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An inverse problem for a hyperbolic system in a bounded domain

In this Note we consider a two-by-two hyperbolic system defined on a bounded domain. Using Carleman inequalities, we obtain a Lipschitz stability result for the four spatially varying coefficients with measurements of only one component, given two sets of initial conditions.

Résumé : Dans cette Note, on considère un système hyperbolique de deux équations, défini dans un domaine borné. En utilisant la méthode des inégalités de Carleman, on obtient un résultat de stabilité Lipschitz pour les quatre coefficients dépendant de la variable d'espace de ce système, avec des mesures d'une seule composante de la solution et grâce à la donnée de deux ensembles de conditions initiales.

Version française abrégée

Considérons le système [START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrödinger equation[END_REF]. L'objet de cette note est d'obtenir un résultat de stabilité pour les quatre coefficients indépendants α, β, γ, δ avec une observation d'une seule composante (par exemple u) sur un sous-domaine ω du domaine Ω. Nous prouvons le résultat de stabilité Lipschitz pour les quatre coefficients α, β, γ, δ (cf Théorème 1) : La norme H 1 (Ω) des coefficients α, β, γ, δ est estimée par la norme H 5 (0, T, H 3 (ω)) de u (voir [START_REF] Cardoulis | A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide[END_REF]). La méthode utilise les inégalités de Carleman [START_REF] Cardoulis | Applications of Carleman inequalities for a two-by-two parabolic system in an unbounded guide[END_REF] dans le cas hyperbolique avec observation interne sur un sous-domaine ω sans fonction de troncature en temps (cf [START_REF] Huang | Stability for inverse source problems by Carleman estimates[END_REF]) afin d'éviter des termes résiduels dans les équations ; on obtient ainsi un résultat de stabilité Lipschitz. Par ailleurs on utilise deux ensembles de conditions initiales afin de retrouver les quatre coefficients (cf par exemple [START_REF] Bellina | Lipschitz stability for an inverse hyperbolic problem of determining two coefficients by a finite number of observations[END_REF]). Enfin on élimine un terme d'observation d'une composante (par exemple v) mais cela fait apparaître des termes supplémentaires d'observations en u sur ω. On présente le cas d'un domaine borné avec une observation interne mais ce résultat peut se généraliser au cas d'un domaine borné avec une observation frontière ainsi qu'au cas d'un guide non borné de la forme R × ω 0 (ω 0 étant un sous-domaine borné de R n-1 ) avec une observation frontière sur une partie bornée du bord (cf pas exemple [START_REF] Cardoulis | Applications of Carleman inequalities for a two-by-two parabolic system in an unbounded guide[END_REF][START_REF] Cardoulis | An inverse problem for the heat equation in an unbounded guide[END_REF][START_REF] Cardoulis | A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide[END_REF] dans le cas parabolique).

Introduction

Let Ω be a bounded connex domain in R n , n ≥ 2 with smooth boundary. We consider the following problem        ∂ 2 t u = ∆u + αu + βv + g 1 in Ω × (0, T ), ∂ 2 t v = ∆v + γu + δv + g 2 in Ω × (0, T ), u(., 0) = a 1 , v(., 0) = a 2 , ∂ t u(., 0) = 0, ∂ t v(., 0) = 0 in Ω, u = 0, v = 0 in ∂Ω × (0, T ), [START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrödinger equation[END_REF] where α, β, γ, δ are bounded coefficients defined on Ω such that

α, β, γ, δ ∈ Λ 1 (M 0 ) = {f ∈ L ∞ (Ω), f L ∞ (Ω) ≤ M 0 } for some M 0 > 0.
We also suppose that

α, β, γ, δ ∈ Λ 2 (M 0 ) = {f ∈ H 1 (Ω), f H 1 (Ω) ≤ M 0 }.
We consider in the following solutions (u, v) of ( 1) in H = (W 5,∞ (Ω × (0, T ))) 2 satisfying the a-priori bound (u, v) H ≤ M for some M > 0 sufficiently large. Indeed the method of Carleman estimates requires solutions that are sufficiently regular and the Buckgheim-Klibanov method implies several time differentiations of system [START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrödinger equation[END_REF]. The main purpose of this paper is to study the inverse problem of determining simultaneously the four coefficients (α, β, γ, δ) from a finite number of observations of u in a subdomain of Ω. We denote

G = (g 1 , g 2 ), A = (a 1 , a 2 ), B = (b 1 , b 2 ), ρ = (α, β, γ, δ), ρ = ( α, β, γ, δ). (2) 
Our result gives a Lipschitz stability result [START_REF] Cardoulis | A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide[END_REF] for the coefficients α, β, γ, δ and is the following (see Theorem 1)

α -α 2 H 1 (Ω) + β -β 2 H 1 (Ω) + γ -γ 2 H 1 (Ω) + δ -δ 2 H 1 (Ω) ≤ K u A -ũA 2 H 5 (0,T,H 3 (ω)) + u B -ũB 2 H 5 (0,T,H 3 (ω))
where K is a positive constant, ω is a sub-domain of Ω (see ( 4)) and assuming that hypotheses [START_REF] Cardoulis | An inverse problem for the heat equation in an unbounded guide[END_REF] and ( 10) are satisfied. We consider in the above result (u

A , v A ) (resp. ( u A , v A )) a solution of (1) associated with (ρ, G, A) (resp. (ρ, G, A)) and (u B , v B ) (resp. ( u B , v B )) a solution of (1) associated with (ρ, G, B) (resp. (ρ, G, B)).
The idea of choosing two different sets of initial conditions can be found for example in [START_REF] Bellina | Lipschitz stability for an inverse hyperbolic problem of determining two coefficients by a finite number of observations[END_REF] for an hyperbolic equation in a bounded domain. Note that our result implies a uniqueness result. There is a huge literature about inverse problems for equations or systems of Schrödinger type (see for example [START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrödinger equation[END_REF][START_REF] Cardoulis | Inverse problem for the Schrödinger operator in an unbounded strip[END_REF][START_REF] Cristofol | Stability estimate in an inverse problem for non autonomous magnetic Schrödinger equations[END_REF]) or parabolic type (see for example [START_REF] Benabdallah | Inverse problem for a parabolic system with two components by measurements of one component[END_REF][START_REF] Cardoulis | An inverse problem for a parabolic system in an unbounded guide[END_REF][START_REF] Cardoulis | An inverse problem for a generalized FitzHug-Nagumo system[END_REF][START_REF] Cardoulis | A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide[END_REF][START_REF] Yamamoto | Carleman estimates for parabolic equations and applications[END_REF][START_REF] Yuan | Lipschitz stability in the determination of the principal part of a parabolic equation[END_REF]) or hyperbolic type (see for example [START_REF] Bellina | Lipschitz stability for an inverse hyperbolic problem of determining two coefficients by a finite number of observations[END_REF][START_REF] Cristofol | Determining the waveguide conductivity in a hyperbolic equation from a single measurement on the lateral boundary[END_REF][START_REF] Imanuvilov | Global Lipschitz stability in an inverse hyperbolic problem by interior observations[END_REF]). When the inverse problem is about the reconstruction of coefficients, the results for equations usually concern the determination of the diffusion coefficient of the operator and/or a potentiel (see for example [START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrödinger equation[END_REF][START_REF] Bellina | Lipschitz stability for an inverse hyperbolic problem of determining two coefficients by a finite number of observations[END_REF][START_REF] Cardoulis | Inverse problem for the Schrödinger operator in an unbounded strip[END_REF][START_REF] Cardoulis | A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide[END_REF][START_REF] Cristofol | Determining the waveguide conductivity in a hyperbolic equation from a single measurement on the lateral boundary[END_REF][START_REF] Cristofol | Stability estimate in an inverse problem for non autonomous magnetic Schrödinger equations[END_REF]). It can also be an inverse source problem (see for example [START_REF] Huang | Stability for inverse source problems by Carleman estimates[END_REF]). Up to our knowledge, there are few results for systems concerning the simultaneous identification of more than one coefficient in each equation (see for example [START_REF] Cardoulis | Applications of Carleman inequalities for a two-by-two parabolic system in an unbounded guide[END_REF][START_REF] Cardoulis | An inverse problem for a parabolic system in an unbounded guide[END_REF]). Also notice that there are few results where the measurements are given with only one component (see for example [START_REF] Benabdallah | Inverse problem for a parabolic system with two components by measurements of one component[END_REF][START_REF] Cristofol | Inverse problems for a 2x2 reaction diffusion system using a Carleman estimate with one observation[END_REF]). Therefore the major novelty of this paper is to give a stability result for four coefficients and with measurements of only one component. We give this result in a bounded domain but this can be generalized for an unbounded guide of the type R × ω 0 with ω 0 a bounded domain of R n-1 . This can also be generalized for systems substituting the operator ∂ 2 t u-∆u by an operator of the type ∂ 2 t -∇•(c∇u); we can obtain a stability result for the diffusion coefficient c but this demands a strong positivity hypothesis (see [START_REF] Bellina | Lipschitz stability for an inverse hyperbolic problem of determining two coefficients by a finite number of observations[END_REF][START_REF] Cardoulis | An inverse problem for a parabolic system in an unbounded guide[END_REF][START_REF] Cardoulis | A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide[END_REF][START_REF] Cristofol | Determining the waveguide conductivity in a hyperbolic equation from a single measurement on the lateral boundary[END_REF] ). Last we recall that the methodology based on Carleman estimates for solving inverse problems has been initiated by [START_REF] Bukhgeim | Uniqueness in the Large of a Class of Multidimensional Inverse Problems[END_REF]. See also [START_REF] Imanuvilov | An inverse problem for the dynamical Lamé system with two sets of boundary data[END_REF][START_REF] Klibanov | Inverse problems and Carleman estimates[END_REF][START_REF] Klibanov | Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems[END_REF][START_REF] Imanuvilov | Carleman estimates for the non-stationary Lamé system and the application to an inverse problem[END_REF][START_REF] Imanuvilov | Determination of a coefficient in an acoustic equation with a single measurement[END_REF][START_REF] Imanuvilov | Global Lipschitz stability in an inverse hyperbolic problem by interior observations[END_REF][START_REF] Imanuvilov | Global uniqueness and stability in determining coefficients of wave equations[END_REF]. This Paper is organized as folows: in Section 2, we recall the weight functions [START_REF] Bukhgeim | Uniqueness in the Large of a Class of Multidimensional Inverse Problems[END_REF] and the Carleman estimate [START_REF] Cardoulis | Applications of Carleman inequalities for a two-by-two parabolic system in an unbounded guide[END_REF]. Then in Section 3 we state and prove our results.

Carleman estimate

In this section, we recall the Carleman estimate [START_REF] Cardoulis | Applications of Carleman inequalities for a two-by-two parabolic system in an unbounded guide[END_REF] which is given on Ω × (-T, T ). Therefore we will take the even extensions of the considered solutions of (1) on (-T, 0) (see [START_REF] Cristofol | Inverse problems for a 2x2 reaction diffusion system using a Carleman estimate with one observation[END_REF]).

Denote Q = Ω × (-T, T ). We choose â ∈ R n \ Ω and define d(x) = |x -â| 2 for x ∈ Ω such that d > 0 in Ω, |∇ d| > 0 in Ω. (3) 
Let ω be a sub-domain of Ω such that

{x ∈ ∂Ω, < x -â, ν(x) > > 0} ⊂ ∂ω. (4) 
Here < ., . > denotes the usual scalar product in R n and ν(x) is the outward unit normal vector to ∂Ω at x. Let k ∈ (0, 1). We consider weight functions as follows, for λ > 0 and t ∈ (-T, T ), ψ(x, t) = d(x) -kt 2 + M 1 where M 1 > kT 2 and φ(x, t) = e λψ(x,t) .

(

5)

Proposition 1. There exist T > 0 and > 0 such that (3) holds and

d 1 < d 0 < d 2 (6) 
where

d 0 = inf Ω φ (•, 0) , d 1 = sup Ω×([-T,-T +2 ]∪[T -2 ,T ]) φ, d 2 = sup Ω φ (•, 0) . Proof. First we define β 0 = inf x∈Ω ψ(x, 0) = inf x∈Ω |x -â| 2 + M 1 and β 1 > 0 by β 2 1 = sup x∈Ω |x -â| 2 -inf x∈Ω |x -â| 2 .
Then, we consider T sufficiently large such that β 2 2 = kT 2 -β 2 1 > 0. With these definitions, we have kT 2 = β 2 1 + β 2 2 so we get for all x ∈ Ω,

ψ(x, ±T ) = |x -â| 2 + M 1 -sup x∈Ω |x -â| 2 + inf x∈Ω |x -â| 2 -β 2 2 ≤ β 0 -β 2 2 .
We deduce that there exists > 0 such that < T 2 and for all x ∈ Ω and t ∈ ([-T,

-T + 2 ] ∪ [T -2 , T ]), ψ(x, t) < β 0 - β 2 2 2
and this ends the proof of Proposition 1.

Now we recall a global Carleman estimate (see for example [START_REF] Bellassoued | Carleman Estimates and Applications to Inverse Problems for Hyperbolic Systems[END_REF][START_REF] Bellina | Lipschitz stability for an inverse hyperbolic problem of determining two coefficients by a finite number of observations[END_REF][START_REF] Huang | Stability for inverse source problems by Carleman estimates[END_REF]). Let s > 0 and denote

I(u) = Q s|∇ x,t u| 2 + s 3 |u| 2 e 2sφ dx dt with |∇ x,t u| 2 = |∂ t u| 2 + |∇u| 2 .
Proposition 2. [15, Lemma 1] There exist a value of λ > 0 and positive constants s 0 and C such that

I(u) ≤ C e sφ f 2 L 2 (Q) + C ω×(-T,T ) (s|∇ x,t u| 2 + s 3 |u| 2 )e 2sφ dx dt (7) 
+C

Ω (s|∇ x,t u(x, T )| 2 +s 3 |u(x, T )| 2 )e 2sφ(x,T ) dx+C Ω (s|∇ x,t u(x, -T )| 2 +s 3 |u(x, -T )| 2 )e 2sφ(x,-T ) dx
for all s > s 0 , and

all u ∈ H 2 (-T, T, L 2 (Ω)) ∩ L 2 (-T, T, H 2 (Ω) ∩ H 1 0 (Ω)) satisfying ∂ 2 t u -∆u = f in Ω, u = 0 on ∂Ω × (-T, T ).
Remark 1. We could have considered a Carleman estimate with an observation on a part Γ of the boundary,

Γ = {x ∈ ∂Ω, < x -â, ν(x) >≥ 0}. ( 8 
)
Then the observation term C ω×(-T,T ) (s|∇ x,t u| 2 + s 3 |u| 2 )e 2sφ dx dt in (7) should be replaced by Cs Γ×(-T,T ) |∂ ν u| 2 e 2sφ dσ dt.

In the following parts, C will be a generic positive constant which is independent of s. Let us remark that this Carleman inequality uses also λ as a second large parameter. As we will not use it, we now consider λ fixed in the sequel such that Proposition 1 holds.

3 Inverse problem

Main result

Consider (u A , v A ) (resp. (ũ A , ṽA )) a solution of (1) associated with (ρ, G, A) defined by (2) (resp. (ρ, G, A)). Consider also (u B , v B ) (resp. (ũ B , ṽB )) a solution of (1) associated with (ρ, G, B) (resp. (ρ, G, B)). Assume that all the coefficients α, β, γ, δ, α, β, γ, δ, belong to Λ 1 (M 0 ) ∩ Λ 2 (M 0 ).
The following theorem gives a stability result for the four coefficients α, β, γ, δ.

Theorem 1. Let T > 0 and â ∈ R n \ Ω satisfying the conditions of Proposition 1. Assume that the following hypotheses (9)-( 10) are satisfed

|a 1 b 2 -a 2 b 1 | ≥ R 1 in Ω for some R 1 > 0, (9) 
and

|β| ≥ R 2 > 0 in Ω and | β| ≥ R 2 > 0 in Ω for some R 2 > 0. ( 10 
)
Then the following Lipschitz stability estimates holds

α -α 2 H 1 (Ω) + β -β 2 H 1 (Ω) + γ -γ 2 H 1 (Ω) + δ -δ 2 H 1 (Ω) ≤ K u A -ũA 2 H 5 (0,T,H 3 (ω)) + u B -ũB 2 H 5 (0,T,H 3 (ω)) . (11) 
Here, andâ.

K > 0 is a contant depending on R 1 , R 2 , M 0 , M 1 , M , T ,
Proof. Let (u A , v A ) (resp. (ũ A , ṽA )) be a solution of (1) associated with (ρ, G, A) (resp. (ρ, G, A))
and (u B , w B ) (resp. (ũ B , wB )) be a solution of (1) associated with (ρ, G, B) (resp. (ρ, G, B)). We decompose the proof in several steps.

• The first step: even extension in t. Denote (u, v) = (u A , v A ), (ũ, ṽ) = (ũ A , ṽA ) and

y 0 = u -ũ, z 0 = v -ṽ, a = α -α. b = β -β, c = γ -γ, d = δ -δ. ( 12 
)
Now we recall that we take the even extensions of all the functions on (-T, 0) and for simplicity, we denote the extended functions by the same notations. Denote now for i = 1, 2

y i = ∂ i t y 0 , z i = ∂ i t z 0 .
Then (y 1 , z 1 ) and (y 2 , z 2 ) satisfy the following systems

           ∂ 2 t y 1 = ∆y 1 + αy 1 + βz 1 + a∂ t ũ + b∂ t ṽ in Q, ∂ 2 t z 1 = ∆z 1 + γy 1 + δz 1 + c∂ t ũ + d∂ t ṽ in Q, y 1 (•, 0) = z 1 (•, 0) = 0 in Ω, ∂ t y 1 (•, 0) = aa 1 + ba 2 , ∂ t z 1 (•, 0) = ca 1 + da 2 in Ω, y 1 = z 1 = 0 on ∂Ω × (-T, T ), (13) 
and

           ∂ 2 t y 2 = ∆y 2 + αy 2 + βz 2 + a∂ 2 t ũ + b∂ 2 t ṽ in Q, ∂ 2 t z 2 = ∆z 2 + γy 2 + δz 2 + c∂ 2 t ũ + d∂ 2 t ṽ in Q, y 2 (•, 0) = aa 1 + ba 2 , z 2 (•, 0) = ca 1 + da 2 in Ω, ∂ t y 2 (•, 0) = ∂ t z 2 (•, 0) = 0 in Ω, y 2 = z 2 = 0 on ∂Ω × (-T, T ). ( 14 
)
• In the second step we estimate 2 i=1 (I(y i ) + I(z i )) by the Carleman inequality [START_REF] Cardoulis | Applications of Carleman inequalities for a two-by-two parabolic system in an unbounded guide[END_REF]. Note that all the terms Q e 2sφ (|y i | 2 + |z i | 2 ) dx dt on the right-hand side of the estimate (7) will be absorbed by I(y i ) + I(z i ) for s sufficiently large. So we have for s sufficiently large,

2 i=1 (I(y i ) + I(z i )) ≤ C Q e 2sφ (a 2 + b 2 + c 2 + d 2 ) dx dt +Cs 3 2 i=1 ω×(-T,T ) (|∇ x,t y i | 2 + |y i | 2 + |∇ x,t z i | 2 + |z i | 2 )e 2sφ dx dt +Cs 3 2 i=1 Ω (|∇ x,t y i (x, T )| 2 + |y i (x, T )| 2 + |∇ x,t z i (x, T )| 2 + |z i (x, T )| 2 )e 2sφ(x,T ) dx. ( 15 
)
Now we remove the observation term on z i . From the first equations in ( 13) and ( 14) we have

βz i = ∂ 2 t y i -∆y i -αy i -a∂ i t ũ -b∂ i t ṽ in Q. ( 16 
)
From hypothesis [START_REF] Cardoulis | Inverse problem for the Schrödinger operator in an unbounded strip[END_REF] and deriving z i with respect to the space variable x and to the time variable t in ( 16) we get

ω×(-T,T ) (|∇ x,t z i | 2 + |z i | 2 )e 2sφ dx dt ≤ Ce 2sd 2 y i 2 H 3 (0,T,H 3 (ω)) +C ω×(-T,T ) e 2sφ (a 2 + b 2 + |∇a| 2 + |∇b| 2 ) dx dt.
More precisely we have in the above estimate y i 2

H 3 (0,T,L 2 (ω)) + y i 2 H 2 (0,T,H 1 (ω)) + y i 2 H 1 (0,T,H 2 (ω)) + y i 2 L 2 (0,T,H 3 (ω)) . So s 3 2 i=1 ω×(-T,T ) (|∇ x,t z i | 2 + |z i | 2 )e 2sφ dx dt ≤ Cs 3 e 2sd 2 y 0 2 H 5 (0,T,H 3 (ω)) +Cs 3 ω×(-T,T ) e 2sφ (a 2 + b 2 + |∇a| 2 + |∇b| 2 ) dx dt. (17) 
Now we estimate

Ω (|∇ x,t y i (x, T )| 2 + |y i (x, T )| 2 + |∇ x,t z i (x, T )| 2 + |z i (x, T )|
2 )e 2sφ(x,T ) dx dt using a classical energy estimate. Multiplying the first equation of ( 13) or ( 14) by ∂ t y i and the second one by ∂ t z i , we get for all 0 ≤ t ≤ T d dt

Ω (|∇ x,t y i (x, t)| 2 + |∇ x,t z i (x, t)| 2 ) dx ≤ C Ω (|y i (x, t)| 2 +|z i (x, t)| 2 +|∂ t y i (x, t)| 2 +|∂ t z i (x, t)| 2 ) dx +C Ω (a 2 + b 2 + c 2 + d 2 ) dx.
By Gronswall' Lemma and Poincaré inequality, we have

Ω (|∇ x,t y i (x, T )| 2 + |y i (x, T )| 2 + |∇ x,t z i (x, T )| 2 + |z i (x, T )| 2 ) dx ≤ C Ω (|∇ x,t y i (x, 0)| 2 + |y i (x, 0)| 2 + |∇ x,t z i (x, 0)| 2 + |z i (x, 0)| 2 ) dx + C Q (a 2 + b 2 + c 2 + d 2 ) dx dt.
Since e 2sφ(•,T ) ≤ e 2sd 1 we get

Ω (|∇ x,t y i (x, T )| 2 + |y i (x, T )| 2 + |∇ x,t z i (x, T )| 2 + |z i (x, T )| 2 )e 2sφ(x,T ) dx ≤ Ce 2sd 1 Ω (|∇ x,t y i (x, 0)| 2 +|y i (x, 0)| 2 +|∇ x,t z i (x, 0)| 2 +|z i (x, 0)| 2 ) dx+Ce 2sd 1 Q (a 2 +b 2 +c 2 +d 2 ) dx dt.
From ( 13) and ( 14) we obtain

s 3 2 i=1 Ω (|∇ x,t y i (x, T )| 2 + |y i (x, T )| 2 + |∇ x,t z i (x, T )| 2 + |z i (x, T )| 2 )e 2sφ(x,T ) dx (18) 
≤ Cs 3 e 2sd 1 Ω (a 2 + b 2 + c 2 + d 2 + |∇a| 2 + |∇b| 2 + |∇c| 2 + |∇d| 2 ) dx.
So from ( 15), ( 17), ( 18) we have

2 i=1 (I(y i ) + I(z i )) ≤ Cs 3 Q e 2sφ (a 2 + b 2 + c 2 + d 2 + |∇a| 2 + |∇b| 2 ) dx dt +Cs 3 e 2sd 1 Ω (a 2 + b 2 + c 2 + d 2 + |∇a| 2 + |∇b| 2 + |∇c| 2 + |∇d| 2 ) dx + Cs 3 e 2sd 2 F 0 (ω) (19) 
with F 0 (ω) = y 0 H 5 (0,T,H 3 (ω)) .

• The third step: now we estimate

Ω L e 2sφ(x,0) (|y 2 (x, 0)| 2 +|z 2 (x, 0)| 2 +|∇y 2 (x, 0)| 2 +|∇z 2 (x, 0)| 2 ) dx.
Consider η be a C ∞ cut-off function satisfying 0 ≤ η ≤ 1 and

η(t) = 0 if t ∈ [-T, -T + ] ∪ [T -, T ], 1 if t ∈ [-T + 2 , T -2 ], (20) 
with defined in Proposition 1. Multiplying now the first equation of ( 14) by 2η∂ t y 2 , we get 2 Ω×(-T,0)

ηe 2sφ ∂ t y 2 (∂ 2 t y 2 -∆y 2 ) dx dt = 2 Ω×(-T,0) ηe 2sφ (αy 2 +βz 2 +a∂ 2 t ũ+b∂ 2 t ṽ)∂ t y 2 dx dt. ( 21 
)
The right-hand side of ( 21) is less than

C Q e 2sφ (a 2 + b 2 + |y 2 | 2 + |z 2 | 2 + |∂ t y 2 | 2 ) dx dt.
For the left-hand side of ( 21), since η(-T ) = 0, ∂ t y 2 = 0 on ∂Ω × (-T, T ), we get 2 Ω×(-T,0)

ηe 2sφ ∂ t y 2 (∂ 2 t y 2 -∆y 2 ) dx dt = Ω [ηe 2sφ (|∂ t y 2 | 2 + |∇y 2 | 2 )] t=0 t=-T dx - Ω×(-T,0) ∂ t (ηe 2sφ )(|∂ t y 2 | 2 + |∇y 2 | 2 ) dx dt + Ω×(-T,0) 4sηe 2sφ ∂ t y 2 ∇y 2 • ∇φ dx dt.
We deduce that

Ω e 2sφ(x,0) (|∂ t y 2 (x, 0)| 2 + ∇y 2 (x, 0)| 2 ) dx ≤ Cs Q e 2sφ (|y 2 | 2 + |z 2 | 2 + |∇ x,t y 2 | 2 ) dx dt + C Q e 2sφ (a 2 + b 2 ) dx dt.
So

Ω e 2sφ(x,0) |∇y 2 (x, 0)| 2 dx ≤ Cs Q e 2sφ (|y 2 | 2 + |z 2 | 2 + |∇ x,t y 2 | 2 ) dx dt + C Q e 2sφ (a 2 + b 2 ) dx dt.
Similarly for z 2 so we have

Ω e 2sφ(x,0) (|∇y 2 (x, 0)| 2 + |∇z 2 (x, 0)| 2 ) dx ≤ Cs Q e 2sφ (|y 2 | 2 + |z 2 | 2 + |∇ x,t y 2 | 2 + |∇ x,t z 2 | 2 ) dx dt +C Q e 2sφ (a 2 + b 2 + c 2 + d 2 ) dx dt ≤ C(I(y 2 ) + I(z 2 )) + C Q e 2sφ (a 2 + b 2 + c 2 + d 2 ) dx dt.
So from [START_REF] Imanuvilov | Determination of a coefficient in an acoustic equation with a single measurement[END_REF] we get

Ω e 2sφ(x,0) (|∇y 2 (x, 0)| 2 + |∇z 2 (x, 0)| 2 ) dx ≤ Cs 3 Q e 2sφ (a 2 + b 2 + c 2 + d 2 + |∇a| 2 + |∇b| 2 ) dx dt +Cs 3 e 2sd 1 Ω (a 2 + b 2 + c 2 + d 2 + |∇a| 2 + |∇b| 2 + |∇c| 2 + |∇d| 2 ) dx + Cs 3 e 2sd 2 F 0 (ω). ( 22 
)
We can similarly argue to have

Ω e 2sφ(x,0) (|y 2 (x, 0)| 2 + |z 2 (x, 0)| 2 ) dx = Ω e 2sφ(x,0) (|∂ t y 1 (x, 0)| 2 + |∂ t z 1 (x, 0)| 2 ) dx ≤ Cs 3 Q e 2sφ (a 2 + b 2 + c 2 + d 2 + |∇a| 2 + |∇b| 2 ) dx dt +Cs 3 e 2sd 1 Ω (a 2 + b 2 + c 2 + d 2 + |∇a| 2 + |∇b| 2 + |∇c| 2 + |∇d| 2 ) dx + Cs 3 e 2sd 2 F 0 (ω). (23) 
From ( 22) and ( 23) we obtain

Ω e 2sφ(x,0) (|y 2 (x, 0)| 2 + |z 2 (x, 0)| 2 + |∇y 2 (x, 0)| 2 + |∇z 2 (x, 0)| 2 ) dx ≤ Cs 3 Q e 2sφ (a 2 + b 2 + c 2 + d 2 + |∇a| 2 + |∇b| 2 ) dx dt +Cs 3 e 2sd 1 Ω (a 2 + b 2 + c 2 + d 2 + |∇a| 2 + |∇b| 2 + |∇c| 2 + |∇d| 2 ) dx + Cs 3 e 2sd 2 F 0 (ω). (24) 
• In the fourth step we estimate Ω e 2sφ(x,0) (a

2 + b 2 + c 2 + d 2 + |∇a| 2 + |∇b| 2 + |∇c| 2 + |∇d| 2 ) dx.
We choose here the two sets of initial conditions A and B such that (9) holds. Consider (u A , v A ) (resp. ( ũA , ṽA )) a solution of (1) associated with (ρ, G, A) (resp. (ρ, G, A) and (u B , v B ) (resp. ( ũB , ṽB )) a solution of (1) associated with (ρ, G, B) (resp. (ρ, G, B)). From the above second step (see ( 19)), we denote now

F 0A (ω) = u A -ũA H 5 (0,T,H 3 (ω)) and F 0B (ω) = u B -ũB H 5 (0,T,H 3 (ω)) .
From now on, each function f defined in the precedent steps is denoted either f A or f B when it is related either by the conditions A or B. We have from ( 14)

y 2A (•, 0) = aa 1 + ba 2 and y 2B (•, 0) = ab 1 + bb 2 in Ω.
Multiplying the first equation by b 2 and the second one by a 2 , we eliminate the coefficient b and we get a(a

1 b 2 -a 2 b 1 ) = b 2 y 2A (•, 0) -a 2 y 2B (•, 0) in Ω. ( 25 
)
Using the hypothesis (9) we get from ( 25)

Ω e 2sφ(x,0) a 2 dx ≤ C Ω e 2sφ(x,0) (|y 2A (x, 0)| 2 + |y 2B (x, 0)| 2 ) dx (26) 
and from [START_REF] Yuan | Lipschitz stability in the determination of the principal part of a parabolic equation[END_REF] we have

Ω e 2sφ(x,0) a 2 dx ≤ Cs 3 Q e 2sφ (a 2 + b 2 + c 2 + d 2 + |∇a| 2 + |∇b| 2 ) dx dt +Cs 3 e 2sd 1 Ω (a 2 + b 2 + c 2 + d 2 + |∇a| 2 + |∇b| 2 + |∇c| 2 + |∇d| 2 ) dx + Cs 3 e 2sd 2 F 1 (ω). ( 27 
)
with 27) is still valid with a replaced by b on the left-hand side of the estimate. We proceed by the same way to obtain c and d using this time ( 14) for z 2A and z 2B and the hypothesis [START_REF] Cardoulis | An inverse problem for the heat equation in an unbounded guide[END_REF]. Therefore

F 1 (ω) = F 0A (ω) + F 0B (ω). Similarly we have b(a 2 b 1 -a 1 b 2 ) = b 1 y 2A (•, 0) -a 1 y 2B (•, 0), so (
Ω e 2sφ(x,0) (a 2 + b 2 + c 2 + d 2 ) dx ≤ Cs 3 Q e 2sφ (a 2 + b 2 + c 2 + d 2 + |∇a| 2 + |∇b| 2 ) dx dt +Cs 3 e 2sd 1 Ω (a 2 + b 2 + c 2 + d 2 + |∇a| 2 + |∇b| 2 + |∇c| 2 + |∇d| 2 ) dx + Cs 3 e 2sd 2 F 1 (ω). ( 28 
)
Deriving now (25) with respect to x i for any integer i = 1, • • • , n, still using the hypothesis [START_REF] Cardoulis | An inverse problem for the heat equation in an unbounded guide[END_REF] we get

Ω e 2sφ(x,0) |∇a| 2 dx ≤ C Ω e 2sφ(x,0) (|y 2A (x, 0)| 2 +|y 2B (x, 0)| 2 +|∇y 2A (x, 0)| 2 +|∇y 2B (x, 0)| 2 +a 2 ) dx.
Similarly for b, c, d so

Ω e 2sφ(x,0) (|∇a| 2 +|∇b| 2 +|∇c| 2 +|∇d| 2 ) dx ≤ C Ω e 2sφ(x,0) (|y 2A (x, 0)| 2 +|y 2B (x, 0)| 2 +|∇y 2A (x, 0)| 2 +|∇y 2B (x, 0)| 2 + |z 2A (x, 0)| 2 + |z 2B (x, 0)| 2 + |∇z 2A (x, 0)| 2 + |∇z 2A (x, 0)| 2 + a 2 + b 2 + c 2 + d 2 ) dx.
From ( 24) and (28) we get

Ω e 2sφ(x,0) (|∇a| 2 + |∇b| 2 + |∇c| 2 + |∇d| 2 ) dx ≤ Cs 3 Q e 2sφ (a 2 + b 2 + c 2 + d 2 + |∇a| 2 + |∇b| 2 ) dx dt +Cs 3 e 2sd 1 Ω (a 2 + b 2 + c 2 + d 2 + |∇a| 2 + |∇b| 2 + |∇c| 2 + |∇d| 2 ) dx + Cs 3 e 2sd 2 F 1 (ω). ( 29 
)
Thus from ( 24) and ( 29) we obtain

Ω e 2sφ(x,0) (a 2 + b 2 + c 2 + d 2 + |∇a| 2 + |∇b| 2 + |∇c| 2 + |∇d| 2 ) dx ≤ Cs 3 Q e 2sφ (a 2 + b 2 + c 2 + d 2 + |∇a| 2 + |∇b| 2 ) dx dt +Cs 3 e 2sd 1 Ω (a 2 + b 2 + c 2 + d 2 + |∇a| 2 + |∇b| 2 + |∇c| 2 + |∇d| 2 ) dx + Cs 3 e 2sd 2 F 1 (ω). ( 30 
)
Now we proceed as in [START_REF] Bellina | Lipschitz stability for an inverse hyperbolic problem of determining two coefficients by a finite number of observations[END_REF][START_REF] Cristofol | Determining the waveguide conductivity in a hyperbolic equation from a single measurement on the lateral boundary[END_REF][START_REF] Huang | Stability for inverse source problems by Carleman estimates[END_REF] to prove that the term s 3 Q e 2sφ (a 2 +b 2 +c 2 +d 2 +|∇a| 2 +|∇b| 2 ) dx dt on the right-hand side of (30) can be absorbed by the left-hand side of the estimate for s sufficiently large. Indeed,

s 3 Q e 2sφ (a 2 + b 2 + c 2 + d 2 + |∇a| 2 + |∇b| 2 ) dx dt = Ω e 2sφ(x,0) (a 2 + b 2 + c 2 + d 2 + |∇a| 2 + |∇b| 2 )( T -T
s 3 e 2s(φ(x,t)-φ(x,0)) dt) dx.

But φ(x, t) -φ(x, 0) = -e λ(d(x)+M 1 ) (1 -e -λkt 2 ) and there exists a positive constant C such that

φ(x, t) -φ(x, 0) ≤ -C(1 -e -λkt 2 ). Therefore T -T s 3 e 2s(φ(x,t)-φ(x,0)) dt ≤ T -T s 3 e -2sC(1-e -λkt 2 ) dt uniformly in x.
Moreover by the Lebesgue convergence theorem, we have T -T s 3 e -2sC(1-e -λkt 2 ) dt → 0 as s → ∞.

Thus we can neglect

s 3 Q e 2sφ (a 2 + b 2 + c 2 + d 2 + |∇a| 2 + |∇b| 2
) dx dt on the right-hand side of (30) for s sufficiently large. Furthermore since e 2sd 0 ≤ e 2sφ(•,0) we deduce that

e 2sd 0 (1 -Cs 3 e 2s(d 1 -d 0 ) ) Ω (a 2 + b 2 + c 2 + d 2 + |∇a| 2 + |∇b| 2 + |∇c| 2 + |∇d| 2 ) dx ≤ Cs 3 e 2sd 2 F 1 (ω).
Since d 1 < d 0 we can choose s sufficiently large such that 1 -Cs 3 e 2s(d 1 -d 0 ) ≥ 1 2 so we get

α -α 2 H 1 (Ω) + β -β 2 H 1 (Ω) + γ -γ 2 H 1 (Ω) + δ -δ 2 H 1 (Ω) ≤ Cs 3 e 2s(d 2 -d 0 ) F 1 (ω).
So we conclude for Theorem 1.

Remark 2. Notice that in the Carleman inequality I(y i ) for y i , the observation term is

y i 2 H 1 (0,T,H 1 (ω))
(for i = 1, 2) and so y 0 2

H 3 (0,T,H 1 (ω))
. Since we removed the observation terms on z i , this added additional terms in y i and so in y 0 in our final estimate [START_REF] Cardoulis | A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide[END_REF].

Remark 3. We can prove a similar result when we use a Carleman estimate with an observation term on the sub-boundary Γ defined by [START_REF] Cardoulis | An inverse problem for a generalized FitzHug-Nagumo system[END_REF]. The left-hand side of the Lipschitz stability result is unchanged as the right-hand side has an additional term

∂ ν ∂ 2 t (u A -ũA ) 2 L 2 (Γ×(0,T )) + ∂ ν ∂ 2 t (u B - ũB ) 2
L 2 (Γ×(0,T )) .

Other result

Our main theorem (Theorem 1) gives a Lipschitz stability result for the four spatiallly coefficients α, β, γ, δ in H 1 (Ω). When these coefficients belong to L 2 (Ω) we can prove a similar result (see Theorem 2) but we get a Hölder and not Lipschitz stability result. Assume that all the coefficients α, β, γ, δ, α, β, γ, δ, belong to Λ 1 (M 0 ). The following theorem (Theorem 2 i)) gives a stability result for the four coefficients α, β, γ, δ in L 2 (Ω) when α = α and β = β in ω. That means that these two coefficients α and β are supposed known in ω. We relax this last hypothesis in Theorem 2ii) where an estimate of these four coefficients is given for

α, β ∈ Λ 2 (M 0 ) ∩ Λ 1 (M 0 ) and γ, δ ∈ Λ 1 (M 0 ). Consider (u A , v A ) (resp. (ũ A , ṽA )) a solution of (1) associated with (ρ, G, A) defined by (2) (resp. (ρ, G, A)). Consider also (u B , v B ) (resp. (ũ B , ṽB )) a solution of (1) associated with (ρ, G, B) (resp. (ρ, G, B)).
Theorem 2. Let T > 0 and â ∈ R n \ Ω satisfying the conditions of Proposition 1. Assume that hypotheses (9)-( 10) are satisfed.

i) Assume that α, β, γ, δ, α, β, γ, δ, ∈ Λ 1 (M 0 ). We also suppose that α = α and β = β in ω.

Then the following Hölder stability estimates holds

α -α 2 L 2 (Ω) + β -β 2 L 2 (Ω) + γ -γ 2 L 2 (Ω) + δ -δ 2 L 2 (Ω) ≤ K u A -ũA 2 H 4 (0,T,H 3 (ω)) + u B -ũB 2 H 4 (0,T,H 3 (ω)) κ . (31) ii) Assume that α, β, α, β ∈ Λ 1 (M 0 ) ∩ Λ 2 (M 0 ) and γ, δ, γ, δ ∈ Λ 1 (M 0 ).
Then the following Hölder stability estimate holds

α -α 2 H 1 (Ω) + β -β 2 H 1 (Ω) + γ -γ 2 L 2 (Ω) + δ -δ 2 L 2 (Ω) ≤ K u A -ũA 2 H 5 (0,T,H 3 (ω)) + u B -ũB 2 H 5 (0,T,H 3 (ω)) κ . (32) 
Here, K > 0 and κ ∈ (0, 1) are two constants depending on R 1 , R 2 , M 0 , M 1 , M , T and â.

Proof. As for Theorem 1 we decompose the proof in several steps. We will widely follow the ideas described in the proof of Theorem 1. We consider the case ii) where α and β are in H 1 (Ω) but not necessarily γ and δ.

• In the first step we still make an even extension in t. We keep the notations of Theorem 1: (u, v) = (u A , v A ), (ũ, ṽ) = (ũ A , ṽA ) and the definitions of a, b, c, d (see [START_REF] Cristofol | Inverse problems for a 2x2 reaction diffusion system using a Carleman estimate with one observation[END_REF]) and we take the even extensions of all the functions on (-T, 0). But for i = 0, 1, 2 we denote here

y 0 = η(u -ũ), z 0 = η(v -ṽ), y i = ∂ i t y 0 , z i = ∂ i t z 0 (33) 
with η the truncature function defined by [START_REF] Imanuvilov | Carleman estimates for the non-stationary Lamé system and the application to an inverse problem[END_REF]. Then these new (y 1 , z 1 ) and (y 2 , z 2 ) satisfy the following systems

           ∂ 2 t y 1 = ∆y 1 + αy 1 + βz 1 + a∂ t (ηũ) + b∂ t (ηṽ) + ∂ t R 1 in Q, ∂ 2 t z 1 = ∆z 1 + γy 1 + δz 1 + c∂ t (ηũ) + +d∂ t (ηṽ) in Q, y 1 (•, 0) = z 1 (•, 0) = 0 in Ω, ∂ t y 1 (•, 0) = aa 1 + ba 2 , ∂ t z 1 (•, 0) = ca 1 + da 2 in Ω, y 1 = z 1 = 0 on ∂∂Ω × (-T, T ), (34) and            ∂ 2 t y 2 = ∆y 2 + αy 2 + βz 2 + a∂ 2 t (ηũ) + b∂ 2 t (ηṽ) + ∂ 2 t R 1 in Q, ∂ 2 t z 2 = ∆z 2 + γy 2 + δz 2 + c∂ 2 t (ηũ) + d∂ 2 t (ηṽ) + ∂ 2 t R 2 in Q, y 2 (•, 0) = aa 1 + ba 2 , z 2 (•, 0) = ca 1 + da 2 in Ω, ∂ t y 2 (•, 0) = aa 3 + ba 4 , ∂ t z 2 (•, 0) = ca 3 + da 4 in Ω, y 2 = z 2 = 0 on ∂Ω × (-T, T ), (35) with R 1 = (∂ 2 t η)(u -ũ) + 2∂ t η∂ t (u -ũ), R 2 = (∂ 2 t η)(v -ṽ) + 2∂ t η∂ t (v -ṽ).
• In the second step we estimate 2 i=1 (I(y i ) + I(z i )) by the Carleman inequality [START_REF] Cardoulis | Applications of Carleman inequalities for a two-by-two parabolic system in an unbounded guide[END_REF]. Note that all the terms with derivatives of η will be bounded above by Ce 2sd 1 with C a positive constant and due to the truncature function η, we have y i (•, ±T ) = 0, ∂ t y i (•, ±T ) = 0 and ∇y i (•, ±T ) = 0 in Ω. So we have for s sufficiently large,

2 i=1 (I(y i ) + I(z i )) ≤ C Q e 2sφ (a 2 + b 2 + c 2 + d 2 ) dx dt + Ce 2sd 1 +Cs 3 2 i=1 ω×(-T,T ) (|∇ x,t y i | 2 + |y i | 2 + |∇ x,t z i | 2 + |z i | 2 )e 2sφ dx dt. ( 36 
)
Now we remove the observation term on z i . From the first equations in (34) and (35) we have

βz i = ∂ 2 t y i -∆y i -αy i -a∂ i t (ηũ) -b∂ i t (ηṽ) -∂ i t R 1 in Q. (37) 
From hypothesis ( 10) and (37) we get

2 i=1 ω×(-T,T ) (|∇ x,t z i | 2 + |z i | 2 )e 2sφ dx dt ≤ Ce 2sd 2 y 0 2 H 5 (0,T,H 3 (ω)) + ω×(-T,T ) e 2sφ (a 2 + b 2 + |∇a| 2 + |∇b| 2 ) dx dt + Ce 2sd 1 . (38) 
(Note that if we suppose that α = α and β = β in ω as in the case i), then (38) becomes

2 i=1 ω×(-T,T ) (|∇ x,t z i | 2 + |z i | 2 )e 2sφ dx dt ≤ Ce 2sd 2 y 0 2 H 5 (0,T,H 3 (ω)) + Ce 2sd 1 .) So from (33) and (38) we have 2 i=1 (I(y i ) + I(z i )) ≤ Cs 3 Q e 2sφ (a 2 + b 2 + c 2 + d 2 + |∇a| 2 + |∇b| 2 ) dx dt + Cs 3 e 2sd 1 + Cs 3 e 2sd 2 F 0 (ω) (39) with F 0 (ω) = y 0 H 5 (0,T,H 3 (ω)) (same definition as before).
Notice that contrary to Theorem 1 we do not have terms in ∇c and ∇d in the above estimate because, due to the truncature function η, we do not have to estimate the terms for t = ±T in [START_REF] Cardoulis | Applications of Carleman inequalities for a two-by-two parabolic system in an unbounded guide[END_REF].

• In the third step we estimate Ω L e 2sφ(x,0) (|y 2 (x, 0)| 2 +|z 2 (x, 0)| 2 +|∇y 2 (x, 0)| 2 ) dx as in Theorem 1. Since we have no terms in ∇c and ∇d in (39) we no longer need to estimate Ω e 2sφ(x,0) |∇z 2 (x, 0)| 2 dx. We get

Ω e 2sφ(x,0) (|y 2 (x, 0)| 2 + |z 2 (x, 0)| 2 + |∇y 2 (x, 0)| 2 ) dx ≤ Cs 3 e 2sd 1 + Cs 3 e 2sd 2 F 0 (ω) +Cs 3 Q e 2sφ (a 2 + b 2 + c 2 + d 2 + |∇a| 2 + |∇b| 2 ) dx dt. (40) 
• In the fourth step we estimate Ω e 2sφ(x,0) (a

2 + b 2 + c 2 + d 2 + |∇a| 2 + |∇b| 2 ) dx as in Theorem 1. Thus we get Ω e 2sφ(x,0) (a 2 + b 2 + c 2 + d 2 + |∇a| 2 + |∇b| 2 ) dx ≤ Cs 3 e 2sd 1 + Cs 3 e 2sd 2 F 1 (ω) +Cs 3 Q e 2sφ (a 2 + b 2 + c 2 + d 2 + |∇a| 2 + |∇b| 2 ) dx dt (41) with F 1 (ω) = F 0A (ω) + F 0B (ω). Notice that as in Theorem 1 the term s 3 Q e 2sφ (a 2 + b 2 + c 2 + d 2 + |∇a| 2 + |∇b| 2
) dx dt can be absorbed by the left-hand side of the estimate for s sufficiently large (s ≥ s 2 ), so we get

Ω e 2sφ(x,0) (a 2 + b 2 + c 2 + d 2 + |∇a| 2 + |∇b| 2 ) dx ≤ Cs 3 e 2sd 1 + Cs 3 e 2sd 2 F 1 (ω). Since e 2sd 0 ≤ e 2sφ(•,0) we deduce that α -α 2 H 1 (Ω) + β -β 2 H 1 (Ω) + γ -γ 2 L 2 (Ω) + δ -δ 2 L 2 (Ω) ≤ Cs 3 (e 2s(d 2 -d 0 ) F 1 (ω) + e 2s(d 1 -d 0 ) ). ( 42 
)
As d 1 -d 0 < 0 and d 2 -d 0 > 0, we can optimize the above inequality with respect to s (see for example [START_REF] Cardoulis | Applications of Carleman inequalities for a two-by-two parabolic system in an unbounded guide[END_REF][START_REF] Cardoulis | An inverse problem for the heat equation in an unbounded guide[END_REF][START_REF] Cardoulis | A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide[END_REF]). Indeed, note that if F 1 (ω) = 0, since (42) holds for any s ≥ s 2 and d 1 -d 0 < 0 we get (32). Now if F 1 (ω) = 0 is sufficiently small (F 1 (ω) < Remark 4. If we consider the case i) in Theorem 2 where the coefficients α and β are supposed known in ω, then there is no term in ∇a nor ∇b in (38) and therefore in the estimate (39) of 2 i=1 (I(y i ) + I(z i )). Thus we need not to differentiate (25) with respect to the space variable x i and so to evaluate Ω e 2sφ(x,0) |∇y 2 (x, 0)| 2 dx. Consequently there is no term in ∇a nor ∇b on the right-hand sides of all the estimates and we just get an estimate of the L 2 -norms of a and b, besides the L 2 -norms of c and d. Moreover in the fourth step when we estimate the coefficients a, b, c, d, we just have to estimate Ω e 2sφ(x,0) (|y 2 (x, 0)| 2 +|z 2 (x, 0)| 2 ) dx = Ω e 2sφ(x,0) (|∂ t y 1 (x, 0)| 2 + |∂ t z 1 (x, 0)| 2 ) dx. Therefore in the case i) of Theorem 2, we just need to evaluate I(y 1 ) + I(z 1 ) and not 2 i=1 (I(y i ) + I(z i )). This explains why the observation terms on the right-hand side of (31) are given in H 4 (0, T, H 3 (ω))-norms instead of H 5 (0, T, H 3 (ω))-norms. Remark 5. Last, notice that in the third step of each theorem we could have estimated Ω e 2sφ(x,0) (|y 2 (x, 0)| 2 + |z 2 (x, 0)| 2 ) dx in another way using the following lemma ( see [START_REF] Cristofol | Determining the waveguide conductivity in a hyperbolic equation from a single measurement on the lateral boundary[END_REF]Lemma 4.2]) Ω e 2sφ(x,0) |f (x, 0)| 

d 0 -d 1 d 2

 2 -d 0 ), we optimize (42) with respect to s. Indeed denotef (s) = e 2s(d 2 -d 0 ) F 1 (ω) + e 2s(d 1 -d 0 ) .Moreover the function f has a minimum ins 3 = 1 2(d 2 -d 1 ) ln( d 0 -d 1 (d 2 -d 0 )F 1 (ω)) and f (s3 ) = K F 1 (ω) κ with κ = d 0 -d 1 d 2 -d 1 and K = ( d 0 -d 1 d 2 -d 0 ) d 2 -d 0 d 2 -d 1 + ( d 0 -d 1 d 2 -d 0 ) d 1 -d 0 d 2 -d 0 . Finally the minimum s 3 is sufficiently large (s 3 ≥ s 2 ) if the following condition F 1 (ω) ≤ d 0 -d 1 (d 2 -d 0 )e 2s 2 (d 2 -d 1 )is satisfied. So we conclude for Theorem 2.

  2 dx ≤ Cs Q e 2sφ |f | 2 dx dt + C s Q e 2sφ |∂ t f | 2 dx dtfor all s sufficiently large and f ∈ H 1 (-T, T ; L 2 (Ω)).IndeedΩ e 2sφ(x,0) (|y 2 (x, 0)| 2 + |z 2 (x, 0)| 2 ) dx ≤ Cs Q e 2sφ (|y 2 | 2 + |z 2 | 2 ) dx dt + C s Q e 2sφ (|∂ t y 2 | 2 + |∂ t z 2 | 2 ) dx dt ≤ C s 2 (I(y 2 ) + I(z 2 )).