Hern-Shann Chen

Mark A Stadtherr

A MODIFICATION OF POWELL'S DOGLEG METHOD FOR SOLVING SYSTEMS OF NONLINEAR EQUATIONS

We present in this paper an algorithm for solving nonlinear equation systems that is a modification of Powell's dogleg method. The modifications are designed to make the technique more efficient and reliable and to reduce storage requirements. The performance of the new algorithm on a set of standard test problems demonstrates its effectiveness.

Scope-In many chemical engineering problems, including the steady state design and simulation of chemical processes, we need to solve a system f(x) = 0 of n nonlinear equations in n variables. Since the system is nonlinear, an estimate Xo of the solution x* is required to initialize the solution process.

In this paper we are particularly interested in the commonly encountered case in which a good estimate of the solution is not available and function evaluation is difficult.

When a good estimate of the solution is available, the solution of f(x) = 0 can usually be found easily. If the Jacobian f'(x) is easy to compute, a simple and efficient solution method is the Newton Raphson (N -R) method. If, however, the Jacobian is not readily available, an obvious strategy is to replace f'(x) by an approximate Jacobian B and to update B after each iteration using information about f in the direction of change. This leads to the quasi-Newton methods, of which Broyden's method (1) is particularly popular.

. All except the last are variations of the continuation method; i.e. they transform the original problem into a sequence of easier subproblems and solve the original problem by solving these subproblems. These approaches usually require solving at least some subproblems even when Xo is a very good estimate. Powell's hybrid, or dogleg, method (7) uses a much different approach; it combines the merits of the steepest descent method, which has good global convergence properties, and Broyden's method[l] which has good local convergence properties. The result is a reliable and efficient method for solving general systems of nonlinear equations. However, as pointed out by Powell, this method may become very inefficient for some problems. A comparison of some nonlinear equations solvers conducted by Cosnard [8] also showed that Powell's method failed to solve many problems. Moreover, Powell's method requires 3n2 + O(n) computer storages while some other methods require at most n2 + O(n).

In this paper we modify Powell's method to make it more efficient and reliable and also to reduce the storage requirement to n2 + O(n).

Conclusions and Significance-Numerical studies on a set of standard test problems and on a set of chemical equilibrium problems indicate that the algorithm described here is an efficient and reliable method for the solution of nonlinear equation systems. Such studies show the algorithm to offer significant improvements when compared to a recent version of Powell's dogleg method.

The algorithm provides for the automatic scaling of functions and/or variables. Alternatively the user may provide his own scaling or use no scaling at all. The automatic function scaling scheme proves to be quite effective, improving efficiency and reliability in all but a few test problems. On the other hand the automatic variable scaling scheme is less satisfactory. For very badly scaled problems we recommend that the user supply an appropriate variable scaling.

The algorithm also provides for the case in which all variables must be nonnegative. Since many chemical engineering problems fall into this category, this feature significantly extends the ap plicability of the algorithm.

BACKGROUND

f(x) = 0.

(1) In this section we briefly describe the Levenberg Marquardt (L-M) method and Powell's hybrid method. Both are methods for generating search steps that have better global convergence properties than either the N-R method or Broyden's method [l). Consider solving the system of n equations in n unknowns When a good estimate of the solution is not available and the function f(x) is highly nonlinear the N-R method and Broyden's method may fail to solve (1). A well-tested technique to promote convergence is to transform the nonlinear equation problem (1) into the nonlinear least squares problem of finding a local minimizer of *Author to whom correspondence should be addressed. S(x) = � DLfi(x) = ll D1f(x)lf = llf (x) lf (2) where D 1 is a diagonal scaling matrix with positive diagonal elements Df.i and II • � indicates the Euclidean norm. One nice feature of this minimization problem is that after a new estimate of the solution is found it can either be accepted or rejected using (2) as a guiding function.

An elegant method for numerical solution of (2) is the L-M method. The easiest way to discuss this method is by a Iinearization argument. Starting from x , if we can find a correction step p that minimizes </>(p) = S(x + p) = ll D 1f(x + p) jf = lf f(x + p) jf, then x + p would be the desired solution. Since </> is usually a nonlinear function of p, we must Iinearize f(x + p) and consider the function

Q(p) = i1 D 1(f(x) + Bp) jf, (3
)
where B is the Jacobian of f(x) at x, or an approximation thereof.

Of course, this Iinearization is not valid for all values of p, so we restrict the size of p and consider the following constrained linear least squares problem min Q(p)

(4a) p subject to (4b
)
where Dx is a diagonal scaling matrix with positive diagonal elements and A is the radius of the region within which the Jinearization can be trusted. The solution of (4) is given by [START_REF] Davidenko | On a new method of numerical solution of systems of nonlinear equations[END_REF] where the L-M parameter ,\ must satisfy one of the following conditions:

(1)

,\ = 0 and ll Dxp(O)ll � A, ,\ > 0 and l l Dxp(,\)11 = A.

These results suggest the following iteration scheme:

(6a) (6b)
(1) Given Ak > 0, find Ak ;z: 0 such that if Pt(At) is defined by [START_REF] Davidenko | On a new method of numerical solution of systems of nonlinear equations[END_REF] then either (6a) or (6b) holds. The sub script k indicates iteration number.

(2) H llD1f(xk + Pk)ll < llD1f(xk)ll then set xk+1 = Xt +Pt; otherwise set Xk+1 = xk.

(3) Determine Ak+i for the next iteration.

This algorithm is incomplete, but it contains the basic ideas of the L-M algorithm. Some important features of this algorithm are:

(1) The L-M parameter,\ in (5) cannot be determined analytically. This means we may have to solve the linear systems of equations (5) many times in each iteration.

(2) ll Dxp(,\)II is a monotonically decreasing function of .\, so a large ,\ corresponds to a small A, and vice versa.

(3) If ,\ = 0 and the B matrix is square and nonsingular then (5) becomes [START_REF] Powell | A hybrid method for nonlinear equations[END_REF] which is just the correction step determined by the N-R method if B is the Jacobian or by the quasi-Newton methods if B is an approximate Jacobian. When deter mined by the N-R method this direction is independent of the equation and variable scalings D 1 and Dx. When determined by quasi-Newton methods this direction is independent of D1 but depends on D •.

(4) For very large ,\, (5) reduces to p(.\) ,.. -r1 D :;2 BTD / f = r1 g [START_REF] Cosnard | A comparison of four methods for solving systems of nonlinear equations[END_REF] where g is the steepest descent direction of Q(p) in the scaled coordinates Dxx and is dependent on the equation and variable scalings.

(5) Many authors (e.g. More [START_REF] More | The Levenberg-Marquardt algorithm: implemen tation and theory[END_REF], Powell[IO], and Osborne[l l]), have proved that, under some mild con ditions, their versions of the L-M algorithm will globally converge to a local minimum point of S(x).

To discuss Powell's hybrid (dogleg) method for generating a search step, we first show a typical two dimensional p(A) curve (ODB) in To simplify the results, we define the following scaled quantities:

B=D,BD�1

f = D1f(x) iiN = DxpN = -8-lj g = D,g = -BT'f Jj[_ -s = D s = - P x P ll B g jj 2 g. (9)
(10) (l l)

(1 2) (13
)
Having calculated ii N and ii5 , we have completely defined the broken line OAB so we can define the scaled Powell's search step ii = Dx P as ii = iiN where and In our experience search steps calculated using this method usually match closely the steps found using Powell's method.

if A � l 'ii N ll ii = aiiN +(I -a) ii5 if llii N I >A> llii5ll (1 4) ii = ll �l l g if llii5ll � A

A MODIFICATION OF POWELL'S HYBRID METHOD

In this section we describe our modification of Powell's dogleg method. We aim to improve its efficiency and reliability, and to reduce the storage requirement of the algorithm. The main modifications made with this in mind are as follows:

A 2 -//ji51/ 2 [START_REF] Bennett | Triangular factors of modified matrices[END_REF] From Fig. 2 we can see that in the two dimensional case Powell's method is a very good approximation of the L-M method, since the curve ODB is closely approximated by the dogleg OAB. For higher dimensional cases the pk(A) curve may not lie on the pN, p 5 plane but these two methods still generate similar search steps.

Some of the advantages of the dogleg method in comparison to the L-M method have been discussed by (I) A prov1S1on for automatic scaling of equations and/or variables is included. It is well-known that a good scaling can dramatically improve the accuracy and con vergence of nonlinear equation solvers.

(2) n 2 +0(n) computer storages are used by Powell to maintain the linear independence of the search direc tions. This is done to ensure that the approximate Jaco bian Bk will eventually converge to the true Jacobian f'(x*). We find that this can be done effectively by simply re-evaluating the Jacobian by finite difference whenever the old Jacobian as updated by Broyden's method[J] is not making good progress.

(3) Both the approximate Jacobian Bk and its inverse are stored and updated in Powell's implementation, requiring 2n 2 +0(n) storages. We store and update only the (L, U) factors of Bk, thus requiring n 2 +0(n) storages. Alternatively a QR decomposition could be used, which increases the storage requirement but may improve numerical stability. We find the LU decom position to be quite satisfactory.

(4) Powell's test for nearby local minima tends to make incorrect predictions when xk is too far from the solution and f(x) is highly nonlinear. We use a different test which seems to be quite effective.

(5) We include a provision to force the iterates xk to be nonnegative if it is known a priori that the solution must be nonnegative and/or that f(x) may become undefined for negative x.

To facilitate our discussion, we first outline the modified algorithm and then describe each step in some detail.

A modified dogleg algorithm

Given an initial estimate Xo of the solution, and a function f(x), perform the following calculations:

(I) Calculate the Jacobian by forward-difference. Step I. Calculate the Jacobian by forward-difference

We use the forward-difference approximation to cal culate the Jacobian B. [START_REF] Hiebert | A comparison of software which solves sys tems of nonlinear equations[END_REF] where e; is the jth column of the identity matrix. We calculate the discretization parameter h; from h; = V(l28e) max {jx;j, 1/128 } (17

)
where e is the machine epsilon (the smallest floating point number satisfying 1.0 + e > 1.0 in the precision being used).

Step 2. Calculate the scaling factors and scale the Jacobian In Powell's original implementation NS01A[l3], no scaling was performed, i.e. D, = D, = L However, he warns that the routine may be inefficient unless the user supplies an appropriate scaling. In our modified al gorithm automatic scaling is done using the following equilibration scheme:

(1) Choose D, such that the largest absolute value in each row of the matrix D1B equals unity.

(2) Choose D, such that the largest absolute value in each column of the matrix jj = D1BD-; 1 equals unity.

In our subroutine NEQLU that implements the al gorithm, the user is also given the option of supplying his own scaling factors, or setting one or both scaling factors to the identity matrix (no scaling). As will be seen below in our discussion of numerical results, the simple func tion scaling scheme is quite effective. However, the variable scaling procedure is less satisfactory.

Step 3. Decompose the scaled Jacobian B into (L, U)

factors
The LU decomposition is described in most numerical analysis and linear algebra textbooks. In our subroutine partial pivoting is used to ensure numerical stability, i.e.

PB =LU

(18

)
where P is the product of permutation matrices, L is a unit lower triangular matrix, and U is an upper triangular matrix. It is possible that the Jacobian may become singular, or nearly singular, due to difficulty in ap proximating the Jacobian by [START_REF] Hiebert | A comparison of software which solves sys tems of nonlinear equations[END_REF], and thus some diagonal elements of U may become zero (or less than the machine epsilon). This difficulty can be satisfactorily resolved simply by setting these elements of U to some arbitrarily small number, or by setting llPNll to some arbitrarily large number, in either case forcing a search step in the steepest descent direction. Having performed the LU decomposition, we can calculate p N , g, and p 5 from (11) to (13) using O(n2) arithmetic operations.

Step 4. Calculate the initial step bound A

After the first Jacobian evaluation we set

(19)
where r is a user-provided number. After any subsequent Jacobian evaluations in Step 1, we set A equal to the A used when S(x) began to decrease for the first time.

Step 5. Calculate search step Pk and adjust if necessary We use eqns (10)-(14) to calculate the search step Pk•

To save some computations, we do not calculate g and ii5 unless lliikNll >A.

In many chemical engineering calculations, all the variables must be nonnegative to be physically feasible. However, during the solution process some components of xk +Pk may become negative. For some problems this may cause no difficulty and finally the solution may move back to the feasible region, but for other problems this may cause the algorithm to converge to an infeasible solution or to fail because f(x) becomes undefined.

In our algorithm, if some components of xk +Pk become negative and we know beforehand that all vari ables should be nonnegative, then we just set these variables equal to their absolute values and adjust Pk accordingly. This approach was proposed by Gorczynski & Hutchinson[l4] but they do not provide any numerical results. Some results are presented in the next section to demonstrate the effectiveness of this approach.

Step 6. Calculate f(x k +Pk) and check for convergence xk +Pk is accepted as a solution of f (x) = 0 if both and llii k Nll s 8 max {llD,xll, 1.0} jj /(Xk + Pk)il ::S V ll (20) are satisfied, where lJ is the user-provided number that specifies the desired accuracy of the solution.

Step 7. Check for slow convergence or nonconvergence

Powell's method may sometimes converge to a local minimum of S(x); thus it is necessary to detect when this happens. The method used by Powell to check for nearby local minima tends to make incorrect predictions, as noted by Cosnard [START_REF] Cosnard | A comparison of four methods for solving systems of nonlinear equations[END_REF]. In our experience we find the following scheme to be an effective alternative.

(I) Set i = 0 after each Jacobian evaluation in Step I.

(2) After each iteration, if S(xk +pd< 0.999 S(xk) then we decrease i by one, unless i is zero, in which case i remains zero. If S(xk +pt)� 0.999 S(xk) then i is increased by one.

(3) If i > max {10, n + 4} then we stop because con vergence is too slow.

Step 8. Check whether it is necessary to calculate a new Jacobian

We calculate a new Jacobian if both of the following conditions hold:

(1) Either j�(xk + Pklll or ilf(xk + pk) ll has been reduced by a factor of 2 since last Jacobian evaluation.

(2) i > 3 or l [i(xk + pk)ll2 > ll f (x H)l l .

il f (XH) ll 2 ll f (Xk-9) 1 1 The first condition ensures that we do not evaluate the Jacobian too often, and the second condition ensures that convergence becomes quite slow before the Jac obian is reevaluated.

Step To continue our calculation, we must adjust !Ji.. Since too small a !Ji. will make the algorithm very inefficient, and too large a !Ji. will make the algorithm unstable, usually we try to adjust !Ji. so that it is as large as possible, subject to the condition that each Jacobian provide a good prediction of the difference f(xk + pk) f(xd.

In our algorithm the step bound !Ji. is adjusted in one of three different ways.

(1) Use if Bk is a new Jacobian and S(xk + pk) 2: S(xk). Otherwise use method 2 or 3 as described below. To derive the update formula, we assume that The three constants a-c are determined from the following conditions. The method proposed by Bennett [START_REF] Bennett | Triangular factors of modified matrices[END_REF] can be used to calculate Lk+i and Uk+i from (30) to (31) and uses O(n2) arithmetic operations.

NUMERICAL RFSULTS

Recently Hiebert [START_REF] Hiebert | A comparison of software which solves sys tems of nonlinear equations[END_REF] compared eight FORTRAN codes for solving systems of nonlinear equations. Two of these codes implement Brown's method, one implements Brent's method, one implements Broyden's method, and four implement versions of Powell's hybrid method. Hiebert concludes that the hybrid codes are preferred in general and that the hybrid code HYBRD (from MIN p ACK, a library of optimization and related codes being developed at Argonne National Laboratory and currently being tested at several sites) performs best overall. In this section we compare HYBRD with our implemen tation NEQLU of the algorithm described in the last section.

In NEQLU both the variable scaling factor Dx and the function scaling factor D1 can either be set by the user or generated internally. In HYBRD no function scaling is performed but the variable scaling factor Dx can be set by the user or generated internally. Because of the different scaling options used we have considered the following six variations of the codes. The storage requirement for NEQLU is n(n +9) and for HYBRD n(3n + 21)/2. Two test problem sets used by Hiebert are used to make numerical studies. The second problem set is also used to test the effect of forcing all variables to be nonnegative.

The first problem set consists of 14 standard test problems. These problems and the corresponding "stan dard"starting points are collected in the MINPACK test routines VECFEC and INITP. The test problems in cluded in this problem set are:

In this study the convergence parameters are both set to S = 8' = V(e)""' 1.0 x 10-1• All the studies reported in this section were made on a CDC CYBER 175 computer in (1 4) Broyden's banded function. Problems 6-1 4 are variably dimensioned problems and some of them were run with different dimensions. The Chebyquad function (problem 7) has no solution when n = 8. Twenty-two problems are solved using the stan dard starting points So= x,. In order to test for robust ness the MINPACK test routine also starts many of these problems at So= lOx, and So= lOOx,.

NEQLU uses (2 0) as the convergence criterion. HYBRD uses either of the two convergence tests; the one used in the test routine is single precision (1 4 decimal digits) and under the FfN (opt= 2) compiler.

Numerical results of the first problem set with Xo = x ,, Xo = lOx,, and Xo = lOOx. are shown in Tables 1-3, res pectively. For each run we list the number of function evaluations used when lhe solution is found or when the routine failed. The function evaluation count includes function evaluations used in making Jacobian evalua tions. At the bottom of each table we list the total number of function evaluations and CPU time (seconds)

The overall results indicate that NEQLU requires considerably less computing time and fewer function evaluations than HYBRD. All six versions perform very well when good estimates of the solutions are available (Xo = x,), but when initial estimates are poor NEQLUl, NEQLU2 and HYBRD2 become unreliable. The automatic variable scaling schemes used seem to make NEQLU2 and HYBRD2 unreliable when initial estimates are very poor. On the other hand, the automatic function scaling scheme used in NEQLU3 and NEQLU4 seems very effective except for problem 8. Overall, NEQLU3 performs the best on this problem set.

It should be noted that we have also considered Hiebert's two modifications of this problem set, one in which the variables are intentionally scaled very badly and another in which the equations are intentionaly scaled very badly. On the badly scaled variables case none of the six code variations performs especially well. The automatic variable scaling in NEQLU2 provides a considerable improvement in comparison to NEQLUI, but as noted by Hiebert the automatic variable scaling in HYBRD2 does not prove useful, HYBRDl actually per forming somewhat better. In general we recommend that the user supply an appropriate scaling when the variables are very badly scaled. On badly scaled equations case, the automatic function scaling in NEQLU3 proves quite effective, failing to solve only 4 of the 51 problems.

The second problem set consists of three chemical equilibrium problems used by Hiebert [START_REF] Hiebert | A comparison of software which solves sys tems of nonlinear equations[END_REF]. Two common features of these problems are that they are very badly scaled, and that all the variables must be nonnegative to be physically feasible. Each problem of this set was run several times using different starting points (see Hiebert). The results of the runs with and without use of the option forcing all variables to be nonnegative are shown in Table 5. From these results we can see that the simple procedure used to force all the variables to be non negative after each iteration does not necessarily im prove efficiency, but it does extend the applicability of the algorithm by making possible the solution of a wider class of problems. Again the automatic function scaling scheme proves effective and the automatic variable scaling scheme does not. On the basis of the results on these two problem sets, NEQLU3 appears to be the preferred implementation of this algorithm. However, if the vari ables are known to be very badly scaled, NEQLU2 may be preferred in lieu of a user-supplied scaling.

Fig. 1 .Fig

 1 Fig. I. Typical two dimensional p(A) curve in L-M method.

 where a is determined from lliill = A. Straightforward algebra gives the solution as Westerberg & Director[l2). They also describe another alternative in which the search step P k is found by solving the two-dimensional L-M problem:

Fig. 2 .

 2 Fig. 2. Typical dogleg approximation to p(A) curve.

(2)(4)(6)

 246 Calculate the scaling factors, D, and D,, and scale the Jacobian. (3) Decompose the scaled Jacobian into (L, U) fac tors. Calculate the initial step bound A. (5) Calculate the search step Pk and adjust Pk if necessary. Calculate f(xk +pd and check for convergence. (7) Check for slow convergence or nonconvergence. (8) If it is necessary to calculate a fresh Jacobian return to Step I.

(9)

 9 Define Xk+ 1 and update the step bound A. (10) Update the (L, U) factors and return to Step 5.

9 .

 9 Define xk+1 and update !Ji. Having calculated S(xk +Pk) we define Xk+1 as follows to maintain the monotonical decrease of the function S(x).

= 2 [

 2 <1>(0) = S(xk) = c <1>(1) = S(x� +Pk)= a + b + c (23) <1>'(0) = 2 f T(xk)BkPk =b. The A that minimizes (22) is given by b -<1>'(0) A = -2a <1>(1)-<1>(0)-<1>'(0)]' <24) Having calculated A, we calculate the new step bound from !Ji.= llPkll max {0.1, A}. (25) If ll f (xk + Pk)ll > 1.5 ll f (xk) ll then we return to Step 5 after updating !Ji., otherwise we go to Step 10. (2) Use if dm < 0, where dm = S(xk)-S(xk + pd-0. l{S(xk)-lliilf} ii = f(xd +Bk Pk• Note that dm is a measure of the accuracy of the linearization around xk. In this case the linearization is poor so we reduce the step bound to !Ji.= 0.5 llPkll • (3) Use if dm 2: 0. In this case !Ji. is either maintained or increased. We use Powell's updating formula where 2 1 dm A = + + (2 + d)112 Up Up mUs (26) (27) We define the new step bound as follows: (i) Set T = 1 whenever the Jacobian is evaluated in Step 1, or whenever the step bound is reduced; (ii) After calculating A from (26) find µ = min {2, A, T}; (iii) Reset r =A/µ ; (iv) Set !Ji.= µ llPkll• Step 10. Update the (L, U) factors The scaled Jacobian is updated by Broyden's update formula (28) where (29) Substituting (18) into (28) and letting Pk+1 =Pk = P, we get the updating formula for the (L, U) factors.

 HYBRDI: HYBRD with no scaling (Dx =I). HYBRD2: HYBRD with implicit variable scaling. NEQLUI: NEQLU with no scaling (D1 = Dx = I). NEQLU2: NEQLU with implicit variable scaling (D1 =I). NEQLU3: NEQLU with implicit function scaling (Dx =I).NEQLU4: NEQLU with implicit variable and func tion scaling.

5) 9)

 59 Rosenbrock's function, n = 2. (2) Powell's singular function, n = 4. (3) Powell's badly scaled function, n = 2. (4) Wood's function, n = 4. (Hellical valley function, n = 3. (6) Watson's function. (7) Chebyquad function. (8) Brown's almost linear function. (Discrete boundary value function. (1 0) Discrete integral equation function. (l l) Trigonometric function. (1 2) Variably dimensioned function. (1 3) Broyden's tridiagonal function.

•

 The subroutine failed to solve this problem.

NOTATIONB

 approximate Jacobian matrix D1 function scaling matrix D, variable scaling matrix dm desired reduction of S(x) ei jth column of the identity matrix f function values f' Jacobian matrix g steepest descent direction h discretization parameters I identity matrix L unit lower triangular factor of B n number of equations and variables P permutation matrix p correction step Q predicted sum of squared function values q predicted function values r parameter used to determine !::i. S sum of squared function values U upper triangular factor of B x independent variables Greek s ymbo/s a correction step parameter l::i. radius of trust region (step bound) 8, 8' convergence parameter e machine epsilon A Levenberg-Marquardt parameter or step bound adjust ment parameter µ, steepest descent step size <I> sum of squared function values Superscript -scaled quantities N related to quasi-Newton method S related to steepest descent method T transpose Subscripts j vector component number k iteration number

Table 2 .

 2 Results on first problem set with Xo = !Ox,

Table I .

 I Results

	NP ROB	N	NEQLU1 NEQLU2 NEQLU3 NEQLU4 HYBRD1 HYBRD2
	1	2	31	45	7	6	23	26
	2	4	43	49	47	47	121•	89•
	3	2	104	90	40	32	181	177
	4	4	69	62	97	85	95	89
	5	3	34	37	20	20	27	21
	6	6	97	50	89	93	95	100
	6	9	152	65	167	170	132	48
	7	5	18	17	17	17	16	16
	7	6	31	32	21	21	24	29
	7	7	25	24	19	19	21	21
	7	8+	54+	30+	47+	47+	120+	116+
	7	9	38	40	26	26	43	41
	8	10	22	24	26	26	31	34
	8	30	48	45	98	98	115	111
	8	40	63	106	152	152	92	190
	9	10	15	15	15	15	15	15
	10	1	6	6	6	6	7	7
	10	10	15	15	15	15	15	15
	11	10	34	93	97	97	138•	160•
	12	10	31	31	31	31	32	33
	13	10	20	20	20	20	21	21
	14	10	29	29	29	29	30	30
	total (1)						
	fUnction						
	evaluation	936	876	1039	1025	1273	1300
	total CPU						
	seconds(1)	1 .22	1.12	1.65	1.65	2. 13	2.49
	nUJDber of						
	failures(2)	0	0	0	0		
	Notatioos used in Table 1.			

on first problem set with 1o = x,. Problem numbers (NPROB) correspond to the list of test problems in the text (1) Problem 2 was excluded. (2) Problem 2 and problem 7 with n=8 were excluded. • The subroutine failed to solve this problem • + This problem has no solution.

Table 3 .

 3 Results on first problem set with 1o"' IOOx,

	NP ROB	N	NEQLU1 NEQLU2 NEQLU3
	1	2	29•	8	14
	2	4	56	57	55
	4	4	230•	294•	131
	5	3	28	18•	31
	7	5	223•	76•	114
	7	6	191•	18•	126
	7	7	200•	73•	113
	8	10	156•	83•	112
	9	10	43	44	42
	10	1	16	16	16
	10	10	41	39	41
	11	10	50•	45•	128•
	12	10	79	74	101
	13	10	41	41	41
	14	10	55	55	55
	total (1)			
	function			
	�valuation 1382	884	1065
	total CPU			
	seconds(1)	1. 18	0.73	0.93
	number of			
	failures(1)			
	Notations used in		

Table 3 ,

 3 (1) Problem 2 was excluded.

	NEQLU4 HYBRD1	HYBRD2
	7	10	10
	55	110•	110•
	429•	5114	181•
	90	40	38•
	114	426	670
	131	230	67•
	114	124•	25•
	109	101	91
	42	52	50
	16	16	16
	38	38	52
	94•	86	87
	83	89	76
	41	42	42
	55	56	56
	1363	1854	1461
	1 .19	1.85	1.57
	2		4
	• The subroutine failed to solve this problem.	

Table 4 .

 4 Summary of results on first problem set used. The results of problem 2 were not included in these totals because the solution of this problem is x = 0 and the convergence test (32) was never satisfied although very good solutions were found. A summary of the results for all test runs is shown in Table4.

		NEQLU1 NEQLU2 NEQLU3 NEQLU4 HYBRD1 HYBRD2
	total (1)						
	function evaluation 4089	2611	3219	3517	5014	4281
	total CPU						
	seconds(1)	4 .24	2.68	3.85	4 .06	6.63	6.16
	number of						
	failures(2)	7	11	2			
	Notations used in Table 4.			
	(1) Problem 2 was excluded.			
	(2) Problem 2 and problem 7 with n=8 were excludetl.

Table 5 .

 5 Results on second problem set

	llPROB	N	NEQLU1-NEQLU1+ NEQLU2-NEQLU2+ NEQLU3-NEQLU3+ NEQLU4-NEQLU4+
	15 15 16 16 15 16 17 17 17 17 17 17	2 2 6 6 6 6 10 10 10 10 10 10	10• 1141 181 481 631 621 41 16 A A A A	11• 1131 171 113• 541 46• 45 17 43 39 144 80	10• 311 I 18• 5371 432• 5431 30 16 A A A A	11• 3111 171 85• 941 731 30 16 42 40 280 941	101 67 181 69 18 75 40 A A A A	111 67 171 114 36 84 41 46 45 41 117	10• 54 18• 69 18 75 40 A A A A A	111 54 17• 117 36 84 41 33 45 41 127 156

A 94 Notations used in Table

5

.

Variables are allowed to be negative. + Negative variables are reset to be positive. 1

This version failed on this problem. A Job aborted because the function became undefined.

Acknowledgement-The authors thank Prof. Shih-Ping Han for his suggestions and for the discussions held in the completion of this study.