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Abstract 

Over the past decades, the atmospheric CO2 concentration and global average 

temperature have been increasing, and this trend is projected to soon become more 

severe. This scenario of climate change intensifies abiotic stress factors (such as 

drought, flooding, salinity, and ultraviolet radiation) that threaten forest and associated 

ecosystems as well as crop production. These factors can negatively affect plant growth 

and development with a consequent reduction in plant biomass accumulation and yield, 

in addition to increasing plant susceptibility to biotic stresses. Recently, biostimulants 

have become a hotspot as an effective and sustainable alternative to alleviate the 

negative effects of stresses on plants. However, the majority of biostimulants have poor 

stability under environmental conditions, which leads to premature degradation, 

shortening their biological activity. To solve these bottlenecks, micro- and nano-based 

formulations containing biostimulant molecules and/or microorganisms are gaining 

attention, as they demonstrate several advantages over their conventional formulations. 

In this review, we focus on the encapsulation of plant growth regulators and plant 

associative microorganisms as a strategy to boost their application for plant protection 

against abiotic stresses. We also address the potential limitations and challenges faced 

for the implementation of this technology, as well as possibilities regarding future 

research.  
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1. Introduction 

 In recent decades, extreme events that characterize climate change have become 

increasingly frequent and intense around the world. This climate change has severely 

affected all life forms, including plants (O’Neill et al., 2017). Several climate models 

have demonstrated that the climate regulates the growth rate and distribution of plants, 

which might be altered by the combination of elevated CO2 concentration and global 

warming (Pugnaire et al., 2019). Currently, the global average carbon dioxide is over 

400 ppm and this value is expected to double by the end of this century (Buis, 2019; 

Lüthi et al., 2008). In addition, the temperature on Earth has risen at an average rate of 

0.1 – 0.4 ºC per decade since 1981 (IPCC, 2021; NOAA, 2021).  

 Climate change intensifies the abiotic stress factors that act over plants, with 

alteration in precipitation patterns leading to more frequent drought and flooding events, 

extreme temperatures, high wind speeds, and altered intensity and spectrum of 

ultraviolet radiation. The severity of climatic events is strongly influenced by 

biogeographical characteristics as well as by land use (Espeland and Kettenring, 2018). 

For example, land degradation and inherent susceptibility of certain ecosystems to 

climate change might be worsened by uncontrolled urbanization, intensive cropping, 

deforestation, and overgrazing. In developing countries, at least one quarter of the 

problems attributed to climate-related disasters are related to agricultural activity (FAO, 

2015). Progressive and permanent changes are expected to occur in natural habitats, 

which will negatively affect the associated ecosystems, overall biodiversity, and plant 

fitness (Chiabai et al., 2018). In addition, several abiotic stresses can occur at the same 

time in the environment, and the interactions among them determine their effects on 

plants. These stresses vary according to their duration, severity, and nature (Figure 1).  Jo
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Figure 1: Effects of abiotic stress on plants. Plants under stress conditions can 

demonstrate different responses, which determine if they are resistant or susceptible to 

the stress. Plants under abiotic stress present changes at morphological, physiological, 

biochemical, and molecular levels in order to build an appropriate response to the stress 

condition. Created with BioRender.com 

There are differences in the management of abiotic stress when dealing with 

plants of agricultural/forestry interest and native trees for ecosystem restoration. For the 

agronomical approach, the goal is to ensure that the plants are more resilient to climate 

change and at the same time have increased productivity. On the other hand, the 

ecological approach aims to maintain biodiversity and the associated ecosystems by 

promoting the survival of different plant species submitted to stresses of various 

characteristics. This approach is very important to establish tools and frameworks for 

ecosystem restoration programs around the world (Charrier et al., 2021; Chiabai et al., 

2018).  
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 Forests worldwide are key players in the mitigation of climate change, 

functioning as a sink that can compensate the emission of some greenhouse gases, and 

being responsible for approximately 46% of global terrestrial carbon flux. In addition, 

forests are key global regulators of atmospheric moisture and rainfall (Popkin, 2019). 

However, climate change has already negatively impacted many forest ecosystems 

around the world (e.g., by hampering plant growth rates, augmenting plant 

susceptibility to pests, altering species composition, and increasing the frequency of fire 

events), which reinforces the pressure that forests are under (Climate ADAPT, 2019). 

Implementation of reforestation programs with native tree seedlings is among the most 

effective approach for climate change mitigation. However, the number and quality of 

tree seedlings currently produced is not enough to meet reforestation demands. For 

example, it has been estimated that tree nurseries in the United States must double their 

seedling production to supply the reforestation programs across the country (Fargione et 

al., 2021).  

 Agriculture is the backbone of the economy of many countries (especially 

developing countries) and is highly dependent on the climate. During the last century, 

the crop yield has been increased by the use of high amounts of fertilizers and 

pesticides, as well as by genetic breeding and modification (Nowicka et al., 2018). 

However, these approaches are not sufficient to maximize agricultural production in 

face of climate change, which highlights the need for the development of innovative, 

sustainable strategies to minimize the effects of climate change on crops while 

decreasing side-effects on the ecosystem (Burgess et al., 2022).  

Currently, several strategies are used to improve plant responses to stresses, such 

as chemical and biological priming. Priming is based on the preconditioning of the plant 

defense mechanisms against stresses, resulting in a faster, stronger, and more effective 

response against stresses. The use of biostimulants is increasing rapidly in agriculture 

since they show promise to increase crop productivity in a sustainable way (Rouphael 

and Colla, 2020). Biostimulants are defined as non-nutrient molecules or 

microorganisms, which have the ability to stimulate plant growth, yield, and plant 

fitness/health when applied at very low concentrations. Previous studies have shown 

that these compounds and/or microorganisms regulate different physiological processes, 

such as germination, photosynthesis, water balance, nutrient uptake and use, 

senescence, and the metabolism of plant growth regulators (Ahmad et al., 2022). There 

are several types of biostimulants, however, in the current review we will explore the 
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utilization of plant growth regulators and plant associative microorganisms for 

application in the cultivation of  both crops and native trees (Lephatsi et al., 2022).  

In spite of the known effects of the exogenous application of plant growth 

regulators to improve plant resistance to different stresses (Li et al., 2021), the 

premature loss of their biological activity due to environmental factors (such as UV 

radiation, temperature, humidity, and oxidative degradation) is one of the largest 

challenges for the agricultural applications of plant growth regulators (Pereira et al., 

2019). Similarly, although several types of microorganisms have been proven to be 

effective for plant stress alleviation and growth promotion (Nephali et al., 2020), only a 

few formulations have reached the market, mainly due to the lack of reproducibility in 

the field of the results observed in laboratory and greenhouse conditions. This failure 

could be related to: i) loss of microorganism viability during the shelf storage or even 

during the treatment; ii) poor stability in the formulation or scarcity of methods to store 

the microorganisms without disrupting their microbial interactions; iii) incomplete or 

poor-quality formulation; iv) management practices (such as chemical inputs, fertilizers, 

tillage, etc.) that affect agricultural microbiomes through modifications of microbe-

microbe and plant-microbe interactions; and v) competitivity of the microorganism 

inoculated (Daisley et al., 2022; French et al., 2021; Vassilev et al., 2020). 

 In view of these bottlenecks in the application of biostimulants in agriculture 

and forest restoration, a promising alternative is their encapsulation 

(micro/nanoencapsulation) with different matrices (Jiménez-Arias et al., 2020), which is 

a widely used strategy for pesticide molecules (Bartolucci et al., 2022; Scott-Fordsmand 

et al., 2022). Through encapsulation it is possible to: i) create a favorable micro-

environment for the molecule of interest and/or microorganism in order to reduce the 

loss of viability during storage and application; ii) reduce premature degradation of the 

molecule due to environmental factors as well as biodegradation by the microbiota after 

application; iii) provide sustained release of the molecule; and/or iv) help in the 

competition of the microorganisms with well-adapted native soil strains (Vassilev et al., 

2020). In this review, we provide an overview of the micro/nanoencapsulation 

technique as a promising strategy for the improvement of biostimulant formulations, 

aimed at expanding their commercialization in the market. We also highlight the 

bottlenecks that should be addressed to achieve this goal.  
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2. Plant Growth Regulators  

Climate change resulting from anthropogenic activities represents a major 

challenge for plant survival, since plants are sessile organisms that are prone to the 

effects of environmental fluctuations (EL Sabagh et al., 2022; Zeng et al., 2021). Allied 

to this, the excessive use of agrochemicals contributes to the contamination of natural 

soil resources and may further hinder plant growth and development (Fraceto et al., 

2016; Pereira et al., 2019). The mitigation of climate change and environmental 

degradation is a great challenge for humans, in the sense of bringing sustainable 

solutions that seek to increase global food production while preserving the environment 

( Pereira et al., 2019; Zeng et al., 2021)  

Among the active substances that can be used to promote plant resistance to 

stresses are plant growth regulators (PGRs), which are natural or synthetic substances, 

mostly applied at low concentrations, that are involved in the hormonal homeostasis 

and/or signaling network, therefore triggering plant growth, development, metabolic 

processes, and responses to stress (Iqbal et al., 2022; Pereira et al., 2019; Rademacher, 

2015; Small and Degenhardt, 2018). Phytohormones themselves, their precursors and 

analogues can be used as PGRs. In addition, PGRs include substances that alter the 

biosynthesis, inactivation, translocation, or signaling pathway of plant hormones 

(Rademacher, 2015).  

Phytohormones are substances present in plant metabolism, which act at low 

concentrations and regulate physiological processes involved in growth, development, 

and responses to the environment (Ordaz-Ortiz et al., 2015; Small and Degenhardt, 

2018). They are separated into well-known groups according to their chemical structure 

and/or functions in plant physiology: auxins, cytokinins, gibberellins, abscisic acid, 

ethylene, brassinosteroids, salicylic acid, jasmonic acid, and strigolactones (Table 1, 

Figure 2) (Pereira et al., 2019; Small and Degenhardt, 2018). In addition to the classical 

phytohormones, other signaling molecules are known to modulate processes of plant 

physiology, such as nitric oxide (Lindermayr and Durner, 2018), hydrogen sulfide 

(Zhou et al., 2021), γ-aminobutyric acid (Khan et al., 2021), polyamines, and melatonin 

(Arnao and Hernández-Ruiz, 2019; Sabagh et al., 2021) (Table 1, Figure 2).   
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Table 1: Main signaling molecules found in plants (with their chemical nature) and the 

biological applications of some plant growth regulators (PGRs) related to them (natural 

compounds or synthetic analogues).   

Type of signaling 

molecule 

Chemical nature Examples of related PGRs Biological applications 

Auxins Indolic acids 2,4-dichlorophenoxyacetic 

acid (2,4-D), naphthalene-

1-1acetic acid (NAA), 

indole acetic acid (IAA), 

indole butyric acid (IBA) 

(+) Growth (cell division and 

elongation), apical dominance, 

fruit development, root 

formation 

(-) Abscission 

At high concentrations: 

(+) Abscission 

(-) General growth (herbicidal 

effect) 

Cytokinins Adenine 

derivatives with 

an isoprene-

derived side 

chain 

Kinetin, zeatin, 6-

benzylaminopurine (6BA), 

thidiazuron (TDZ), 

2-isopentenyladenine 

(2iP) 

 

(+) Shoot growth (cell division), 

development of lateral buds, 

sink strength 

(-) Senescence 

At high concentrations: 

(-) General growth (herbicidal 

effect) 

Gibberellins Tetracyclic 

diterpenoid 

carboxylic acids 

with the ent-

gibberellan 

skeleton 

GA1, gibberellic acid (GA3) (+) Longitudinal growth (cell 

division and expansion), floral 

induction (long-day plants), 

flower, seed and fruit 

development, seed germination 

Abscisic acid (ABA) Isoprenoid, 

synthesized from 

carotenoids 

(S)-cis-ABA (active form), 

(S)-2-trans-ABA (Inactive, 

but interconvertible with 

the active cis form), (R)-

cis-ABA (Inactive form in 

stomatal closure) 

(+) Abiotic stress responses, 

seed maturation, dormancy of 

seeds and buds 

(-) General growth, seed 

germination 

Ethylene Gaseous simple 

olefin 

Ethephon (Ethylene 

releaser 

(+) Senescence, abscission, 

ripening of climacteric fruits, 

formation of roots and root 

hairs, stress responses 

(-) General growth 

Brassinosteroids 

 

Steroidal 

lactones 

24-epibrassinolide (EBL), 

28-homobrassinolide 

(HBL) 

(+) General growth (cell 

division and expansion), seed 

germination, formation of lateral 

roots, stress responses 

At high concentrations: 

(-) General growth 

Salicylic acid Phenolic 

compound 

Salicylic acid, 2,6-

dichloroisonicotinic acid 

(INA), benzothiadiazole 

(BHT) 

(+) Stress responses 

(-) Senescence 

Jasmonic acid Oxo 

monocarboxylic 

acid derived from 

cyclic fatty acids 

n-Propyl dihydrojasmonate (+) Stress responses, trichome 

and stamen development, 

senescence 

(-) General growth 

Strigolactones Terpenoid Synthetic strigolactone (+) Seed germination, secondary 
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lactones, derived 

from carotenoids 

(GR24) growth, root hair growth, 

interaction with beneficial 

microorganisms 

(-) Root and shoot ramification 

Nitric oxide (NO) Gaseous nitrogen 

free radical 

S-nitrosothiols, sodium 

nitroprusside 

(+) Stress responses, seed 

germination, root and root hair 

formation 

(-) Floral induction, senescence, 

fruit ripening 

Hydrogen sulfide (H2S) Gaseous 

molecule 

Sodium hydrosulfide 

(NaHS) 

(+) Seed germination, root 

development, flowering, 

photosynthesis 

γ-Aminobutyric acid 

(GABA) 

Non-proteogenic 

amino acid 

Commercial formulation (+) Root development, pollen 

tube development, regulation of 

cytosol pH and redox balance 

Polyamines Low-molecular-

weight, 

ubiquitous 

polycationic 

compounds, with 

aliphatic 

nitrogenous 

bases 

Putrescine (Put), 

Sperdimine (Spd) and 

Spermine (Spm) 

(+) Cell division and 

differentiation, DNA and protein 

synthesis, reproductive 

development, fruit maturation 

(-) Senescence 

Melatonin Methoxylated 

indoleamine 

N-acetyl-5-

methoxytryptamine 

(+) Antioxidant defense, root 

development, flowering, seed 

germination, photosynthesis 

(-) Senescence 

(+) refers to positive effects and (-) to negative effects.  
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Figure 2: Main effects of plant growth regulators on plant growth, development, and 

responses to the environment. Main signaling molecules found in plants with the 

representation of their chemical structure and examples of some plant growth regulators 

related to them. The abbreviations are defined in Table 1. 

 

PGRs have wide applications in agriculture and horticulture, and recently in 

research seeking to improve ecological restoration techniques. They provide important 

benefits, such as improved plant growth and development, increased crop yield and 

quality, and the induction of resistance against biotic and abiotic stresses (Table 1) 

(Rademacher, 2015; Small and Degenhardt, 2018). In addition, PGRs have been used to 

alleviate heavy metal toxicity. For example, exogenous application of IAA was found to 

induce growth of tea seedlings (Camellia sinensis) in the presence of Cadmium (Cd) by 

regulation of physiological and biochemical reactions, which were responsible for 

alleviating the deleterious effect of this heavy metal (Zhang et al., 2020). Furthermore, 

GA3, EBL, 6BA, ABA, salicylic acid, and jasmonic acid also alleviate heavy metal 
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toxicity in plants as well as increase their biomass production (Li et al., 2022; Rostami 

and Azhdarpoor, 2019).  

A summary of the overall benefits of the PGRs most-commonly applied to 

mitigate the effects of abiotic stresses in plants is provided in Table 2. Other PGRs (e.g., 

gibberellins, cytokinins, and auxins) are often applied to promote growth or modulate 

specific processes of plant development, but their use to induce stress responses has 

recently been raised, especially as priming agents (Bryksová et al., 2020; Dolui et al., 

2022; Zhu et al., 2021).  

 

Table 2: Main PGRs applied to mitigate the effects of abiotic stresses in plants. 

 
PGR Main types of abiotic 

stress 

Principal responses References 

Abscisic acid (ABA) Salinity, cold, heat, and 

drought 

Stomatal closure, 

enhanced root/shoot 

ratio, promotion of water 

uptake, induction of 

several acclimation 

proteins (e.g., antioxidant 

response, chaperones, 

compatible osmolytes) 

(Iqbal et al., 2022; 

Kosakivska et al., 

2022; Rehman et al., 

2022) 

Ethylene inhibitors: 

Aminoethoxyvinylglycine 

(AVG) and 

1-methylcyclopropene (1-MCP) 

Cold, heat, and drought Reduction of oxidative 

stress, delay of 

senescence 

(Kazan, 2015; Poór 

et al., 2022; 

Rademacher, 2015) 

 

Brassinosteroids: 

24-epibrassinolide (EBL) and 

28-homobrassinolide 

(HBL) 

Salinity, cold, heat, and 

drought 

Enhanced 

photosynthesis, 

chlorophyll and 

antioxidant contents 

(Bhandari and 

Nailwal, 2020; 

Siddiqi and Husen, 

2021) 

 

Salicylic acid: 

Salicylic acid, 2,6- 

dichloroisonicotinic acid 

(INA) and benzothiadiazole 

(BHT) 

Salinity, drought and 

metal 

Enhanced 

photosynthesis, 

antioxidant defense, 

osmolyte production and 

improvement of water 

status 

(Damalas and 

Koutroubas, 2022; 

Khan et al., 2015; 

Wani et al., 2017) 

 

Jasmonic acid: 

n-Propyl dihydrojasmonate 

Salinity, cold, drought, 

metal, and light 

Induction of antioxidant 

defense, protection of the 

photosynthetic apparatus 

and stomatal closure 

(Kazan, 2015; 

Kosakivska et al., 

2022; Wang et al., 

2020) 

Strigolactones: 

Synthetic stringolactone 

(GR24) 

Nutrient starvation, heat, 

cold, salinity, drought, 

and light 

Regulation of root 

architecture and 

secondary growth, 

induction of antioxidant 

defense 

(Bhoi et al., 2021; 

Mostofa et al., 2018) 

 

Nitric oxide donors: 

S-nitrosothiols, sodium 

nitroprusside (SNP) 

Salinity, drought, cold, 

heat, metal, and light 

Induction of antioxidant 

defense, regulation of 

stomatal physiology, 

increase of 

(do Carmo et al., 

2021; Iqbal et al., 

2022; Singhal et al., 

2021) 

Jo
ur

na
l P

re
-p

ro
of



 11 

photosynthetic 

efficiency, induction of 

root and root hair 

formation, and 

improvement of water 

status 

 

Hydrogen sulfide donor: 

Sodium hydrosulfide (NaHS) 

Salinity, drought, metal, 

cold, and heat 

Induction of antioxidant 

defense and osmolyte 

accumulation 

(Huang et al., 2021; 

Z.-G. Li et al., 2021; 

Raza et al., 2021) 

γ-Aminobutyric acid (GABA) Salinity, drought, 

flooding, heat, cold, and 

metal 

Induction of antioxidant 

defense, osmolyte 

accumulation and 

stomatal closure 

(Rezaei-Chiyaneh et 

al., 2018; Shelp et 

al., 2021) 

Polyamines: 

Putrescine (Put) 

Spermidine (Spd) 

Spermine (Spm) 

Salinity, drought and 

metal 

Induction of antioxidant 

defense, photosynthesis 

and osmolyte 

accumulation 

(Chen et al., 2019; 

Khajuria et al., 2018; 

Spormann et al., 

2021) 

Melatonin: 

N-acetyl-5-methoxytryptamine 

Salinity, drought, heat, 

and metal 

Induction of antioxidant 

defense and 

photosynthesis, delay of 

senescence 

(Khan et al., 2021; 

Rajora et al., 2022; 

Rehaman et al., 

2021) 

 

The application of PGRs can be hindered due to the chemical characteristics of 

the molecules, such as the rapid degradation of these compounds when exposed to the 

light and temperatures found in the field, resulting in some loss of the their biological 

activity (Pascoli et al., 2018; Seabra et al., 2015). For example, natural auxins, extracted 

directly from plants, degrade rapidly in the presence of light (George et al., 2007; Small 

and Degenhardt, 2018). In addition, nitric oxide donors are also susceptible to factors 

such as temperature, light, and pH, that lead to the rapid and excessive release of nitric 

oxide from donor molecules and the loss of beneficial effects (Seabra et al., 2015; 

Silveira et al., 2021). 

Besides the rapid degradation, PGRs need to be applied in proper concentrations 

to stimulate the desired responses, because they can become phytotoxic at high 

concentrations, acting as herbicides and not as hormones or regulators (Pascoli et al., 

2018). For example, gibberellins need to be applied at correct concentrations and timing 

to avoid detrimental effects on plant development (Dong et al., 2016). In addition, the 

function of hydrogen sulfide is directly dose dependent: at low concentrations it acts as 

a signaling molecule and at high concentrations as a toxin (Banerjee and Roychoudhury, 

2021). Another relevant aspect is related to the low water solubility of some PGRs, 

which can make their application more difficult. Moreover, the high cost associated 

with their production and application generates a high demand for the development of 
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technologies for slow, controlled, and efficient PGR release systems (Oliveira et al., 

2016; Pascoli et al., 2018; Pereira et al., 2019). 

In this sense, the development of micro- and nanoparticles as carrier systems of 

bioactive substances is a promising strategy with the purpose of improving the 

biological action of molecules (Athanassiou et al., 2018; Fraceto et al., 2016;  Pereira et 

al., 2019). The use of micro- and nanoparticles provides several advantages, including 

protection against premature degradation of the encapsulated molecules, reduction in 

photosensitivity and instability of the molecules, and the slow and controlled release of 

the active compounds, enhancing and prolonging their effects (Seabra et al., 2015; 

Silveira et al., 2021). The characteristics of micro- and nanoparticles allow reductions in 

the dosage and frequency of application of active compounds, as well as reducing the 

risk of contamination and harmful consequences for the organisms to which they are 

applied (Pereira et al., 2019).  

 

3. Plant Associative Microorganisms 

Soil is one of the richest habitats for a variety of living organisms and is also a 

―playground‖ for chemical reactions that ensure the normal functioning of ecosystems. 

The majority of soil bio-geochemical processes are driven by active soil microbiota 

(Bastida et al., 2016), which represents up to 5% of total microbial biomass 

(Blagodatskaya and Kuzyakov, 2013). Due to its richness in mineral resources, soil is a 

key element in the nutrition of land plants, and serves as a site for the plant-driven 

recruitment of microbiota, which leads to the establishment of interactions with plant 

associative microorganisms (PAMs, both fungi and bacteria). 

Arbuscular mycorrhizal fungi (AMF) and Trichoderma ssp. are beneficial 

microorganisms, which have been known to establish mutualistic symbiotic interactions 

with different types of plants, including economically important crops (Szczałba et al., 

2019). For this reason, a rising number of studies have focused on the utilization of 

these fungi as inoculants for increasing plant resistance to both abiotic and biotic stress 

(Begum et al., 2019). AMF can increase nutrient uptake by plants, such as phosphorus 

(P), increase photosynthesis, enhance osmotic adjustment in drought conditions, and 

improve soil properties (Begum et al., 2019). Likewise, Trichoderma ssp. improves 

plant growth and development by the production of PGRs, solubilization of soil 

nutrients, and enhancement of the uptake and translocation of less accessible minerals. 
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In addition, this fungal genus is widely used for the biological control of several 

economically important plant pathogens (Halifu et al., 2019; Sood et al., 2020).  

The interest of the scientific community in plant-bacteria interactions first 

appeared in the 60-70s, when scientists were trying to understand the nature of the 

formation of grapevine galls caused by the bacterium Agrobacterium tumefaciens 

(Kado, 2014). The results of these and subsequent studies (Burr, 1978; Howie and 

Echandi, 1983; Kloepper et al., 1980; Suslow and Schroth, 1982) have made it clear that 

the plant-associated microbiota (the phytomicrobiome) is more important in plant 

growth and development than previously thought and could be beneficial (mutualist), 

neutral (commensal), and unfavorable (detrimental) (Newton et al., 2010). In 1978, 

Kloepper and Schroth introduced the concept of plant growth-promoting rhizobacteria 

(PGPR), which marked the beginning of a new era of study of bacterial symbiotic 

interactions and their biostimulating properties (Kloepper and Schroth, 1978).  

PGPR are mostly located in the rhizosphere, the 0.5–4 mm zone around the root 

that is under plant control (Braga et al., 2016), and is characterized by an increased 

content of organic nutrient-rich root exudates containing up to 10
11

 microbial cells per 

gram of root (Feng et al., 2021), which corresponds to 50–2000 μg C g
−1

 soil (Fierer, 

2017). Due to the fact that the plant rhizosphere is a very ―competitive‖ habitat, 

microorganisms have developed specific mechanisms that allow them to occupy their 

microenvironmental niche. Thus, in the course of evolution, PGPR have acquired the 

ability to adjust their metabolic pathways to the needs of the ―host organism‖ (and vice 

versa) in order to remain in their beneficial microenvironment (Ankati and Podile, 

2019; Khatoon et al., 2020).  

PGPR directly promote plant growth by producing and secreting 

phytostimulatory hormonal substances, supplying readily available micro and 

macroelements (e.g., iron (Fe
3+

) via the production of siderophores), achieving 

biological nitrogen fixation (by regulation of nif genes in diazotrophs), and/or 

improving P solubilization (by converting insoluble forms of P to an accessible 

orthophosphate form) (Figure 3) (Hardoim et al., 2015; Kalayu, 2019; Vacheron et al., 

2013). Interestingly, some siderophore-producing bacteria produce siderophores that are 

able to bind heavy metals that are similar in nature to Fe, resulting in induction of metal 

resistance (Rajkumar et al., 2010; Złoch et al., 2016). For example, Streptomyces tenae 

F4 produces a siderophore complex consisting of desferrioxamine B, desferrioxamine 
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E, and coelomelin that binds cadmium ions, thereby reducing its toxicity and improving 

phytoremediation (Dimkpa et al., 2009). 

 

 

Figure 3: Main effects of plant associative microorganisms (PAMs) on plant growth, 

development, and responses to abiotic and biotic stressors.  The direct effect of PAMs 

on plants are represented in blue boxes while the response to these effects is represented 

in green boxes. The schematic representation was adapted from (Sati et al., 2022) 

(https://doi.org/10.1007/s42729-021-00724-5). EPS – exopolysaccharides; VOCs – 

volatile organic compounds; ACC deaminase - 1-aminocyclopropane-1-

carboxylate deaminase; N2 – nitrogen; P- phosphorus. Created with biorender.com 

 

Some PGPR produce, for example, indole-3-acetic acid (IAA, an auxin), thus 

modifying the architecture of the root system by increasing its branching and the 

formation of root absorbent hairs. Several strains of PGPR possess the enzyme 1 

aminocyclopropane-1-carboxylate deaminase (ACC deaminase), which limits ethylene 

production in plants by cleaving its precursor molecule (1-aminocyclopropane-1-

carboxylic acid, ACC) into ammonia and alpha keto butyrate (Krishnamoorthy et al., 
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2022). This allows a reduction in the concentration of endogenous ethylene in the plant, 

with a positive effect on plant growth and stress alleviation (Hardoim et al., 2015; 

Vacheron et al., 2013).  

In addition, many PGPRs are capable of forming biofilms by secreting 

exopolysaccharides (EPS), which serve as a buffer between bacteria and environmental 

fluctuations in moisture and temperature. The EPS produced in the rhizosphere form a 

sheath around the roots that help to retain water in the soil and create favorable 

conditions for plant-bacteria interactions (Dar et al., 2021). In addition, some PGPR are 

capable of producing volatile organic compounds (VOCs) that have a stimulating effect 

on plant growth (Ryu et al., 2003). All cited mechanisms are summarized in Figure 3 

and Table 3. 

Considering the beneficial effects of PAMs to plants, the efforts of scientists 

have been directed to the study of the practical application of certain strains in 

agriculture, aiming to increase crop yield. In the last two decades, 1,731 biofertilizer-

related patents have been registered, which confirms the high interest in the use of green 

fertilizers and growth stimulants (Fatimi, 2022). This has led to the development of 

commercial bacterial formulations that have been tested in controlled conditions and 

shown positive effects on plant physiology in the field (Mofokeng et al., 2021). For 

example, the application of EM Bokashi 2-fi and EM-5 Sutociu (which are composed of 

beneficial bacteria and fungi) has a biostimulant and biocontrol effect in common bean 

plants (Phaseolus vulgaris L.) (Mofokeng et al., 2021; Roberti et al., 2015). In the same 

way, Compete Plus (composed of Bacillus spp., Streptomyces griseoviridis and 

Trichoderma harzianum) increased the yield and reduced disease by 20–23% and 20–

32%, respectively in barley culture (Larkin, 2008). Another example of a successfully 

commercialized biostimulant is Soil-Life™ which, thanks to its rich and varied 

composition of Lactobacillus, Actinomycetes, yeast, and fungal strains, improves soil 

quality and crop growth, yield, and quality (Mofokeng et al., 2021).  

Furthermore, inoculation with PGPR has been demonstrated to induce drought 

resistance in neotropical tree seedlings, thus emerging as a biotechnology to be used for 

tree seedling production (Tiepo et al., 2020, 2018). Thus, PGPR inoculation may 

provide an alternative to improve the resistance of these plants to abiotic stresses and 

increase the success of reforestation programs.  

Despite the high potential of biofertilizers, they are still subject to the influence 

of external factors and require a special approach for storage and conservation to 
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prevent their destabilization. Careful selection of strain-specific carriers is needed in the 

preparation of commercial formulations to avoid loss of effectiveness. Nowadays a 

wide variety of carrier materials are available: natural (peat, lignite, coal, clay), 

synthetic (polyacrylamide), organic (charcoal, biochar, composts), or biopolymers 

(starch, sodium alginate) (Fasusi et al., 2021; Le Corre et al., 2010; Moradi Pour et al., 

2022). Recent advances in biotechnology and nanoscience highlight the possibility of 

using microparticles as bacterial carriers, which can be applied to biofertilizers (Kumar 

et al., 2022). It has also been shown that nanomaterials are able to increase the 

biofertilizer potential of PGPR, as well as maintain bacterial viability (Safari et al., 

2020). 

 

Table 3. Role of PGPR in alleviating abiotic stress in different plant species.  

Bacterial species/ Strain Exerted mechanisms Plant species Reference 

Agrobacterium radiobacter 

D14 
Heavy metal uptake 

Poplar (Populus 

deltoides Marshall) 
(Wang et al., 2011) 

Agrobacterium rubi A-18 
N2 fixation, IAA, cytokinin 

and gibberellin production 

Apple (Malus domestica 

Borkh.) 

 (Karakurt and Aslantas, 

2010) 

Azomonas sp.  

Increased protein, proline, 

starch and water contents; 

improved photosynthesis 

and growth; decreased 

oxidative stress; drought 

resistance 

Trema micrantha (L.) Blume 

(neotropical tree) 
(Tiepo et al., 2018) 

    

Azospirillum brasilense  

Ab-V5 

Increased protein, proline, 

starch and water contents; 

improved photosynthesis 

and growth; decreased 

oxidative stress; drought 

resistance 

Trema micrantha (L.) Blume 

(neotropical tree) 
(Tiepo et al., 2018) 

Azospirillum brasilense  

Ab-V5 

Increased protein and starch 

contents; improved 

photosynthesis; decreased 

oxidative stress; drought 

resistance 

Cariniana estrellensis (Raddi) 

Kuntze (neotropical tree) 
(Tiepo et al., 2018) 

Azospirillum brasilense  

Ab-V5 

Induction of antioxidant 

response and drought 

resistance 

Cariniana estrellensis  (Raddi) 

Kuntze and Cecropia 

pachystachya Trécul 

(neotropical trees) 

(Tiepo et al., 2020) 
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Bacillus subtilis BRU16-Sr Siderophore production Alfalfa (Medicago sativa L.) 
 (Tamariz-Angeles et al., 

2021)  

Bacillus subtilis JS VOC production  
Necklace poplar (Populus 

deltoides Marshall) 
 (Jang et al., 2018) 

Bacillus cereus VBE23 

EPS and ACC deaminase 

production; phosphate and 

zinc solubilization 

Maize (Zea mays L.) (Galeano et al., 2021) 

Bacillus methylotrophicus 

PM19 

EPS, IAA and ACC 

deaminase production; salt 

stress resistance 

Wheat (Triticum aestivum L.)  (Amna et al., 2019) 

Bacillus mycoides T8 Phytohormone production Cherry (Prunus cerasus L.)  (Arikan and Pirlak, 2016) 

Bacillus safensis FN13 
EPS and IAA production; 

heavy metal uptake 

Field mustard (Brassica 

campestris L.) 
(Nazli et al., 2020) 

    

Bacillus sp. ZK 

Induction of antioxidant 

response and drought 

resistance 

Cariniana estrellensis (Raddi) 

Kuntze and Cecropia 

pachystachya Trécul 

(neotropical trees) 

(Tiepo et al., 2020) 

Bacillus subtilis OSU-142 

N2 fixation; IAA and 

cytokinin production; 

phosphate solubilization 

Apple (Malus domestica 

Borkh.) 
 (Karlidag et al., 2007) 

Bacillus velezensis D3 
EPS and ACC deaminase 

production 
Maize (Zea mays L.)  (Nadeem et al., 2021) 

Bacillus subtilis Rhiso SF48 ACC deaminase production 
Sunflower (Helianthus 

annuus L.) 

(Brijesh Singh et al., 

2019) 

Burkholderia 

multivorans WS-FJ9 
Phosphate solubilization 

Poplar (Populus euramericana 

Guinier) 
(Li et al., 2013) 

Ensifer meliloti Rm1021 EPS production  Alfalfa (Medicago sativa L.) (Primo et al., 2020) 

Enterobacter turicensis 

RCT5 

EPS production; phosphate 

and potassium solubilization 

Tomato (Lycopersicon 

esculentum Mill.) 
(Aeron et al., 2021) 

Erwinia gerundensis A4 Nutrient acquisition  
Almond (Prunus dulcis (Mill.) 

D.A.Webb) 

(Saldierna Guzmán et al., 

2021) 

Glutamicibacter sp. YD01  

ACC deaminase, IAA 

production, salt stress 

resistance 

Rice (Oryza sativa L.)  (Ji et al., 2020) 

Herbaspirillum sp. YDSY8 ACC deaminase production  
Chinese peony (Paeonia 

lactiflora Pall.) 
 (Yuan et al., 2022) 

Microbacterium 
Heavy metal uptake Rapeseed (Brassica napus L.)  (Ren et al., 2019) 
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oxydans JYC17 

Planomicrobium chinense 

P1 

Phytohormone and HCN 

production 
Wheat (Triticum aestivum L.) (Khan and Bano, 2019) 

Pseudomonas 

frederiksbergensis JW-SD2 
Phosphate solubilization 

Poplar (Populus euramericana 

Guinier) 
 (Zeng et al., 2016)  

Pseudomonas oryzihabitans 

AXSa06 

ACC deaminase, IAA and 

siderophore production; 

phosphate solubilization 

Tomato (Solanum 

lycopersicum L.) 
 (Mellidou et al., 2021) 

Pseudomonas polymyxa FB-

50 

EPS production, salt stress 

resistance 
Acacia abyssinica Benth.  (Getahun et al., 2020) 

Pseudomonas putida RA 
Modulation of stress-related 

plant miRNA  
Chickpea (Cicer arietinum L.)  (Jatan et al., 2019) 

Pseudomonas putida W619-

TCE 
TCE degradation 

Poplar cuttings [Populus 

deltoides x (trichocarpa x 

deltoides) cv. Grimminge]  

(Weyens et al., 2010) 

Pseudomonas sp. SP3 Siderophore production 
Siberian crab apple (Malus 

baccata (L.) Borkh.) 
 (Gao et al., 2022) 

Rhizobium alamii GBV030 EPS production  Rapeseed (Brassica napus L.)  (Tulumello et al., 2021) 

Rhizobium 

favelukesii LPU83 
EPS production  Alfalfa (Medicago sativa L.)  (Castellani et al., 2021) 

Rhizobium phaseoli Mn-6 EPS production  Maize (Zea mays L.)  (Dar et al., 2021) 

Rhodococcus 

qingshengii RL1 

N2 fixation, phytohormone 

production  
Rucola (Eruca sativa L.)  (Kuhl et al., 2021) 

Streptomyces sp. SIIB-Zn-

R8 

Siderophore production, 

heavy metal uptake  

Black alder (Alnus 

glutinosa L.)  
(Złoch et al., 2016) 

Abbreviations: ACC: 1-aminocyclopropane-1-carboxylate; EPS: exopolysaccharides; 

IAA: indole-3-acetic acid; HCN: hydrogen cyanide; TCE: trichloroethylene; VOCs: 

volatile organic compounds 

 

 

4. Encapsulation strategy 

As mentioned above, both PGRs and PAMs are susceptible to premature 

degradation/loss of viability when applied to the plants, which has encouraged the 

development of several types of formulations, including those using the encapsulation 

strategy. Encapsulation indicates the entrapment of molecules or microorganisms by 

chemical, mechanical, or physical methods using different types of matrices (wall 

material), resulting in particles with a wide range of sizes, which is dependent on the 
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technique used. Different wall materials that can be used to produce particles, such as 

natural and synthetic polymers, waxes, gums, fats, and carbohydrates (Rojas-Sánchez et 

al., 2022; Saberi Riseh et al., 2021).  

It is important to evaluate the type of matrix material that will be used for the 

encapsulation and the methodological process, aiming at sustainable agriculture and 

forest restoration practices. Currently, there is a trend to choose methods that apply 

green processes (such as the use of biodegradable materials, biosurfactants, and low-

energy consuming production processes, and the avoidance of hazardous materials), 

which are essential for products aiming at biostimulant effects (Jiménez-Arias et al., 

2020). Biopolymers (e.g., alginate, chitosan, cellulose, zein) have been used for nano- 

and microencapsulation processes due to characteristics such as biodegradability, 

biocompatibility, low toxicity, and promotion of circular economy. These biopolymers 

have many functional groups that can promote the nanoencapsulation of bioactive 

compounds (such as PGRs) or the microencapsulation of microorganisms, mainly by 

electrostatic interaction or the anti-solvent method. 

One of the most commonly used biopolymers is chitosan, which is a 

polysaccharide with many applications due to its chemical, physical, and biological 

properties. Its structure has primary and secondary hydroxyl groups and the presence of 

amine groups (Islam et al., 2017) that allow electrostatic interactions with other 

biopolymers or salts (e.g., alginate and tripolyphosphate), forming nanoparticles by 

ionotropic pre-gelation and ionic gelation (Korpayev et al., 2021; Valderrama N et al., 

2020). Many studies have reported that chitosan per se has plant growth promotion and 

stress resistance induction effects (de Melo et al., 2019; Rv et al., 2018)  

 

4.1. PGR nanoencapsulation 

 

Despite the great potential of PGR applications in agriculture and forest 

restoration, two main challenges need to be overcome: the short shelf-life of these 

compounds and their low stability in the field, which compromise their biological 

activity (Jiménez-Arias et al., 2020). A good example is abscisic acid (ABA), which has 

a half-life of 24 min under sunlight; thus, the use of high doses of this PGR together 

with an anti-photolysis agent is required to improve its activity in the field (Yin et al., 

2020a). To face these challenges, the nanoencapsulation of PGRs appears as an 

effective strategy to offer protection (during storage and after application) against 

premature degradation by processes such as hydrolysis and photolysis, improving the 

Jo
ur

na
l P

re
-p

ro
of



 20 

shelf-life of PGR formulations and their biological activity under realistic conditions 

(Falsini et al., 2019a; Jiménez-Arias et al., 2020; Pascoli et al., 2018; Yin et al., 2020a). 

Moreover, nanoencapsulation promotes sustained release of the bioactive molecules 

over time, prolonging their action in plants, in addition to allowing targeted delivery of 

PGRs to plants of interest, with enhanced uptake and/or translocation of the molecules 

in the plants (Figure 4). Although in the last decade there has been an increase in the 

number of studies reporting the nanoencapsulation of PGRs (Table 4), the use of these 

systems for plant protection against stress conditions is still little explored, especially if 

compared to application of metallic nanoparticles. 

 

Figure 4: Nanoencapsulation as a strategy to improve the physicochemical 

stability and biological activity of PGRs. Created with BioRender.com 

Chitosan/tripolyphosphate (TPP) nanoparticles are the most commonly used 

system for the encapsulation of hydrophilic PGRs, such as gibberellic acid, indole-3-

butyric acid, indole-3-acetic acid, salicylic acid, and S-nitrosothiols (Table 4). The 

formation of nanoparticles results from the interaction of the protonated chitosan amino 

group with TPP anion (Korpayev et al., 2021; Anderson Espirito Santo Pereira et al., 

2017; Valderrama N et al., 2020). Another methodology used for the formation of 

chitosan nanoparticles is the ionotropic pre-gelation: there is a pre-gelation process with 

a cation (e.g., Ca
2+

) that interacts with carboxylic groups forming an egg-box structure. 
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For example, the biopolymers alginate or polyglutamic can be used to interact with 

chitosan amine groups by electrostatic interaction, resulting in micro/nanoparticles 

(Pereira et al., 2017). These methodologies follow the precepts of green chemistry, 

since no solvents or surfactants are used for nanoparticle stabilization. Moreover, 

biopolymers are biodegradable, biocompatible, and may induce synergetic effects with 

PGRs on plants (Malerba and Cerana, 2019; Rv et al., 2018).  

In a field study, Pereira et al. (2019) showed that seed priming with chitosan 

nanoparticles improved tomato plant development and yield. It is noteworthy that 

gibberellic acid-loaded chitosan/TPP and alginate/chitosan nanoparticles increased 

tomato production by around 4-fold, to a higher extent than the non-encapsulated PGR. 

However, this system has not yet been tested for induction of plant stress resistance ( 

Pereira et al., 2019). 

In contrast, various reports have demonstrated that the encapsulation of S-

nitrosothiols into chitosan/TPP nanoparticles potentiates the protective effect of nitric 

oxide (NO) in plants submitted to different types of abiotic stresses (Table 4). Despite 

the well-known involvement of NO as a signaling molecule in the induction of stress 

responses, the application of NO donors (as S-nitrosothiols) has been hampered by the 

relative instability of these molecules (Seabra et al., 2014). Nanoencapsulation has 

recently been demonstrated to be an efficient strategy to increase the half-life of S-

nitrosothiols and promote more sustained NO release, enhancing the protective effects 

of NO on stressed plants (Table 4). Studies carried out with crop and tree species 

highlighted the potential applications of NO-releasing chitosan nanoparticles for 

increasing agricultural production and tree seedling survival in a scenario of climate 

change (Seabra et al., 2022).  

Another trend for the development of nanocarriers is the use of lignin. This 

biopolymer has different characteristics according to the extraction method, yielding 

more hydrophobicity or hydrophilicity. The physico-chemical characteristics of lignin 

may also result in UV protection, and antioxidant and antimicrobial activities (Chauhan, 

2020; Pereira et al., 2022). 

Falsini et al. (2019) used the solvent/co-solvent methodology for the 

encapsulation of gibberellic acid into lignin nanoparticles. In this process, an organic 

solvent (acetone) and a high energy input (sonication) are required for the nanoparticle 

formation (Falsini et al., 2019b). The nanoparticles were absorbed by rocket and tomato 

seeds, increasing the germination and root development. Yin et al. (2020) developed 
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lignin nanoparticles for the encapsulation of ABA by the electrostatic adsorption 

method. This system protected the PGR against photolysis and was more efficient than 

the free ABA in inducing drought resistance in rice and Arabidopsis plants (Yin et al., 

2020b).     

Another strategy is the development of stimuli-responsive nanoparticles.  

Mesoporous silica nanoparticles have been developed as carrier systems for ABA and 

salicylic acid (Sun et al., 2018; Yi et al., 2015). This system involved many process 

steps for functionalization of the nanoparticle surface with decanethiol groups, that 

work as a gate for the PGR release in the presence of glutathione. Stressed plants 

usually have overproduction of glutathione, triggering the release of the PGRs involved 

in the induction of stress resistance (Sun et al., 2018; Yi et al., 2015).  

In the study performed by Sun et al. (2018), the ability of ABA-loaded silica 

nanoparticles to aid drought resistance and reduction in water loss was evaluated in 

Arabidopsis thaliana plants. After 14 days of drought stress, plants treated with 

nanoencapsulated ABA showed better resistance to water deficit, and an increased 

number of flowering seedlings and seedling greening rates when compared to plants 

treated with non-encapsulated ABA. In addition, prolonged expression of the ABA 

inducible marker gene AtGALK2 was observed when plants were treated with 

nanoencapsulated ABA (Sun et al., 2018).  

Kumaraswamy et al. (2019) functionalized/coated chitosan nanoparticles with 

salicylic acid. The results demonstrated that the nanoparticles improved plant resistance 

to abiotic stress and showed antifungal activity against Fusarium verticillioides¸ that 

causes a disease responsible for 40-100% of yield loss in maize.  Moreover, the 

nanoformulation improved the germination and production of maize plants  and 

increased the antioxidant activity and induced lignin deposition, avoiding further 

infection by microorganisms (Kumaraswamy et al., 2019).  

Recently, the priming technology has been considered as a promising strategy to 

increase plant resistance to abiotic and biotic stress. In addition, application of 

nanocarriers as a smart delivery system could increase the efficiency of the priming 

agent and reduce overall chemical usage (Ioannou et al., 2020; Wang et al., 2016). For 

instance, Gohari et al. (2022) reported that seedling priming treatment with melatonin-

coated chitosan nanoparticles on spearmint (Mentha spicata L.) under salinity stress not 

only increased the plant defense system against salinity stress (by increasing proline 

content, enzymatic antioxidant activities, and essential oil content) but also decreased 
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the effective concentration of melatonin compared to solo melatonin treatment (Gohari 

et al., 2022).  

 

 

Table 4: Nanoencapsulated plant growth regulators (PGRs) and their biological effects 

in plants. 

Type of nanoparticle PGR Methodology Biological effects Reference 

Chitosan/ tripolyphosphate and 

chitosan/alginate 
Gibberellic acid  

Ionotropic 

pre-gelation 

and ionic 

gelation 

method 

(+) Seedling 

development, leaf 

area and 

photosynthetic 

pigments in common 

bean seedlings 

(Phaseolus vulgaris 

L.)  

(Pereira et al., 

2017) 

Chitosan/polyglutamic Gibberellic acid 
Ionotropic 

pre-gelation 

(+) Development and 

vigor of common 

bean seedlings 

(Phaseolus vulgaris 

L.)  

(Pereira et al., 

2017) 

Chitosan/ tripolyphosphate and 

chitosan/alginate 
Gibberellic acid 

Ionotropic 

pre-gelation 

and ionic 

gelation 

method 

(+) Plant 

development, yield 

and fruit weight in 

tomato plants 

(Solanum 

lycopersicum L.)  

(Pereira et al., 

2019) 

Alginate/chitosan 
Indole-3-acetic 

acid 

Ionotropic 

pre-gelation 

(+) Growth and 

chlorophyll content 

of tomato plants 

(Solanum 

lycopersicum L.) 

(Andrade Ayala et 

al., 2020) 

Chitosan/tripolyphosphate Salicylic acid 
Ionic 

gelation  

(+) Protection 

against fungal 

infection, antioxidant 

enzyme activity and 

yield of maize plants 

(Zea mays L.) 

(Kumaraswamy et 

al., 2019) 

Chitosan/tripolyphosphate 

S-nitroso-

mercaptosuccinic 

acid (NO donor) 

Ionic 

gelation 

(+) Protection of 

maize plants (Zea 

mays L.) against salt 

stress 

(Oliveira et al., 

2016) 

Chitosan/tripolyphosphate S-nitroso-

mercaptosuccinic 

Ionic 

gelation 

(+) Growth of 

Heliocarpus 

popayanensis Kunth 

(Lopes-Oliveira et 

al., 2019) 
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acid (NO donor) seedlings under full 

sun 

Chitosan/tripolyphosphate 

S-

nitrosoglutathione 

(NO donor) 

Ionic 

gelation 

(+) Protection of 

sugarcane plants 

(Saccharum spp.) 

against water deficit 

(Silveira et al., 

2019) 

Chitosan/tripolyphosphate 

S-nitroso-

mercaptosuccinic 

acid (NO donor) 

Ionic 

gelation 

(+) Protection of 

Heliocarpus 

popayanensis Kunth 

seedlings against 

water deficit 

(do Carmo et al., 

2021) 

Chitosan/tripolyphosphate 

S-

nitrosoglutathione, 

S-nitroso-N-

acetylcysteine, S-

nitroso-

mercaptosuccinic 

acid (NO donors) 

Ionic 

gelation 
(+) Recovery of 

sugarcane plants 

(Saccharum spp.) 

after water deficit 

(Silveira et al., 

2021) 

Chitosan/tripolyphosphate 

S-nitroso-

mercaptosuccinic 

acid (NO donor) 

Ionic 

gelation 

(+) Protection of 

soybean plants 

(Glycine max (L.) 

Merr.) against high 

copper levels in the 

soil 

(Gomes et al., 

2022) 

Chitosan/tripolyphosphate Methyl jasmonate 
Ionic 

gelation 

(+) Elicitation of 

phenolics and 

flavonoids in rice 

(Oryza sativa L.) cell 

cultures 

(Arya et al., 2022) 

Chitosan and silver 

Indole-3-acetic 

acid andindole-3-

butyric acid  

Ionic 

gelation and 

reduction 

method 

(+) Root 

development of 

apple microcuttings 

(Malus domestica 

Borkh.)  

(Korpayev et al., 

2021) 

Mesoporous silica 

nanoparticles/chitosan 
Melatonin 

Ionic 

gelation  

(+) Photosynthetic 

efficiency and 

antioxidant enzyme 

activities; 

(-) Cadmium 

concentration in rice 

leaves (Oryza sativa 

L.) 

(Chen et al., 2022) 

Zinc 

Indole-3-acetic 

acid and 

indole-3-butyric 

Surface 

coating 

(hydrogen 

(+) Root 

development of pear 

microcuttings (Pyrus 

elaeagrifolia Pall 

(Karakeçili et al., 

2019) 
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acid bonding) and Pyrus communis 

L.) 

Zinc 

Indole-3-acetic 

acid and 

indole-3-butyric 

acid 

Surface 

coating 

(hydrogen 

bonding) 

(+) Root 

development in apple 

micro cuttings 

(Malus domestica 

Borkh.) 

(Alizadeh and 

Dumanoğlu, 2022) 

Silica nanoparticles Abscisic acid 
Not 

mentioned 

(+) Protection of 

Arabidopsis thaliana 

(L.) Heynh. against 

drought stress 

(Sun et al., 2018) 

Silica nanoparticles Salicylic acid 
Not 

mentioned 

(+) Expression of 

defense genes in 

Arabidopsis thaliana 

(L.) Heynh. 

(Yi et al., 2015) 

Lignin Gibberellic acid 

Solvent/co-

solvent 

method 

(+) Development and 

biomass of rucola 

(Eruca vesicaria (L.) 

Cav.) and tomato 

(Solanum 

lycopersicum L.) 

seedlings 

(Falsini et al., 

2019a) 

Alkali 

lignin/cetyltrimethylammonium 

bromide 

Abscisic acid 
Electrostatic 

adsorption 

(+) Protection of 

Arabidopsis thaliana 

(L.) Heynh. plants 

against water deficit 

(-) Germination of 

rice (Oryza sativa L.) 

and Arabidopsis 

thaliana (L.) Heynh. 

seeds 

(Yin et al., 2020a) 

Chitosan/tripolyphosphate Melatonin 
Ionic 

gelation 

(+) 

Morphophysiological 

attributes and 

secondary metabolite 

content in spearmint 

(Mentha spicata L.) 

under salinity stress 

(Gohari et al., 

2022) 

 

 As demonstrated in the table 5, some inorganic nanoparticles, such as zinc and 

silica, have been used to delivery PGR to plants. These nanoparticles offer significant 

advantages over organic nanoparticles, like smaller size, higher stability, controlled 

tunability, higher uptake, trigger release, optical properties and easer trackability in the 

environment (Poon and Patel, 2020).  However, some limitations are also associated 
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with the utilization of these kind of materials. For example, most inorganic systems 

have a lower loading capacity when compared to organic nanoparticles. From an 

environmental point of view, it is still unknown how fast these systems are degraded in 

the environment, which can lead to environmental damage if used on a large scale 

(Bundschuh et al., 2018). Furthermore, little is known about the biomagnification and 

accumulation of these materials in plant tissues and the possible exposure of humans 

and non-target organisms to these nanomaterials via trophic transfer (Lead et al., 2018).  

 

4.2. PAM microencapsulation  

As discussed in this review, PAMs can be very efficient to improve plant health 

and growth under normal and/or stressed conditions, with minimal environmental 

damage. In recent decades, PAMs have been widely studied in the agricultural sector 

and some commercial formulations have been launched on the market. However, this 

approach may not promote the expected benefits in the agricultural sector, since crop 

productivity is highly influenced by the properties of the inoculated PAM. PAM 

efficacy can be affected by its own survival in the soil, environmental factors (such as 

temperature, pH, light, and moisture), the interactions established between the 

inoculated PAM and the indigenous soil microbiota, and the effectiveness of the 

establishment of the plant-PAM interaction (Campos et al., 2014; Rossi et al., 2021; 

Saberi Riseh et al., 2022; Saberi-Riseh et al., 2021). In addition, the involved 

mechanisms of action are very broad when evaluating the PAM diversity, specificity of 

each strain, and interaction with the host organism (Poudel et al., 2021). Taken together, 

these drawbacks hinder the widely and efficient application of PAMs in the agricultural 

and forest restoration sectors.  

In this way, strategies are required that are able to decrease the fast decline of 

the microorganism population by increasing the microorganism survival in both storage 

conditions and after the inoculation process. An approach that has proven to be efficient 

in overcoming the challenges for more efficient application of PAMs in agriculture is 

microencapsulation (Figure 5) (Strobel et al., 2018). In addition to preserving the 

viability of microbial cells during the storage period, microencapsulation can improve 

the survival of PAMs in the soil and provide sustained release of the cells, thus 

achieving long-term effects (Table 5). 
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Figure 5: Advantages of microencapsulation of PAMs for agricultural 

application. Through encapsulation it is possible to increase the shelf-life, improve the 

field viability, and improve the biological activity and resistance to abiotic stress due to 

better plant colonization.  

There are currently liquid (cell suspensions in water, oils, or emulsions) and 

powder (wettable powders, dust, and granules) formulations of PAMs (Saberi-Riseh et 

al., 2021). However, these formulations must be optimized for storage and maintenance 

of microorganism viability in field conditions. In this case, microencapsulation results 

in the formation of a physical barrier, as a shield that protects PAMs against 

environmental factors that could reduce their viability during storage or in the field. The 

capsule wall can be developed with different matrices (gelatin, alginate, chitosan 

xanthan gum, gellan gun, among others) that vary in size and structure, defining the 

microorganism release profile, the wall degradation, and the formulation shelf-life, as 

well as the adherence to the seeds in the case of seed treatments (Bosnea et al., 2014; 

Saberi-Riseh and Moradi-Pour, 2021). Inorganic wall materials, especially metal-based 

ones are not good candidates for PAMs encapsulation, since these materials are 

recognized as antimicrobial agents. In addition, it was also demonstrated that metal 

oxide particles (micro/nanoparticles) of copper and zinc oxide were able to affect 

negatively the soil microbiota as well as accumulate in both monocotyledonous (Zea 

mays) and dicotyledonous (Crocus sativus) plants species (Kim et al., 2013).  It is 
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fundamental that the matrix used for microencapsulation is not toxic for the target 

microorganism, is prone to degradation by soil microbiome, and protects against abiotic 

and biotic factors that could reduce the viability of PAM cells, thus allowing more 

efficient colonization of the plant roots by the target PAM (Hii et al., 2021; Saberi Riseh 

et al., 2022) 

Different methodologies have been used for PAM encapsulation, such as spray-

drying, spray-chilling/cooling, lyophilization, fluidized bed, extrusion, emulsification, 

coacervation, and ionic, inverse, and thermal gelation (Saberi Riseh et al., 2022; 

Schoebitz and López Belchí, 2016; Vejan et al., 2019). Perez et al. (2018) prepared 

macrobeads for the encapsulation of Azospirillum brasilense Az39 and Pseudomonas 

fluorescens ZME4, singly or in combination (10
10

 CFU mL
-1

 for both microorganisms). 

The microorganism viability remained high over time, showing 10
9
 CFU g

-1
 for A. 

brasilense and 10
8
 CFU g

-1
 of P. fluorescens after 12 months (Perez et al., 2018). 

Spray-drying has been used for the microencapsulation of many microorganisms 

(Azaroual et al., 2021; Kawakita et al., 2021a; Saberi-Riseh and Moradi-Pour, 2021). In 

this case, it is necessary to evaluate the condition for drying (inlet and outlet 

temperature, flow, spray rate, and blow) in order to improve microorganism survival 

and powder yield (Azaroual et al., 2021; Kawakita et al., 2021a). Kawakita et al. (2021) 

evaluated two techniques for drying and encapsulating the bacterium Collimonas 

arenae Cal3 into alginate microcapsules, observing that spray-drying improved cell 

viability by 10-fold more than fluidized-bed spray coating (Kawakita et al., 2021a). In 

addition, Strobel et al. (2018) reported that encapsulating Methylobacterium 

radiotolerans by spray-drying using alginate as matrix resulted in no significant loss in 

cell viability after one year of storage. However, the effects of the developed 

formulation on plants were not tested (Kawakita et al., 2021b; Strobel et al., 2018).  

In contrast, Saberi-Riseh et al. (2021) used the spray-drying technique and 

gellan gun and chitosan as matrices for the encapsulation of Streptomyces fulvissimus 

Uts22, aiming at the promotion of plant development and biological control. After the 

spray-drying process, the microorganism showed high survival rates (keeping 10
10

 CFU 

g
-1

), that reduced but still maintained high levels after 60 days of storage (10
8
 CFU g

-1
). 

This bacterial strain produced several compounds (e.g., indole-3-acetic acid, 2,3-

butanediol, N-alkylate and benzylamines), that improved wheat development (Saberi 

Riseh et al., 2021). However, the authors did not test the potential use of this 

formulation for plant stress alleviation.  
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For liquid formulations, bioencapsulation by coacervation has been a trend, 

because of many advantages in comparison to other methodologies, such as the ease of 

the process, the use of biopolymers, low temperature, and no use of organic solvents 

(Silva et al., 2019). Coacervation involves the electrostatic reaction between polymers 

with opposite charge with their consequent neutralization, yielding the polymer rich-

phase named the coacervate complex (Bosnea et al., 2014; Yeo et al., 2005). This 

complex can improve the viability of the microorganisms in liquid medium (Qi et al., 

n.d.). Amiet-Charpentier et al. (1998) used this methodology to encapsulate 

rhizobacteria in gelatin-polyphosphate polymer, followed by a drying process using 

rotary agitator and silica. The authors reported that the microbial cell concentration 

decreased after the process from ∼5×10
9
 CFU g

-1
 oil suspension to ∼10

4
 CFU g

-1
 dry 

particles, suggesting that the microparticle wall worked as an oxygen barrier, 

responsible for the bacteria death (Amiet-Charpentier et al., 1998). 

 

Table 5: Impact of the microencapsulation of plant associative microorganisms (PAMs) 

on their viability. When tested, their biological effects on plants are also shown.  

Type of microparticle Microorganism Methodology Biological effects Reference 

Gellan gun and 

chitosan 

Streptomyces 

fulvissimus Uts22 
Spray-drying 

(+) PAM 

viability, 

biological control 

of 

Gaeumannomyces 

graminis, 

biomass 

accumulation of 

wheat plants  

(Hii et al., 2021) 

Alginate and 

maltodextrin 

N2-fixing bacteria 

(Alphaproteobacteria, 

Betaproteobacteria, 

Gammaproteobacteria, 

and Bacteroidetes) 

Spray-drying (+) PAM viability  
(Campos et al., 

2014) 

Alginate 
Collimonas arenae 

Cal3 

Spray-drying 

and  

fluidized-bed 

spray coating 

(+) PAM viability  
(Kawakita et al., 

2021b) 

Gellan gun and 

chitosan 

Streptomyces 

fulvissimus Uts22 
Spray-drying (+) PAM viability 

(Saberi-Riseh et 

al., 2021) 

Alginate 
Methylobacterium 

Spray-drying (+) PAM viability 
(Strobel et al., 
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radiotolerans 2018) 

Gelatin–

polyphosphate 

polymer 

Pseudomonas 

fluorescens-putida 
Coacervation (+) PAM viability 

(Amiet-

Charpentier et al., 

1998) 

Chitosan 

Azospirillum brasilense 

Az39 and Pseudomonas 

fluorescens ZME4 

Ionic gelation (+) PAM viability 
(Perez et al., 

2018) 

Alginate  Trichoderma harzianum Ionic gelation 

(+) Protection of 

the 

microorganism 

against ultraviolet 

radiation, soil 

microbiome 

(Maruyama et al., 

2020) 

Carboxymethyl 

cellulose and cellulose 

nanocrystals 

Trichoderma harzianum Coagulation (+) PAM viability 
(Brondi et al., 

2022) 

N-

hydroxysuccinimide -

modified poly(γ-

glutamic acid)  

Pseudomonas stutzeri 

NRCB010 

Coating by 

electrostatic 

interaction 

(+) PAM 

viability, 

protection against 

ultraviolet 

radiation, 

development of 

tomato plants 

(Solanum 

lycopersicum L.) 

(Yang et al., 

2021) 

 

As observed for PGR encapsulation, the evaluation of the effects of 

microencapsulated PAMs on plants grown under stress conditions has been little 

explored. Most published works have evaluated the impacts of encapsulation on the 

survival of the microorganism, seeking to increase its viability and survival during 

storage and use in the field (Table 5). In one of the few studies using plants submitted to 

abiotic stress, Wu et al. (2014) evaluated the ability of Klebsiella oxytoca Rs-5 

encapsulated in alginate microparticles to promote growth and the colonization of 

cotton plants grown in saline soil. After 28 days of inoculation, the root colonization 

with bacterial cells was 100-fold higher in plants treated with encapsulated bacteria 

when compared to non-encapsulated plants. Bacterial encapsulation did not improve 

seed germination when compared to non-encapsulated bacteria, but was more effective 

in the induction of physiological responses to salt stress, such as the accumulation of 

proline, soluble sugars, and chlorophyll a and the alleviation of oxidative stress  (Wu et 

al., 2014). Despite these positive results (Wu et al., 2014), further studies are still 

Jo
ur

na
l P

re
-p

ro
of



 31 

needed to evaluate the potential of microencapsulated PAMs as a sustainable tool to 

mitigate the effects of abiotic stresses (Campos et al., 2022; do Espirito Santo Pereira et 

al., 2021; Manzoor et al., 2022).  

However, the association between nanoparticles and PGR and microparticles 

and PGPR are poorly studied and not well understood. In addition, it is well known that 

the intrinsic properties of the micro/nanoparticles, the type of material used, their 

concentration and mode of application in the plants, as well as the duration of stress are 

able to change the response to the stressor. It is also important to keep in mind that the 

plant characteristics, species, stage of development, and medium used also affect the 

biological response of the micro/nano-based solutions.  

The use of micro-nanoencapsulation for PGRs or microorganisms has great 

potential aimed at agricultural applications. This system may be developed by a green 

process, respecting and following many Sustainable Development Goals (SDGs), 

resulting in sustainable management for agriculture. Moreover, improving plant 

development and tolerance against biotic and abiotic stress, increases production and 

food safety. At the same time, the application of this system can reduce the amounts of 

pesticides and fertilizers applied in the field, protecting and softening the agricultural 

impact on the environment. 

In order to make the application of micro/nanotechnology in association with 

PGR and PGPR more comprehensive for the development of an agricultural system that 

is resilient to biotic and abiotic stresses, as well as environmentally sustainable, studies 

should focus on understanding the mechanisms of action of these materials, taking into 

consideration i) the different plant species (for agronomic or ecological applications), ii) 

the life-cycle and stage of development of the plant; iii) the type of material used in the 

encapsulation, iv) application method, v) concentration used, vi) type and duration of 

the stressing agent; and vii) studies in relevant environments (greenhouse) and the field. 

Furthermore, it is worth mentioning that, although not much studied, the 

combination of the two approaches presented in this review (PGR and PGPR) are 

promising strategies to be used together in mitigating the effects of climate change on 

plants. 

 

5. Conclusions and looking forward  

 

 As demonstrated in the present review, biostimulant formulations, represented 

here by PGRs and PAMs, have the potential to revolutionize agronomic and ecological 
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approaches, generating beneficial effects on plant resilience to biotic and abiotic 

stresses, survival, and productivity of different types of plants. Although the potential of 

biostimulants is well documented in the literature, and has grown exponentially in 

recent years, the validation and commercialization of biostimulant formulations are still 

at an early stage when compared to synthetic pesticide formulations. In addition, it is 

worth mentioning that the vast majority of published studies are focused on species of 

agricultural interest, while the contribution of PGRs and PAMs for non-fruit trees or 

reforestation has not yet been deeply studied. 

 There are substantial differences in stress management taking into account 

species of agronomic and ecological interest, such as: i) lifespan (agricultural plants 

have a shorter lifespan than tree species); ii) the concentration of the biostimulating 

agent necessary to have the necessary biological effect, which tends to be species-

specific; iii) CO2 storage efficiency, since trees have more wood, and this is where most 

of the carbon is absorbed in terms of plant mass; iv) expected biological response, plants 

of agricultural interest are expected to have increased production even under stress 

situations while plant seedlings of ecological interest are expected to survive stress even 

if it costs them a momentary stop in their growth). In addition, the exploration of local 

biodiversity, through the prospection of microorganisms that are able to survive under 

stress conditions, is a promising strategy for the acclimation of different types of plants 

to climate change. Furthermore, the use of microorganisms from local biodiversity 

reduces the risks to the environment.  

In this context, studies carried out to fate are limited to the analysis of the 

desired biological effect, while studies on how these biostimulants affect/regulate 

cellular metabolism are insufficient. In addition, many studies focus on only one 

specific plant species, which makes the dataset insufficient to assess the real potential of 

the studied agent to become a potential commercial formulation. Moreover, many of the 

studies carried out apply extremely severe stress conditions and for a relatively short 

period of time, which are feasible in controlled environments (laboratory and 

greenhouses) but rarely encountered in environmental conditions. 

 Regarding micro-nanoencapsulation technology, there is no doubt that this is an 

effective tool to overcome the challenges associated with biostimulant formulations. 

Different types of polymeric matrices have demonstrated positive effects both in the 

stabilization of biostimulants and a direct effect on different plants studied, which 

makes these materials promising components of biostimulant formulations. However, it 
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is known that micro and nanoparticulate systems can positively and/or negatively affect 

the metabolism of different types of microorganisms, and concerns about the adverse 

effects of these materials on the environment, ecosystem, food safety, and human health 

have arisen and should be addressed. 

 Future studies involving the complex interactions between plant-microorganism-

delivery systems and the ecosystem must be carefully evaluated, since different factors 

are involved and can affect this process, such as: i) the plant species and environmental 

interactions; ii) the presence or absence of stress; iii) the microorganism and/or PGR 

used; and iv) the physicochemical properties of the encapsulating agent. Taking these 

parameters into account, it will be possible to establish the effectiveness of the systems 

at the molecular level and, consequently, establish an optimal concentration to obtain 

the desired biological effect. In addition, it is important to emphasize that these studies 

must be conducted under field conditions in order to better understand and validate 

previous results obtained in controlled environments. 

 Last but not least, the academic community, regulatory bodies, and industries in 

the sector must join efforts in order to develop guidelines that ensure the development, 

application, and effective environmental tracking of these biostimulants based on micro-

nanotechnology, in order to allow their effective use, without becoming possible agents 

of contamination and/or environmental degradation. In addition, the development of 

education programs to raise awareness of the general population, as well as of the 

farmers who will apply the technology, are fundamental to reduce the uncertainties 

associated with the use of this technology. 

 As shown in this review, PGR nanoencapsulation and plant-associated 

microorganism PAM encapsulation are promising tools to promote different beneficial 

changes at the biochemical, morphological, physiological, and molecular levels in 

plants, and it is possible to assume that commonly used synthetic molecules in 

agriculture are currently not able to promote this broad spectrum of changes. In this 

way, the use of these biostimulants proved to be an alternative with great potential in 

mitigating abiotic stress in plants of agricultural interest, as well as native tree species 

used in reforestation programs. We can also conclude that the field of biostimulant 

formulations based on micro-nanotechnology is highly aligned with the United Nations 

Development Goals and could contribute to accelerating the achievement of these goals.  
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Highlights 

 Biostimulants can promote plant resilience to abiotic stress  

 Biostimulants improve plant health with minimal environmental damage 

 Micro/nanoparticles can boost biostimulant application in agriculture 

 Nano-based biostimulants aiming sustainable agriculture 

 Nature-based micro/nanoformulations generate high crop yields  

Jo
ur

na
l P

re
-p

ro
of




