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Abstract

This study presents a new micromechanical model that is simple, explicit, and directly

applicable for broad engineering applications to predict the effective elastic moduli of very

high-contrast component property composites containing high concentrations of particles.

The approach is based on the Morphological Representative Pattern scheme, where the first

pattern comprises a spherical fictitious inclusion embedded in an infinite effective homoge-

neous medium with physical properties of the matrix, while the others correspond to the

classical three-phase generalized self-consistent problem. Instead of using the mean distance

between particles, as addressed in existing literature, the volume fraction of patterns is cal-

culated based on the maximum packing fraction estimated from the packing model. This

approach shows perfect coherence with experimental data for benchmark examples of ef-

fective properties of suspensions of monodisperse particles in an elastic matrix and porous

materials. Furthermore, a refined version of the model is proposed, which includes a free pa-

rameter representing the shape of the fictitious inclusion to evaluate the polydisperse effect

on the overall properties of these materials.

Keywords: maximum packing effect, micromechanical model, generalized self-consistent,

polydispersity, multicomponent, yield stress fluid, porous media

1. Introduction

Over the past few decades, the overall behavior of composite materials has been exten-

sively studied due to their practical applications and theoretical importance. The effective

medium approach is a suitable method for this research as it allows for the consideration

of the composition and microstructure of composites, such as the orientations, shapes, vol-

ume fractions, and spatial distribution of inclusions, as well as the behavior of constituents.

Various effective medium micromechanical models can be found in mechanical handbooks
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and reviews [1, 2, 3, 4]. Almost all approximations, such as dilute, self-consistent [5, 6],

differential [7, 8], and Mori-Tanaka [9] schemes, are based on the classical analytical Eshelby

solution [10] for ellipsoidal inclusions embedded in an infinite homogeneous domain, where

the stress and strain fields within the inclusions are homogeneous. However, classical models

have two disadvantages. Firstly, they are unable to accurately account for the size effect or

crowding phenomena. Secondly, classical models are incapable of accurately predicting the

overall elastic modulus of composites with a volume fraction of inclusion phases near the max-

imum packing fraction, particularly for high-contrast-component-property composites, such

as suspensions of rigid particles in yield stress fluids, porous materials, or inclusion-matrix

composite materials that differ in component stiffness. For example, a random suspension of

rigid spheres in an elastic matrix near the maximum packing fraction has been experimentally

observed to diverge at a solid volume fraction of approximately 60% for monodisperse par-

ticles [11] and even greater for polydisperse particles [12], while the self-consistent estimate

for the same material tends towards infinity at a rigid volume fraction close to 40%. Similar

deficiencies have been reported when these schemes are used to predict the overall properties

of porous media [4]. Consequently, the estimates developed based on Eshelby’s scheme for

these materials often fail to accurately predict their effective properties, which limits their

practical application.

Numerous modified classical micromechanical models have been proposed to overcome the

challenge at hand. Norris [13] introduced the generalized differential approximation (GDA),

which assumes that a part of the matrix domain cannot be replaced by the inclusion phase

during the incremental process of the differential scheme. This region is modeled as fictitious

spherical inclusions with matrix material properties. By reducing the maximum allowable

volume fraction for the inclusion phase to the remaining matrix domain, different values of

the maximum volume fraction can be considered. Phan-Thien and Pham [14, 15] utilized

the GDA scheme to estimate the thermal conductivity and effective viscosity of spheroids

suspension. More recently, Markov [16, 17] applied GDA to compute the effective electric

conductivity of a two-dimensional percolating medium. Although Markov demonstrated the

accurate prediction of the experimental electrical conductivity of biphasic materials using

the GDA scheme, this approach cannot be generalized to include the particle packing model

to predict the maximum packing fraction of polydisperse particles, the reason being that it

lacks any length scale that can be linked to particle size or interparticle distance. Shashidhar

et al. [18] proposed a modified version of the generalized self-consistent approximation model

[19] with two adjustable parameters: the percolation threshold and the maximum packing

fraction of the inclusions. However, it is difficult to generalize the model’s applicability since

the homogenization scheme used to estimate the material’s overall properties is not rigorously

linked to the percolation model [20], even if the model accurately fits experimental data for

asphalt mastic.
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Several modified versions of classical Eshelby-based models have been proposed by Pham

et al. [21, 22], Nguyen et al. [23], Timothy et al. [24], and Tran et al. [25, 26]. These

models contain free parameters, such as properties of reference medium in [21, 23, 25, 26],

and several cascade levels in [24], that can be adjusted to successfully simulate the properties

of materials with different microstructures. However, as these models do not rely on homog-

enization schemes that describe observable or measurable microstructure properties, their

generalization to many different materials is limited. Nevertheless, this adaptive strategy

can be useful to account for particular cases and improve the effectiveness and flexibility of

the models.

Beginning with the pioneering work of Hashin [27], the Morphological Representative

Pattern (MRP) approach [28, 29, 30, 31, 32] aims to incorporate microstructure information

by considering the heterogeneous material as several sets of identical composite inclusions

(the patterns), where the spatial distribution of centers can be explained by statistical infor-

mation. Unlike classical mechanical phases that differ based on their mechanical properties,

the considered patterns act as morphological phases, providing access to individual particles

or domains with specific attributes, such as size and surface area. This allows the MRP

approach to more effectively predict the effective behavior of multiphase materials by in-

corporating pertinent information about the geometric characteristics of their constituent

phases. Marcadon et al. [33] used the MRP approach to account for packing and size ef-

fect phenomena in isotropic elastic composites with isotropically distributed monodisperse

spherical particles. They suggested that some geometric pattern parameters may be corre-

lated with the mean distance between nearest-neighbor particles, estimated and bounded in

[34]. Although the paper [33] proposed an interesting approach to account for the size and

crowding effects in a particular composite, the authors did not validate their hypotheses by

comparing their model’s predictions with experimental data.

Majewski et al. expanded Marcadon’s model by validating its theoretical predictions with

numerical data through finite element computational homogenization for both linear [35, 36]

and nonlinear [37] problems. However, the lack of detailed calculations involving geometric

information in the pattern makes the packing parameter function more as a fitting parameter

rather than a physically determinable quantity. Furthermore, the differentiation between the

isotropic configuration employed in the analytical approach and the anisotropic configuration

utilized in the periodic homogenization technique, along with the absence of a comparison

between the model’s predictions and empirical findings, continue to be ongoing points of

contention in this field.

This brief review suggests that the validation of a general micromechanical approach that

can accurately predict the effective elastic moduli of very high-contrast component prop-

erty composites with high concentrations of particles needs to be carefully considered and

evaluated. To simplify and make the paper relevant to observable empirical applications,

3



we have limited the scope to the domain of isotropic elastic composites with isotropically

distributed spherical particles. We first reconstruct the MRP approach in Sections 2 and 3.

Next, we compare the model’s predictions to the available experimental data for monodis-

perse/polydisperse matrix-inclusion composites or specific porous materials in Section 4.

This comparison enables us to demonstrate that the shell thickness of patterns defined in

the MRP approach is not equivalent to the mean distance between nearest-neighbor particles

estimated and bounded in [34]. Instead, it can be estimated from a simple geometric ap-

proximation related to the maximum packing fraction of the inclusions. Unfortunately, this

model is invalid for polydisperse inclusion-matrix composite materials. Hence, we propose a

more comprehensive and adaptable model in Section 5, which takes into account the shape

effect of fictitious inclusions. This new model serves to demonstrate the possible application

of the MRP approach in the case of polydisperse inclusion-matrix composite materials.

2. Review of effective medium approximations

We begin by considering the elastic isotropic problem for a composite material composed

of n inclusion phases, each with a stiffness fourth order tensor Ci (comprising bulk modulus

Ki and shear modulus µi), volume fraction φi (i = 1..n), a specific ellipsoidal shape, and a

specific orientation in a matrix with a stiffness fourth order tensor Cm (Km, µm) and volume

fraction φm. Eshelby’s work [10] established that a single ellipsoidal inclusion embedded

in an unbounded matrix under remote homogeneous deformation is also in homogeneous

deformation proportional to the matrix’s remote deformation with a proportional coefficient

known as the Eshelby fourth order tensor SE. If the inclusions are distributed non-preferably

(i.e., randomly) in the space, the resulting composite is isotropic. Asymptotically exact

solutions for the effective moduli of a dilute suspension of randomly oriented, well-separated

ellipsoidal inclusions (resulting in an isotropic effective medium) are given by [3]:

Ke = Km +
n∑
i=1

φi(Ki −Km)Asi (1)

µe = µm +
n∑
i=1

φi(µi − µm)Adi (2)

where Asi , A
d
i are the shape functions of the inclusion phase i, which correspond respectively

to the spherical and deviatoric components of the strain localization fourth-order tensor Ai.

These shape functions can be calculated using the Eshelby solution for the geometric property

of inclusions. The expressions for Asi and Adi will be provided in Section 5 and the Appendix.

The differential approximation (DA) is constructed from the differential scheme process

and the dilute solution. At each step of the procedure, we add proportionally infinitesimal

volume amounts φi∆t (∆t� 1) of randomly oriented inclusions into the already constructed
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composite of the previous step, which contains volume fractions φit of the inclusion phases

(0 < t < 1). The DA for the effective elastic moduli of the (n+1)-component matrix com-

posite is the solution Ke = K(1), µe = µ(1) of coupled differential equations:

dK

dt
=

1

1− φt

n∑
i=1

φi(Ki −K)Asi , (3)

dµ

dt
=

1

1− φt

n∑
i=1

φi(µi − µ)Adi (4)

with

K(0) = Km, µ(0) = µm, 0 ≤ t ≤ 1, φ =
n∑
i=1

φi. (5)

By eliminating the matrix phase m from equations (3, 4), the volume fraction of the

inclusions becomes φ = 1, and the multiplier 1/(1 − φt) tends towards infinity at the end

of the process. This implies that the sums
∑n

i=1 φi(Ki −K)Asi and
∑n

i=1 φi(µi − µ)Adi tend

towards zero since K and µ must be finite. This approach is known as the self-consistent

approximation (SCA) for the n-component mixture of particulates, which is the solution of

the self-consistent equations:

n∑
i=1

φi(Ki −Ke)Asi = 0, (6)

n∑
i=1

φi(µi − µe)Adi = 0. (7)

In this paper, we explore further applications of the coupled self-consistent equations (6,

7) that always obey the Hashin–Shtrikman bounds (HSB), which are the best mathematical

bounds based on the component properties and volume content of composites [3]:

HSL = PK(µmin) ≤ Ke ≤ PK(µmax) = HSU (8)

HSL = Pµ(Kmin, µmin) ≤ µe ≤ Pµ(Kmax, µmax) = HSU (9)

with

Kmin = min{Km, Ki}, Kmax = max{Km, Ki}, (10)

µmin = min{µm, µi}, µmax = max{µm, µi}, (11)
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where

PK(µ) =

(
φm

Km +K∗(µ)
+

n∑
i=1

φi
Ki +K∗(µ)

)−1

−K∗(µ), (12)

Pµ(K,µ) =

(
φm

µm + µ∗(K,µ)
+

n∑
i=1

φi
µi + µ∗(K,µ)

)−1

− µ∗(K,µ), (13)

with

K∗(µ) =
4

3
µ, µ∗(K,µ) =

9K + 8µ

6K + 12µ
µ. (14)

3. The morphological representative pattern approach with maximum packing

effect

3.1. The basic MRP self-consistent equations

In this section, we explore the basic configuration and formulas of the MRP approach.

We begin by focusing on a simple situation where a linear isotropic composite material is

composed of a unique inclusion phase of spherical form embedded in a solid matrix. For this

configuration, we consider two spherical patterns (see Figure 1 with i = 1). The first pattern

corresponds to a fictitious homogeneous sphere with the property of the matrix (Km, µm)

and a volume fraction c0. We investigate the packing effect based on the role of this fictitious

sphere. The second pattern consists of a coated sphere with a spherical core made of the

inclusion material (radius R1
i , volume fraction fi, elastic shear modulus µi, bulk modulus

Ki) and a spherical shell made of the matrix material (radius R2
i , elastic shear modulus µm,

bulk modulus Km). Let ci denote the volume fraction of the second pattern, which is given

by ci = 1− c0 (only for the two-phase composites where i = 1). We denote by φi the volume

fraction of the inclusion phase:

fi =
φi
ci

=

(
R1
i

R2
i

)3

. (15)

We assume that the two patterns are embedded in an Effective Equivalent Medium with

effective properties having elastic moduli µe andKe. By applying the self-consistent equations

(6, 7) for this configuration, the effective elastic moduli of the material are the solution of

c0(Km −Ke)As0 + cifi(Ki −Ke)A1s
i + ci(1− fi)(Km −Ke)A2s

i = 0, (16)

c0(µm − µe)Ad0 + cifi(µi − µe)A1d
i + ci(1− fi)(µm − µe)A2d

i = 0. (17)

The coupled equations (16, 17) present the 2 patterns MRP self-consistent approach for

a two-phase matrix-inclusion isotropic composite made of linear elastic isotropic materials

(noted as the 2 patterns MRP approach).
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The coefficients A are the shape functions for dilute problems that can be calculated

based on the configuration of the patterns. Specifically, A1s
i , A1d

i , A2s
i , and A2d

i represent the

spherical (superscript ”s”) and deviatoric (superscript ”d”) coefficients of the average strain

localization tensors for the spherical inclusion (superscript ”1”) and the coated spherical

matrix shell (superscript ”2”) in pattern i. The calculation of these four coefficients can be

found in Appendix A and the details are presented in [33, 38]. The coefficients As0 and Ad0

represent the spherical and deviatoric coefficients of the average strain localization tensor

for the fictitious matrix inclusion pattern in the effective infinite medium. They have the

respective expressions of A2s
i and A2d

i when fi → 0. Equation (16) is linear with respect to

Ke and can be solved to compute Ke as a function of µe, µi, µm, Ki, Km, φ = φi, and ci.

By substituting this solution into equation (17), we obtain a degree 5 polynomial in µe. This

polynomial has only one real root between µi and µm that satisfies ci ∈ [0, 1] and φ ∈ [0, ci].

= +

Matrix

Inclusion Effective Medium

E E0 E0

Matrix

c f , (i=1..n)i i c0

Ri

1

Effective Medium

Ri

2

Figure 1: The (n+ 1) patterns MRP approach.

Figure 2 shows the overall estimate of the shear elastic modulus for a material composed

of rigid spherical particles dispersed in an incompressible elastic matrix, as a function of φ

for different values of ci. Additionally, Figure 2 displays the Hashin-Shtrikman lower bound

(HSL) which coincides with both the Mori-Tanaka approach (MTA), and the self-consistent

approach (SCA). It is worth noting that the MRP estimate is always greater than the Hashin-

Shtrikman lower bound, regardless of the inclusion volume fraction or the composite pattern

fraction (the Hashin-Shtrikman upper bound is infinite in this case). Furthermore, the 2

patterns MRP approach tends towards the self-consistent approach as φ approaches ci for

ci < 0.4, and approaches infinity as φ approaches ci for ci ≥ 0.4. This result is expected

since the 2 patterns MRP approach is identical to the self-consistent approach when φ = ci.

Similarly, the classical Christensen and Lo three-phase model [19] is obtained by setting

ci = 1 in the 2 patterns MRP approach.

In the case of an isotropic porous material with an incompressible linear elastic matrix,

we set µi = Ki = 0 and Km = ∞ in equations (16, 17). The MRP approach for the

homogeneous shear modulus is plotted in Figure 3 as a function of porosity for several values
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Figure 2: Dimensionless overall elastic shear modulus of a dispersion of rigid spherical inclusions in an
isotropic incompressible matrix. The solid lines represent the 2 patterns MRP approach for ci values ranging
from 0.2 to 1.0. The Hashin-Shtrikman lower bound (HSL), which is equivalent to the Mori-Tanaka approach
(MTA), is represented by the dotted line. The self-consistent approach (SCA) is shown as a dashed curve.
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0.0
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 HSU (MTA)
 SCA
 MRP (ci= 0,3; 0,4 ... 1,0)

 f (porosity)

Figure 3: Dimensionless overall elastic shear modulus of dispersion of spherical pores in an isotropic in-
compressible matrix: The 2 patterns MRP approach for ci values ranging from 0.3 to 1.0 present as solid
lines; Hashin-Shtrikman upper bound (HSU), which is equivalent to the Mori-Tanaka approach (MTA), is
represented by the dotted line; the self-consistent approach (SCA) is shown as a dashed curve.

of ci. The Hashin-Shtrikman upper bound (HSU), with the Hashin-Shtrikman lower bound

being zero, and the self-consistent approach are also plotted in Figure 3 for comparison. The

2 patterns MRP approach is always lower than the Hashin-Shtrikman upper bound for values
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of ci ∈ [0, 1] and φ ∈ [0, ci]. As with rigid inclusion-matrix composites, the 2 patterns MRP

approach tends towards the self-consistent approach when ci is strictly less than 0.5 and

towards zero for ci ∈ [0.5, 1], for the same reasons mentioned earlier.

It is worth noting that similar trends were observed in [33] for the 2 patterns MRP ap-

proach when the two phases behave elastically. The predictions of the classical self-consistent

approach are recovered when φ equals ci (refer to Figure 3 in [33]) for completeness.

3.2. Geometric approximation

As mentioned in Section 1, the parameter ci plays a crucial role in the effectiveness of the

model. Firstly, we aim to verify the assumption proposed in previous studies [33, 35] that ci

can be calculated from the mean distance between particles. For a suspension of monodisperse

rigid particles dispersed in various matrices, the mean distance between nearest-neighbor

particles can be expressed as given in [34]:

R2
i

R1
i

= λ ≤


1 + 1

24
(1−φ)3

φ (1−1/2φ)
: φ < 0, 49,

1 + (1−0,49)3(φM−φ)
24φ(1−0,49/2)(φM−0,49)

: φ ≥ 0, 49.

(18)

Here, we note that φM represents the maximum packing density of inclusions. Equation (15)

shows that:

ci = φiλ
3

, c0 = 1− ci and fi = 1/λ
3
. (19)

By combining the geometric relationships (18, 19) with the coupled self-consistent equa-

tions (16, 17), we can derive the MRP estimate for the particulate composite. Here, the

volume fraction of patterns is defined by the mean distance between particles.

However, the trends observed in Figs. 2 and 3 suggest a simple geometric approximation

where the pattern volume fraction ci represents the maximum packing fraction of an inclusion-

matrix composite or a porous material. If we assume this, the geometric relationships of the

model can be expressed in simple forms:

ci = φM , c0 = 1− φM , fi =
φi
φM

and
R2
i

R1
i

=

(
φM

φi

)(1/3)

(20)

Figure 4 displays the difference between the two geometric approximations. The dashed

curve depicts the upper bound of the R2
i /R

1
i ratio, as determined by equation (18), while the

solid line represents the simple approximation (20). Because of the large difference between

these two geometric approximations, and the fact that the MRP method is constructed based

on assumptions about configuration and spatial distribution of fictitious patterns, evaluating

the effectiveness of this approach is a critical point of the research topic. This will be further

explicated in Section 4, which will compare the method with validated experimental results.
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By combining equations (16), (17), and (20), we obtain the coupled self-consistent for-

mulas of the 2 patterns MRP approach, denoted as MRPM, which account for the maximum

packing effect in the effective elasticity of matrix-inclusion materials with random spherical

inclusions.

(1− φM)(Km −Ke)As0 + φi(Ki −Ke)A1s
i + (φM − φi)(Km −Ke)A2s

i = 0, (21)

(1− φM)(µm − µe)Ad0 + φi(µi − µe)A1d
i + (φM − φi)(µm − µe)A2d

i = 0. (22)

0.1
1

1.5

2

2.5

 f (volume fraction of inclusion)

 equation (18)
 equation (20)

 R
2 i/R

1 i (
fM

=
0,

57
)

Figure 4: R1
i /R

2
i ratio defined by the mean distance between the particles (dashed curve) and by the simple

geometric approximation (solid line).

An advantage of the simple geometric approximation from equation (20) is that this

approximation method easily allows for extending the results from eqs. (21-22) in the case

of a multiphase material. Specifically, we consider a multiphase matrix-based composite

material consisting of n randomly distributed spherical phase materials in a matrix with a

stiffness fourth-order tensor Cm (Km, µm) and volume fraction φm. To conform to the theory

of MRP homogenization, each phase can be distinguished by either the stiffness fourth-order

tensor Ci (Ki, µi), or by the particle size characterized by the radius Ri, or by both.

Thus, this model is denoted as the (n+ 1) patterns MRPM, which includes n three-phase

patterns and one pattern of fictitious spherical inclusion of the pure matrix to account for

the maximum packing effect. At the maximum volume fraction, we have φ =
∑n

1 c
M
i = φM ,

where cMi denotes the volume fraction of phase i (i = 1...n) at the maximum volume fraction

of the mixture. Using the same strategy as that of the 2 patterns MRPM model, we fix
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ci = cMi for any value of φi, and φi/ci = φ/φM , resulting in:

ci = cMi , c0 = 1−
n∑
i

cMi = 1− φM and fi = f =
φi
cMi

=
φ

φM
. (23)

The (n+1) patterns MRPM for effective elastic properties of isotropic (n+1) multiphase

matrix-based composite material take the form:

(1− φM)(Km −Ke)As0 +
n∑
i=1

(
φi(Ki −Ke)A1s

i + (cMi − φi)(Km −Ke)A2s
i

)
= 0, (24)

(1− φM)(µm − µe)Ad0 +
n∑
i=1

(
φi(µi − µe)A1d

i + (cMi − φi)(µm − µe)A2d
i

)
= 0. (25)

It is worth noting that in equation (23), the volume fraction of phase i at the maximum

volume fraction of mixture, noted by cMi , is defined as a property of the mixture (cMi = φi

φ
φM).

Thus, when a mixture is fixed, only one value of cMi can be obtained.

4. Experimental validation

To evaluate the efficacy of the constructed MRPM approaches mentioned earlier, we

investigate existing experimental and numerical data in the literature for the effective prop-

erties of different materials, such as non-Newtonian fluids reinforced by rigid particles, porous

materials, and a Hookean solid material reinforced by solid elastic inclusions.

4.1. Monodisperse rigid particles in yield stress fluids

In this subsection, we aim to validate the model’s predictions against experimental data

for suspensions of monodisperse rigid particles dispersed in yield stress fluids obtained by

Mahaut et al. [11]. It is important to note that the materials and the elastic modulus

measurement method used in [11] were specifically designed to study the purely mechanical

contribution of an isotropic distribution of rigid monodisperse particles on the effective elastic

modulus of suspensions. Figure 5 presents the empirical relationship between the effective

shear modulus and the volume fraction of particles, where the volume fraction is close to the

maximum packing value determined experimentally at 0.57 (φM = 0.57). Further details on

the experimental procedures and results can be found in [11, 12].

The predictions of the 2 patterns MRP approach, with geometric patterns estimated

based on the mean distance between particles using equations (18), are shown in Figure 5.

We observe significant differences between the theoretical calculations and the experimental

data for high volume fractions of inclusions (φ > 0.3), indicating that the MRP approach

based on the mean distance between particles is not sufficient to accurately evaluate the
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effective elastic properties at high volume fractions of inclusions. Furthermore, the MRP

curve in Figure 5 is plotted with λ being the maximum value in (18), which provides the best

curve for the approximation. When λ decreases, this curve deviates from the experimental

data.

Fortunately, we find excellent agreement between the 2 patterns MRP approach, which is

based on the maximum packing value from equations (20) (referred to as the MRPM), and

the experimental data. Furthermore, the results are constructed entirely based on theoretical

development and intrinsic material properties, without any fitting procedures. It is important

to note that accurately predicting experimental effective values at high volume fractions for

very high-contrast component property materials remains a significant challenge for theoreti-

cal micromechanical models. Therefore, the perfect coherence between the MRPM approach

and the experimental data in Figure 5 is remarkable, demonstrating that the MRPM ap-

proach can account for some geometrical parameters and packing effects. This scheme is

best suited for the monodisperse case and can be further explored for other applications, as

presented in the following sections.
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Figure 5: Dimensionless overall shear modulus of a dispersion of monodisperse rigid spheres dispersed in
an elastic isotropic incompressible matrix as a function of the volume fraction. The solid curve represents
the 2 patterns MRPM estimate for φM = 0.57, the solid curve with a cross marker represents the MRP
with ci defined from equation (18). The black circle dot indicates the experimental data, the dotted curve
represents the Hashin-Shtrikman lower bound (HSL), and the dashed curve represents the classical self-
consistent estimate (SCA).

4.2. Polydisperse rigid particles in yield stress fluids

We now consider a more complex situation in which the composite contains randomly

distributed rigid spheres of different sizes. Vu et al. [12] described an empirical procedure
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and the results relating to the effective shear modulus for suspensions of monodisperse and

bidisperse rigid particles distributed isotropically in incompressible yield stress fluids. Bidis-

perse mixtures of polystyrene beads with diameters of 80 µm and 315 µm (particle size ratio

λ = 3.94) and bidisperse mixtures of glass beads with diameters of 40 µm and 330 µm

(λ = 8.25) were studied. The particle mixture composition is defined by the ratio between

the fine and total (fine and coarse) particle volume fraction denoted by ξ. The particles are

dispersed in a volume of the suspending yield stress fluid, and the fluid-particle mixture is

manually stirred in random directions to homogenize it and produce an isotropic material.

The experimental overall shear modulus of six polydisperse mixtures characterized respec-

tively by λ = 3.94, ξ = 0.1, 0.3 and λ = 8.25, ξ = 0.1, 0.2, 0.3, 0.5, plus one monodisperse

mixture (λ = 1) for reference, is plotted in Figure 6.

To calculate φM for these mixtures, we applied the packing model of de Larrard [39],

which provides a formula for the packing density of mixtures with sufficient accuracy for

practical application. Generally, the packing model examines a polydisperse mixture of n

classes of spherical grains, in which each class is considered as an inclusion phase defined

by the distribution function P (ξi, Ri) with ξi = φi/φ and Ri the diameter of inclusion ”i”.

Without loss of generality, the condition Ri ≥ Ri+1 ∀i is considered. Thus, the maximum

volume fraction of a given mixture is defined by

Φi =
φMi

1−
∑i−1

j=1(1− φMi + bijφMi (1− 1/φMj ))ξj −
∑n

j=i+1(1− aijφMi /φMj )ξj
, (26)

φM = min
1≤i≤n

(Φi). (27)

Here, φMi is the maximum volume fraction of the monodisperse suspension of phase ”i”,

while Φi denotes the packing density of a composite mixture when the inclusion phases ”i”

are dominant. aij (resp. bij) is a function that describes the loosening (resp. wall) effect.

In this paper, we use the formula determined by Bournonville et al. [40] for a bidisperse

mixture of particles:

aij =

(
1− (1− 1

λij
)1,13

)0,57

, λij =
Ri

Rj

when i < j (28)

bij =

(
1− (1− 1

λij
)1,79

)0,82

, λij =
Rj

Ri

when i > j (29)

Using equations (26-29) with φMi = 0.57, we compute the values of φM for six mixtures,

which are presented in Figure 6.

According to the definition in section 3.2, the material studied in this section can be

classified as a three-phase composite material, consisting of a phase matrix and two inclusion
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Figure 6: Dimensionless overall shear modulus of a dispersion of bidisperse rigid spheres in an elastic isotropic
incompressible matrix as a function of the volume fraction of inclusion. The solid curve is the 2 patterns
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Figure 7: Dimensionless comparison between the experimental data and the MRPM in logarithmic coordi-
nates. The solid line is the line y = x, the position where estimated value is equal to experimental value.
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phases of different sizes. By incorporating the values of φM into the (2+1) patterns MRPM

approach (equations (23, 24, 25)), we obtain the corresponding estimate curves, as shown

in Figure 6. To elucidate the relationship between the experimental data and the MRPM

approach, we plot a dimensionless comparison in logarithmic coordinates for all mixtures in

Figure 7. We observe that the perfect agreement is reproduced for the monodisperse case,

confirming the accuracy of the approach in this scenario. Moreover, as the particle volume

fraction φ approaches zero, the model’s prediction converges to the dilute solution (1+2.5φ),

and the packing and polydispersity effects do not significantly affect the overall properties of

such composites at low particle concentration. Conversely, when φ approaches φM (φ > 0.4),

the effective shear modulus obtained by the MRPM approach tends to infinity but does not

accurately fit the experimental data for the mixture of φM > 0.6. Vu et al. [12] have also

demonstrated that the well-known Krieger-Dougherty equation ((1− φ/φM)−2.5φM ) does not

agree with the experimental data, while the best fitting curve ((1− φ/φM)−2.5×0.57) does not

adhere to the dilute solution (known as the Einstein equation). Therefore, modeling such

materials remains a challenge for both micromechanical and empirical approaches.

It is important to note that, according to the definition in equation (23), the volume

ratio fi is equal for all matrix-inclusion patterns. This is equivalent to stating that the shape

functions are identical for all matrix-inclusion patterns. Therefore, in the case where the

elastic moduli of all inclusion phases are equal (i.e., solid rigid in this section), the (2+1)

patterns MRPM approach (equations (24-25)) is identical to the 2 patterns MRPM approach

(equations (21-22)). This could be an important factor contributing to the difference between

the predictions and the experimental results shown in Figure 6.

To improve the effectiveness of our approach, several possibilities can be considered.

Firstly, the form of equations (24-25) can be maintained while varying the volume fraction

fi or volume ci of the matrix-inclusion patterns in equation (23). However, the correlation

between these parameters and the microstructure of the composites has been debated. Alter-

natively, a two-step MRPM approach associated with the packing model can be planned. In

the first step, the overall moduli of elasticity can be calculated using the 2 patterns MRPM

model (equations (21-22)) for a two-phase material consisting of a matrix and a dominant

phase inclusion of size 1. The maximum packing of phase 1 φM1 can then be calculated using

the packing model, which accounts for the wall/loosening effect caused by the interaction

between phases 1 and 2. In the second step, the process can be repeated using the matrix

that is the effective medium calculated from the first step and phase 2. A multi-step MRPM

model can be extended to multiphase materials by multiplying the steps accordingly. Note

that this sequential model would be appropriate when there is a significant size difference

between types of particles. When the sizes are close to each other, the value of maximum

packing in each step will play a regulatory role. To ensure that these proposed approaches

appear as pure analytical approaches that reflect physical reality, strong correlations between
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the geometric parameters of the MRPM model (fi, ci...) and the associated packing model

must be established. With the current data, there is not enough information to present agree-

able results or draw reasonable conclusions. Nonetheless, in Section 5, a detailed proposal

for a more flexible and effective solution will be provided.

4.3. Porous materials

In this subsection, we aim to validate the effectiveness of the MRPM approach for mod-

eling porous media. Figure 8 shows a comparison between the MRPM approach and experi-

mental data for the dimensionless elastic modulus of lightweight concrete, as measured by Le

Roy et al. [41] and Miled et al. [42]. In this comparison, the Poisson ratio (νm) of the solid

matrix is assumed to be equal to 0.2 [43]. For φM = 0.57, there is a strong agreement between

the experimental data and the MRPM approach for porosity values up to 0.4. Differences

between the MRPM estimate at φM = 0.57 and the experimental data for higher porosity

values may be due to changes in porous space under loading. Notably, the best fit for the

maximum porosity is equal to 0.73, which is very close to the collapsed value of porosity

(0.74) reported in [41].

In the second example, Figure 9 presents a similar comparison for a ceramic material,

comparing experimental data from [44] with the numerical simulation work of Roberts et al.

[45], the upper Hashin-Shtrikman bound, and the MRPM approach. The elastic modulus

(Em) and shear modulus (µm) of the matrix are 386.1 GPa and 162.7 GPa, respectively.

The predictions of the MRPM approach at φM = 0.57 show good agreement with both

numerical and experimental data for porosity values up to 0.4. Furthermore, if we accept an

adaptive strategy that considers φM as a free parameter that can be obtained by fitting it

with experimental data, the best fit for the maximum value of porosity is 0.62, which is close

to the maximum packing of random sphere close packing (0.64).

4.4. Hookean solid composite materials

To further assess the proposed approach’s ability to predict the effective elastic properties

of two-phase reinforced composites, this subsection presents a comparison between the theo-

retical predictions and the experimental data obtained by Smith [46]. Smith investigated the

mechanical contribution of reinforced monodisperse glass spheres embedded in a solid epoxy

polymer matrix. The tested material has the following mechanical properties: the elastic

modulus and Poisson’s ratio of glass are Ei = 76 GPa and νi = 0.23, respectively, while

Em = 3.01 GPa and νm = 0.349 for the matrix phase.

Figures 10 and 11 show the comparison between the experimental data of Smith [46], the

upper and lower Hashin-Shtrikman bounds, and our MRPM model’s predictions for the elastic

modulus and shear modulus, computed using φM = 0.56, which is close to the value of 0.57

found experimentally by Mahaut et al. [11] for similar material. Furthermore, to demonstrate
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Figure 8: Dimensionless elastic modulus of lightweight concrete with a Poisson ratio νm = 0.2 as a function
of porosity. The solid and dash-dot curves represent the 2 patterns MRPM estimates for φM = 0.57 and
0.73, respectively. Open circles indicate experimental data, and the dotted curve is the Hashin-Shtrikman
upper bound (HSU).
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Figure 9: Dimensionless elastic modulus of ceramic with matrix elastic modulus Em = 386.1 GPa and matrix
shear modulus µm = 162.7 GPa as a function of porosity. The solid and dash-dot curves represent the 2
patterns MRPM estimates for φM = 0.57 and 0.62, respectively. The black dots indicate experimental data,
the white squares are numerical data, and the dotted curve is the Hashin-Shtrikman upper bound (HSU).

the effectiveness of the MRPM method, both the classical self-consistent approach (SCA) and

the generalized self-consistent approach (GSCA) proposed by Christensen and Lo [19] are also

depicted in the figures. The SCA corresponds to the MRPM model with φM = φi, while the
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HSL). For finite element modeling (FEM): the solid curve with triangle symbol is the MRPM estimate for
φM = 0.74, the black triangle represents numerical data, and the dash-dotted curve with triangle symbol is
the generalized self-consistent approximation (GSCA).
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Figure 11: Dimensionless overall shear modulus of a dispersion of monodisperse glass spheres in an elastic
isotropic epoxy polymer matrix as a function of the volume fraction of solid. For experimental data: the
solid curve is the MRPM estimate for φM = 0.56, the black circle represents experimental data, the dashed
curve is the classical self-consistent estimate (SCA), the dash-dotted curve is the generalized self-consistent
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the generalized self-consistent approximation (GSCA).
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GSCA corresponds to the MRPM model with φM = 1. These figures reveal good agreement

between the MRPM model’s predictions and the experimental data at any volume fraction

of inclusion, thus confirming the accuracy and merit of the MRPM model.

Despite the GSCA being an optimal analytical model for predicting the numerical effective

elastic moduli of microstructures, as reported in several publications [47, 48, 49, 50], we

observe a significant discrepancy between its predictions and experimental data (up to 24%

at φ = 0.5). To clarify this issue further, we present numerical results of Segurado et al. [47]

for a similar composite material, consisting of an epoxy matrix (Em = 3 GPa, νm = 0.38)

reinforced with glass spheres (Ei = 70 GPa, νi = 0.2), in Figures 10 and 11, along with the

GSCA and MRPM models using the corresponding material parameters for finite element

simulations. The value of φM considered in our analysis is 0.74, which is reported in section

3.5 of [51] when the algorithm used for generation allows for a random microstructure volume

fraction of 74%, approaching the theoretical maximum dense packing arrangement for spheres

of identical size. The correlation of the GSCA with numerical simulations is consistent with

previous studies, while the MRPM model’s perfect agreement demonstrates its effectiveness

for various experimental and numerical data.

5. The refined MRPM

The MRPM, which is distinct from other classical effective medium approximations refer-

enced in Section 2, includes a maximum volume fraction parameter that can be defined both

theoretically and experimentally. In Section 4, we demonstrate the positive effectiveness and

ability of the MRPM through good agreement between theoretical predictions and experi-

mental data obtained for several composite materials, including monodisperse rigid particles

in yield stress fluid material, Hookean solid composite materials reinforced by monodisperse

inclusions, and some types of porous materials. However, for suspensions of polydisperse

rigid particles in yield stress fluids, the MRPM approach-experimental data correlations are

weak at volume fractions close to maximum packing values. Despite φM serving as a fitting

parameter, the agreement between the MRPM estimates and the empirical data for the ef-

fective shear modulus of such suspensions is unsatisfactory. This may be due to the fact that

in polydisperse cases, the shape of the matrix becomes more tortuous, requiring adjustments

to the formula of the model to adapt to the configuration.

The literature on inclusion-matrix composite materials [52, 53, 54] demonstrates a mono-

tonic relationship between the effective elastic properties of these composites and the shape

of the inclusions. This finding motivates a simple modification of the MRPM approach that

permits the model to better predict polydisperse systems while still maintaining its ease of

use. Specifically, we propose using a spheroidal shape for the first pattern, with a rapport ra-

tio r = b/a representing the semi-axes along the principal directions. This modified approach,
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Figure 12: Illustrations of the shape of the first pattern at φ = φM .

called RMRPM, accounts for the shape parameter r. In Figure 12, we illustrate the effect

of polydispersity on the first pattern’s shape for three particle size ratios (λ = 1, 4, 8), where

λ = 1 denotes a spherical shape and λ = 4, 8 denote ellipsoidal shapes (with r decreasing as

λ increases) for the first pattern. It is necessary to discuss that the question of the physical

meaning of the parameter r is intriguing but challenging to demonstrate quantitatively. As

depicted in Figure 12 (a), for a monodisperse mixture, it is evident that the space between

particles at maximum packing is centrally symmetric. Thus, we can assume a spherical shape

(with a centrally symmetric shape as well) to represent the matrix of material within that

space, which yields excellent results (as seen in Figure 5). However, in the case of a polydis-

perse mixture, the space between particles becomes more complex and is no longer centrally

symmetric as shown in Figure 12 (b, c). Therefore, there is no reason to constrain the shape

of the fictitious pattern to be a sphere in this case. In fact, it has been demonstrated that

assuming a spherical shape leads to poor results, as depicted in Figure 6. These are the

primary qualitative justifications for establishing the RMRPM model in the section.

Next, to conform with the RMRPM approach, we express the dilute solution of the first

pattern ”0” as follows:

C0 = Ce + c0(Cm − Ce) : (I + (Cm − Ce) : (Ce)−1 : SE) (30)

where the term

A0 = (I + (Cm − Ce) : (Ce)−1 : SE) (31)

represents the strain localization fourth order tensor of an isotropic spheroidal inclusion (Cm)
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embedded in an effective infinite domain (Ce). The Eshelby tensor SE is generally given in

terms of elliptic integrals of the first and second kind. In the case of a three-dimensional

spheroidal inclusion in a local orthonormal frame (xj, j = 1..3), with semi axes a1 = a2 = a

and a3 = b whose local symmetry axis is aligned in the x3 direction, the elliptic integrals can

be evaluated analytically (see page 449 of [3]). The dilute suspension result of the pattern

”0” for randomly oriented spheroids (hence the effective medium is isotropic) can be obtained

from the isotropic averages of the tensor A0:

C0 = Ce + c0(Cm − Ce) : A0 (32)

where

A0 = 3A
s

0J + 2A
d

0K, C(α) = 3K(α)J + 2µ(α)K, (α) = {i,m, e}, (33)

J = 1/31⊗ 1 , K = I− J, (34)

and

A
s

0 =
A0iijj

3
, A

d

0 =
1

5
(A0ijij −

A0iijj

3
). (35)

Here, I and 1 denote the fourth and second-order (symmetric) identity tensors, respec-

tively. In equation (35), i and j are repeated indices from 1 to 3 using the Einstein summation

convention. The symbols A
s

0 and A
d

0 respectively denote the isotropic averages of the spher-

ical and deviatoric components of the strain localization tensor, as discussed in eqs. (1, 2).

These quantities can be computed directly from eqs. (31-35) and their explicit expressions,

derived in [55], are presented in Appendix B for use in engineering applications.

As discussed in section 4.2, the simple geometric approximation leads to equations (24-

25) and equations (21-22) being equivalent. Therefore, by applying eqs. (30-35) in (21-22),

we obtain the refined MRPM approach for the polydisperse inclusion-matrix composite (the

RMRPM approach):

(1− φM)(Km −Ke)A
s

0 + φi(Ki −Ke)A1s
i + (φM − φi)(Km −Ke)A2s

i = 0, (36)

(1− φM)(µm − µe)A
d

0 + φi(µi − µe)A1d
i + (φM − φi)(µm − µe)A2d

i = 0. (37)

Six scalar quantities A1s
i , A2s

i , A1d
i , A2d

i , A
s

0, and A
d

0, are presented in Appendix A and B.

The parameter r in A
s

0 and A
d

0 is a free parameter of the model, and it can take any value

from 0 to infinity.

To assess the effectiveness of the RMRPM approach, we first investigate the influence of

r on the effective shear modulus of the material shown in Figure 2. We consider φM = 0.64

and φ = 0.5 at r = 0 → ∞, where fictitious inclusion shapes change from a disk at r = 0
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Figure 13: Dimensionless effective elastic shear modulus of a dispersion of rigid spheres in an elastic isotropic
incompressible matrix as a function of the aspect ratio of the fictitious inclusion. The solid curve is the
RMRPM self-consistent computed for φ = 0.5, φM = 0, 64. The dotted curve is the Hashin-Shtrikman lower
bound (HSL) and the dashed line is the convergent value at r →∞.
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Figure 14: Dimensionless overall shear modulus of a dispersion of monodisperse rigid spheres in an elastic
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Figure 16: Dimensionless comparison between the experimental data and the RMRPM approach’s estimate
in logarithmic coordinates.
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(corresponding to the minimum value of effective shear modulus) through a sphere at r = 1

(maximum value) to a needle at r → ∞ (convergent value) (see Figure 13). Similar curves

can be obtained for different values of φ and φM , while inverse behavior curves (with a

maximum value at r = 0 and minimum value at r = 1) can be found for materials with

inclusion stiffness softer than the matrix, such as porous materials. These results allow us

to restrict the variation of r from 0 to 1, corresponding to the oblate shape of the fictitious

inclusion, for further applications.

To better understand the effects of r on the approach’s estimates, we present some calcu-

lations in Figure 14. We fix φM at 0.64 and plot the RMRPM approach’s curves for different

values of r (1, 0.4, 0.3, 0.2, 0.1, 0). The RMRPM tends to the MRPM at r = 1, and the

RMRPM approaches the dilute solution when the volume fraction is small for any value of r.

Differences arise in situations where the volume fraction is greater. In Figure 14, we observe

that the RMRPM tends to the HSL bound when r tends to 0, and the RMRPM covers a wide

range of effective elastic modulus values, depending on r, at volume fractions close to the

maximum packing, demonstrating the flexibility and effectiveness of the proposed approach.

Applying the proposed model for the polydisperse situation in Section 4.2, we find that

the RMRPM approach yields better prediction curves with r < 1. Figures 15 and 16 show

the comparative calculations for the different mixtures discussed above, where seven types

of material corresponding to seven values of φM (0.57, 0.60, 0.61, 0.65, 0.674, 0.675, 0.71)

are fitted by the least squares method, corresponding to seven values of r respectively (1,

0.4, 0.2, 0.11, 0.15, 0.11, 0.07). We observe a strong agreement between the experimental
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data and the RMRPM constructed based on the micromechanical framework that respects

HS bounds and the Einstein equation when φ tends to zero for all mixtures. Furthermore,

the relationship between r and φM shows a strong correlation that can be simulated by a

fitting curve (Figure 17),

r =

(
1− φMr=1

10φM − (11φMr=1 − 1)

)1/φMr=1

with φMr=1 = 0, 57. (38)

In this regard, the RMRPM appears to be more of an analytical approach than a fitting

procedure based on an analytical homogenization strategy itself, which is remarkable.

6. Conclusions

In this study, we presented a new micromechanical approach to predict the effective elas-

tic properties of composites with high particle concentrations and high-contrast component

properties. We established coupled self-consistent equations for several configurations based

on the Morphological Representative Pattern scheme, which accounts for packing and size

effects through a simple geometric approximation of a fictitious matrix pattern’s size and

shape. Our research yielded the following conclusions:

Firstly, the 2 patterns Morphological Representative Pattern approach with the packing

effect (MRPM) agreed perfectly with experimental data for suspensions of monodisperse solid

particles in various matrices with a maximum packing fraction value of 0.57, as determined

experimentally. These agreements also applied to some porous materials, where the maximum

packing fraction could be determined experimentally or play a role as a fitting parameter in

the adaptive strategy sense. In addition, a comparison has been made between experimental

results and numerical results obtained using the finite element method, as well as predictions

from the MRPM model (Figures 10 and 11). The results obtained for the epoxy/glass material

demonstrate that the MRPM model is quite flexible and effective for both experimental and

numerical data, compared to the GSCA model, which has been reported as an optimal

model in some recent studies. However, for monodisperse solid particles dispersed in an

incompressible matrix, the GSCA model is found to be more coherent with numerical data

[50]. Therefore, it is crucial to carefully consider the discrepancy between numerical and

experimental results, as well as the assessment of the method’s effectiveness proposed in the

current study, in future research.

Secondly, by combining the self-consistent equations (eqs. (36, 37)), the packing model

(eqs. (26-29)), and the correlation curve r − φM (38), we proposed an analytical model to

compute the effective shear modulus of a suspension of bidisperse particles in a yield stress

fluid up to the maximal packing points of the interactions (RMRPM). This model exhibited

good coherence with the experimental data and respected the micromechanical bounds. It
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was explicit, flexible, and readily applicable in broad engineering contexts. In cases where

there was insufficient data to determine the maximum packing fraction precisely or where

the best simulation curve was desired, the RMRPM approach may be considered as a fitting

procedure based on the analytical homogenization approach with one or two free parameters

(φM and r).

Thirdly, Chateau et al. [56] proposed an analytical formula for isotropic suspensions of

non-colloidal particles in yield stress fluids that links the overall yield stress, overall elastic

moduli, and solid volume fraction (τ e/τm =
√

(1− φ)µe/µm). By combining this formula

with our results, we propose a novel micromechanical model for both the elastic modulus

and the yield stress. The wide application potential of this material type highlights the

significance of this method.

We plan to further develop this approach to predict the elastic moduli and damage proper-

ties of very high concentrations materials, such as syntactic foam composites, where spherical

reinforced void particles are dispersed in matrix material up to 75% volume fraction [30, 57].

Furthermore, future work will focus on validating the models for both numerical and experi-

mental data for cases of anisotropic particle distribution and/or polydisperse multicomponent

matrix-inclusion composite materials.
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Appendix A. Expressions of A1s
i , A2s

i , A1d
i , A2d

i

{
A1s
i = (3Ke+4µe)(3Km+4µm)

(3Km+4µe)(3Ki+4µm)+12 y3(µe−µm)(Km−Ki)

A2s
i = (3Ke+4µe)(3Ki+4µm)

(3Km+4µe)(3Ki+4µm)+12 y3(µe−µm)(Km−Ki)

(A.1)

 A1d
i = 225

(1−νe)(1−νm)X0 (−4 (X0−1)(η1 y7−η2 (7−10 νm))+35 η2 (1−νm))
∆

A2d
i = 15

(1−νe)X0 ((X0−1)(A+60 y3(1−νm)(η1 y7−η2 (7−10 νm)))+35 (1−νm)η2 η3 (1−y3))
(1−y3)∆

(A.2)
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

y = R1
i /R

2
i = f

1/3
i

A = −4 (η3 − 2α (4− 5 νm) y3) (η1 y
7 − η2 (7− 10 νm))− 126α η2 y

3 (1− y2)
2

C = − (η3 + α (7− 5 νm) y3) (4 η1 y
7 + η2 (7 + 5 νm))− 126α η2 y

3 (1− y2)
2

X0 = µe/µm

η1 = (49− 50 νmνi)α + 35 (1 + α) (νi − 2 νm) + 70 νi − 35 νm

η2 = (7 + 5 νi) (1 + α) + 28− 40 νi

η3 = 2 (1 + α) (4− 5 νm) + 7− 5 νm

α = µi/µm − 1

∆ = (2 (4− 5 νe)C + (7− 5 νe)AX0) (X0 − 1) + ...

...525 η2 (1− νm) (2α (νm − νe) y3 + (1− νe) η3)X0

νi = (3Ki − 2µi)/(6Ki + 2µi), νm = (3Km − 2µm)/(6Km + 2µm)

νe = (3Ke − 2µe)/(6Ke + 2µe)

(A.3)

Appendix B. Expressions of A
s

0, A
d

0



A
s

0 = F1/F2

A
d

0 = 1/5
(
2 F3−1 + F4−1 + (F4F5 + F6F7− F8F9)(F2F4)−1

)
F1 = 1 + AA (3/2 f + 3/2 θ −R (3/2 f + 5/2 θ − 4/3))

F2 = 1 + AA (1 + 3/2 f + 3/2 θ − 1/2R (3 f + 5 θ)) + ...

...+B (3− 4R) + 1/2 AA (AA + 3B) (3− 4R) (f + θ −R (2 θ2 + f − θ))
F3 = 1 + AA (1− f − 3/2 θ +R (f + θ))

F4 = 1 + 1/4 AA (f + 3 θ −R (f − θ))
F5 = AA (R (f + θ − 4/3)− f) +Bθ (3− 4R)

F6 = 1 + AA (1 + f −R (f + θ)) +B (1− θ) (3− 4R)

F7 = 2 + 1/4 AA (3 f + 9 θ −R (3 f + 5 θ)) +Bθ (3− 4R)

F8 = AA (1− 2R + 1/2 f (R− 1) + 1/2 θ (5R− 3)) +B (1− θ) (3− 4R)

F9 = AA (f (R− 1)−Rθ) +Bθ (3− 4R)

AA = µm/µ
e − 1

R = (1− 2νe)/(2− 2νe)

f = r2(2− 3θ)(r2 − 1)−1

B = 1/3 (Km/K
e − µm/µe)

(B.1)

θ =

{
r
(
arccos (r)− r

√
−r2 + 1

)
(−r2 + 1)

−3/2
: 0 ≤ r ≤ 1 (oblate)

r
(
r
√
r2 − 1− arccosh (r)

)
(r2 − 1)

−3/2
: 1 ≤ r (prolate)

(B.2)
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