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Abstract

In this article we present a visual gyroscope based on
equirectangular panoramas. We propose a new pipeline
where we take advantage of combining three different meth-
ods to obtain a robust and accurate estimation of the atti-
tude of the camera. We quantitatively and qualitatively val-
idate our method on two image sequences taken with a 360◦

dual-fisheye camera mounted on different aerial vehicles.

1. Introduction

Autonomous navigation of Unmanned Aerial Vehicles
(UAV) require the knowledge of pose and orientation.
Among the different sensors we can use, cameras provide
information of the surroundings of the UAV which can be
used for several applications, such as object detection [8],
while being a lightweight sensor. One of these applications
is the use of the camera as a Visual Gyroscope (VG), esti-
mating the 3D orientation of the camera for a given image
with respect to a reference.

VG algorithms consider two kinds of information, di-
rect or indirect. Indirect VG (IVG) leverage image features,
either handcrafted, as patches around image points [6], or
learned, e.g. estimating first the optical flow and then the
3D orientation of the camera [9]. Instead, Direct VG (DVG)
consider pixel brightness of the whole image as input of a
3D rotation optimization method [1]. Usually, this pixel in-
formation is transformed into different domains before esti-
mating the orientation, such as spherical Fourier transform
[10] or Mixture of photometric potentials [3].

Previous methods present high accuracy on 3D orien-
tation estimation on narrow domains [1], or the possibil-
ity of a wide estimation domain but with lower accuracy
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[10]. In this paper, we propose a hybrid pipeline combin-
ing three different methods to obtain a robust VG within a
very large estimation domain and with high orientation ac-
curacy. We leverage the strong points of each method, over-
coming the weak points and limitations of each of them.
In the next section we present the different methods that
form our pipeline while in Sec. 3 we evaluate and com-
pare our pipeline against state-of-the-art methods on two
360 equirectangular panoramas data-sets taken from UAV.

2. Visual Gyroscope
Our proposed pipeline1 is composed by three different

methods that act sequentially to obtain the Roll-Pitch-Yaw
angles of the camera in outdoor environments (see Fig. 1).
The first block is a IVG composed by a convolutional neural
network called HoLiNet (Horizon Line Network) where we
obtain a first approximation of Roll-Pitch angles. The sec-
ond block is a DVG algorithm that uses MPP (Mixture of
Photometric Potentials) [3] to retrieve the Yaw angle tak-
ing as initial solution the orientation from HoLiNet. The
third and final block is second DVG algorithm defined as
PVG (Photometric Visual Gyroscope) where we refine the
previous solutions.

2.1. HoLiNet

Our proposed HoLiNet follows an encoder-decoder
structure taking as input information an equirectangular
panorama in any orientation and providing two heat-maps,
one for the horizon line and another for the vertical vanish-
ing points (see Fig. 1).

For the encoder and feature extractor we use the convo-
lutional part of ResNet-50 [7]. We use the available pre-
trained weights, leveraging the performance of this network
for feature extraction. In the decoder we propose a set of
convolutional layers followed by up-scaling layers and skip
connections from the encoder part. The output of the de-
coder is a two-channel heat-map with the horizon line and

1Code is available in https://github.com/Sbrunoberenguel/HoLiNet
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Figure 1: Overview of our proposed pipeline. The input equirectangular panorama first goes through HoLiNet, obtaining a
first approximation of Roll-Pitch angles with respect to the horizontal plane. The output is feed to the MPP, obtaining an
approximation of the Yaw angle with respect to a reference image. Finally, the PVG refines the three angles such that the
rotation compensated image is closer to the reference one.

vanishing points prediction. To adapt the neural network to
the distortion, we use in all the convolutional layers con-
volutions adapted to the equirectangular projection. These
convolutions, EquiConvs, were first presented in [4] and, in
this work, are re-implemented pre-computing the kernel’s
distortion for a faster inference time (i.e. the original imple-
mentation runs at 0.2fps while ours can run at 10fps).

The network is trained in a collection of gravity-oriented
equirectangular panoramas from indoor and outdoor envi-
ronments [5]. We apply rotations to these panoramas and
generate the ground truth labelling according to these ro-
tations. We also perform several data augmentations such
as: horizontal flip, color permutation, color jitter and ran-
dom cropping. At training, we obtain intermediate repre-
sentations at different resolutions from the decoder of the
network. These intermediate representations allow to eval-
uate the network on early stages, making the intermediate
features of the network aim for the final task, improving the
overall performance of the network.

From the output information of the network, we compute
the most probable horizon plane, obtaining a first approxi-
mation of the camera’s Roll-Pitch angles. To compute the
horizon plane, we use the information of both outputs of
the network. First, we use the vanishing point heat-map
to make a rough estimation of the vertical direction. We
project the vanishing points heat-map in the unit sphere and
compute the average vertical direction. This is a rough es-
timation since the output is really sparse and can be noisy.
Then, we project the horizon line heat-map into the unit
sphere. Using a random sample consensus algorithm, we
compute the 3D plane that better fits the horizon line heat-
map in the unit sphere. Assuming that both network’s out-
puts are coherent with each other, the first estimation of the
vertical direction and the normal vector of the horizon plane
should be close. So, to maintain this coherence, in the itera-
tive process we discard any possible solution which differs
from the first estimation more than a threshold angle (i.e.
we assume a threshold of ±30◦).

Once obtained the plane that better fits the output of the

network, we can compute the Roll and Pitch angles of the
camera (Yaw is the rotation around the plane’s normal vec-
tor, which cannot be computed with this method). The main
advantage of this method is that we can obtain 2 angles from
a 360◦ domain. The main limitation is the angle precision,
which is limited by the uncertainty of the output of the net-
work, and the impossibility to obtain the Yaw angle with the
proposed representation.

2.2. MPP-based visual gyroscope

The MPP is a full spherical image representation of im-
age brightness as a mixture of Gaussians. The MPP is struc-
tured as an icosahedron subdivided n ∈ N times, of which
each vertex is the center of a Gaussian function, weighted
by the normalized intensity of the pixel where it projects in
the captured image. Thus, there are as many Gaussians as
vertices of the sphere but all Gaussians of the MPP share
the same variance λg ∈ {R > 0} that acts as a smoothing
parameter. In the seminal work introducing the MPP-based
visual gyroscope [3], captured dual-fisheye images are first
transformed as MPPs: G∗ for a reference image, G for a
request image. Thus, λg acts as a smoothing parameter of
the cost function, that is the sum of squared differences be-
tween G and G∗, to be minimized by optimizing the three
angles of the 3D rotation that aligns the best both MPPs
with a Newton-like algorithm.

In this work, the differences w.r.t. [3] are motivated by
the HoLiNet-MPP-PVG pipeline we propose (Fig. 1):

• input images are equirectangular instead of dual-
fisheye for both the sake of uniformity with respect to
HoLiNet and more generality since the equirectangu-
lar format is much more common than dual-fisheye.

• the single Yaw angle is estimated since not only Ho-
LiNet already outputs estimates of Roll and Pitch an-
gles that can serve as good initial guesses for PVG (see
Sec. 2.3) but it reduces a little the computation load.

The main advantage of the MPP-based visual gyroscope
is its very large convergence domain, observed as being
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both globally convergent indoor for a single pure rotation
angle and almost as large for 3D rotations, even in the pres-
ence of translations, in [3]. However, its main drawback
is the required trade-off between processing time and es-
timation accuracy: to reach a processing rate of 3 images
per second, the icosahedron maximum subdivision level is
n = 3 and the average estimation error was reported about
3 degrees with λg = 0.325. Thus, PVG is required as a final
step to improve the accuracy of estimations.

2.3. Photometric Visual Gyroscope (PVG)

To improve both the processing time and the accu-
racy with respect to the MPP-based visual gyroscope, the
PVG [1] uses a spherical image representation directly from
image brightness without a transformation to a MPP. The
PVG is built on the same principle as the MPP-based vi-
sual gyroscope and also relies on the intensities of the image
mapped to a subdivided icosahedron. However, instead of
computing a MPP, the direct pixel brightness are assigned
to each vertices of the icosahedron, allowing a much faster
computation of the Jacobians in the Newton-like optimiza-
tion of the orientations. When mapping full resolution im-
ages (typically 1280× 720) to the subdivided icosahedron,
a higher precision in the orientation estimation can be ob-
tained. The spherical gradient is computed in the image
plane (as highlighted in the PVG thumbnail of Fig. 1) and
not with neighbors vertices as in the MPP-based gyroscope.

The main difference of this work with respect to the
source work [1] is that equirectangular input images are
used, instead of dual-fisheye images, allowing a consistency
of input images all along the orientation estimation pipeline.

PVG has shown estimation errors below 0.1◦ in the sin-
gle axis rotation case, both pure and with translations [1].
To reach such a precision, the icosahedron is subdivided
n = 5 times and the captured image at full resolution is used
for a computation time 2%the one of the MPP-based gyro-
scope. But inversely to the MPP-based gyroscope, the low
processing load and the high accuracy come at the price of
a narrow convergence domain that was observed at ±12.5◦

for the single rotation angle case. Hence, PVG needs good
initial guesses that HoLiNet (Roll, Pitch) and the MPP-
based visual gyroscope (Yaw) bring.

3. Experiments
3.1. Experimental setup

We evaluate our pipeline with two datasets. The first is
the Sequence 8 of PanoraMIS [2] that was taken with a Ri-
coh Theta S mounted on a Parrot Disco fixed-wing drone.
Since this sequence is captured as raw dual-fisheye, we first
transform the images to the equirectangular format using
the software shared with the dataset2. With this sequence

2http://github.com/PerceptionRobotique/dualfisheye2equi

of 12000+ images, we make a qualitative evaluation by
compensating the estimated rotations with respect to image
8890 in order to compare the success rate with [3].

To allow the quantitative evaluation, we introduce a
new dataset of 2700+ equirectangular images, SVMIS+3.
SVMIS+ is acquired with a Ricoh Theta S too but embed-
ded on a Matrice 600 Pro hexarotor manually flown in a
countryside area during 4′36”. The use of the hexarotor has
two interests over the Disco drone. First, it allows to em-
bed an extra computer connected to the onboard electronics
in order to save the orientation information of the drone’s
Inertial Measurement Unit synchronously with the image
capture. Second, the different type of motion of a hexaro-
tor compared to a fixed-wing drone provides an additional
variety in the evaluation, together with different meteoro-
logical conditions (sunny versus cloudy). With this dataset,
in addition to the quantitative evaluation, we also perform
a qualitative evaluation by compensating the estimated ro-
tations of all the images with respect to a selected frame.
Frame 1074 is selected such that the image is roughly at
the center of the flown area, with attitude angles near zero
(horizon line near straight and horizontal in the image).

3.2. Results

With PanoraMIS’ Sequence 8, we evaluate qualitatively
the success rate of the computed orientations by studying
the misalignment of stabilized images with respect to the
reference image. Over the 12000+ images, 564 were mis-
aligned. This represents a success rate of 95.3%, thus out-
performing previously shown results of 88% [3]. The sta-
bilization results with the whole first dataset are shared as a
video4 highlighting each intermediate result of our pipeline
for orientation estimation.

With the synchronized and reliable ground truth pro-
vided with SVMIS+, a quantitative evaluation of the
pipeline is put in practice. HoLiNet is only evaluated over
2 angles. To avoid ambiguities in the evaluation of the
two angles, we compute the predicted normal vector, n,
of the horizon plane and compare with the ground truth
measure, n̂, computing the angle between both vectors as:
arccos (n · n̂). The quantitative results are shown in Fig. 2,
obtaining a mean error of 3.04◦.

The evaluation for the 3 angles is made computing the
angle difference between the angle-axis rotation of ground
truth with respect to the reference image, Rgt, and our esti-
mation, Rpred, as: arccos

(
(trace(Rgt ·Rpred

T )− 1)/2
)
.

The results are presented in Fig. 3, obtaining a mean error
of 17.6◦ for HoLiNet + MPP, 16.7◦ for the whole pipeline
over the whole sequence, and 4.6◦ for 900 images (33% of
SVMIS+) around the reference image (Fig.3b), correspond-
ing to a difference of altitude with respect to the reference

3http://mis.u-picardie.fr/∼g-caron/pub/data/SVMISplus er pano.zip
4http://mis.u-picardie.fr/∼g-caron/videos/2023OmniCV svmis.mp4
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Figure 2: Quantitative results of HoLiNet for 2angles.
Dashed lines show mean error.

(a)

(b)

Figure 3: a) Quantitative results of HoLiNet+MPP and
HoLiNet+MPP+PVG in the SVMIS+ dataset. b) (Zoom)
Quantitative results of MPP and PVG around the reference
image. Vertical green line defines the reference image and
horizontal dashed lines show mean error of each method.

image lower than 10 m. We also present a video5 of quali-
tative results with SVMIS+.

4. Conclusions
We have presented a novel pipeline that leverages the

strong points of three methods, HoLiNet using neural net-

5http://mis.u-picardie.fr/∼g-caron/videos/2023OmniCV svmis p.mp4

works and two using direct alignment, for panoramic im-
age rotation compensation in outdoor environments. The
quantitative results on two datasets of airborne panoramic
images show HoLiNet is robust to any translation and im-
proves the visual alignment success rate. But since the di-
rect alignment methods following HoLiNet in the pipeline
assume pure rotation between the reference and current im-
ages, the presence of a large translation decreases the ro-
tation estimation accuracy, as shown with the newly intro-
duced public dataset SVMIS+. However, the rotation esti-
mation appears accurate within a reasonable translation to
the reference image that further study with SVMIS+ will
allow to quantify during future works.
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