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Data-based Pharmacodynamic Modeling for BIS and Mean Arterial
Pressure Prediction during General Anesthesia*

Bob Aubouin—Pairault'-2, Mirko Fiacchini!, Thao Dang2

Abstract—1In this paper, a data-based approach is used to
predict the effect of Propofol and Remifentanil on Bispectral
Index (BIS) and Mean Arterial Pressure (MAP) during total
intravenous anesthesia. In particular, we aim to reproduce the
measured data by identifying the pharmacodynamic function
using machine-learning techniques. Features from the output
of classic pharmacokinetic models and patient information are
considered. Five learning methods are tested including linear
models, support vector machine, Kernel, k-neighbors regres-
sors, and neural-network. Learning and testing are performed
on a particular subset of 150 surgery cases extracted from the
VitalDB database. Results show that this approach improves the
classic surface-response methods for BIS and MAP prediction
and can be used for anesthesia control applications.

Keywords: Anesthesia, Machine learning, Prediction, Phar-
macodynamic, Hybrid model.

I. INTRODUCTION

During general anesthesia, one of the anesthesiologist’s
tasks is to continuously regulate intravenous drug rates to
set hypnotic and analgesic levels to desired values while
maintaining hemodynamic and respiratory variables stable.
Since the development of fast-acting intravenous drugs like
Propofol and Remifentanil combined with reliable hypnotic
indicators based on EEG signals like Bispectral Index (BIS),
many models have been proposed to predict the influence
of the drugs on the patient’s physiological state [1], [2].

The development of drug dosing models aims to improve
patient recovery by aiding practitioners in optimizing drug
administration. The standard practice of anesthesia currently
involves Target-Control-Input (TCI) pumps [3], which
allow the anesthesiologist to choose an effect-site drug
concentration (C.) for each drug. The TCI then sets a drug
rate to achieve the desired C. according to a given model
in an open-loop manner. Then the loop is closed by the
anesthesiologist to obtain the desired levels of hypnosis and
analgesia. While TCI has already improved the practice of
anesthesia, some researchers are interested in closing the
control loop to fully automate the drug dosage. Up to now,
studies have shown the advantage of closed-loop control for
anesthesia drugs [4], [5], but further research is needed to
develop an optimal and reliable control method [6]. Other
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researchers are also interested in detecting anomalies during
surgery in order to preserve the vigilance of anesthetists on
potential critical events [7].

One of the main sources of complexity in these research
fields is the uncertainty affecting the models used to describe
the influence of drugs on vital signals. In fact, the inter-
and intra-patient variability of the physiological effects
along with the exogenous disturbances coming from the
surgeon’s actions makes difficult the task of predicting drug
influences. As a consequence, standard models may not
always be capable of accurately reproducing the measured
data. Drug models are usually composed of two parts:
Pharmacokinetic (PK) and Pharmacodynamic (PD). First,
PK models describe the dynamics of drug concentrations in
the patient’s body and are used by TCI devices. PD models
describe the link between plasma drug concentrations and
a given physiological effect. In the most used models,
PK is described by a three-compartment system while PD
is represented as a Hill-curve function that can take into
account interactions between drugs. In practice, due to the
lack of direct measurements of drug concentrations, it might
be impossible to identify at the same time the parameters of
both the dynamic model (PK) and the output function (PD).

In this paper, we propose to identify a PD output function,
using machine-learning methods with measured data, which
is able to model the overall effects of the uncertainties.
Indeed, as PK models are already used and accepted by
practitioners, we choose to work with the PK outputs and
focus only on modeling the PD part. The resulting model is
validated and can be used to predict BIS and Mean Arterial
Pressure (MAP) during general anesthesia conducted with
Propofol and Remifentanil. More concretely, PK outputs
and patient personal data are used as features for five
different learning methods: ElasticNet linear regression,
k-neighbors regression, support vector regression, kernel-
based regression, and recurrent neural network. Note that
such hybrid modeling, combining a linear system for the
dynamics of the system and learning techniques to model
the output, has already been studied by Gambus et al
[8] where an Adaptive Neuro Fuzzy Inference System is
used to predict the BIS from effect-site concentrations.
Nevertheless, this method does not consider patient personal
data as input to obtain an individual model. Other data-
learning techniques to predict BIS and MAP have also been
studied in [9], [10], and [11], but the models obtained in
these papers are complete black-boxes and are not suitable



to be used for other applications, such as closed-loop control.

This paper is organized as follows. In Section 2 the stan-
dard PK-PD model is recalled, then in Section 3 the dataset
creation, the learning methods, and the performance evalu-
ation are detailed. Finally, Section 4 presents the obtained
results and Section 5 provides some concluding remarks.

II. STANDARD MODELS
A. Pharmacokinetic Models

The most common PK model is a three-compartment
model with compartments representing blood, muscle, and
fat drug concentrations, each characterized by constant vol-
ume and clearance rate (V;,Cl;). This results in a linear
model described by equations:

o1 (t) —(k1o+ k12 +ki3) ka1 k: z1(¢)
To(t) | = k12 —ko1 0 xo(t)
3(t) k13 0 —ks1 x3(t)
A
+1 0 u(t) (1)
0

Where x1(t), z2(t) and x3(t) respectively represent drug
concentrations in blood, muscle, and fat, measured in [mg/I].
The coefficients, all measured in [I/min], are given by:

Cll ClQ ClB

ko = 22 kg = =2 kg = 2
10 ‘/1312 ‘/1713 ‘/1’ (2)

L _Clh_ Cly

21*‘/2731*‘/3

The input u(t) is the drug infusion rate in [mg/min].

Several studies have been conducted in order to link
the patient personal data (age, height, weight, and sex) to
the model parameters. If the most famous are the models
developed by Schnider, Marsh, and Minto in [12] and [13]
for Propofol and in [14] for Remifentanil, two more recent
studies carried out by Eleveld and co-authors in [15] and
[16] gather much more data and can be considered as the
new state of the art on the subject. In this paper, three com-
binations of PK models are compared to test the performance
of the different models.

B. Pharmacodynamic models

PK models link drug injection rates to blood concentra-
tions. To describe the effect of the blood drug concentration
on the BIS and MAP values, PD models are split into two
parts. First, an effect-site compartment is used to express the
delay between a variation in the blood concentration and the
onset of the effect. This is expressed by equation (3).

Te(t) = ke(x1(t) — we(t)) 3)

Due to the delayed effects of drugs on BIS and MAP
(usually there is a 2-3 minute delay between Propofol
blood concentration stabilization and BIS stabilization and

approximately 7 minutes for hemodynamics variables),
at least two different effect sites for each drug must be
used. For the influence of Propofol on MAP, Jeleazcov et
al. [17] proposes to use two distinct effect sites. These
new compartments can be added to the PK models to
obtain a five-compartments model for Remifentanil and a
six-compartments model for Propofol (see Fig. [I).
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Fig. 1: Scheme of the final compartments model, the second MAP
effect site is used only for Propofol.
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For BIS, the effect-site concentration is linked to the effect
via a Hill function. Because there is a synergy between
Propofol and Remifentanil the effect can be modeled as a
response surface [18]:

~
mam# (4)
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where BIS is the initial BIS, F,,,, the maximum effect
of combined drugs, v the slope coefficient of the Hill curve
and U (t) the interaction term defined by:

_ Up() + U (2)
U == 5000 + g0 2

BIS(t) = BIS; — E

(&)

Tep(t) . _ Ter(t), _ ()

G Csop ' G0 Csor o) Up(t) + U(t)

In these equations, x., and z., are the Propofol and
Remifentanil concentrations of the BIS effect site, Csg,
and (5, are the Propofol and Remifentanil half-effect
concentrations for BIS (i.e. the concentrations to achieve
half the effect of the drugs) and 3 is the interaction term
between the two drugs. Parameters of [19] are used to
compare all the models.

Concerning MAP, both Propofol and Remifentanil have a
hypotensive effect, i.e. they lower the MAP values. However,
there is no study on the interaction between Remifentanil
and Propofol on this effect. Ionescu et al. [20] proposes to
add the effect of the two drugs without interaction, using a
sigmoid function to characterize the effect of each:
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For Remifentanil the parameters of the curves can be
found in [21] and for Propofol in [17].

III. METHOD
A. Dataset Creation

To create our dataset, the data from the VitalDB database
[22] is used. This recent repository is the first open-source
perioperative high-resolution database, it involves 6,388
surgical patients and is composed of intraoperative biosignals
and clinical information. In order to get a dataset consistent
with our objective, the first criterion to select cases is the
inclusion of the desired features. For this, we select total
intravenous anesthesia cases where MAP was invasively
monitored through an arterial line to have a continuous
measurement. However, we also include non-invasive MAP
measures taken at the beginning of the procedure, to be used
as MAP baseline. We additionally require that TCI data
should be available, BIS and heart rate monitored during
the procedure, and personal information available.

All the cases where Midalozam, Fentanyl, Epinephrine,
Ephedrine, and Phenylephrine were injected in bolus are
rejected due to the important impact of those drugs on
BIS and MAP. Moreover, the cases where only Propofol
and Remifentanil were injected through TCI devices (no
other drugs), and no inhalation drugs were administered,
are selected to simplify the study. To keep the size of the
dataset reasonable, 150 cases are selected through a visual
inspection to reject the incoherent cases or the cases with a
lack of data. Then the dataset is separated into 2 sets: 105
cases for training and 45 for testing. During this separation,
a random seed is chosen to have approximately the same
population demographic data in both sets, see Fig. [2}
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Fig. 2: Demographic data of the train and test datasets

To prepare the data, artifacts on the MAP signal are
eliminated by suppressing points that exceed 50mmHg dif-
ference from the median value of the MAP for each patient.
Additionally, BIS points with a signal quality index below 50
are removed. The BIS and MAP signals are then smoothed
with a 20s exponentially weighted moving average and
under-sampled by keeping only one point per minute.

B. Regression

Five different regression methods are used to predict BIS
and MAP from different features, which will be detailed
later on. These methods are Kernel Ridge Regression
(KRR), ElasticNet, Support Vector Regression (SVR),
K-neighbors regression (KNR), and Recurrent Neural
Network (RNN). Among these methods, KRR, FElasticNet,
and SVR are logistic regressors. In particular, ElasticNet
is a linear model which proposes a mix between Ridge
and Lasso regression, while KRR and SVR use the Kernel
trick to represent non-linearity with a difference in the
loss; KRR uses squared error loss and SVR uses epsilon-
insensitive loss. KNR is a non-parametric model algorithm
that predicts the target by local interpolation of the targets
associated with the nearest neighbors in the training set.
Finally, RNN is a deep-learning approach that can achieve
higher performances at the cost of more training data
and computing power. These regression methods have
been chosen as part of the more commonly used, more
details on these methods can be found in [23], [24] and [25].

The idea of using machine learning is to model the non-
linear part of the existing model coming from the sigmoid
function. The resulting model will have the same form as
the standard one.

#(t) = A(feat)x(t) + B(feat)u(t)
y(t) = f(z(t), feat)

where feat is the vector of features that describe the
patient: age, sex, weight, and height for standard models,
and f is either the sigmoid function or our proposed
machine learning function. The interest of having such
a structure is that the whole dynamic part of the model
is included in the linear model while the non-linear
function only maps the state to the output and might be
inverted using numerical methods. Thus, such a structure
can be more efficiently used by other applications such
as control with respect to more complex models, such as [9].

(7

The following features are used for the regressions:

e age, sex, height, weight, BMI, LBM to describe the
patient’s body.

o H R: Heart Rate median value over the last ten minutes
to characterize the hemodynamic system of the patient.

o Cbloodfpropoy Ce,Blsfpropoa Ce,JWAprropo’
Cbloodfremia Ce,Blsfremia C@MAPfremi are PrOPOfOI
and Remifentanil concentrations in blood, BIS effect
site and MAP effect site, computed with Eleveld
model, seemingly more precise.

This leads to a total of 13 features.

In the absence of a baseline MAP in the database,
the first non-invasive MAP measure is selected as a
substitute for standard model evaluation. In practice, a MAP
baseline should be available as it is commonly measured



during the preoperative visit or just before anesthesia begins.

In the paper [9], Lee er al. give open-source access to
their code, and this helps us reproduce their results and
evaluate the performance of their deep-learning approach
on our database. However, since the training of their neural
network was not done with our training set, this evaluation
is biased, in particular since Lee et al. used more training
data and then there is the possibility that some of our test
cases belong to their training set.

C. Performance evaluation

To compare the performances of the different models,
performance indices presented in [26] are used. First, the
Performance Error (PE) in the percentage of each sample j
is computed for each patient i:

PE =100 Ytrue,i,j — Ypred,i,j (8)

“ Ytrue,i,j
Median Predictive Error (MDPE) and Median Absolute
Predictive Error (MDAPE) are computed for each patient as:

MDPE; = median(PE; ), MDAPE; = median(|PE; .|)

Root Mean Squared Error (RMSE) is also computed for
each case (not as a percentage value):

N;
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Finally, the weighted mean and standard deviation of those
metrics are computed to obtain the performances of the
whole test population performance. Let us denote by M the
number of cases and N; the length of the ¢”th case, then:

M
1
MDPE = ——— Y _ N; MDPE; (10)
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where var;(PE; ;) is the variance of the performance
error in the i*" patient and E; is the statistical efficiency
of the median of N; = 2n; + 1 samples defined by:
i 71' Nz
Equivalent equations are used for the final MDAPE value.
For RMSE, the following equations are used :

12)
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IV. RESULTS

For the training of the five algorithms we use scikit-learn
and Pytorch libraries on Python with grid search and cross
validation to tune the main hyper-parameters. The code
to generate the database, train the algorithms and obtain
the final results is available on the GitHub repository,
accessible from the following link: https://github.
com/BobAubouin/BIS-MAP-Pred/tree/0.1. The
final results are given in Table

First, considering the results of the standard models,
one can observe that the pharmacokinetic models proposed
by Eleveld et al.[16] [15] obtain the best score for BIS
prediction. This was expected since this model has been
fitted on a larger dataset than Schnider, Marsh, and Minto
models [13], [12], [14]. However, the best score achieved by
this model is an MDAPE of 24.1 4 25.3 for BIS prediction
which seems a lot when the objective is usually to constraint
the BIS in the interval between 40% and 60%. For MAP
prediction, all the standard models obtain similar results
which are worse than the BIS results. This can be explained
by the fact that the effect of Remifentanil and Propofol on
MAP has been less studied than their effect on BIS, leading
to less precise models. The second factor is that the MAP
baseline taken as the first non-invasive measure might not
be representative of the true MAP baseline.

Concerning the deep-learning model proposed by Lee et
al. [9], results similar to those presented in their article are
obtained (MDAPE of 13.945.3 for the maintenance phase in
their paper, versus 13.9 & 23.3 in our evaluation). The large
difference in standard deviation value could be explained by
a different computation method or by the fact that our test
dataset contains only 45 cases while there contains 100 cases.

Concerning our results, one can observe that all our
regressors outperform standard models for BIS prediction
and achieve performances almost as well as the deep-
learning model. For MAP prediction, the MDAPE is
divided by more than two, compared to standard models.
Particularly, the best results are obtained with SVR both
for BIS and MAP prediction. To compare the behavior of
our best model, Fig. [3}{f] plots BIS and MAP prediction
results for the worst and best cases of SVR prediction.
In these figures, one can notice that the MAP prediction
does not fit well with the variation of measured MAP. This
could be explained by the fact that external disturbances
seem to affect the signal more than the effect of drugs.
Thus, predicting MAP variation without knowing the
stimulus affecting the patient might not be straightforward.
Nevertheless, our model predicts a more precise average
MAP value than standard models, which indicates an
improved precision that could be useful.

One issue which appears sometimes with data-based
models is the lack of consistency with true physiology.
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Model BIS MAP
MDPE (%) MDAPE (%) RMSE MDPE (%) MDAPE (%) RMSE
Marsh - Minto —29.7 4+ 36.5 329+ 31.7 15.8 +5.9 21.24+16.2 26.7+12.8 26.1+11.5
Schnider - Minto —28.4 4+ 38.6 31.8+32.5 16.2+5.4 21.74+15.2 26.4+12.4 25.94+11.3
Eleveld —13.3+284 21.4£23.3 11.3+3.8 24.4+14.2 28.3+11.5 27.4+11.8
Lee et al. [9] —3.3£28.7 13.9 +23.3 10.0£3.0 - = =
ElasticNet —4.4+264 18.8 £19.5 109 £2.7 | —0.5+15.6 10.9 £10.7 12.9+£3.3
KNeighborsRegressor —2.3£283 14.9 £ 20.8 10.0 £ 2.3 0.3 £15.5 10.7 £10.5 12.9+£3.5
KernelRidge —0.7 & 29.7 15.2 +£23.9 10.0 £ 3.8 0.3£16.1 109 £11.2 13.3£3.5
SVR —2.3£29.0 14.1 £21.7 102+23 | —0.5+14.1 10.0+10.0 11.8+ 3.4
RNN —3.0£25.3 15.44+19.1 9.6 +25 | 0.3+15.4 10.5 £+ 10.6 129+ 3.3
TABLE I: Prediction performances of the different models on the test cases.
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studies have concluded that both Propofol and Remifentanil
should reduce BIS and MAP values. However here due to
exogenous disturbances affecting BIS and MAP during the
surgery procedures, our model might learn something else.
To verify this, the 3D response surface of the BIS is plotted
with c'bloodfp'ropo = Le,BIS—propo = Ce,MApr'ropo and
Chiood—remi = e,BIS—remi — “e,MAP—remi for the SVR
and RNN regressors on a reference individual (70kg male,
35 years of age, 170cm tall and a heart rate of 80bpm),
see Fig |ZH§| Here, one could observe that even if the RNN
regressor has the smallest RMSE error for BIS prediction, its
surface is not consistent with the prior knowledge. In fact,
firstly Remifentanil seems to have more effect than Propofol
on BIS, and secondly, for a constant concentration of
6ng/mL of Remifentanil, the curve indicates that Propofol
seems to induce an increase in the BIS, which is not
consistent with clinical knowledge. On the other hand, the
surface generated by the SVR model seems quite close to the
standard surface model even though Remifentanil seems to
have a bigger effect than in theory. Thus SVR appears to be
a good candidate to be used for control-oriented applications.

V. CONCLUSION

In this paper, a new hybrid approach to predict Bispectral
Index (BIS) and Mean Arterial blood Pressure (MAP) during
general anesthesia has been developed. This approach uses
the pharmacokinetics model outputs already employed in
practice by anesthesiologists as inputs of the regressors
to model the pharmacodynamics. Different regression
techniques have been investigated and compared to standard
surface response models and to a fully deep-learning
approach. The obtained results show that all the proposed
methods perform better than standard models, especially
Support Vector Regression which seems to be the best
option to predict both BIS and MAP with an accuracy
almost as good as the evaluated deep-learning approach.
Also, the use of heart rates past median value as a feature
seems to provide useful information to the model and could
be used in other model structures to reduce uncertainties.

The proposed hybrid model, which combines a well-
established dynamical system with regressors as an output
layer, will be used in future work to enhance closed-loop
control methods and critical events detection algorithms.
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