oscillation modes in the LES data of different supersonic impinging jets (ideally expanded planar jet, and ideally expanded and round jets) have been investigated. This analysis has been mainly focused on the hypothesis from Tam and Ahuja [START_REF] Tam | Theoretical Model of Discrete Tone Generation by Impinging Jets[END_REF] that the aeroacoustic feedback loop mechanism is closed by upstream-propagating acoustic wave modes, which are also known as neutral waves. The characteristics of these neutral waves can be obtained from a vortex sheet model that is a simplified view of the nozzle exiting in a medium at rest and generating shear layers to accommodate the velocity gap between the center and external parts of the jet. This analytic model provides dispersion relations (i.e., an admissible frequency range for the neutral waves to exist), the nature of these modes (symmetric or antisymmetric for planar jets and axisymmetric or helical for round jets), and the shape of the wave as a function of the distance to the jet center. These three characteristics obtained from the vortex sheet model have been compared against the LES results. It has been possible to observe that all of the tones (five tones) of the planar configuration are well closed by neutral waves because the allowable frequency range, the symmetric/antisymmetric nature of the mode, and the eigenfunctions match well between the LES data and the model. For the round, ideally expanded jet, three of the eight tones are shown to indeed be closed by neutral waves. Finally, it has been possible to observe that this model still applies to the underexpanded round jet. By adapting the model with an equivalent, ideally expanded jet, one of the two tones and the unique tone for the nozzle-to-plate distances of 3.6 and 4.66 jet diameters, respectively, were found to indeed be closed by a neutral wave mode. This study shows that the vortex sheet model initially developed and validated for impinging round (from Tam and Ahuja [START_REF] Tam | Theoretical Model of Discrete Tone Generation by Impinging Jets[END_REF]) and rectangular jets (from Tam and Norum [START_REF] Tam | Impingement Tones of Large Aspect Ratio Supersonic Rectangular Jets[END_REF]) against experimental data is also valid for explaining the acoustic closure of some of the tones of different geometries (planar and round) and aerodynamic characteristics (ideally expanded or underexpanded) obtained numerically with the LES.
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 2 Fig.2Two-dimensional snapshots of density in the jet and near the flat plate, as well as of the pressure fluctuations elsewhere.
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 546 Fig.5Representation of the allowable frequency ranges for the symmetric and antisymmetric upstream-propagating neutral acoustic wave modes in an ideally expanded planar jet.
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 7 Fig. 7 Representations of eigenfunction distributions of the neutral acoustic wave modes for the ideally expanded planar jet at a Mach number of M j 1.28.
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 8 Fig.8Representation of allowable frequency ranges for axisymmetric and helical upstream-propagating neutral acoustic wave modes in an ideally expanded round jet as a function of the jet exit Mach number.
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 9 Fig.9Representation of the eigenfunction distributions of the neutral acoustic wave modes for an ideally expanded round jet at a Mach number of M j 1.5.
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 101112 Fig.10Representations of allowable frequency ranges for the axisymmetric and helical upstream-propagating neutral wave modes in an ideally expanded round jet as a function of the jet exit Mach number.

Table 1

 1 Strouhal numbers of the first tones emerging in the acoustic spectra: symmetric (S) and antisymmetric (A) or axisymmetric (S) and helical (H)

	Jet	St1	St2	St3	St4	St5	St6	St7	St8
	Planar, ideally expanded	0.12 (S) 0.19 (A) 0.38 (S) 0.57 (A) 0.76 (S)	--	--	--
	Round, ideally expanded								

0.205 (S) 0.29 (H) 0.365 (S) 0.445 (S) 0.53 (H) 0.623 (S) 0.707 (S) 0.797 (S) Round, underexpanded 3.6D 0.345 (H) 0.42 (H)
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