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NON-ASYMPTOTIC ANALYSIS OF STOCHASTIC

APPROXIMATION ALGORITHMS FOR STREAMING DATA∗

Antoine Godichon-Baggioni1, Nicklas Werge1,**

and Olivier Wintenberger1,2

Abstract. We introduce a streaming framework for analyzing stochastic approximation/optimization
problems. This streaming framework is analogous to solving optimization problems using time-varying
mini-batches that arrive sequentially. We provide non-asymptotic convergence rates of various gradient-
based algorithms; this includes the famous Stochastic Gradient (SG) descent (a.k.a. Robbins-Monro
algorithm), mini-batch SG and time-varying mini-batch SG algorithms, as well as their iterated averages
(a.k.a. Polyak-Ruppert averaging). We show (i) how to accelerate convergence by choosing the learning
rate according to the time-varying mini-batches, (ii) that Polyak-Ruppert averaging achieves optimal
convergence in terms of attaining the Cramer-Rao lower bound, and (iii) how time-varying mini-batches
together with Polyak-Ruppert averaging can provide variance reduction and accelerate convergence
simultaneously, which is advantageous for many learning problems, such as online, sequential, and
large-scale learning. We further demonstrate these favorable effects for various time-varying mini-
batches.
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1. Introduction

Machine learning-based intelligent systems are becoming more and more widespread in modern society
[18, 24]. A crucial component of machine learning is optimization, which, in this context, involves estimating
parameters for the intelligent systems to make decisions about future data. A growing challenge is that these
future data will arrive in an endless stream, for example through sensors from real-time measurement of weather,
traffic and e-commerce, to name a few; we call these streaming data. Such streaming data arrives sequentially
in time-varying mini-batches. This places wide demands on computational efficiency and the robustness of the
underlying optimization algorithms, which must be updated sequentially as more data becomes available.

Stochastic approximation/optimization algorithms have proven effective in handling large amounts of data
and perform well across many fields ranging from smooth and strongly convex problems to complex non-convex
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ones; [4] reviews such algorithms for large-scale problems in machine learning. Among these, the most well-
known is probably the Stochastic Gradient (SG) descent introduced in [33], which forms the basis of many
optimization algorithms used in machine learning [22, 23, 30, 36]. In a nutshell, these SG-based algorithms
minimize the objective (a.k.a. loss or risk) of a model by iteratively updating the model parameters using
stochastic approximations of its gradient. Traditionally, these gradients are processed individually or in (fixed)
mini-batches taken from a (fixed) dataset. However, in our streaming framework, these gradients must be
computed as a sequential stream of time-varying mini-batches.

1.1. Contributions

The objective of this paper is to solve stochastic approximation/optimization problems in a streaming
framework. Our main theoretical contribution is the non-asymptotic analysis of SG-based algorithms in this
streaming framework, extending the work of [1]. This means that we investigate everything from the classical
SG descent to time-varying mini-batch SG-based algorithms, as well as their Polyak-Ruppert extensions. Our
results show how to accelerate convergence by choosing the learning rate according to the time-varying mini-
batches. In addition, we show that Polyak-Ruppert averaging [32, 34] achieves optimal convergence in terms of
achieving the Cramer-Rao lower bound in this streaming framework. In particular, we show how time-varying
mini-batches together with Polyak-Ruppert averaging can provide variance reduction and accelerate convergence
simultaneously, without jeopardizing the computational complexity. These theoretical findings are demonstrated
for various streaming settings of time-varying mini-batches.

1.2. Organization

Section 2 presents the streaming framework, in which we will analyze the stochastic algorithms. In Section 3,
we introduce our stochastic streaming-gradient algorithms, their projected versions and Polyak-Ruppert exten-
sions. The main results, namely the non-asymptotic convergence analysis, are presented in Section 4. These
results are illustrated in Section 5 for various time-varying mini-batches. In Section 6, we provide some concluding
remarks with related future perspectives.

2. Problem formulation

Our objective is to solve stochastic approximation/optimization problems in a streaming framework, where
data arrives sequentially in time-varying mini-batches; we consider problems on the form

min
θ∈Rd
{F (θ) := E[f(θ)]}. (2.1)

We will refer to F : Rd → R as the objective function, but in the literature, F is also known as the expected loss
(and risk); See for instance [4]. Let θ∗ denote the global minimum of F , and assume that θ∗ ∈ Θ, where Θ is a
closed convex set in Rd. Typical convergence results measure how quickly some estimate θt approaches θ∗ (or the
function value L(θt) approaches F (θ∗)). In this paper we are interested in bounding the quantity E[‖θt − θ∗‖2].
As in [1, 16], we make the analysis more convenient through convexity and smoothness assumptions on F in
(2.1).1 The following assumptions are frequently referenced.

Assumption 2.1 (µ-quasi-strong convex [19, 28]). The objective function F : Rd → R is differentiable with
∇θF (θ∗) = 0 and there exists a constant µ > 0 such that ∀θ ∈ Θ,

F (θ∗) ≥ F (θ) + 〈∇θF (θ), θ∗ − θ〉+
µ

2
‖θ∗ − θ‖2. (2.2)

1Milder degrees of convexity have been investigated; [13] studied SG algorithms under local strongly convexity, [19] studied SG
algorithms under the Polyak- Lojasiewicz condition [25, 31], and [10] studied the Ruppert-Polyak averaging estimate under some
Kurdyka- Lojasiewicz-type condition [21, 25].
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Assumption 2.2 (C∇-Lipschitz smoothness). The function ∇θF is C∇-Lipschitz continuous around θ∗, i.e.,
there exists C∇ > 0 such that ∀θ ∈ Θ,

‖∇θF (θ)−∇θF (θ∗)‖ ≤ C∇‖θ − θ∗‖. (2.3)

2.1. Streaming framework and notation

Let each (ft(θ)) constitute a sequence of independent differentiable random functions (possibly non-convex)
and let their gradients be unbiased estimates of ∇θF (θ), see e.g. [30] for definitions and properties of such
functions. The shorthand notation of

(ft(θ)) represents the sequence of time-varying mini-batches parameterized by θ.

We say that each ft consist of nt ∈ N data points, which we denote by the set {ft,1, . . . , ft,nt}. For example, for
a class of models {hθ}θ∈Θ parameterized by θ, a loss function l, and a regularizer Ω, then ft,i(θ) can be seen as
the composition:

ft,i(θ) = l(yt,i, hθ(xt,i)) + Ω(θ). (2.4)

where {(xt,i, yt,i)}nti=1 is a time-varying mini-batch of i.i.d. input-output data points with generic element (x, y) ∈
X × Y. The associated objective function from (2.1) thus corresponds to having F (θ) = E[f(θ)] with f(θ) =
l(y, hθ(x)) + Ω(θ).

Our streaming framework includes many machine learning problems, from classification, and regression to
ranking; this includes stochastic approximation (Robbins-Monro setting [33]), learning from i.i.d. data with
linear, logistic, softmax, quantile and general ridge regression, and p-means and geometric median under regu-
larity conditions [8, 18, 23, 30, 37, 38]. More specifically, (2.4) could be the l2-regularized least squares regression
model, f(θ) = (〈x, θ〉 − y) + λ

2 ‖θ‖
2 with X = Rd and Y = R, or the l2-regularized logistic regression for binary

classification, f(θ) = log(1+exp(−y〈x, θ〉))+ λ
2 ‖θ‖

2 with X = Rd and Y = {−1, 1}; here, we used hθ(x) = 〈x, θ〉.

3. Stochastic streaming gradient algorithms

SG-based algorithms, which dates back to the seminal work of [33], have become the predominant optimization
algorithm for solving these stochastic approximation/optimization problems. To solve problem (2.1) in our
streaming framework, we introduce the Stochastic Streaming Gradient (SSG) algorithm, defined as the recursion

(SSG) θt =θt−1 −
γt
nt

nt∑
i=1

∇θft,i(θt−1), θ0 ∈ Rd, (3.1)

where (γt) is the learning rate satisfying
∑t
i=1 γi = ∞ and

∑t
i=1 γ

2
i < ∞ for t → ∞. This SSG algorithm

sequentially processes the time-varying mini-batches. Note that if for all t ≥ 1, nt = 1, then the SSG algorithm
is an online version of the well-known SG descent.

In many machine learning models, there may be restrictions on the parameter space of θ. We embrace this
by defining a projected version of SSG, given as

(PSSG) θt =PΘ

(
θt−1 −

γt
nt

nt∑
i=1

∇θft,i (θt−1)

)
, θ0 ∈ Θ, (3.2)

where PΘ denotes the Euclidean projection onto the closed convex set Θ in Rd, i.e., PΘ(θ) = arg minθ′∈Θ‖θ −
θ′‖2. It is worth noting that SG-based algorithms are not gradient descent in the sense that the objective function
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values often increase, but only decrease on average; examples of this are illustrated in Section 5. Therefore, it
makes intuitive sense to use sets of stochastic gradient {∇θft,i}nti=1 in each iteration, as it naturally reduces the
variance and makes it easier to adjust the learning rate (γt), which (on average) improves the convergence.

Next, let’s consider a streaming variant of the celebrated Polyak-Ruppert averaging procedure [32, 34]:

(ASSG)/(APSSG) θ̄t =
1

Nt

t−1∑
i=0

ni+1θi, (3.3)

where Nt =
∑t
i=1 ni denotes the accumulated number of data points processed at each t ∈ N. This averaging

procedure sequentially aggregates the estimates of (3.1) and (3.2), which stabilizes and accelerates convergence
[29, 32]. In particular, this average allows us to obtain the optimal Cramer-Rao lower bound. Note that (3.3)
does not actually change the estimates produced by the SSG or PSSG algorithms, but instead simply keeps
track of a running average over the estimates. Practically, as we handle data sequentially, we will make use
of the recursive formula, θ̄t = (Nt−1/Nt)θ̄t−1 + (nt/Nt)θt−1. A detailed overview of our stochastic streaming
gradient algorithms (defined in (3.1) to (3.3)) is presented in Algorithm 1.

Algorithm 1: Stochastic streaming gradient algorithms (SSG/PSSG/ASSG/APSSG)

Input: θ0 ∈ Θ ⊆ Rd, project ∈ {True,False}, average ∈ {True,False}
Output: θt, θ̄t (resulting estimates)
Initialization: θ̄0 ∈ Rd
for each t ≥ 1, a time-varying mini-batch of nt data arrives, do

θt ← θt−1 − γt
nt

∑nt
i=1∇θft,i (θt−1) /* update */

if project then
θt ← PΘ(θt) /* project */

if average then
θ̄t ← (Nt−1/Nt)θ̄t−1 + (nt/Nt)θt−1 /* average */

4. Non-asymptotic convergence analysis

Throughout this paper, we consider learning rates (γt) of the form

γt := Cγn
β
t t
−α,

with Cγ > 0, β ∈ [0, 1], and α chosen according to the time-varying mini-batches nt. This learning rate allows
us to add more weight to larger mini-batches (nt) through the β parameter. Note that [1] considered learning
rates of the same form, but with β = 0 (and nt = 1). For simplicity, we let the time-varying mini-batches (nt)
be given as

nt := dCρtρe,

with Cρ ∈ N and ρ ∈ (−1, 1) such that nt ≥ 1 for all t ∈ N. This setting includes classical (online) SG descent
algorithms (i.e., {Cρ = 1, ρ = 0}) and (online) mini-batch procedures of both constant and time-varying size
(i.e. {Cρ ∈ N, ρ = 0} and {Cρ ∈ N, ρ ∈ (−1, 1)}), as well as the Polyak-Ruppert average of (online) time-varying
mini-batches. We will refer to Cρ as the mini-batch size and ρ as the mini-batch rate.
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Our goal is to non-asymptotic bound the quantities δt := E[‖θt− θ∗‖2] and δ̄t := E[‖θ̄t− θ∗‖2], such that they
solely depend on the parameters of the problem. To our knowledge, this is the first work that studies the non-
asymptotic convergence behavior of SG-based algorithms and their Polyak-Ruppert averaging in a streaming
framework. To do this, we assume for each t ∈ N the following about the (stochastic) gradients of {ft,i}nti=1.

Assumption 4.1 (unbiased gradients). For each θ ∈ Θ, the random variable ∇θft,i(θ) is square-integrable and
∀θ ∈ Θ, ∇θF (θ) = E[∇θft,i(θ)].

Assumption 4.2-p (Cf -expected smoothness). For a positive integer p, there exists Cf > 0 such that ∀θ ∈ Θ,
E[‖∇θft,i(θ)−∇θft,i(θ∗)‖p] ≤ CpfE[‖θ − θ∗‖p].

Assumption 4.3-p (σ-gradient noise). For a positive integer p, there exists σ > 0 such that E[‖∇θft,i(θ∗)‖p] ≤
σp.

Discussion of Assumptions 4.1 to 4.3-p. These assumptions are standard for analyzing stochastic approx-
imation/optimization problems with SG algorithms, e.g., see [3, 22]. Assumption 4.1 concerns the access to
unbiased stochastic approximations of the gradient ∇θF , which are common when SG algorithms are used to
solve problem (2.1).2 Another common assumption for SG algorithms is that they are uniformly bounded. But
such an assumption is often too restrictive, as it can only hold for some loss functions [4, 14]. Instead, we make
the weaker expected smoothness assumption of the gradients of {ft,i}nti=1 in Assumption 4.2-p [1, 16]. The last
key assumption concerns the finiteness of the gradient noise {ft,i}nti=1 at θ∗ (Asm. 4.3-p). It is worth noting that
Assumptions 4.2-p and 4.3-p can be verified explicitly, e.g., see [16]. For SSG and PSSG, Assumptions 4.2-p
and 4.3-p only needs to hold for p = 2, where for ASSG and APSSG, we need p = 4 to bound the fourth order
moment.

4.1. Stochastic streaming gradients

In this section, we analysis the SSG and PSSG algorithms from (3.1) and (3.2). To do this, we first derive
an explicit upper bound on the tth estimate of (3.1) and (3.2) for any learning rate (γt) and time-varying
mini-batch (nt) using classical techniques from stochastic approximations [3, 22].

Theorem 4.4 (SSG/PSSG). Let δt = E[‖θt − θ∗‖2] for δ0 ≥ 0, where (θt) either follows the recursion in (3.1)
or (3.2). Suppose Assumptions 2.1 to 4.3-p hold with p = 2. Then, for any learning rate (γt) and time-varying
mini-batch (nt), we have

δt ≤ exp

−µ t∑
i=t/2

γi

πδt +
2σ2

µ
max

t/2≤i≤t

γi
ni
, (4.1)

with πδt = exp(4C2
f

∑t
i=1 γ

2
i /ni) exp(2C2

∇
∑t
i=1 1{ni>1}γ

2
i )(δ0 + 2σ2/C2

f ).

Sketch of proof. Under Assumptions 2.1 to 4.3-p with p = 2, we show that (δt) (derived using (3.1)) satisfies
the recursive relation

δt ≤ [1− 2µγt + (2C2
f + (nt − 1)C2

∇)n−1
t γ2

t ]δt−1 + 2σ2n−1
t γ2

t , (4.2)

for any (γt) and (nt) fulfilling the conditions imposed on the learning rate [33]. This recursive relation is then
explicitly upper bounded in a non-asymptotic manner using Proposition B.5 in Appendix B. Bounding the
projected estimate in (3.2) follows directly from the fact that E[‖PΘ(θ) − θ∗‖2] ≤ E[‖θ − θ∗‖2], ∀θ ∈ Θ [40].
Alternatively, the projected estimate can also be shown without Assumptions 4.2-p and 4.3-p, but instead with
a bounded gradient assumption, e.g., see [1].

2The principles for biased gradients are rather different, e.g., see [9, 35].
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Related work. When nt = 1 in (4.1), we obtain (an online version of) the usual SG descent studied in [1].
As mentioned in [1], Theorem 4.4 forms an upper bound on the function values, E[F (θt) − F (θ∗)] ≤ Cfδt/2;
this follows from the Cauchy-Schwarz inequality and Assumption 4.2-p.

Decay of the initial conditions. The learning rate (γt) should satisfy the conditions
∑t
i=1 γi = ∞ and∑t

i=1 γ
2
i < ∞ as t → ∞ of [33]. These conditions directly imply that πδt < ∞. Thus, our attention is on

reducing the noise term maxt/2≤i≤t γi/ni without damaging the natural decay of the sub-exponential term

exp(−µ
∑t
i=t/2 γi). In particular, the non-asymptotic bound in (4.1) holds for any learning rate fulfilling these

conditions. In addition, the scaling of nt in the noise term shows an obvious possibility of variance reduction.
Before considering time-varying mini-batches, we consider the constant case where nt follows the constant

Cρ ∈ N, i.e., an online (projected) mini-batch SG variant.

Corollary 4.5 (SSG/PSSG with constant mini-batches). Let δt = E[‖θt − θ∗‖2] for δ0 ≥ 0, where (θt) either

follows the recursion in (3.1) or (3.2). Suppose Assumptions 2.1 to 4.3-p hold with p = 2. Then, if γt = Cγn
β
t t
−α

with nt = Cρ, for α ∈ (1/2, 1), we have

δt ≤ exp

(
− µCγN

1−α
t

21−αC1−α−β
ρ

)
πc∞ +

21+ασ2Cγ

µC1−α−β
ρ Nα

t

, (4.3)

where πc∞ = exp(4αC2
γ(2C2

f + Cρ1{Cρ>1}C
2
∇)/(2α− 1)C1−2β

ρ )(δ0 + 2σ2/C2
f ) is a finite constant.

Decay of the initial conditions. The bound in Corollary 4.5 depends on the initial condition δ0 = ‖θ0 −
θ∗‖2 and the variance σ2 in the noise term. The initial condition δ0 vanish sub-exponentially fast for α ∈
(1/2, 1); the condition of having α ∈ (1/2, 1) is a natural restriction from [33]. Thus, the asymptotic term is
21+ασ2Cγ/µC

1−α−β
ρ Nα

t , i.e., δt = O(N−αt ). Moreover, the bound in (4.3) is optimal (up to some constants) for
quadratic functions (ft,i), since the deterministic recursion in (4.2) would be with equality. It is worth noting
that if CγCf or CγC∇ is chosen too large, they may produce a large πc∞ constant. In addition, πc∞ is positively
affected by Cρ when β < 1/2. Obviously, the hyper-parameter β only comes into play if the mini-batch size
Cρ is larger than one, i.e., Cρ > 1. Nonetheless, the effect of πc∞ will decrease exponentially fast due to the
sub-exponentially decaying factor in front.

Variance reduction from larger mini-batches. Not surprisingly, larger mini-batches Cρ cause a variance
reducing effect, e.g., see the illustrations in Section 5. Nevertheless, (4.3) explicitly shows the variance reducing
effect in each term, which can help us better understand how to optimally tune the learning rate. In particular,
the asymptotic term is divided by C1−α−β

ρ , implying we should take α + β ≤ 1 when Cρ is large. However,
this must be done with moderation as larger mini-batches Cρ simultaneously damage the sub-exponential term.
Another important point from this is that mini-batches do not provide a better convergence rate, but simply
scale, i.e., the slope of the rate of convergence is unchanged, but the intercept is lowered (e.g., see Fig. 1a).

Having fixed size mini-batches is not the most realistic streaming framework, these mini-batches are much
more likely to vary in size over time. For the convenience of notation, let ρ̃ = ρ1{ρ≥0}.

Corollary 4.6 (SSG/PSSG with time-varying mini-batches). Let δt = E[‖θt − θ∗‖2] for δ0 ≥ 0, where (θt)
either follows the recursion in (3.1) or (3.2). Suppose Assumptions 2.1 to 4.3-p hold with p = 2. Then, if

γt = Cγn
β
t t
−α with nt = dCρtρe, for α− βρ̃ ∈ (1/2, 1), we have

δt ≤ exp

(
− µCγN

1−φ
t

2(2+ρ)(1−φ)C1−β−φ
ρ

)
πv∞ +

21+(2+ρ)φσ2Cγ

µC
(1−β)1{ρ≥0}−φ
ρ Nφ

t

, (4.4)

where φ = ((1− β)ρ̃+ α)/(1 + ρ̃) and πv∞ = exp(4(α− βρ̃)C2
γC

2β
ρ (2C2

f +C2
∇)/(2(α− βρ̃)− 1))(δ0 + 2σ2/C2

f ) is
a finite constant.
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Accelerated decay with increasing mini-batches. As mentioned for Corollary 4.5, α−βρ̃ ∈ (1/2, 1) is a
natural condition from [33]; this relaxes the condition of having α ∈ (1/2, 1) for ρ ≥ 0. In particular, this shows
that we can accelerate convergence by taking increasing mini-batches, e.g., taking α = 2/3 and β = 0 yields

δt = O(N
−(2/3+ρ)/(1+ρ)
t ) when ρ > 0. Conversely, when ρ < 0, we obtain the same decay as in Corollary 4.5,

namely, δt = O(N−αt ). These effects are illustrated in Figures 1b to 1e for Cρ ∈ {1, 8, 64, 128}.
Variance reduction from larger mini-batches. Similarly to Corollary 4.5, the sub-exponential and

asymptotic term is scaled by C1−β−φ
ρ for ρ ≥ 0, implying we should take α+β ≤ 1 to obtain variance reduction.

However, as discussed above, this variance reduction is only beneficial in the beginning and does not contribute
to a better convergence rate (relative to the slope). Thus, large mini-batch sizes Cρ and negative mini-batch
rates ρ will give (an initial) variance reduction but the same convergence rate as in Corollary 4.5.

4.2. Polyak-Ruppert averaging

In what follows, we consider the Polyak-Ruppert averaging estimate (θ̄n) given in (3.3), where (θt) follows the
recursion in (3.1) or (3.2). Besides having Assumptions 4.2-p and 4.3-p to hold for p = 4, additional assumptions
are needed for bounding the Polyak-Ruppert averaging estimate. First, we make an additional smoothness
assumption on the objective function F .

Assumption 4.7 (C ′∇-Lipschitz continuous Hessian operator). The function F is twice differentiable with
C ′∇-Lipschitz continuous Hessian operator ∇2

θF , meaning, there exists C ′∇ ≥ 0 such that ∀θ ∈ Θ,

‖∇2
θF (θ)−∇2

θF (θ∗)‖ ≤ C ′∇‖θ − θ∗‖. (4.5)

Next, in continuation of Assumption 4.3-p, we make the following assumption about covariance of (∇θft,i(θ∗)),
which we interpret as the sequence of score vectors with respect to the parameter vector θ∗.

Assumption 4.8 (Covariance of the scores). There exists a non-negative self-adjoint operator Σ such that
E[∇θft,i(θ∗)∇θft,i(θ∗)>] � Σ.

Note that the operator Σ always exists when σ is finite for order p = 4 in Assumption 4.3-p.

4.2.1. Polyak-Ruppert averaging of stochastic streaming gradients (ASSG)

As in Section 4.1, we conduct a general study for any learning rate (γt) and time-varying mini-batch (nt)
when applying the Polyak-Ruppert averaging estimate (θ̄n) from (3.3), where (θt) follows the recursion in (3.1),
i.e., the ASSG.

Theorem 4.9 (ASSG). Let δ̄t = E[‖θ̄t− θ∗‖2] with (θ̄t) given by (3.3), where (θt) follows the recursion in (3.1).
Suppose Assumptions 2.1 to 4.8 hold with p = 4. Then, for any learning rate (γt) and time-varying mini-batch

(nt), we can upper bound δ̄
1/2
t by

Λ1/2

N
1/2
t

+
1

µNt

t−1∑
i=1

∣∣∣∣ni+1

γi+1
− ni
γi

∣∣∣∣ δ1/2i +
nt

µγtNt
δ
1/2
t +

n1

µNt

(
1

γ1
+ Cf

)
δ
1/2
0 +

Cf
µNt

(
t−1∑
i=1

ni+1δi

)1/2

+
C′∇
µNt

t−1∑
i=0

ni+1∆
1/2
i ,

(4.6)

where Λ = Tr(∇2
θF (θ∗)−1Σ∇2

θF (θ∗)−1) and ∆t = E[‖θt − θ∗‖4] for some ∆0 ≥ 0.

As noticed in [32], the leading term Λ/Nt achieves the Cramer-Rao lower bound [10, 27]. Note that the
leading term Λ/Nt is invariant of the learning rate (γt) and the time-varying mini-batches (nt). Moreover, the
bound is O(N−1

t ) without inverting the Hessian. Next, the processes (δt) and (∆t) can be bounded by the
recursive relations in (4.1) and (A.9). There are no sub-exponential decaying terms for the initial conditions
in Theorem 4.9, which is a common problem for averaging. However, as mentioned previously, we are more
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interested in advancing the decay of the asymptotic terms. To ease notation, we make use of the functions
ψyx(t) : R→ R, given as

ψyx(t) =


t(1−x)/(1+y)/(1− x) if x < 1,

(1 + y) log(t) if x = 1,

x/(x− 1) if x > 1,

with y ∈ R+, such that
∑t
i=1 i

−x ≤ ψ0
x(t) for any x ∈ R+. Note that ψyx(t)/t = O(t−(x+y)/(1+y)) if x < 1,

ψyx(t)/t = O(log(t)t−1) if x = 1, and ψyx(t)/t = O(t−1) if x > 1. Hence, for any x, y ∈ R+, ψyx(t)/t =
Õ(t−(x+y)/(1+y)), where the Õ(·) notation hides logarithmic factors.

Corollary 4.10 (ASSG with constant mini-batches). Let δ̄t = E[‖θ̄t− θ∗‖2] with (θ̄t) given by (3.3), where (θt)

follows the recursion in (3.1). Suppose Assumptions 2.1 to 4.8 hold with p = 4. Then, if γt = Cγn
β
t t
−α with

nt = Cρ, for α ∈ (1/2, 1), we have

δ̄
1/2
t ≤ Λ1/2

N
1/2
t

+
6σC

(1−α−β)/2
ρ

µ3/2C
1/2
γ N

1−α/2
t

+
2α6C ′∇σ

2Cγ

µ2C1−α−β
ρ Nα

t

+
2CfσC

1/2
γ

µ3/2C
(1−α−β)/2
ρ N

(1+α)/2
t

+
CρΓc
µNt

+
C2−α−β
ρ

√
πc∞A

c
∞

µCγN
2−α
t

+
(6 + 71{Cρ>1})2

3α/2C ′∇σ
2C

3/2
γ C

3β/2
ρ ψ0

3α/2(Nt/Cρ)

µ3/2Nt
,

with Γc given by (1/CγC
β
ρ +Cf )δ

1/2
0 +Cf

√
πc∞A

c
∞/Cρ+

√
πc∞A

c
∞/CγC

β
ρ +C ′∇

√
Πc
∞A

c
∞, consisting of the finite

constants πc∞, Πc
∞ and Ac∞, that only depends on µ, δ0, ∆0, Cf , σ, C∇, C ′∇, Cγ , Cρ, β and α.

Accelerated decay the initial conditions. By averaging, we have increased the rate of convergence from
O(N−αt ) to the optimal rate O(N−1

t ) (when we compare to SSG with constant mini-batches in Corollary 4.5).
The two subsequent terms are the main remaining terms decaying at the rate O(Nα−2

t ) and O(N−2α
t ), which

suggest taking α = 2/3. The remaining terms are negligible. Next, it is worth noting that having α+ β = 1 in
Corollary 4.10, we would give no impact in the main remaining terms from the mini-batch size Cρ. At last, as we
do not rely on sub-exponentially decaying terms, we need to be more careful when picking our hyper-parameters,
e.g., taking CγCf too large may cause Γc to be significant. Nevertheless, the term consisting of Γc decay at a
rate of at least O(N−2

t ).

Corollary 4.11 (ASSG with time-varying mini-batches). Let δ̄t = E[‖θ̄t− θ∗‖2] with (θ̄t) given by (3.3), where

(θt) follows the recursion in (3.1). Suppose Assumptions 2.1 to 4.8 hold with p = 4. Then, if γt = Cγn
β
t t
−α with

nt = dCρtρe, for α− βρ̃ ∈ (1/2, 1), we have

δ̄
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t

+
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t
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µNt
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√
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v
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t
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3/2
γ C

1+3β/2
ρ ψρ̃3(α−βρ̃)/2(Nt/Cρ)
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,

with Γv given by (1/CγC
β
ρ + Cf )δ

1/2
0 + 2ρ̃Cf

√
πv∞A

v
∞/Cρ + 2

√
πv∞A

v
∞/CγC

β
ρ + 2ρ̃C ′∇

√
Πv
∞A

v
∞, consisting of

the finite constants πv∞, Πv
∞ and Av∞, that only depends on µ, δ0, ∆0, Cf , σ, C∇, C ′∇, Cγ , Cρ, β and α.

Robustness towards mini-batch rate ρ: Following the arguments above, the two main remainder terms
suggest that φ = 2/3 ⇔ α − βρ̃ = (2 − ρ̃)/3, e.g., by setting β = 0, we should pick α = (2 − ρ̃)/3. Likewise,
if ρ = 0, we yield the same conclusion as in Corollary 4.10, namely α = 2/3. However, these hyper-parameter
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choices are not resilient against any time-varying streaming rate ρ. Nonetheless, we can robustly achieve φ = 2/3
for any ρ ∈ (−1, 1) by setting α = 2/3 and β = 1/3. In other words, we can achieve the same convergence for
any time-varying mini-batch rate by having α = 2/3 and β = 1/3; this is illustrated in Figures 1f and 2f.

4.2.2. Polyak-Ruppert averaging of projected stochastic streaming gradients (APSSG)

In this section, we analyze the projected Polyak-Ruppert averaging estimate (a.k.a. APSSG), where (θt)
follows the recursion in (3.2). To avoid calculating the six-order moment, we make the unnecessary assumption
that ‖∇θft,i(θ)‖ is uniformly bounded on Θ; the derivation of the six-order moment can be found in [12].

Assumption 4.12 (GΘ-bounded stochastic gradients). Let Dθ = infθ∈∂Θ‖θ − θ∗‖ > 0 with ∂Θ denoting the
frontier of Θ. Assume there exists GΘ > 0 such that ∀t ≥ 1, supθ∈Θ‖∇θft,i(θ)‖2 ≤ G2

Θ a.s., with i = 1, . . . , nt.

Corollary 4.13 (APSSG with constant mini-batches). Let δ̄t = E[‖θ̄t − θ∗‖2] with (θ̄t) given by (3.3), where

(θt) follows the recursion in (3.2). Suppose Assumptions 2.1 to 4.12 hold with p = 4. Then, if γt = Cγn
β
t t
−α

with nt = Cρ, for α ∈ (1/2, 1), we have
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,

with C ′′∇ = C ′∇ + 22GΘ/D
2
θ and Γc given by (1/CγC

β
ρ + Cf )δ

1/2
0 + Cf
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c
∞, consisting of the finite constants πc∞, Πc

∞ and Ac∞, that only depends on µ, δ0, ∆0, Cf , σ,
C∇, C ′∇, Cγ , Cρ, β and α.

Corollary 4.14 (APSSG with time-varying mini-batches). Let δ̄t = E[‖θ̄t−θ∗‖2] with (θ̄t) given by (3.3), where

(θt) follows the recursion in (3.2). Suppose Assumptions 2.1 to 4.12 hold with p = 4. Then, if γt = Cγn
β
t t
−α

with nt = dCρtρe, for α− βρ̃ ∈ (1/2, 1), we have
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∞
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,

with C ′′∇ = C ′∇ + 22GΘ/D
2
θ and Γv given by (1/CγC

β
ρ + Cf )δ

1/2
0 + 2ρ̃Cf

√
πv∞A

v
∞/Cρ + 2

√
πv∞A

v
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β
ρ +

2ρ̃C ′∇
√

Πv
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v
∞, consisting of the finite constants πv∞, Πv

∞ and Av∞, that only depends on µ, δ0, ∆0, Cf , σ, C∇,
C ′∇, Cγ , Cρ, β and α.

5. Experiments

In this section, we demonstrate the theoretical results presented in Section 4 for various time-varying mini-
batches. The performance is measured over one-hundred replications of the quadratic mean error, i.e., (E[‖θNt −
θ∗‖2])t≥0 and (E[‖θ̄Nt − θ∗‖2])t≥0. Note that averaging over several replications gives a reduction in variability,
which mainly benefits the SSG and PSSG. All metrics are shown in log-scale and normalized such that the first
iteration is one, namely, E[‖θ0 − θ∗‖2] = E[‖θ̄0 − θ∗‖2] = 1.
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Figure 1. Linear regression with learning rate γt = Cγn
β
t t
−α and time-varying mini-batch

nt = dCρtρe. See Section 5.1 for details.

5.1. Linear regression

We continue the generic notation from Section 2, where the linear regression is defined by y = xT θ+ ε, where
y ∈ R is the measure, x ∈ Rd is a random feature vector, θ ∈ Rd is the parameters vector, and ε is a random
variable with zero mean, and x and ε are independent and identically distributed. Thus, θ∗ is the minimizer of
F (θ) = E[(y − xT θ)2]. In this example, we fix d = 10, set θ = (−4,−3, 2, 1, 0, 1, 2, 3, 4, 5)T ∈ R10, and let x and
ε be standard Gaussian. It is well-known that Cγ can substantially impact convergence; when Cγ is too large,
instability can occur, leading to an explosion during the first iterations. If Cγ is too small, the convergence can
become very slow and destroy the desired learning rate. To focus on the various time-varying mini-batches, we
set Cγ = 1/2 and α = 2/3.

Discussion. In Figure 1a, we consider constant mini-batches to illustrate the results in Corollary 4.5 and
4.10. This figure show a solid decay rate proportional to α = 2/3 for any mini-batch size Cρ ∈ {1, 8, 64, 128}
with β = 0, as shown in Corollary 4.5. In particular, the mini-batches does not provide better convergence
rates, but simply scales the error, i.e. the slope of the rate of convergence is unchanged, but the intercept is
lowered. As explained after Corollary 4.10, we see an acceleration in decay by averaging. Both algorithms show
a noticeable reduction in variance when Cρ increases which are particularly beneficial in the beginning. Next, in
Figures 1b to 1e, we vary the mini-batch rate ρ for (fixed) mini-batch sizes Cρ = 1, 8, 64, and 128, respectively,
with β = 0. These figures shows an increase in decay of the SSG when the mini-batch rate ρ increase. Despite
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this, we still achieve better convergence for the ASSG algorithm, which seems more immune to the different
choices of mini-batch rate ρ, e.g., see the discussion after Corollary 4.11. We know this from Corollary 4.6, as
φ = (ρ̃+ α)/(1 + ρ̃) ≥ α for β = 0. In addition, we see that Cρ has a positive effect on the noise (i.e., variance
reduction), but if Cρ becomes too large, it may slow down convergence (as seen in Fig. 1e). Alternatively, we
could think around the problem in another way: how can we choose α and β such that we have obtain decay of
φ = 2/3 for any ρ. In other words, for any arrival schedule that may occur, how should we choose our hyper-
parameters such that we achieve decay of φ = 2/3. As discussed after Corollary 4.11, one example of this could
be achieved by setting α = 2/3 and β = 1/3 such that φ = 2/3 for any ρ. Figure 1f shows an example of this
where we (indeed) achieve the same decay rate for any mini-batch rate ρ.

5.2. Geometric median

Robust estimators such as the geometric median may be preferred over the mean when the data is noisy; the
geometric median is a generalization of the real median introduced by [17]. In addition, SG-based algorithms
are preferred in our streaming framework, as they can process large samples of high-dimensional data efficiently
[6, 8, 12]. The geometric median of x ∈ Rd is found by minimizing the objective F (θ) = E[‖x − θ‖ − ‖x‖]
using gradients of the form ∇θf(θ) = −(x− θ)/‖x− θ‖. Properties of this geometric median, such as existence,
uniqueness and robustness, can be found in, e.g., [11, 20]. Note that this objective function only possesses locally
strong convexity properties [8]. But by projecting the gradients, one could adapt the proof of [10] to a streaming
setting. Otherwise, if x is bounded, one can adapt [7] to the streaming setting showing that the estimates are
bounded, and there is no use to project it in this case. Similarly to Section 5.1, we fix d = 10 and let x be
standard Gaussian centered at θ = (−4,−3, 2, 1, 0, 1, 2, 3, 4, 5)T ∈ R10. Moreover, following the reasoning of [8],
we set Cγ =

√
d =
√

10, and let α = 2/3.
Discussion. Figure 2a shows the variance reduction effect for different constant mini-batches Cρ with β = 0.

However, the robustness of the geometric median leaves only a small positive impact for further variance
reduction. Thus, too large (constant) mini-batch sizes Cρ hinders the convergence as we make too few iterations.
These findings can be extended to Figures 2b to 2e, where we vary the mini-batch rate ρ for mini-batch sizes
Cρ = 1, 8, 64, and 128, respectively, with β = 0. The lack of convergence improvements comes from β = 0,
which means we do not exploit the potential of using more observations to accelerate convergence. As shown in
Figure 2f, we can achieve this acceleration by simply taking β = 1/3. In addition, β = 1/3 provides improved
convergence robust to any mini-batch rate ρ. Choosing a proper β > 0 is particularly important when Cρ is
large, as robustness is an integral part of the geometric median.

6. Conclusions

We introduced a streaming framework for analyzing stochastic approximation/optimization problems. This
streaming framework was analogous to solving optimization problems using time-varying mini-batches that
arrive sequentially. We provided non-asymptotic convergence rates for different gradient-based algorithms; this
included the famous Stochastic Gradient (SG) descent (a.k.a. Robbins-Monro algorithm), mini-batch SG, and
time-varying mini-batch SG algorithms, as well as their iterated averages (a.k.a. Polyak-Ruppert averaging). We
showed how time-varying mini-batches together with Polyak-Ruppert averaging can provide variance reduction
and accelerate convergence simultaneously. We further demonstrated the beneficial effect of adapting learning
to the time-varying mini-batches under different streaming settings.

Future perspectives. There are several ways to expand our work: first, we can extend our analysis to
include time-varying mini-batches of any size. Second, many machine learning problems encounter correlated
variables and high-dimensional data, thus an extension to non-strongly convex objectives would be advantageous
[2], e.g., in [39], they use SG-based algorithms to make adaptive volatility predictions through optimization of
the GARCH model. Third, Assumption 4.1 requires unbiased (and independent) gradient estimates, thus, an
obvious extension could incorporate a more realistic dependency assumption, thereby increasing the applicability.
Moreover, studying dependence may give insight into how to process dependent information optimally. Next, a
natural extension would be to modify our Polyak-Ruppert averaging estimate from (3.3) to a weighted averaged
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Figure 2. Geometric median with learning rate γt = Cγn
β
t t
−α and time-varying mini-batch

nt = dCρtρe. See Section 5.2 for details.

version [5, 26]:

(WASSG) θ̄t,λ =
1∑t

i=1 ni log(1 + i)λ

t∑
i=1

ni log(1 + i)λθi−1, (6.1)

for λ > 0 with (θt) following (3.1) or (3.2). One can limit the effect of bad initializations by placing more weight
on the newest estimates. Following the demonstrations in Section 5, an example of this WASSG estimate (θ̄t,λ)
can be found in Figure 3 with use of λ = 2. Here we see that although the WASSG estimate in (6.1) may not
achieve a better final error (compared to the ASSG and APSSG estimates in Figures 1f and 2f), it still achieves
a better decay along the way, often referred to as parameter tracking.
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Figure 3. WASSG with learning rate γt = Cγn
β
t t
−α and time-varying mini-batch nt = dCρtρe.

See Section 6 for details.

Appendix A. Proofs

In this appendix, we provide detailed proofs of the results. Purely technical results used in the proofs can
be found in Appendix B. Let (Ft)t≥1 be an increasing family of σ-fields, namely Ft = σ(f1, . . . , ft) with ft :=
{ft,1, . . . , ft,nt}. Furthermore, we expand the notation with Ft−1,i = σ(f1,1, . . . , ft−1,nt−1 , ft,1, . . . , ft,i) such
that Ft−1,0 = Ft−1. Meaning, ∀0 ≤ i < j, we have Ft−1 ⊆ Ft−1,i ⊂ Ft−1,j . Thus, by the independence of the
differentiable random functions {ft,i}, Assumption 4.1 yields that ∀t ≥ 1, E[∇θft,i(θt−1)|Ft−1,i−1] = ∇θF (θt−1)
with i = 1, . . . , nt.

A.1 Proofs for Section 4

The section is structured such that we start by analyzing the recursive relations and bounding them for every
choice of learning rate (γt) and time-varying mini-batch (nt). Next, we look at specific choices of (γt) and (nt).

Proof of Theorem 4.4. Taking the quadratic norm on both sides of (3.1), expanding it, and take the conditional
expectation, yields

E[‖θt − θ∗‖2|Ft−1] = ‖θt−1 − θ∗‖2 +
γ2
t

n2
t

E

∥∥∥∥∥
nt∑
i=1

∇θft,i (θt−1)

∥∥∥∥∥
2
∣∣∣∣∣∣Ft−1

− 2γt
nt

nt∑
i=1

E[〈∇θft,i(θt−1), θt−1 − θ∗〉|Ft−1].

(A.1)

To bound the second term (on the right-hand side) of (A.1), we first expand it as follows,

nt∑
i=1

E[‖∇θft,i(θt−1)‖2|Ft−1] +

nt∑
i 6=j

E[〈∇θft,i(θt−1),∇θft,j(θt−1)〉|Ft−1]. (A.2)

For first term of (A.2), we utilize the Lipschitz continuity of ∇θft,i, together with Assumptions 4.1 to 4.3-p, to
obtain

E[‖∇θft,i(θt−1)‖2|Ft−1] ≤ 2E[‖∇θft,i(θt−1)−∇θft,i(θ∗)‖2|Ft−1] + 2E[‖∇θft,i(θ∗)‖2|Ft−1]

≤ 2C2
f‖θt−1 − θ∗‖2 + 2σ2, (A.3)
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using ‖x+ y‖2 ≤ 2(‖x‖2 + ‖y‖2). Next, for the second term in (A.2): as Ft−1 ⊆ Ft−1,i ⊂ Ft−1,j for all 0 ≤ i < j,
we have

E[〈∇θft,i(θt−1),∇θft,j(θt−1)〉|Ft−1] = E[E[〈∇θft,i(θt−1),∇θF (θt−1)〉|Ft−1,i−1]|Ft−1],

since θt−1 and ft,i are Ft−1,j−1-measurable for all 0 ≤ i < j, and similarly, as θt−1 is Ft−1-measurable and
Ft−1,i−1-measurable for all i ≥ 0, we also have

E[E[〈∇θft,i(θt−1),∇θF (θt−1)〉|Ft−1,i−1]|Ft−1] = E[〈E[∇θft,i(θt−1)|Ft−1,i−1],∇θF (θt−1)〉|Ft−1] = ‖∇θF (θt−1)‖2,

where ‖∇θF (θt−1)‖2 ≤ C2
∇‖θt−1−θ∗‖2 as∇θF is C∇-Lipschitz continuous and∇θF (θ∗) = 0. Thus, we obtained

a bound for the second term (on the right-hand side) of (A.1) using the bounds of the two terms in (A.2):

nt∑
i=1

(2C2
f‖θt−1 − θ∗‖2 + 2σ2) +

nt∑
i 6=j

C2
∇‖θt−1 − θ∗‖2 = (2C2

fnt + C2
∇(nt − 1)nt)‖θt−1 − θ∗‖2 + 2σ2nt. (A.4)

For the third term (on the right-hand side) of (A.1) we use that F is µ-quasi-strong convex and θt−1 is
Ft−1-measurable,

E[〈∇θft,i(θt−1), θt−1 − θ∗〉|Ft−1] = 〈E[∇θft,i(θt−1)|Ft−1], θt−1 − θ∗〉 = 〈∇θF (θt−1), θt−1 − θ∗〉 ≥ µ‖θt−1 − θ∗‖2,
(A.5)

by Assumption 4.1. Combining the inequalities from (A.4) and (A.5) into (A.1) and taking the expectation on
both sides of the inequality, yields the recursive relation (4.2):

δt ≤ [1− 2µγt + (2C2
f + (nt − 1)C2

∇)n−1
t γ2

t ]δt−1 + 2σ2n−1
t γ2

t ,

with δt = E[‖θt − θ∗‖2] with some δ0 ≥ 0. At last, by Proposition B.5, we obtain the desired inequality in (4.1),
namely
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∇
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+
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.

using that (nt − 1)n−1
t ≤ 1{nt>1}, nt ≥ 1, and that max1≤i≤t 2σ2/(2C2

f + (ni − 1)C2
∇) ≤ max1≤i≤t 2σ2/2C2

f =

σ2/C2
f .

Proof of Corollary 4.5. By Theorem 4.4, we have the upper bound giving as

δt ≤ exp

−µ t∑
i=t/2

γi

πct +
2σ2

µCρ
max

t/2≤i≤t
γi. (A.6)

as nt = Cρ, with πct = exp((4C2
f/Cρ)

∑t
i=1 γ

2
i ) exp(2C2

∇1{Cρ>1}
∑t
i=1 γ

2
i )(δ0 +σ2/C2

f ). The sum term
∑t
i=1 γ

2
i =

C2
γC

2β
ρ

∑t
i=1 i

−2α in πct can be bounded with the help of integral tests for convergence,
∑t
i=1 i

−2α = 1 +∑t
i=2 i

−2α ≤ 1 +
∫ t

1
x−2α dx ≤ 1 + 1/(2α− 1) = 2α/(2α− 1), as α ∈ (1/2, 1). Likewise, plugging γt = CγC

β
ρ t
−α
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into the first term of (A.6), gives

exp

−µ t∑
i=t/2

γi

 = exp

−µCγCβρ t∑
i=t/2

i−α

 ≤ exp

(
−µCγCβρ

∫ t

t/2

x−α dx

)
≤ exp

(
−
µCγC

β
ρ t

1−α

21−α

)
,

using the integral test for convergence. Next, as (γt)t≥1 is decreasing, then maxt/2≤i≤t γt = γt/2. Combining all
these findings into (A.6), gives us

δt ≤ exp

(
−
µCγC

β
ρ t

1−α

21−α

)
πc∞ +

21+ασ2Cγ

µC1−β
ρ tα

, (A.7)

with πc∞ = exp(4αC2
γ(2C2

f +Cρ1{Cρ>1}C
2
∇)/(2α− 1)C1−2β

ρ )(δ0 + 2σ2/C2
f ). At last, converting (A.7) into terms

of Nt using Nt ≥ Cρt, yields the desired.

Proof of Corollary 4.6. For convenience, we divided the proof into two cases to comprehend that nt ≥ 1 for all
t. First, we bound each term of (4.1) (from Thm. 4.4) after inserting γt = Cγn

β
t t
−α and nt = dCρtρe into the

inequality. Here, we use γt ≥ CγCβρ tβρ−α if ρ ≥ 0, γt ≥ Cγt−α if ρ < 0, and x ≤ dxe ≤ x+ 1 for x ∈ R+. Thus,
for ρ ≥ 0, the first term of (4.1) can be bounded, as follows:

exp

−µ t∑
i=t/2

γi

 ≤ exp

−µCγCβρ t∑
i=t/2

iβρ−α

 ≤ exp

(
−
µCγC

β
ρ t

1+βρ−α

21+βρ−α

)
,

using that α− βρ ∈ (1/2, 1) and the integral test for convergence. In a same way, for ρ < 0, one has

exp

−µ t∑
i=t/2

γi

 ≤ exp

−µCγ t∑
i=t/2

i−α

 ≤ exp

(
−µCγt

1−α

21−α

)
.

Likewise, with the help of integral tests for convergence, we have for ρ ≥ 0, that
∑t
i=1 γ

2
i /ni ≤

∑t
i=1 γ

2
i ≤

2(α − βρ)C2
γC

2β
ρ /(2(α − βρ) − 1), as nt ≥ 1 and α − ρβ > 1/2. For ρ < 0, one has

∑t
i=1 γ

2
i /ni ≤

∑t
i=1 γ

2
i ≤

2αC2
γC

2β
ρ /(2α− 1) since Cρ ≥ nt ≥ 1. Next, as (1− β)ρ+ α > 0 for ρ ≥ 0, then we can bound the last term of

(4.1) by

2σ2

µ
max

t/2≤i≤t

γi
ni
≤ 2σ2Cγ

µC1−β
ρ

max
t/2≤i≤t

1

i(1−β)ρ+α
≤ 21+(1−β)ρ+ασ2Cγ

µC1−β
ρ t(1−β)ρ+α

.

using nt = dCρtρe ≥ Cρtρ. Likewise, if ρ < 0, we have

2σ2

µ
max

t/2≤i≤t

γi
ni

=
2σ2Cγ
µ

max
t/2≤i≤t

1

n1−β
i iα

≤ 21+ασ2Cγ
µtα

,

since nt ≥ 1 and β ≤ 1. Combining all these findings gives

δt ≤ exp

(
−µCγC

β1{ρ≥0}
ρ t(1−φ)(1+ρ̃)

2(1−φ)(1+ρ̃)

)
πv∞ +

21+φ(1+ρ̃)σ2Cγ

µC
(1−β)1{ρ≥0}
ρ tφ(1+ρ̃)

, (A.8)
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where πv∞ = exp(4(α− βρ̃)C2
γC

2β
ρ (2C2

f +C2
∇)/2(α− βρ̃)− 1) with ρ̃ = ρ1{ρ≥0} and φ = ((1− β)ρ̃+ α)/(1 + ρ̃).

To write this in terms of Nt, we use the bounds following bounds: for ρ ≥ 0, we have that

Nt =

t∑
i=1

ni ≤
t∑
i=1

(Cρi
ρ + 1) = t+ Cρt

ρ + Cρ

t−1∑
i=1

iρ ≤ t+ Cρt
ρ + Cρ

∫ t

1

xρ dx

≤t+ Cρt
ρ + Cρ(t

1+ρ − 1) ≤ t+ Cρ(t
ρ − 1) + Cρt

1+ρ ≤ 2Cρt
1+ρ,

thus, t ≥ (Nt/2Cρ)
1/(1+ρ). Similarly, for ρ < 0, we have that Nt ≤ Cρt, i.e, t ≥ Nt/Cρ.

A.2 Proofs for Section 4.2

Lemma A.1 (ASSG/APSSG). Let ∆t = E[‖θt − θ∗‖4] for ∆0 ≥ 0, where (θt) either follows the recursion in
(3.1) or (3.2). Suppose Assumptions 2.1 to 4.8 hold with p = 4. Then, for any learning rate (γt) and time-varying
mini-batch (nt), we have

∆t ≤ exp

−µ t∑
i=t/2

γi

Π∆
t +

32σ4

µ2
max

t/2≤i≤t

γ2
i

n2
i

+
48σ4

µ
max

t/2≤i≤t

γ3
i

n3
i

+
114σ4

µ
max

t/2≤i≤t

γ3
i 1{ni>1}

n2
i

, (A.9)

with Π∆
t given in (A.17).

Proof of Lemma A.1. We will now derive the recursive step sequence for the fourth-order moment using the
same arguments as in proof for Theorem 4.4. Thus, one can show that

E[‖θt − θ∗‖4|Ft−1] ≤‖θt−1 − θ∗‖4 +
γ4
t

n4
t

E

[∥∥∥∥∥
nt∑
i=1

∇θft,i (θt−1)

∥∥∥∥∥
4∣∣∣∣∣Ft−1

]
+

4γ2
t

n2
t

E

[〈
nt∑
i=1

∇θft,i (θt−1) , θt−1 − θ∗
〉2∣∣∣∣∣Ft−1

]

+
2γ2
t

n2
t

‖θt−1 − θ∗‖2E

[∥∥∥∥∥
nt∑
i=1

∇θft,i (θt−1)

∥∥∥∥∥
2∣∣∣∣∣Ft−1

]
−4γt
nt
‖θt−1−θ∗‖2

nt∑
i=1

〈E[∇θft,i(θt−1)|Ft−1], θt−1−θ∗〉

+
4γ3
t

n3
t

E

[∥∥∥∥∥
nt∑
i=1

∇θft,i (θt−1)

∥∥∥∥∥
2〈 nt∑

i=1

∇θft,i (θt−1) , θt−1 − θ∗
〉∣∣∣∣∣Ft−1

]
,

using θt−1 is Ft−1−measurable. Note, by Assumption 4.1, we have

〈E[∇θft,i(θt−1)|Ft−1], θt−1 − θ∗〉 = 〈∇θF (θt−1), θt−1 − θ∗〉 ≥ µ‖θt−1 − θ∗‖2,

as F is µ-quasi-strong convex. Combining this with Cauchy-Schwarz inequality (i.e., 〈x, y〉 ≤ ‖x‖‖y‖), we obtain
the simplified expression:

E[‖θt − θ∗‖4|Ft−1] ≤‖θt−1 − θ∗‖4 +
γ4
t

n4
t

E

[∥∥∥∥∥
nt∑
i=1

∇θft,i (θt−1)

∥∥∥∥∥
4∣∣∣∣∣Ft−1

]
+

6γ2
t

n2
t

‖θt−1 − θ∗‖2E

[∥∥∥∥∥
nt∑
i=1

∇θft,i (θt−1)

∥∥∥∥∥
2∣∣∣∣∣Ft−1

]

− 4µγt‖θt−1 − θ∗‖4 +
4γ3
t

n3
t

‖θt−1 − θ∗‖E

[∥∥∥∥∥
nt∑
i=1

∇θft,i (θt−1)

∥∥∥∥∥
3∣∣∣∣∣Ft−1

]
.

Next, recall Young’s inequality for products, i.e., for any at, bt, ct > 0, we have atbt ≤ a2
t c

2
t/2 + b2t/2c

2
t ,∥∥∥∥∥

nt∑
i=1

∇θft,i (θt−1)

∥∥∥∥∥
3

≤ γt
2nt ‖θt−1 − θ∗‖

∥∥∥∥∥
nt∑
i=1

∇θft,i (θt−1)

∥∥∥∥∥
4

+
2nt ‖θt−1 − θ∗‖

γt

∥∥∥∥∥
nt∑
i=1

∇θft,i (θt−1)

∥∥∥∥∥
2

,
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giving us

E[‖θt − θ∗‖4|Ft−1] ≤(1− 4µγt)‖θt−1 − θ∗‖4 +
3γ4
t

n4
t

E

∥∥∥∥∥
nt∑
i=1

∇θft,i (θt−1)

∥∥∥∥∥
4
∣∣∣∣∣∣Ft−1


+

8γ2
t

n2
t

‖θt−1 − θ∗‖2E

∥∥∥∥∥
nt∑
i=1

∇θft,i (θt−1)

∥∥∥∥∥
2
∣∣∣∣∣∣Ft−1

 . (A.10)

To bound the second and fourth-order terms in (A.10), we would need to study the recursive sequences: firstly,
utilizing the Lipschitz continuity of ∇θft,i, together with Assumptions 4.2-p and 4.3-p, and that θt−1 is Ft−1-
measurable (Asm. 4.1), we obtain

E[‖∇θft,i(θt−1)‖p|Ft−1] ≤ 2p−1[E[‖∇θft,i(θt−1)−∇θft,i(θ∗)‖p|Ft−1] + E[‖∇θft,i(θ∗)‖p|Ft−1]]

≤ 2p−1[Cpf‖θt−1 − θ∗‖p + σp], (A.11)

for any p ∈ [1, 4] using the bound ‖x+ y‖p ≤ 2p−1(‖x‖p + ‖y‖p). Thus, we can bound the second-order term in
(A.10) by

E

∥∥∥∥∥
nt∑
i=1

∇θft,i (θt−1)

∥∥∥∥∥
2
∣∣∣∣∣∣Ft−1

 ≤ [2C2
fnt + C2

∇(nt − 1)nt]‖θt−1 − θ∗‖2 + 2σ2nt

≤ [2C2
fnt + C2

∇n
2
t1{nt>1}]‖θt−1 − θ∗‖2 + 2σ2nt, (A.12)

following the same steps in the proof of Theorem 4.4, but with use of (A.11). Bounding the fourth-order
term is a bit heavier computationally, but let us recall that ‖

∑
i xi‖2 =

∑
i‖xi‖2 +

∑
i 6=j〈xi, xj〉 =

∑
i‖xi‖2 +

2
∑
i<j〈xi, xj〉. Then, we have that

∥∥∥∥∥
nt∑
i=1

∇θft,i(θt−1)

∥∥∥∥∥
4

=

 nt∑
i=1

‖∇θft,i(θt−1)‖2 +

nt∑
i 6=j

〈∇θft,i(θt−1),∇θft,j(θt−1)〉

2

≤2

(
nt∑
i=1

‖∇θft,i(θt−1)‖2
)2

+ 4

 nt∑
i<j

〈∇θft,i(θt−1),∇θft,j(θt−1)〉

2

, (A.13)

as (x+ y)2 ≤ 2x2 + 2y2. For the first term of (A.13), we have

E

( nt∑
i=1

‖∇θft,i(θt−1)‖2
)2
∣∣∣∣∣∣Ft−1

 =

nt∑
i=1

E[‖∇θft,i(θt−1)‖4|Ft−1] +

nt∑
i 6=j

E[‖∇θft,i(θt−1)‖2‖∇θft,j(θt−1)‖2|Ft−1]

≤8nt[C
4
f‖θt−1 − θ∗‖4 + σ4] + 4n2

t1{nt>1}[C
2
f‖θt−1 − θ∗‖2 + σ2]2,
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using the bound from (A.11) , nt(nt − 1) ≤ n2
t1{nt>1}, and that Ft−1 ⊆ Ft−1,i ⊂ Ft−1,j for all 0 ≤ i < j. To

bound the second term of (A.13), we ease notation by denoting ∇θft,i(θt−1) by υi, giving us

 nt∑
i<j

〈υi, υj〉

2

=

nt∑
i<j

〈υi, υj〉2 +

nt∑
i<j,k<l

(i,j)6=(k,l)

〈υi, υj〉〈υk, υl〉

=

nt∑
i<j

〈υi, υj〉2︸ ︷︷ ︸
A

+

nt∑
i<j,k<l

(i,j)6=(k,l),j=l

〈υi, υj〉〈υk, υl〉

︸ ︷︷ ︸
B

+

nt∑
i<j,k<l

(i,j)6=(k,l),j 6=l

〈υi, υj〉〈υk, υl〉

︸ ︷︷ ︸
C

.

By Cauchy-Schwarz inequality, we can bound the first term A, by

E[A|Ft−1] ≤
nt∑
i<j

E[‖υi‖2‖υj‖2|Ft−1] ≤ 2nt(nt − 1)[C2
f‖θt−1 − θ∗‖2 + σ2]2 ≤ 2n2

t1{nt>1}[C
2
f‖θt−1 − θ∗‖2 + σ2]2,

using that Ft−1 ⊆ Ft−1,i ⊂ Ft−1,j for all 0 ≤ i < j. Next, since l = j implies i 6= k, we have

E[B|Ft−1] =

nt∑
i<j,k<l,i 6=k,j=l

E[〈υi, υj〉〈υk, υl〉|Ft−1]

=

nt∑
i<j,k<l,i 6=k,j=l

E[E[〈E[υi|Ft−1,i−1], υj〉〈E[υk|Ft−1,k−1], υl〉|Ft−1,l−1]|Ft−1]

=

nt∑
i<j,k<l,i 6=k,j=l

E[E[〈∇θF (θt−1), υl〉2|Ft−1,l−1]|Ft−1]

≤
nt∑

i<j,k<l,i 6=k,j=l

E[‖∇θF (θt−1)‖2E[‖υl‖2|Ft−1,l−1]|Ft−1]

≤
nt∑

i<j,k<l,i 6=k,j=l

2C2
∇‖θt−1 − θ∗‖2[C2

f‖θt−1 − θ∗‖2 + σ2]

=nt(nt − 1)(nt − 2)C2
∇‖θt−1 − θ∗‖2[C2

f‖θt−1 − θ∗‖2 + σ2]

≤n3
t1{nt>1}C

2
∇‖θt−1 − θ∗‖2[C2

f‖θt−1 − θ∗‖2 + σ2],

using Cauchy-Schwarz inequality and the bound in (A.11). In the same way, as j 6= l includes (i, j) 6= (k, l), we
can rewrite C as

C =

nt∑
i<j,k<l,j 6=l

〈υi, υj〉〈υk, υl〉 =

nt∑
i<j,k<l,i=k,j 6=l

〈υi, υj〉〈υk, υl〉︸ ︷︷ ︸
C1

+

nt∑
i<j,k<l,i 6=k,j 6=l

〈υi, υj〉〈υk, υl〉︸ ︷︷ ︸
C2

,
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where E[C1|Ft−1] = E[B|Ft−1]. Finally, we can rewrite C2 as

C2 =

nt∑
i<j,k<l,i 6=k,j 6=l,i=l,j 6=k

〈υiυj〉〈υkυl〉︸ ︷︷ ︸
C2,1

+

nt∑
i<j,k<l,i 6=k,j 6=l,i6=l,j=k

〈υiυj〉〈υkυl〉︸ ︷︷ ︸
C2,2

+

nt∑
i<j,k<l,i 6=j 6=k 6=l

〈υiυj〉〈υkυl〉︸ ︷︷ ︸
C2,3

,

where E[C2,1|Ft−1] = E[C2,2|Ft−1] = E[B|Ft−1], and

E[C2,3|Ft−1] =

nt∑
i<j,k<l,i 6=j 6=k 6=l

E[‖∇θF (θt−1)‖4|Ft−1]

≤ nt(nt − 1)(nt − 2)(nt − 3)C4
∇‖θt−1 − θ∗‖4

≤ n4
t1{nt>1}C

4
∇‖θt−1 − θ∗‖4.

Thus, the fourth-order term of (A.10), is bounded by

E

[∥∥∥∥∥
nt∑
i=1

∇θft,i (θt−1)

∥∥∥∥∥
4∣∣∣∣∣Ft−1

]
≤16nt[C

4
f‖θt−1 − θ∗‖4 + σ4] + 16n2

t1{nt>1}[C
2
f‖θt−1 − θ∗‖2 + σ2]2

+ 12n3
t1{nt>1}C

2
∇‖θt−1 − θ∗‖2[C2

f‖θt−1 − θ∗‖2 + σ2] + 4n4
t1{nt>1}C

4
∇‖θt−1 − θ∗‖4

≤[16C4
fnt + 16C4

fn
2
t1{nt>1} + 12C2

∇C
2
fn

3
t1{nt>1} + 4C4

∇n
4
t1{nt>1}]‖θt−1 − θ∗‖4

+ [32C2
fσ

2n2
t1{nt>1} + 12C2

∇σ
2n3
t1{nt>1}]‖θt−1 − θ∗‖2 + 16σ4nt + 16σ4n2

t1{nt>1}.
(A.14)

Combining the bound from (A.12) and (A.14) into (A.10), we can bound the fourth-order moment E[‖θt −
θ∗‖4|Ft−1] by the recursive relation:

[1− 4µγt + 8C2
∇1{nt>1}γ

2
t + 16C2

fn
−1
t γ2

t + 48C4
fn
−3
t γ4

t + 48C4
fn
−2
t 1{nt>1}γ

4
t + 36C2

∇C
2
fn
−1
t 1{nt>1}γ

4
t

+ 12C4
∇1{nt>1}γ

4
t ]‖θt−1 − θ∗‖4 + [16σ2n−1

t γ2
t + 96C2

fσ
2n−2
t 1{nt>1}γ

4
t + 36C2

∇σ
2n−1
t 1{nt>1}γ

4
t ]‖θt−1 − θ∗‖2

+ 48σ4n−3
t γ4

t + 48σ4n−2
t 1{nt>1}γ

4
t .

By Young’s inequality for products, one have

2C2
∇C

2
f ≤ ntC4

∇ + n−1
t C4

f ,

16σ2n−1
t γ2

t ‖θt−1 − θ∗‖2 ≤ 2µγt‖θt − θ∗‖4 + 32σ4µ−1n−2
t γ3

t ,

2C2
fσ

2n−2
t 1{nt>1}γ

4
t ‖θt−1 − θ∗‖2 ≤ C4

fn
−2
t 1{nt>1}γ

4
t ‖θt − θ∗‖4 + σ4n−2

t 1{nt>1}γ
4
t ,

2C2
∇σ

2n−1
t 1{nt>1}γ

4
t ‖θt−1 − θ∗‖2 ≤ C4

∇1{nt>1}γ
4
t ‖θt − θ∗‖4 + σ4n−2

t 1{nt>1}γ
4
t ,

which yields the bound on E[‖θt − θ∗‖4|Ft−1],

[1− 2µγt + 8C2
∇1{nt>1}γ

2
t + 16C2

fn
−1
t γ2

t + 48C4
fn
−3
t γ4

t + 114C4
fn
−2
t 1{nt>1}γ

4
t + 48C4

∇1{nt>1}γ
4
t ]‖θt−1 − θ∗‖4

+ 32µ−1σ4n−2
t γ3

t + 48σ4n−3
t γ4

t + 114σ4n−2
t 1{nt>1}γ

4
t . (A.15)

Taking, the expectation on both sides of the inequality in (A.15) yields the recursive relation for the fourth-order
moment:

∆t ≤[1− 2µγt + 8C2
∇1{nt>1}γ

2
t + 16C2

fn
−1
t γ2

t + 48C4
fn
−3
t γ4

t + 114C4
fn
−2
t 1{nt>1}γ

4
t + 48C4

∇1{nt>1}γ
4
t ]∆t−1



NON-ASYMPTOTIC ANALYSIS OF STOCHASTIC APPROXIMATION ALGORITHMS FOR STREAMING DATA 501

+ 32µ−1σ4n−2
t γ3

t + 48σ4n−3
t γ4

t + 114σ4n−2
t 1{nt>1}γ

4
t . (A.16)

with ∆t = E[‖θt − θ∗‖4] for some ∆0 ≥ 0. By Proposition B.5, we achieve the (upper) bound of ∆t in (A.16),
given as

∆t ≤ exp

−µ t∑
i=t/2

γi

Π∆
t +

32σ4

µ2
max

t/2≤i≤t

γ2
i

n2
i

+
48σ4

µ
max

t/2≤i≤t

γ3
i

n3
i

+
114σ4

µ
max

t/2≤i≤t

γ3
i 1{ni>1}

n2
i

.

where Π∆
t is given by

exp

(
32C2

f

t∑
i=1

γ2
i

ni

)
exp

(
96C4

f

t∑
i=1

γ4
i

n3
i

)
exp

(
228C4

f

t∑
i=1

1{ni>1}γ
4
i

n2
i

)

exp

(
16C2

∇

t∑
i=1

1{ni>1}γ
2
i

)
exp

(
96C4

∇

t∑
i=1

1{ni>1}γ
4
i

)(
∆0 +

2σ4

C4
f

+
4σ4γ1

µC2
fn1

)
, (A.17)

with use of

max
1≤i≤t

32µ−1σ4n−2
i γi + 48σ4n−3

i γ2
i + 114σ4n−2

i 1{ni>1}γ
2
i

8C2
∇1{ni>1} + 16C2

fn
−1
i + 48C4

fn
−3
i γ2

i + 114C4
fn
−2
i 1{ni>1}γ

2
i + 48C4

∇1{ni>1}γ
2
i

≤ σ4

C4
f

+
2σ4γ1

µC2
fn1

.

At last, bounding the projected estimate (3.2) follows from that E[‖PΘ(θ)− θ∗‖2] ≤ E[‖θ − θ∗‖2], ∀θ ∈ Θ.

A.2.1 Proofs for Section 4.2.1

Proof of Theorem 4.9. Following [32], we rewrite (3.1) to

θt = θt−1 −
γt
nt

nt∑
i=1

∇θft,i(θt−1) ⇐⇒ 1

γt
(θt−1 − θt) = ∇θft(θt−1), (A.18)

where ∇θft(θt−1) denotes n−1
t

∑nt
i=1∇θft,i(θt−1). Observe that

∇2
θF (θ∗)(θt−1 − θ∗) =∇θft(θt−1)−∇θft(θ∗)− [∇θft(θt−1)−∇θft(θ∗)−∇θF (θt−1)]︸ ︷︷ ︸

martingale term

− [∇θF (θt−1)−∇2
θF (θ∗)(θt−1 − θ∗)]︸ ︷︷ ︸

rest term

,

where ∇2
θF (θ∗) is invertible with lowest eigenvalue greater than µ, i.e., ∇2

θF (θ∗) ≥ µ. Thus, summing the parts
and using the Minkowski’s inequality, we obtain the inequality:

(
E
[∥∥θ̄t − θ∗∥∥2

]) 1
2 ≤

E

∥∥∥∥∥∇2
θF (θ∗)

−1 1

Nt

t∑
i=1

ni∇θfi (θ∗)

∥∥∥∥∥
2
 1

2

+

E

∥∥∥∥∥∇2
θF (θ∗)

−1 1

Nt

t∑
i=1

ni∇θfi (θi−1)

∥∥∥∥∥
2
 1

2

+

E

∥∥∥∥∥∇2
θF (θ∗)

−1 1

Nt

t∑
i=1

ni [∇θfi (θi−1)−∇θfi (θ∗)−∇θF (θi−1)]

∥∥∥∥∥
2
 1

2
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+

E

∥∥∥∥∥∇2
θF (θ∗)

−1 1

Nt

t∑
i=1

ni
[
∇θF (θi−1)−∇2

θF (θ∗) (θi−1 − θ∗)
]∥∥∥∥∥

2
 1

2

.

As (∇θft,i(θ∗)) is a square-integrable martingale increment sequences on Rd (Asm. 4.1), we have

E

∥∥∥∥∥∇2
θF (θ∗)

−1 1

Nt

t∑
i=1

ni∇θfi (θ∗)

∥∥∥∥∥
2
 ≤ 1

N2
t

t∑
i=1

ni∑
j=1

E
[∥∥∥∇2

θF (θ∗)
−1∇θfi,j (θ∗)

∥∥∥2] ≤ Tr
[
∇2
θF (θ∗)−1Σ∇2

θF (θ∗)−1
]

Nt
,

(A.19)

using Assumption 4.8. To ease notation, we denote Tr[∇2
θF (θ∗)−1Σ∇2

θF (θ∗)−1] by Λ. Next, note that for all
t ≥ 1, we have the relation in (A.18), giving us

1

Nt

t∑
i=1

ni∇θfi (θi−1) =
1

Nt

t∑
i=1

ni
γi

(θi−1 − θi) =
1

Nt

t−1∑
i=1

(θi − θ∗)
(
ni+1

γi+1
− ni
γi

)
− 1

Nt
(θt − θ∗)

nt
γt

+
1

Nt
(θ0 − θ∗)

n1

γ1
,

leading to∥∥∥∥∥∇2
θF (θ∗)

−1 1

Nt

t∑
i=1

ni∇θfi (θi−1)

∥∥∥∥∥ ≤ 1

Ntµ

t−1∑
i=1

‖θi − θ∗‖
∣∣∣∣ni+1

γi+1
− ni
γi

∣∣∣∣+
1

Ntµ
‖θt − θ∗‖

nt
γt

+
1

Ntµ
‖θ0 − θ∗‖

n1

γ1
.

Hence, with the notion of δt = E[‖θt − θ∗‖2] this expression can be simplified to

E

∥∥∥∥∥∇2
θF (θ∗)

−1 1

Nt

t∑
i=1

ni∇θfi (θi−1)

∥∥∥∥∥
2
 1

2

≤ 1

Ntµ

t−1∑
i=1

δ
1
2
i

∣∣∣∣ni+1

γi+1
− ni
γi

∣∣∣∣+
nt

Ntγtµ
δ

1
2
t +

n1

Ntγ1µ
δ

1
2
0 . (A.20)

For the martingale term, we have

E

∥∥∥∥∥∇2
θF (θ∗)

−1 1

Nt

t∑
i=1

ni [∇θfi (θi−1)−∇θfi (θ∗)−∇θF (θi−1)]

∥∥∥∥∥
2
 ≤ 1

N2
t µ

2

t∑
i=1

n2
iE
[
‖∇θfi (θi−1)−∇θfi (θ∗)‖2

]

=
1

N2
t µ

2

t∑
i=1

E

[∥∥∥∥∥
ni∑
j=1

∇θfi,j (θi−1)−∇θfi,j (θ∗)

∥∥∥∥∥
2]
≤ 1

N2
t µ

2

t∑
i=1

ni∑
j=1

(
E
[
‖∇θfi,j (θi−1)−∇θfi,j (θ∗)‖2

]) 1
2

≤
C2
f

N2
t µ

2

t∑
i=1

niδi−1, (A.21)

by Cauchy-Schwarz inequality and Assumption 4.2-p. For all t ≥ 1, the rest term is directly bounded by (4.5):

E

∥∥∥∥∥∇2
θF (θ∗)

−1 1

Nt

t∑
i=1

ni
[
∇θF (θi−1)−∇2

θF (θ∗) (θi−1 − θ∗)
]∥∥∥∥∥

2
 1

2

≤ C
′
∇

Ntµ

t∑
i=1

ni∆
1
2
i−1, (A.22)

with the notion ∆t = E[‖θt − θ∗‖4]. Finally, combining the terms from (A.19) to (A.22), gives us

δ̄
1/2
t ≤ Λ1/2

N
1/2
t

+
1

Ntµ

t−1∑
i=1

δ
1/2
i

∣∣∣∣ni+1

γi+1
− ni
γi

∣∣∣∣+
nt

Ntγtµ
δ

1/2
t +

n1

Ntγ1µ
δ

1/2
0 +

Cf
Ntµ

(
t∑
i=1

niδi−1

)1/2

+
C ′∇
Ntµ

t∑
i=1

ni∆
1/2
i−1,

(A.23)
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where δ̄t = E[‖θ̄t−θ∗‖2], which can be simplified into (4.6) by shifting the indices and collecting the δ0 terms.

Proof of Corollary 4.10. As nt = Cρ for all t ≥ 1, we simplify the bound for δ̄
1/2
t in (4.6) to

Λ1/2

N
1/2
t

+
Cρ
Ntµ

t−1∑
i=1

δ
1/2
i

∣∣∣∣ 1

γi+1
− 1

γi

∣∣∣∣+
Cρ

Ntγtµ
δ

1/2
t +

Cρ
Ntµ

(
1

γ1
+ Cf

)
δ

1/2
0 +

CfC
1
2
ρ

Ntµ

(
t−1∑
i=1

δi

)1/2

+
C ′∇Cρ
Ntµ

t−1∑
i=0

∆
1/2
i .

(A.24)

The second-order moment δt is bounded by Corollary 4.5 but with use of (A.7) as we work in terms of t. The
fourth-order moment ∆t from Lemma A.1 can be simplified to:

∆t ≤ exp

−µ t∑
i=t/2

γi

Πc
∞ +

1

µ

(
32σ4

µC2
ρ

max
t/2≤i≤t

γ2
i +

48σ4

C3
ρ

max
t/2≤i≤t

γ3
i +

114σ4
1{Cρ>1}

C2
ρ

max
t/2≤i≤t

γ3
i

)

≤ exp

(
−
µCγC

β
ρ t

1−α

21−α

)
Πc
∞ +

1

µ

(
22α32σ4C2

γC
2β
ρ

µC2
ρt

2α
+

23α48σ4C3
γC

3β
ρ

C3
ρt

3α
+

23α114σ4C3
γC

3β
ρ 1{Cρ>1}

C2
ρt

3α

)
,

using that γt = CγC
β
ρ t
−α is decreasing as α ∈ (1/2, 1). Regarding Π∆

t defined in (A.17), we can bound it by

Πc
∞ = exp

(
64αC2

fC
2
γC

2β
ρ

(2α− 1)Cρ

)
exp

(
(192 + 456Cρ1{Cρ>1})C

4
fC

4
γC

4β
ρ

C3
ρ

)
exp

(
32αC2

∇C
2
γC

2β
ρ 1{Cρ>1}

2α− 1

)

exp
(
192C4

∇C
4
γC

4β
ρ 1{Cρ>1}

)(
∆0 +

2σ4

C4
f

+
4σ4Cγ

µC2
fC

1−β
ρ

)
,

using
∑t
i=1 i

−2α ≤ 2α/(2α − 1) and
∑t
i=1 i

−4α ≤ 2. Note that Πc
∞ is a finite constant, independent of t. To

bound the first term of (A.24), namely
Cρ
Ntµ

∑t−1
i=1 δ

1/2
i |γ

−1
i+1−γ

−1
i |, we remark that |γ−1

t+1−γ
−1
t | ≤ C−1

γ C−βρ αtα−1,

one has (since
√
a+ b ≤

√
a+
√
b),

Cρ
Ntµ

t−1∑
i=1

δ
1
2
i

∣∣∣∣ 1

γi+1
− 1

γi

∣∣∣∣ ≤C1−β
ρ α

CγµNt

t∑
i=1

iα−1

exp

(
−
µCγC

β
ρ i

1−α

22−α

)√
πc∞ +

2
1+α

2 σ
√
Cγ

√
µC

1−β
2

ρ iα/2

 . (A.25)

For simplicity, let us denote

Ac∞ =

∞∑
i=0

exp

(
−
µCγC

β
ρ i

1−α

22−α

)
≥
∞∑
i=0

iα−1 exp

(
−
µCγC

β
ρ i

1−α

22−α

)
,

as α < 1. Thus, the first part of (A.25) is bounded as follows:

C1−β
ρ α

√
πc∞

CγµNt

t∑
i=1

iα−1 exp

(
−
µCγC

β
ρ i

1−α

22−α

)
≤
C1−β
ρ α

√
πc∞A

c
∞

CγµNt
.
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Furthermore, with the help of an integral test for convergence, one has
∑t
i=1 i

α/2−1 ≤ 1 +
∫ t

1
sα/2−1 ds =

1 + (2/α)tα/2 − (2/α) ≤ (2/α)tα/2, such that the second part of (A.25) can be bounded by

2
1+α

2 σC
1−β

2
ρ α

C
1/2
γ µ3/2Nt

t∑
i=1

iα/2−1 ≤ 2
3+α

2 σC
1−β

2
ρ tα/2

C
1/2
γ µ3/2Nt

=
2

3+α
2 σC

1−α−β
2

ρ

C
1/2
γ µ3/2N

1−α/2
t

.

By combining this, we get

Cρ
Ntµ

t−1∑
i=1

δ
1
2
i

∣∣∣∣ 1

γi+1
− 1

γi

∣∣∣∣ ≤ C1−β
ρ α

√
πc∞A

c
∞

CγµNt
+

2
3+α

2 σC
1−α−β

2
ρ√

Cγµ3/2N
1−α/2
t

. (A.26)

Similarly, second term of (A.24), can be bounded by

Cρ
Ntγtµ

δ
1
2
t ≤

C1−α−β
ρ

CγµN
1−α
t

exp

(
−
µCγC

β
ρ t

1−α

22−α

)√
πc∞ +

2
1+α

2 σ
√
Cγ

√
µC

1−β
2

ρ tα/2

 ≤ C2−α−β
ρ

√
πc∞A

c
∞

CγµN
2−α
t

+
2

1+α
2 C

1−α−β
2

ρ σ√
Cγµ3/2N

1−α/2
t

,

using exp(−µCγCβρ t1−α/22−α) = Act ≤ t−1
∑t
i=1A

c
i ≤ t−1Ac∞ as Act is decreasing. In a same way, one has

CfC
1
2
ρ

Ntµ

(
t−1∑
i=1

δi

) 1
2

≤CfC
1
2
ρ

Ntµ

(
Ac∞π

c
∞ +

21+ασ2Cγt
1−α

(1− α)µC1−β
ρ

)1/2

≤
CfC

1
2
ρ
√
πc∞
√
Ac∞

Ntµ
+

2
1+α

2 Cfσ
√
Cγ

C
1−α−β

2
ρ µ3/2N

1+α
2

t

.

Bound the last term of (A.24), is done as follows,

C ′∇Cρ
Ntµ

t−1∑
i=0

∆
1
2
i ≤

C ′∇Cρ
Ntµ

t−1∑
i=0

exp

(
−
µCγC

β
ρ i

1−α

22−α

)√
Πc
∞ +

2α6C ′∇σ
2CγC

β
ρ

Ntµ2

t−1∑
i=1

i−α

+
(6 + 71{Cρ>1})2

3α/2C ′∇σ
2C

3/2
γ C

3β/2
ρ

Ntµ3/2

t−1∑
i=1

i−3α/2

≤
C ′∇Cρ

√
Πc
∞A

c
∞

Ntµ
+

2α6C ′∇σ
2Cγ

C1−α−β
ρ µ2Nα

t

+
(6 + 71{Cρ>1})2

3α/2C ′∇σ
2C

3/2
γ C

3β/2
ρ ψ0

3α/2(Nt/Cρ)

µ3/2Nt
.

Thus, by collecting the terms above, we obtain:

δ̄
1/2
t ≤ Λ1/2

N
1/2
t

+
6σC

1−α−β
2

ρ√
Cγµ3/2N

1−α/2
t

+
2α6C ′∇σ

2Cγ

C1−α−β
ρ µ2Nα

t

+
C2−α−β
ρ

√
πc∞A

c
∞

CγµN
2−α
t

+
2

1+α
2 Cfσ

√
Cγ

C
1−α−β

2
ρ µ3/2N

1+α
2

t

+
CρΓc
µNt

+
(6 + 71{Cρ>1})2

3α/2C ′∇σ
2C

3/2
γ C

3β/2
ρ

µ3/2ψ0
3α/2(Nt/Cρ)−1Nt

,

where Γc = (1/CγC
β
ρ + Cf )δ

1/2
0 + Cf

√
πc∞A

c
∞/C

1/2
ρ +

√
πc∞A

c
∞/CγC

β
ρ + C ′∇

√
Πc
∞A

c
∞.
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Proof of Corollary 4.11. The steps of the proof follows the ones of Corollary 4.10 with the smart notation of φ

and ρ̃: The bound for δ̄
1/2
t in (4.6) is given by

Λ1/2

N
1/2
t

+
1

Ntµ

t−1∑
i=1

δ
1/2
i

∣∣∣∣ni+1

γi+1
− ni
γi

∣∣∣∣+
nt

Ntγtµ
δ
1/2
t +

n1

Ntµ

(
1

γ1
+ Cf

)
δ
1/2
0 +

Cf
Ntµ

(
t−1∑
i=1

ni+1δi

)1/2

+
C′∇
Ntµ

t−1∑
i=0

ni+1∆
1/2
i ,

(A.27)

where the learning rate and time-varying mini-batches are on the form γt = Cγn
β
t t
−α and nt = dCρtρe. The

second-order moment δt is upper bounded by (A.8) from Corollary 4.6. The fourth-order moment ∆t from
Lemma A.1 can be simplified as follows,

∆t ≤ exp

−µ t∑
i=t/2

γi

Πv
∞ +

32σ4

µ2
max

t/2≤i≤t

γ2
i

n2
i

+
162σ4

µ
max

t/2≤i≤t

γ3
i

n2
i

,

as nt ≥ 1 for any t ≥ 1 and β ≤ 1, and

Πv
∞ = exp

(
32(α− βρ̃)C2

γC
2β
ρ (2C2

f + C2
∇)

2(α− βρ̃)− 1

)
exp

(
192C4

γC
4β
ρ (4C4

f + C4
∇)
)(

∆0 +
2σ4

C4
f

+
4σ4Cγ

µC2
fC

1−β
ρ

,

)

using that
∑t
i=1 i

−a ≤ 2 for a ≥ 2. Next, for ρ ≥ 0, we have

∆t ≤ exp

(
−
µCγC

β
ρ t

1+βρ−α

21+βρ−α

)
Πv
∞ +

22α−2βρ+2ρ32σ4C2
γC

2β
ρ

µ2C2
ρt

2α−2βρ+2ρ
+

23α−3βρ+2ρ162σ4C3
γC

3β
ρ

µC2
ρt

3α−3βρ+2ρ
,

using that α− βρ ∈ (1/2, 1). If ρ < 0, one directly have

∆t ≤ exp

(
−
µCγC

β
ρ t

1−α

21−α

)
Πv
∞ +

22α32σ4C2
γC

2β
ρ

µ2t2α
+

23α162σ4C3
γC

3β
ρ

µt3α
.

With the notion of φ and ρ̃, we can combine the two ρ-cases as follows:

∆t ≤ exp

(
−µCγC

β1{ρ≥0}
ρ t(1−φ)(1+ρ̃)

2(1−φ)(1+ρ̃)

)
Πv
∞ +

22φ(1+ρ̃)32σ4C2
γC

2β
ρ

µ2C
21{ρ≥0}
ρ t2φ(1+ρ̃)

+
23φ(1+ρ̃)−ρ̃162σ4C3

γC
3β
ρ

µC
21{ρ≥0}
ρ t3φ(1+ρ̃)−ρ̃

.

We will in the following bound the terms for t but afterwards we will translate it to terms in Nt. If ρ ≥ 0,
the first relation is t ≥ (Nt/2Cρ)

1/(1+ρ), e.g., see the proof of Corollary 4.6. Similarly, Nt ≥ Cρ
∑t
i=1 i

ρ ≥
Cρ
∫ t

0
xρ dx = Cρt

ρ+1, thus, t ≤ (Nt/Cρ)
1/(1+ρ). If ρ < 0, one has t ≤ Nt and Nt ≤ Cρt, i.e., t ≥ Nt/Cρ.

Bounding 1
Ntµ

∑t−1
i=1 δ

1/2
i |ni+1/γi+1 − ni/γi|, we first note that nt/γt = C−1

γ dCρtρe1−βtα. Thus, by the mean
value inequality, we obtain for ρ ≥ 0:∣∣∣∣ni+1

γi+1
− ni
γi

∣∣∣∣ ≤ 2C1−β
ρ

Cγ
sup

ν∈(i,i+1)

∣∣∣ν(1−β)ρ+α−1
∣∣∣ ≤ 2C1−β

ρ

Cγi1−(1−β)ρ−α , (A.28)

as α+ (1− β)ρ ≤ 1− ρ since α− βρ ∈ (1/2, 1). For ρ < 0, the mean value inequality gives us∣∣∣∣ni+1

γi+1
− ni
γi

∣∣∣∣ ≤ 2C1−β
ρ

Cγ
sup

ν∈(i,i+1)

∣∣να−1
∣∣ ≤ 2C1−β

ρ

Cγi1−α
,
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as (nt)t≥1 is a decreasing sequence and β ≤ 1. Thus, for any ρ ∈ (−1, 1), we have

∣∣∣∣ni+1

γi+1
− ni
γi

∣∣∣∣ ≤ 2C1−β
ρ

Cγi1−φ(1+ρ̃)
.

By using this, we obtain a bound on 1
Ntµ

∑t−1
i=1 δ

1
2
i

∣∣∣ni+1

γi+1
− ni

γi

∣∣∣ given as

2C1−β
ρ

NtµCγ

t∑
i=1

iφ(1+ρ̃)−1

exp

(
−µCγC

β1{ρ≥0}
ρ i(1−φ)(1+ρ̃)

21+(1−φ)(1+ρ̃)

)√
πv∞ +

2
1+φ(1+ρ̃)

2 σ
√
Cγ

√
µC

(1−β)
2 1{ρ≥0}

ρ i
φ(1+ρ̃)

2

 .

Next, let us denote

Av∞ =

∞∑
i=0

iρ̃ exp

(
−µCγC

β1{ρ≥0}
ρ i(1−φ)(1+ρ̃)

21+(1−φ)(1+ρ̃)

)
≥
∞∑
i=0

iφ(1+ρ̃)−1 exp

(
−µCγC

β1{ρ≥0}
ρ i(1−φ)(1+ρ̃)

21+(1−φ)(1+ρ̃)

)
,

since φ(1 + ρ̃)− 1 = α+ (1− β)ρ̃− 1 ≤ ρ̃. Thus,

2C1−β
ρ

√
πv∞

NtµCγ

t∑
i=1

iφ(1+ρ̃)−1 exp

(
−µCγC

β1{ρ≥0}
ρ i(1−φ)(1+ρ̃)

21+(1−φ)(1+ρ̃)

)
≤

2C1−β
ρ

√
πv∞A

v
∞

NtµCγ
.

Furthermore, with the help of an integral test for convergence, we have

2
3+φ(1+ρ̃)

2 σC
1−β

2 1{ρ≥0}
ρ

µ3/2
√
CγNt

t∑
i=1

i
φ(1+ρ̃)

2 −1 ≤2
3+φ(1+ρ̃)

2 σC
1−β

2 1{ρ≥0}
ρ t

φ(1+ρ̃)
2

µ3/2
√
CγNt

≤ 2
3+φ(1+ρ̃)

2 σC
1−φ−β

2 1{ρ≥0}
ρ

µ3/2
√
CγN

1−φ/2
t

.

Summarising, we obtain

1

Ntµ

t−1∑
i=1

δ
1
2
i

∣∣∣∣ni+1

γi+1
− ni
γi

∣∣∣∣ ≤2C1−β
ρ

√
πv∞A

v
∞

NtµCγ
+

2
3+φ(1+ρ̃)

2 σC
1−φ−β

2 1{ρ≥0}
ρ

µ3/2
√
CγN

1−φ/2
t

.

Similarly, for nt
Ntγtµ

δ
1/2
t , one have

nt
Ntγtµ

δ
1
2
t ≤

C1−β
ρ

√
πv∞t

φ(1+ρ̃)

NtCγµ
exp

(
−µCγC

β1{ρ≥0}
ρ t(1−φ)(1+ρ̃)

21+(1−φ)(1+ρ̃)

)
+

2
1+φ(1+ρ̃)

2 σC
1−β

2 1{ρ≥0}
ρ t

φ(1+ρ̃)
2

µ3/2
√
CγNt

≤
C2−φ−β
ρ

√
πv∞A

v
∞

µCγN
2−φ
t

+
2

1+φ(1+ρ̃)
2 σC

1−φ−β
2 1{ρ≥0}

ρ

µ3/2
√
CγN

1−φ/2
t

.

For n1

Ntµ
(γ−1

1 + Cf )δ
1/2
0 , we insert the definition of our learning functions, giving us

n1

Ntµ

(
1

γ1
+ Cf

)
δ

1/2
0 =

Cρ
Ntµ

(
1

CγC
β
ρ

+ Cf

)
δ

1/2
0 .
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Bounding
Cf
Ntµ

(
∑t−1
i=1 ni+1δi)

1/2, follows the ideas from above, using that nt+1 ≤ 2ρ̃nt; it can be upper bounded
by

2ρ̃/2Cf
Ntµ

(
Cρ

t∑
i=1

iρ̃

(
exp

(
−µCγC

β1{ρ≥0}
ρ i(1−φ)(1+ρ̃)

2(1−φ)(1+ρ̃)

)
πv∞ +

21+φ(1+ρ̃)σ2Cγ

µC
(1−β)1{ρ≥0}
ρ iφ(1+ρ̃)

)) 1
2

=
2ρ̃/2Cf
Ntµ

(
Cρπ

v
∞

t∑
i=1

iρ̃ exp

(
−µCγC

β1{ρ≥0}
ρ i(1−φ)(1+ρ̃)

2(1−φ)(1+ρ̃)

)
+

21+φ(1+ρ̃)σ2CγC
β1{ρ≥0}
ρ

µ

t∑
i=1

iβρ̃−α

) 1
2

≤2ρ̃/2Cf
Ntµ

(
Cρπ

v
∞A

v
∞ +

2φ(1+ρ̃)σ2CγC
β1{ρ≥0}
ρ t(1−φ)(1+ρ̃)

µ

) 1
2

≤
2ρ̃/2Cf

√
Cρ
√
πv∞
√
Av∞

µNt
+

2
φ(1+ρ̃)

2 Cfσ
√
CγC

β/21{ρ≥0}
ρ t

(1−φ)(1+ρ̃)
2

µ3/2Nt

≤
2ρ̃/2Cf

√
Cρ
√
πv∞
√
Av∞

µNt
+

2
φ(1+ρ̃)

2 Cfσ
√
Cγ

µ3/2C
1−φ−β

2 1{ρ≥0}
ρ N

1+φ
2

t

.

Likewise, for
C′∇
Ntµ

∑t−1
i=0 ni+1∆

1/2
i , we can bound by

2ρ̃C′∇Cρ
Ntµ

t−1∑
i=1

iρ̃
(

exp

(
−µCγC

β1{ρ≥0}
ρ i(1−φ)(1+ρ̃)

2(1−φ)(1+ρ̃)

)
Πv
∞ +

22φ(1+ρ̃)32σ4C2
γC

2β
ρ

µ2C
21{ρ≥0}
ρ i2φ(1+ρ̃)

+
23φ(1+ρ̃)−ρ̃162σ4C3

γC
3β
ρ

µC
21{ρ≥0}
ρ i3φ(1+ρ̃)−ρ̃

) 1
2

≤ 2ρ̃C′∇Cρ
Ntµ

t−1∑
i=1

iρ̃
(

exp

(
−µCγC

β1{ρ≥0}
ρ i(1−φ)(1+ρ̃)

21+(1−φ)(1+ρ̃)

)√
Πv
∞ +

2φ(1+ρ̃)6σ2CγC
β
ρ

µC
1{ρ≥0}
ρ iφ(1+ρ̃)

+
23φ(1+ρ̃)/2−ρ̃/213σ2C

3/2
γ C

3β/2
ρ

µ1/2C
1{ρ≥0}
ρ i3φ(1+ρ̃)/2

)

≤ 2ρ̃C′∇Cρ
√

Πv
∞A

v
∞

µNt
+

2φ(1+ρ̃)+ρ̃C′∇σ
2CγC

1+β
ρ

µ2C
1{ρ≥0}
ρ Nt

t−1∑
i=1

iβρ̃−α +
23φ(1+ρ̃)/2+ρ̃/2C′∇σ

2C
3/2
γ C

1+3β/2
ρ

µ3/2C
1{ρ≥0}
ρ Nt

t−1∑
i=1

i3(βρ̃−α)/2,

where the second term can be bounded as

2(1+φ)(1+ρ̃)−1C ′∇σ
2CγC

1+β
ρ

µ2C
1{ρ≥0}
ρ Nt

t−1∑
i=1

iβρ̃−α ≤
2(1+φ)(1+ρ̃)−1C ′∇σ

2CγC
1+β
ρ t1+βρ̃−α

(1 + βρ̃− α)µ2C
1{ρ≥0}
ρ Nt

≤ 2(1+φ)(1+ρ̃)−2C ′∇σ
2Cγ

µ2C1−φ−β
ρ Nφ

t

,

and the third term by

23(1+φ)(1+ρ̃)/2C ′∇σ
2C

3/2
γ C

1+3β/2
ρ

µ3/2C
1{ρ≥0}
ρ Nt

t−1∑
i=1

i3(βρ̃−α)/2 ≤
23(1+φ)(1+ρ̃)/2C ′∇σ

2C
3/2
γ C

1+3β/2
ρ ψρ̃3(α−βρ̃)/2(Nt/Cρ)

µ3/2C
1{ρ≥0}
ρ Nt

.

By collecting these bounds, we get

C′∇
Ntµ

t−1∑
i=0

ni+1∆
1
2
i ≤

2ρ̃C′∇Cρ
√

Πv
∞A

v
∞

µNt
+

2(1+φ)(1+ρ̃)−2C′∇σ
2Cγ

µ2C1−φ−β
ρ Nφ

t

+
23(1+φ)(1+ρ̃)/2C′∇σ

2C
3/2
γ C

1+3β/2
ρ ψρ̃3(α−βρ̃)/2(Nt/Cρ)

µ3/2C
1{ρ≥0}
ρ Nt

.

Combining our findings from above, we have

δ̄
1/2
t ≤ Λ1/2

N
1/2
t

+
2C1−β

ρ

√
πv∞A

v
∞

µCγNt
+

2
3+φ(1+ρ̃)

2 σC
1−φ−β

2 1{ρ≥0}
ρ

µ3/2
√
CγN

1−φ/2
t

+
C2−φ−β
ρ

√
πv∞A

v
∞

µCγN
2−φ
t

+
2

1+φ(1+ρ̃)
2 σC

1−φ−β
2 1{ρ≥0}

ρ

µ3/2
√
CγN

1−φ/2
t
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+
Cρ
Ntµ

(
1

CγC
β
ρ

+ Cf

)
δ

1
2
0 +

2ρ̃/2Cf
√
Cρ
√
πv∞
√
Av∞

µNt
+

2
φ(1+ρ̃)

2 Cfσ
√
Cγ

µ3/2C
1−φ−β

2 1{ρ≥0}
ρ N

1+φ
2

t

+
2ρ̃C ′∇Cρ

√
Πv
∞A

v
∞

µNt

+
2(1+φ)(1+ρ̃)−2C ′∇σ

2Cγ

µ2C1−φ−β
ρ Nφ

t

+
23(1+φ)(1+ρ̃)/2C ′∇σ

2C
3/2
γ C

1+3β/2
ρ ψρ̃3(α−βρ̃)/2(Nt/Cρ)

µ3/2C
1{ρ≥0}
ρ Nt

.

This can be simplified to the desired using Γv given by (1/CγC
β
ρ + Cf )δ

1/2
0 + 2ρ̃Cf

√
πv∞A

v
∞/C

1/2
ρ +

2
√
πv∞A

v
∞/CγC

β
ρ + 2ρ̃C ′∇

√
Πv
∞A

v
∞, consisting of the finite constants πv∞, Πv

∞ and Av∞.

A.2.2 Proofs for Section 4.2.2

Theorem A.2 (APSSG). Let δ̄t = E[‖θ̄t − θ∗‖2] with (θ̄t) given by (3.3), where (θt) follows the recursion
in (3.2). Suppose Assumptions 2.1 to 4.8 hold with p = 4. Then, for any learning rate (γt) and time-varying

mini-batch (nt), we can upper bound δ̄
1/2
t by

Λ1/2

N
1/2
t

+
1

Ntµ

t−1∑
i=1

∣∣∣∣ni+1

γi+1
− ni
γi

∣∣∣∣ δ1/2i +
nt

Ntγtµ
δ
1/2
t +

n1

Ntµ

(
1

γ1
+ Cf

)
δ
1/2
0 +

Cf
Ntµ

(
t−1∑
i=1

ni+1δi

)1/2

+
C′′∇
Ntµ

t∑
i=0

ni+1∆
1/2
i

where Λ = Tr(∇2
θF (θ∗)−1Σ∇2

θF (θ∗)−1) and C ′′∇ = C ′∇ + 22GΘ/D
2
θ .

Proof of Theorem A.2. Denote E[‖θ̄t− θ∗‖2] by δ̄t with (θ̄t) given by (3.3) using (θt) from (3.2). As in the proof
Theorem 4.9, we follow the steps of [32], in which, we can rewrite (3.2) to

1

γt
(θt−1 − θt) = ∇θft (θt−1)− 1

γt
Ωt,

where ∇θft(θt−1) = n−1
t

∑nt
i=1∇θft,i(θt−1) and Ωt = PΘ(θt−1 − γt∇θft(θt−1)) − (θt−1 − γt∇θft(θt−1)). Thus,

summing the parts, using the Minkowski’s inequality, and bounding each term gives us the same bound as in
Theorem 4.9, but with an additional term regarding Ωt, namely

E

∥∥∥∥∥∇2
θF (θ∗)

−1 1

Nt

t∑
i=1

ni
γi

Ωi

∥∥∥∥∥
2
 1

2

≤ 1

µNt

t∑
i=1

ni
γi

√
E
[
‖Ωi‖2

]
=

1

µNt

t∑
i=1

ni
γi

√
E
[
‖Ωi‖2 1{θi−1−γi∇θfi(θi−1)/∈Θ}

]
,

(A.29)

using Lemma 4.3 of [12]. Next, we note that E[‖Ωt‖21{θt−1−γt∇θft(θt−1)/∈Θ}] = 4γ2
tG

2
ΘP[θt−1− γt∇θft(θt−1) /∈ Θ],

since

‖Ωt‖2 = ‖PΘ (θt−1 − γt∇θft (θt−1))− θt−1 + γt∇θft (θt−1)‖2

≤2 ‖PΘ (θt−1 − γt∇θft (θt−1))− θt−1‖2 + 2γ2
t ‖∇θft (θt−1)‖2

=2 ‖PΘ (θt−1 − γt∇θft (θt−1))− PΘ (θt−1)‖2 + 2γ2
t ‖∇θft (θt−1)‖2

≤2 ‖θt−1 − γt∇θft (θt−1)− θt−1‖2 + 2γ2
t ‖∇θft (θt−1)‖2

=4γ2
t ‖∇θft (θt−1)‖2 ≤ 4γ2

tG
2
Θ,

as PΘ is Lipschitz and ‖∇θft,i(θ)‖2 ≤ G2
Θ for any θ ∈ Θ. Moreover, as in Theorem 4.2 of [15], we know that

P[θt−1 − γt∇θft(θt−1) /∈ Θ] ≤ ∆t/D
4
θ , where Dθ = infθ∈∂Θ‖θ − θ∗‖ with ∂Θ denoting the frontier of Θ. Thus,
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(A.29) can then be bounded by

1

µNt

t∑
i=1

ni
γi

√
E
[
‖Ωi‖2 1{θi−1−γi∇θfi(θi−1)/∈Θ}

]
≤ 2GΘ

µD2
θNt

t∑
i=1

ni∆
1/2
i ≤ 22GΘ

µD2
θNt

t∑
i=1

ni+1∆
1/2
i ,

using that the sequence (nt) is either constant or time-varying, meaning nt+1/nt ≤ 2.

Proof of Corollary 4.13. The proof follows directly from Corollary 4.10 with use of Theorem A.2.

Proof of Corollary 4.14. The proof follows directly from Corollary 4.11 with use of Theorem A.2.

Appendix B. Technical propositions

Appendix B contains purely technical results used in the proofs presented in Appendix A. In what follows,
we use the convention inf ∅ = 0,

∑0
t=1 = 0, and

∏0
t=1 = 1.

Proposition B.1. Let (γt)t≥1 be a positive sequence. For any k ≤ t, and ω > 0, we have

t∑
i=k

t∏
j=i+1

[1 + ωγj ] γi ≤
1

ω

t∏
j=k

[1 + ωγj ] ≤
1

ω
exp

ω t∑
j=k

γj

 . (B.1)

Proof of Proposition B.1. We begin with considering the first inequality in (B.1), which follows by expanding
the sum of product:

t∑
i=k

t∏
j=i+1

[1 + ωγj ] γi =
1

ω

t∑
i=k

t∏
j=i+1

[1 + ωγj ]ωγi =
1

ω

t∑
i=k

t∏
j=i+1

[1 + ωγj ] [1 + ωγi − 1]

=
1

ω

t∑
i=k

[
t∏

j=i+1

[1 + ωγj ] [1 + ωγi]−
t∏

j=i+1

[1 + ωγj ]

]
=

1

ω

t∑
i=k

[
t∏
j=i

[1 + ωγj ]−
t∏

j=i+1

[1 + ωγj ]

]
.

As the (positive) terms cancel out, we end up with the first inequality in (B.1):

1

ω

t∑
i=k

 t∏
j=i

[1 + ωγj ]−
t∏

j=i+1

[1 + ωγj ]

 =
1

ω

 t∏
j=k

[1 + ωγj ]−
t∏

j=k+1

[1 + ωγj ] + · · · −
t∏

j=t+1

[1 + ωγj ]


=

1

ω

 t∏
j=k

[1 + ωγj ]−
t∏

j=t+1

[1 + ωγj ]


=

1

ω

 t∏
j=k

[1 + ωγj ]− 1

 ≤ 1

ω

t∏
j=k

[1 + ωγj ] ,

as
∏t
t+1 = 1 for all t ∈ N. Using the (simple) bound of 1 + t ≤ exp(t) for all t ∈ R, we obtain the second

inequality of (B.1):

1

ω

t∏
j=k

[1 + ωγj ] ≤
1

ω

t∏
j=k

exp (ωγj) =
1

ω
exp

ω t∑
j=k

γj

 .
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Proposition B.2. Let (γt)t≥1 be a positive sequence. Let ω > 0 and k ≤ t such that for all i ≥ k, ωγi ≤ 1, then

t∑
i=k

t∏
j=i+1

[1− ωγj ] γi ≤
1

ω
. (B.2)

Proof of Proposition B.2. We start with expanding the sums of products term in (B.2), given us

t∑
i=k

t∏
j=i+1

[1− ωγj ] γi =− 1

ω

t∑
i=k

t∏
j=i+1

[1− ωγj ] [1− ωγi − 1] = − 1

ω

t∑
i=k

[
t∏

j=i+1

[1− ωγj ] [1− ωγi]−
t∏

j=i+1

[1− ωγj ]

]

=− 1

ω

t∑
i=k

[
t∏
j=i

[1− ωγj ]−
t∏

j=i+1

[1− ωγj ]

]
=

1

ω

t∑
i=k

[
t∏

j=i+1

[1− ωγj ]−
t∏
j=i

[1− ωγj ]

]
.

As we only have positive terms, we can upper bound the term:

1

ω

t∑
i=k

 t∏
j=i+1

[1− ωγj ]−
t∏
j=i

[1− ωγj ]

 ≤ 1

ω

1−
t∏

j=k

[1− ωγj ]

 ≤ 1

ω
,

using
∏t
j=k[1− ωγj ] ≥ 0, showing the inequality in (B.2).

Proposition B.3. Let (γt)t≥1 and (ηt)t≥1 be positive sequences. For any k ≤ t, we can obtain the (upper)
bounds:

t∑
i=k

t∏
j=i+1

[1 + ωγj ] ηiγi ≤
1

ω
max
k≤i≤t

ηi exp

ω t∑
j=k

γj

 , (B.3)

with ω > 0. Furthermore, suppose that for all i ≥ k, ωγi ≤ 1, then

t∑
i=k

t∏
j=i+1

[1− ωγj ] ηi ≤
1

ω
max
k≤i≤t

ηi. (B.4)

Proof of Proposition B.3. We obtain the inequality in (B.3) directly by Proposition B.1:

t∑
i=k

t∏
j=i+1

[1 + ωγj ] ηiγi ≤ max
k≤i≤t

ηi

t∑
i=k

t∏
j=i+1

[1 + ωγj ] γi ≤
1

ω
max
k≤i≤t

ηi

t∏
j=k

[1 + ωγj ] ≤
1

ω
max
k≤i≤t

ηi exp

ω t∑
j=k

γj

 .

Similarly, for the inequality in (B.4), we have

t∑
i=k

t∏
j=i+1

[1− ωγj ] ηiγi ≤ max
k≤i≤t

ηi

t∑
i=k

t∏
j=i+1

[1− ωγj ] γi ≤
1

ω
max
k≤i≤t

ηi,

by Proposition B.2.

Proposition B.4. Let (δt)t≥0, (γt)t≥1, (ηt)t≥1, and (νt)t≥1 be some positive sequences satisfying the recursive
relation:

δt ≤ (1− 2ωγt + ηtγt) δt−1 + νtγt, (B.5)
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with δ0 ≥ 0 and ω > 0. Denote t0 = inf {t ≥ 1 : ηt ≤ ω}, and suppose that for all t ≥ t0 + 1, one has ωγt ≤ 1.
Then, for γt and ηt decreasing, we have the upper bound on (δt):

δt ≤ exp

−ω t∑
i=t/2

γi

exp

(
t0∑
i=1

ηiγi

)(
δ0 + max

1≤i≤t0

νi
ηi

)
+

t/2−1∑
i=t0+1

νiγi

+
1

ω
max

t/2≤i≤t
νi, (B.6)

for all t ∈ N with the convention that
∑t/2
t0

= 0 if t/2 < t0.

Proof of Proposition B.4. Applying the recursive relation from (B.5) t times, we derive:

δt ≤
t∏
i=1

[1− 2ωγi + ηiγi]︸ ︷︷ ︸
Bt

δ0 +

t∑
i=1

t∏
j=i+1

[1− 2ωγj + ηjγj ] νiγi︸ ︷︷ ︸
At

,

where Bt can be seen as a transient term only depending on the initialisation δ0, and a stationary term At. The
transient term Bt can be divided into two products, before and after t0,

Bt =

t∏
i=1

[1− 2ωγi + ηiγi] =

(
t0∏
i=1

[1− 2ωγi + ηiγi]

)(
t∏

i=t0+1

[1− 2ωγi + ηiγi]

)
.

Using that t0 = inf {t ≥ 1 : ηt ≤ ω}, and since for all t ≥ t0 + 1, we have 2ωγt − ηtγt ≥ ωγt, it comes

Bt ≤

(
t0∏
i=1

[1− 2ωγi + ηiγi]

)(
t∏

i=t0+1

[1− ωγi]

)
≤

(
t0∏
i=1

exp (−2ωγi + ηiγi)

)(
t∏

i=t0+1

exp (−ωγi)

)

= exp

(
−2ω

t0∑
i=1

γi

)
exp

(
t0∑
i=1

ηiγi

)
exp

(
−ω

t∑
i=t0+1

γi

)
≤ exp

(
−ω

t∑
i=1

γi

)
exp

(
t0∑
i=1

ηiγi

)

by applying the (simple) bound 1 + t ≤ exp(t) for all t ∈ R. We derive that

Bt ≤ exp

−ω t∑
i=t/2

γi

 exp

(
t0∑
i=1

ηiγi

)
. (B.7)

Next, the stationary term At can (similarly) be divided into two sums (after and before t0):

At =

t∑
i=t0+1

t∏
j=i+1

[1− 2ωγj + ηjγj ] νiγi︸ ︷︷ ︸
At,1

+

t0∑
i=1

t∏
j=i+1

[1− 2ωγj + ηjγj ] νiγi︸ ︷︷ ︸
At,2

.

The first stationary term At,1 (with t > t0) can be bounded as follows: if t/2 ≤ t0 + 1, we have

At,1 ≤ max
t0+1≤i≤t

νi

t∑
i=t0+1

t∏
j=i+1

[1− ωγj ] γi =
1

ω
max

t0+1≤i≤t
νi ≤

1

ω
max

t/2≤i≤t
νi,
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by Proposition B.3. Furthermore, if t/2 > t0 + 1, we get

At,1 ≤
t∑

i=t0+1

t∏
j=i+1

[1− ωγj ] νiγi =

t/2−1∑
i=t0+1

t∏
j=i+1

[1− ωγj ] νiγi +

t∑
i=t/2

t∏
j=i+1

[1− ωγj ] νiγi

≤
t/2−1∑
i=t0+1

t∏
j=t/2

[1− ωγj ] νiγi + max
t/2≤i≤t

νi

t∑
i=t/2

t∏
j=i+1

[1− ωγj ] γi =

t∏
j=t/2

[1− ωγj ]
t/2−1∑
i=t0+1

νiγi +
1

ω
max

t/2≤i≤t
νi,

where
∏t
j=t/2[1− ωγj ] ≤ exp(−ω

∑t
j=t/2 γj) as 1 + t ≤ exp(t) for all t ∈ R. Thus, for all t ∈ R,

At,1 ≤ exp

−ω t∑
j=t/2

γj

 t/2−1∑
i=t0+1

νiγi +
1

ω
max

t/2≤i≤t
νi, (B.8)

where
∑t/2
t0

= 0 if t/2 < t0. The second stationary term At,2 can be bounded, thanks to Proposition B.1, as
follows:

At,2 =

t0∑
i=1

t∏
j=i+1

[1− 2ωγj + ηjγj ] νiγi =

 t∏
j=t0+1

[1− 2ωγj + ηjγj ]

 t0∑
i=1

t0∏
j=i+1

[1− 2ωγj + ηjγj ] νiγi

≤

 t∏
j=t0+1

[1− ωγj ]

 t0∑
i=1

t0∏
j=i+1

[1 + ηjγj ] νiγi ≤ exp

−ω t∑
j=t0+1

γj

 max
1≤i≤t0

νi
ηi

t0∑
i=1

t0∏
j=i+1

[1 + ηjγj ] ηiγi

≤ exp

−ω t∑
j=t0+1

γj

 max
1≤i≤t0

νi
ηi

exp

(
t0∑
i=1

ηiγi

)
≤ exp

−ω t∑
j=1

γj

 max
1≤i≤t0

νi
ηi

exp

(
2

t0∑
i=1

ηiγi

)
,

by the definition of t0, thus

At,2 ≤ exp

−ω t∑
j=1

γj

 max
1≤i≤t0

νi
ηi

exp

(
2

t0∑
i=1

ηiγi

)
≤ exp

−ω t∑
j=t/2

γj

 max
1≤i≤t0

νi
ηi

exp

(
2

t0∑
i=1

ηjγj

)
. (B.9)

Then, using the bound for At,1 in (B.8) and At,2 in (B.9), we can bound At by

At ≤ exp

−ω t∑
j=t/2

γj

exp

(
2

t0∑
i=1

ηjγj

)
max

1≤i≤t0

νi
ηi

+

t/2−1∑
i=t0+1

νiγi

+
1

ω
max

t/2≤i≤t
νi. (B.10)

Finally, combining the bound for Bt in (B.7) and At in (B.10), we achieve the bound for δt ≤ Btδ0 +At, namely
the upper bound in (B.6).

The following proposition is a more simplistic but rougher version of the bound in Proposition B.4.

Proposition B.5. Let (δt)t≥0, (γt)t≥1, (ηt)t≥1, and (νt)t≥1 be some positive sequences satisfying the recursive
relation in (B.5). Denote t0 = inf {t ≥ 1 : ηt ≤ ω}, and suppose that for all t ≥ t0 + 1, one has ωγt ≤ 1. Then,
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for γt and ηt decreasing, we have for all t ∈ N,

δt ≤ exp

−ω t∑
i=t/2

γi

 exp

(
2

t∑
i=1

ηiγi

)(
δ0 + 2 max

1≤i≤t

νi
ηi

)
+

1

ω
max

t/2≤i≤t
νi. (B.11)

Proof of Proposition B.5. The resulting (upper) bound in (B.11) follows directly from (B.6) by noting that

t0 ≤ t, giving us
∑t/2−1
i=t0+1 νiγi ≤

∑t
i=1 νiγi ≤ max1≤i≤t(νi/ηi)

∑t
i=1 ηiγi ≤ max1≤i≤t(νi/ηi) exp(2

∑t
i=1 ηiγi),

as (νt) and (γt) are positive sequences.
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