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BILINEAR STRICHARTZ ESTIMATES AND ALMOST SURE
GLOBAL SOLUTIONS FOR THE NONLINEAR
SCHRODINGER EQUATION

by

Nicolas Burq, Aurélien Poiret & Laurent Thomann

Abstract. — The purpose of this article is to construct global solutions, in a prob-
abilistic sense, for the nonlinear Schrédinger equation posed on R?, in a supercritical
regime. Firstly, we establish Bourgain type bilinear estimates for the harmonic os-
cillator which yields a gain of half a derivative in space for the local theory with
randomised initial conditions, for the cubic equation in R®. Then, thanks to the lens
transform, we are able to obtain global in time solutions for the nonlinear Schrodinger
equation without harmonic potential. Secondly, we prove a Kato type smoothing es-
timate for the linear Schrodinger equation with harmonic potential. This allows us to
consider the Schrodinger equation with a nonlinearity of odd degree in a supercritical
regime, in any dimension d > 2.

Résumé. — L’objectif de cet article est de construire des solutions globales, en
un sens probabiliste, pour I'équation de Schrédinger non linéaire posée sur RY, en
régime surcritique. Tout d’abord, nous établissons des estimations bilinéaires de type
Bourgain pour loscillateur harmonique. Celles-ci permettent un gain d’une demi-
dérivée en ’espace pour la théorie locale avec des conditions initiales aléatoires, en
ce qui concerne I’équation cubique dans R3. Puis, grice & la transformée de lentille,
nous sommes en mesure d’obtenir des solutions globales en temps pour 1’équation
de Schrodinger non linéaire sans potentiel harmonique. Dans un second temps, nous
prouvons un effet régularisant de type Kato pour ’équation de Schrodinger linéaire
avec potentiel harmonique. Ceci nous permet de considérer ’équation de Schrédinger
avec une non-linéarité de degré impair dans un régime surcritique, dans toute dimen-
sion d > 2.
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1. Introduction and results
1.1. Introduction. — In this article, by the means of random initial conditions,

we construct global solutions to the nonlinear Schrédinger equation in a supercritical
regime. Namely, in the following we will consider the equation

oU
—— + AU = s|UP7IU R x R?
(1.1) iy k|U| ) (t,x) € R x

U(0,z) = uo(z),
where k € {—1,1}, where p > 3 is an odd integer, and d > 1.

The starting points of this article were two unpublished papers from the PhD
thesis of the second author (in French), see [60, 61]. The first result of the present
paper concerns the cubic Schrodinger equation in dimension d = 3. In this case the
well-posedness is obtained using regularizing properties of random series combined
with bilinear estimates for the harmonic oscillator. Then, in the second part of the
article we prove global existence results for the nonlinear Schrédinger equation in
dimension d > 2, with a nonlinearity of degree p > 5. This result is also obtained by
taking benefit from stochastic properties of random series, but combined with the
Kato smoothing effect which is established here for the Schrodinger equation with
harmonic potential.
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Since the pioneering works of Bourgain [5, 6] and the works of Tzvetkov [72, 73]
on the Schrédinger equation, the papers of Burq-Tzvetkov [21, 22, 23] on the wave
equation, there have been many contributions to the study of dispersive equations
with random initial conditions. Among them, there are results on the Schrédinger
equation by Colliander-Oh [32], Benyi-Oh-Pocovnicu [1, 3], Bourgain-Bulut [9, 10],
Nahmod-Oh-Rey Bellet-Staffilani [54], Nahmod-Staffilani [55], Dodson-Lithrman-
Mendelson [42], Kilip-Murphy-Visan [50], Oh-Tzvetkov-Zhang [58], Deng-Nahmod-
Yue [39, 40], on the wave equation by Oh-Pocovnicu-Tzvetkov [57]|, Burg-
Lebeau [15], de Suzzoni [34, 35], Bourgain-Bulut [10], Bringmann [11, 12, 13],
Sun-Tzvetkov [66], on the Benjamin-Ono equation by Tzvetkov-Visciglia [74, 75],
Deng-Tzvetkov-Visciglia [36], Deng [38], and many others.

In some of the more recents works on the topic, some of the material from [60, 61]
was applied, extended or generalised, see e.g. [62, 59]. Therefore it appeared
relevant to rework the material from these papers and to gather them in a reader
accessible version, which is the aim of the present article.

The strategy of the proof, already used in [69, 20, 37] and more recently in
[19, 52], is the following. We first study a nonlinear Schrédinger equation with
harmonic potential, for which we are able to prove local existence results. Then
thanks to the lens transform, this latter equation is conjugated to the equation (1.1)
for which we are able to deduce global existence results.

For d > 1, we define the harmonic oscillator by

d 2

H:—Ad+|$|222(—cir2+l‘?),
j=1 j

and we denote by {h,, n > 0} an orthonormal basis of L?(R%) of eigenvectors of H
(the Hermite functions). The eigenvalues of H are the {2(¢; +---+¢4) +d, ¢ € N},
2 n > 0}, repeated according

and we can order them in a non decreasing sequence {\2,

to their multiplicities, and so that
Hh, = Mh,,  Vne€N.
It is then easy to observe that A, ~ n'/29 when n — +oo.

In the following, H*(R?) and W*P(R?) denote the usual Sobolev spaces. We
also define the harmonic Sobolev spaces, associated to the harmonic oscillator. The
harmonic Sobolev space H*(R?) is defined as the closure of the Schwartz space for
the norm

ullogs may = 1 H>?u] 12 (ay.-
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Similarly, the space W*P(R%) is defined as the closure of the Schwartz space for the
norm

HUHWS’P(Rd) = ||Hs/2u||LP(]Rd)-
In fact, this latter norm is a weighted Sobolev norm, because from [45] : for all
1 <p<+oo and s > 0, there exists a constant C' > 0 such that

1
(1.2) Slulwergay < 1(=2)"2ull pogay + 1) ull Lo ra) < Cllullyenra)-

Since the family {h,, n > 0} forms a Hilbertian basis of L?(R%), any u € H°(R%)
can be written

u= Z cnhyn,  where ||u|]3{(,(Rd) = Z M9 en)? < oo
neN neN

Next, assume that (2, 7, P) is a given probability space and that (g, (w))nen is an
identically distributed sequence of independent complex Gaussian random variables

9n NN@(O, 1)7

namely, the density of g, is given by %e“'z'QdL where dL denotes the Lebesgue
measure on C. Then, for ug € H°(R?), which can be expended as

uo(x) = chhn (z),
neN

we can consider the application w +— ug(w,.), from (Q, T) to H° (R?) that we equip
with its Borelian o-algebra, defined by

UBJ (LU) = chgn (w)hn (x) .
neN

We can check that the application w — v is in L?(Q,H°(R?)) and we define the
probability measure p as the distribution of this random variable. By definition, we
have the following equality:

PlweQ :V(uy) € A) = u(f € HO(R?) : U(f) € A),
for any measurable ¥ : (H°(R%), B(H°(R?))) — (R, B(R)) and any set A € B(R).

Let us first state a result which shows that the randomisation does not improve
the initial condition in the Sobolev scale, and that it does not improve its spatial
localisation.

Theorem 1.1. — For all s > 0, if ug ¢ H*(RY) then
ug ¢ H5(RY) and (z)*uy ¢ L*(RY), w— a.s.

By (1.2) it follows that one therefore has u& ¢ H*(R?), w — a.s.
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1.2. Almost sure global existence for the cubic Schréodinger equation in
dimension 3. — Our first results concern the cubic equation

ou
i— + AU = k|U|*U. R x R?
(1.3) "ot T AU, (t,2) € R x

U(07 ZL‘) = UO(':U)a

where k € {—1,1}. Let us first recall some deterministic results concerning (1.3).
There exists 7' > 0 and a space X3 continuously embedded into CO([-T, T; H*(R3))
such that:

o If s > 1/2 (subcritical case) then for all R > 0, there exists T > 0 such
that if |luol|fsms)y < R, then there exists a unique local solution u € X7 to the
equation (1.3), see [47, 26]. Moreover, the mapping ug € Bys(0,R) — u € X3 is
continuous. This means that the problem is locally well-posed. If T' can be chosen
equal to +00, we say that the problem is globally well-posed.

In the case where the problem is globally well-posed, it is natural to study the
behavior of the solution in 4oo : if for all ug € H*(R3), there exists u; € H*(R?)
such that t_l}glooﬂu(t) — e uy || g (rs) = 0, which is known as scattering. According

to [31] it is the case, for k = 1, as soon as s > 3.

e If s = 1/2 (critical case), one can prove the local existence of a unique solution
for each initial data as in the subcritical case, but the existence time of the solution
depends on ug and not only on |[ugl|fs(ws). Therefore the globalization problem is
a complex problem. See [26].

o If s < 1/2 (supercritical case), according to [27], we know that there exists

a sequence of real numbers ¢, € R which tends to 0 and a sequence of functions

up, € H*(R3) such that lim unllgsrsy = 0 and  lm_|luy(tn)| gsmsy = +oo,
n—-+0oo n——+0o00

where uy,,(t) denotes a solution of the equation (1.3) with initial data w,. Therefore,
the flow of the equation (1.3) is not continuous in 0, which implies that the problem
is not well posed and the usual methods do not allow to study the equation in this
situation.

We assume in this section that the eigenfunctions of the harmonic oscillator are
given by the tensor eigenfunctions, i.e. for n > 0, there exist (n1,n2,n3) € N® such
that for z = (21,72, 23) € R3

(1'4) h'ﬂ(x) = €ny (x1)6n2(x2)6n3(x3),

where (—8§j + x?)enk = (2ng + 1)en, and A2 = 2(ny + n2 + n3) + 3. Here (en)nen
denotes the basis of the eigenfunctions of the harmonic oscillator in dimension 1
and (12 )nen the associated eigenfunction sequence, so that we have 2 = 2n + 1.
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Indeed, e, are given by the formula

dn 1 1 5
en(x) = (—=1)"¢, 612/2@(6_12 ), with o = (n!)2 22 1.

Our main result then reads :
Theorem 1.2. — Let o €]0, 3| with ug € H°(R3) and s €]3, 5 + o[, then there
exists a set ) C Q satisfying the following conditions:

(1) P(Q) > 0.

(i1) For any element w € €, there exists a unique global solution U to the equa-

tion (1.3) with initial data uf such that

U(t) — e"®uf € C(RyH(R?)).
Moreover, for any element w € Q', there exist Ly, L_ € H*(R3) such that

lim[[U(5) = €2 (ug + Ly) || 7.z = 0,
(1.5) . ‘
11£n HU(t) — A (u(ﬁ) + L*) HHS(R?*) =0,

and

hm He_ltAU(t) - (’Ufé) + L+)HH3(R3) = 07

t——+o0

lim He_itAU(t) — (ug + L*)HHS(RS') =0.

t——o0

(1.6)

Finally, when n — 0 we have
(1.7)
p(uo € HO(R3) : we have global existence and scattering ‘ ol 2o sy < n) — 1.

Notice that since e*™®2 does not act on H°(R3), the properties (1.5) and (1.6)
are different. It is interesting to notice that Theorem 1.2 is not a small data re-
sult in the critical H'/2(R?) space. More precisely, for 0 < o < 1/2, let ug €
HO(R3)\H'/2(R?). Then for w € €, u¥ satisfies the conclusion of Theorem 1.2
and by Theorem 1.1 we have ug ¢ HY?(R3). Similarly, for K > 1 we can define
[wo]k = Z cnhn € ﬂ #*(R?). Then Theorem 1.2 applies to this initial condition

An<K 5>0
and we have ||[u3]KHH1/2(R3) > 1 for K > 1 (we refer to Proposition 5.4 for a pre-
cise statement). This is the counterpart with some global existence results obtained
for the Navier-Stokes equation, see [28, 29, 30].

We can obtain a more quantitative statement in the case of small initial conditions
ug € H(R3). For 0 < a < 1, there exists a set , C ' satisfying P(Q) > 1 —
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under the condition
Co

(18) « :Cl eXp(— W
0 HO‘(RB)

)

for some universal constants Cq, Cy > 0.

It is likely that our approach can be extended to any dimension d > 2. In this
case we also gain a half-derivative compared to the deterministic problem. We will
not give more details.

Our result can be extended to more general i.i.d. random variables (g, )nen-
Actually, we need the g, to be centered, that they admit moment at any order and
satisfy multilinear chaos estimates as in Proposition 7.2.

To establish our results, we use the ideas of N. Burq and N. Tzvetkov developed
in [21, 22] by randomizing the initial data. This allows us to gain derivatives in L?
spaces, for p > 2.

The proof essentially relies on two intermediate results:
(i) The lens transformation (introduced in [56, 25] and used in [20, 68]) which

allows us to reduce to proving a local existence theorem on | — 7; [ for the
Schrodinger equation with harmonic potential (see Section 2.1).

(74) The existence of a bilinear estimate for the harmonic oscillator (see Section 3)
which allows to gain the half-derivative on the first order terms in ug. This
estimate is the analogue of the bilinear estimate for the usual Laplacian proved
by Bourgain in [7].

The results of Theorem 1.2 extend the results of [20, 37] obtained in space di-
mension d = 1 and d = 2. In [62] similar results where obtained in space dimension
d = 3, but the randomisation of the initial condition was different, which implied
scattering results in stronger harmonic Sobolev norms. In the papers [11, 12, 2, 24|
some scattering results are obtained using a randomisation based on the Littlewood-
Paley decomposition of the initial condition.

The existence of a bilinear estimate for the harmonic oscillator being of interest
in itself, we state it below in any dimension d > 2. Let us first define the dyadic
localisation operators. Let n € C§°(R) such that 7 = 1 and g o[ = 0. Set
¥(x) = n(z) — n(4x). For dyadic numbers N = 27, we define the following sequence
of operators:

H
(1.9) An(u) = Y(qzlu for N =1,

0 else.
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Notice that if A, ¢ [5, V2N] then Ay(h,) =0 and that Y. Apn(u) = u.
N dyadic

Theorem 1.3. — Let d > 2. Then for any § €]0, 3], there exists a constant C > 0
such that for all dyadic numbers N, M > 1 and u,v € S'(R?),

(1.10) || An(v) e Anr(W)]| oy 1302 (may) <

. d—2 ( min(N, M 1/2-4
< Cnin(V A% (2R AN 0 s (0l

The first bilinear estimate has been obtained by Bourgain [7] for the Schrédinger
group on R%. For bilinear estimates on compact manifolds and application to the
well-posedness of nonlinear Schrédinger equation, we refer to [17].

We refer to the work [59] of F. Planchon, N. Tzvetkov, and N. Visciglia for an
alternative proof of Theorem 1.3 in the case d = 2, with the improvement § = 0.
This bilinear estimate has been used in [59] in order to obtain bounds on the growth
of norms for the nonlinear Schrédinger equation with harmonic potential.

1.3. Almost sure global existence for the nonlinear Schrédinger equation
in any dimension d > 2. — We now consider the following Schrodinger equation
with polynomial nonlinearity

ou
—— + AU = &|U[P™! R x R
(111) 5 + AU = &|UPTT, (t,z) € R x

U(0, ) = ug(),
where k € {—1,1} and p > 5 denotes an odd integer, and d > 2.

We prove the following results:
Theorem 1.4. — Let uy € H%(Rd) then there exist s €]% — %, [ and a set of
Q' € Q such that the following conditions are met:
(1) P(Q) >0.
(i) For all element w € €, there is a unique global solution U to the equa-
tion (1.11) in the space e*™uf + X* with initial data ug.
(iii) For all element w € Y, there exists L, L_ € H*(RY) such that

1.12) e [U(t) = e (ug + L) | o (gay = 0,
' lim [|U(#) = " (uff + L) || o ey = 0.

t——o00
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and
e i 00) 05+ L)y =
1.13 )
im0 ) = 05+ L) ey =0

Finally, when n — 0 we have
(1.14)
1(uo € HO(R®) : we have global existence and scattering | [uollpe rsy < m) — 1.

The proof of this result relies on the Kato smoothing effect for the linear
Schrédinger equation with harmonic potential. In dimension 1, the smoothing effect
was used in [20] in order to obtain local existence results. We observe here that
this approach can be extended in high dimension, in the case of a nonlinearity of
degree p > 5 and an initial condition ug € H4=D/2(RY).

We refer to [42, 50] for almost sure scattering results for NLS.

Let us state the smoothing effect for the harmonic oscillator, which has his own
interest.

Theorem 1.5. — Let € €0, [ then there exists a constant C' > 0 such that for all
ug € L2(RY),
1 1/2—2€ 445
(1.15) H<$>1/26\/ﬁ ¢ UO)LQ([ , ]de) HUO||L2(Rd)
and for all ug € (e (Rd)
—Ax/2-2¢ g ‘
(1.16) H <96>1/2—e\/7A e Uo Lz([_w,ﬁ]de < Ol O”Hi(Rd

The first results on the local smoothing effect were obtained in [49, 64, 76, 33|.
Here the proof follows the Doi method [43, 44]. See also [77, 78, 70] for results on
the smoothing effect for the Schrodinger equation with confining potentials.

The result of Theorem 1.5 is an extension to the well-known smoothing effect for
the linear Schrédinger group

H <3U>11/2_€\/I1/22e€nAu0‘

< Clluoll L2 (ray,

L2([—7,m] xR%)
and for all ug € H (Rd)

H<gj>]-1/2€\/jd/2_2€€itAu0‘

< Clluoll , a;x

L2([—m,m]xR4) (RY)”
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1.4. Notations. — In this paper ¢,C > 0 denote constants the value of which
may change from line to line. These constants will always be universal, or uniformly
bounded with respect to the other parameters. We denote by H = —A + |z|? the
harmonic oscillator on R?, and for ¢ € R we define the Sobolev space H? (R?) by the
norm [|ul[ye(gay = [[H 7/ 2| r2(rd)- More generally, we define the spaces WP (RY)

by the norm ||ullyyo.p@ey = [|H 7/2q| rr(rd)- The Fourier transform is defined by

Ff&) = Jga e~ f(x)dx, for f € S(R?). We denote by (z) = /1 + |z]2.

1.5. Organization of the rest of the article. — In Section 2, we present some
harmonic analysis results, including study of the lens transform, Strichartz estimates
for the Schrédinger group with harmonic potential, properties of the Bourgain space,
and Hermite functions estimates. Section 3 is devoted to the proof of the bilinear
estimates for the harmonic oscillator. Then, in Section 4, we prove the local smooth-
ing effect. In Section 5 we prove that the randomized initial data does not allow to
gain derivatives in the L? scale and that it does not enjoy better spatial localisation
properties (Theorem 1.1). Section 6 is devoted to the fixed point argument for the
cubic NLS in dimension 3. In Section 7 we study the regularity of the randomised
initial conditions which allows to complete the proof of Theorem 1.2. In Section 8
and in Section 9, using a fixed point argument, we prove the results on the NLS in
dimension d > 2.

2. Preliminary results

In this section, except in the fourth part, the dimension of space is assumed to
be any d > 1.

2.1. The lens transformation. — As in [69, 20|, we use the lens transform
which allows to work with the Schrodinger equation with harmonic potential. More
precisely, suppose that U(s,y) is a solution of the problem (1.1). Then the function
u(t, ) defined for [t| < T and € R by

1 d/2 tan(?t) X _i\:c\Qtan(Qt)
( ) u( 2 7 cos(2t) Je ’
= Et(U |s:tan2(2t) )(Qj)

(2.1) wu(t,z) =LO)(t,z) := p—

where
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solves the problem

10w — Hu = /ecosg(p_l)_Q(Qt)|u|p_1u, |t] < E, z e RY,

(2.3) 4
u(0, ) = Uy,

where H = —02 + |z/?. Similarly, if U = e®2vU; is a solution of the linear

Schrodinger equation, then

(2.4) u=e "My = L(U)

is the solution of the linear harmonic Schrodinger equation with the same initial
data. In other words, if we denote by W(s,s’) the map which sends the data at
time s’ to the solution at time s of (2.3), and by ®(¢,t') the map which sends the
data at time ¢’ to the solution at time ¢ of (1.11), the family (Lt)jtj<= conjugates

the linear and the nonlinear flows: with t(s) = %H(QS), s(t) = %

Et(s) o ei(s—s’)Ay _ e—i(t(s)—t(sf))H o Et(s/)'
and
Lis) 0 V(s, s = ®(t(s),t(s") o Li(sr)-
By (2.4) we have

. 1 d/2 . tan(2t) T ilz|? tan(2t)
9. itH t — ( > itA < ) izl tanlst)
(25) e ult o) cos(2t) o 2 " cos(2t) © ’

and equivalently

' 1 /2 _, arctan(2t) x ilz|2t
2.6 ePult,z) = <7) e ZtHu( , >61+4t2.
(26) (t,2) V1 +4t2 2 V14 4¢?
2.2. The Strichartz estimates for the harmonic oscillator. — In the follow-
ing, we will say that a pair (g,7) € [2, +0c]? is admissible if and only if
2 d d
d 2 2 d —-=—--—-.
We define, for s € R and 7" > 0 the Strichartz spaces for the Schrodinger equation
X* = N LYW (RY),
(q,r) admissible
X7 = N LU-T,7); W (R).

(g,r) admissible
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Similarly, we define the Strichartz spaces for the harmonic oscillator

X= N (- EY),
(q,r) admissible

Xr= ) L(-TTEwRD).

(¢,r) admissible

The Strichartz estimates for the usual Schrédinger equation can be found in [67].
Let us state the Strichartz inequalities for the harmonic oscillator.

Proposition 2.1. — For any time T > 0, there exists a constant Cp > 0 such
that for any function u € H*(R%) and any function F € LY ([T, T]; W*"™ (R%)) with
(q,r) admissible

(2.7) le™ " ullxs, < Crllullygs ey,
! (T H

(28) ‘/ e ME(s)ds| < CUFll o (.gigwer
0 X5

Proof. — The Strichartz estimates follow from the study of the kernel of ¢®*# | and
we refer to [20, Section 5] for a proof. Alternatively, let us show here how (2.7)
also follows from the Strichartz estimates for the Schrodinger flow with the free
Laplacian. By replacing u by eI #u, we see that it is enough to prove the estimate
for some T' > 0, for example for T = 7. Similarly, by replacing u by H 3u, we can
restrain the proof to the case where s = 0. Thus, if the couple (g,r) is admissible,

by (2.5) we obtain

e ull pag-z 2 p2r ey =

( 1 )d/2eimu<tan(2t) x
= HeitAuHL[I(IR{;LT(Rd))'

_ilz|? tan(2t)
2

cos(2t) 2 " cos(2t) ) ¢ La(—Z, T [;Lr(RY))

Then, we can use the Strichartz estimates for the Laplacian to conclude.
The proof of (2.8), which relies on a duality argument, is the same as the proof of
the Strichartz estimates for the Laplacian that can be found in [67, Section 2.3]. [

Proposition 2.2. — If s > 0 then there exists a constant C > 0 such that for
d

all p € [1,400] and q € [1,+00] satisfying % + g — § < 0, we have for any u €
LP([=5, 5 WH1(RY)),

Ul Lo sws.aray) < Cllullpe—z 21 vs.a(ay-
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As a consequence, let s > 0 and u € X then U € X* and there exists a constant
C > 0 such that for allu e X°,
IUllxs < Cllull%-

Proof. — By interpolation, it is sufficient to prove the result for s = n € N. Let
a € N? with |a| < n, then thanks to the Leibniz formula, we obtain

U1 )—aa((L)d/Q (arctan(2t) T ;fjlt’)
AN W ey T2 2 Vit

(1 d/2 a\ .5 arctan(2t) T amB i\x\i;
- () ogéa<ﬁ>ax<“( v e L G
Then, as
_ ilz|2t o
|8 ﬂ(emta)}gcaﬁ@ﬂﬁ“ m)

we establish

02U (8, 2)] <
d/2
OS%:SQC‘“"?(\/JFW> /+|ﬁ|afu‘(arctz;n(2t)’\/£w)( |m||a m)
Therefore,
102Ul Lo (r; La(ra)) <
sogéaca,g)< ﬂiw I TG R e

< Z o )( 1 )d/2+d/q72/p+|6| (t )‘
_— u(t,
> W52 B\ /1 + tan? 2t Lr([- %, T Wlela(Rd))’
To conclude, it is enough to notice that % + g - % + 18| > 0 for g € N O
2.3. Some properties of Bourgain spaces. — We now define the Bourgain

spaces and recall some of their different properties.
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We define the space X = Ys’b(]R x RY) as the closure of C$°(R x R?) for the
norm

||U”2Ysb = Z (¢ + >‘3L>b>‘zpnu(t)H%t?(R;Lg(Rd))
neN

= D IH 2 Pt )T gy
neN

where Fn\u(t) denotes the Fourier transform, with respect to the time variable, of
Pnu = <u, hn>L2(Rd)><L2(Rd)hn-

In [67, Corollary 2.10], we can find the following proposition:
Proposition 2.3. — For any real b > %, there exists a constant C > 0 such
that for any real s € R and for any admissible pair (q,r), if u € X then u €
LI(R; W*"(RY)) and

lull oo (ray) < Cllullsss-
X

Thanks to [17, Lemma 2.4], we can establish the following proposition:

Proposition 2.4. — For any 6 € [0,1], if b > 1%9 then there exists a constant

C > 0 such that for any s € R and any function u € Ys’b,

Proof. — 1t is enough to consider the case s = 0. Using the inverse Fourier trans-
form, we have
1 oy L [T+ M), —
Pou(t) = o /ReZ TPou(r)dr = o Js ﬁ)\%be’ TPyu(T)dr.

Then, for b > %, we deduce from the Cauchy-Schwarz inequality that
ovoh S g\ 1/2
Pau()] < C( [ {7+ A2 Pyu(r)ar) .
R

Thus, by squaring and summing for n € N, we obtain that for any b > % and function
= Yo,b’
[l oo ;22 (RaY) < Cllull50.-
On the other hand,
[ull L2 (m; L2 (RaY) = [[ull500

thus the result follows by interpolation. O
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Proposition 2.5. — For any constant 0 < § < 1, there exist two constants b’ < %
and C > 0 such that for any s € R and any function v € L' (R; H3(R?)),

||tué‘v*b' < CH“HLHé(R;HS(Rd))-

Proof. — From Proposition 2.4, we have by duality that for any 6 € [0,1] and
2
b> 1;29, there exists C' > 0 such that for any function v € L7-7 (R; L?(R%))
Jullgos < Cllull 2, s

Then we choose 6 = % and b = 1_g+5 < % to obtain the result. O

In [67, Lemma 2.11], we can obtain the following proposition:
Proposition 2.6. — If ¢ € C§°(R) then for any b > 0, there exists a constant

C > 0 such that for any s € R and any function u € Ys’b,
[V()ullgse < Cllullgse.
Finally, we give a last proposition whose proof can be found in [46, Lemma 3.2]

(taking ¥ =1—band T =1).

Proposition 2.7. — Let ¢ € Cg°(R) then for any 1 > b > %, there exists a

constant C > 0 such that for any s € R and any function F' € 78’1)_17

Hw(t) /Ot e_i(t_S)HF(S)dSHYS"’ < C”Fnys,bﬂ.

From now on, we set T = 7, then we define the new Bourgain space which will

interest us: we define the space Y;b = Ys’b([—T; T] x R%) as the subset of X for
which the following norm

||u”y§vb = irlfs,b {Hwnys,b Wlth w’[—T,T] = U}
weX

is finite. Proposition 2.4 allows us to obtain the following result:

Proposition 2.8. — Letb> 3 and s € R, then Y;lb — O[T, T); H* (R?)).
And finally, thanks to Proposition 2.2 and Proposition 2.3, we obtain the following

result:

Proposition 2.9. — Let b > %, s>0anduc Y;’Z then U € X?® and there exists

~s,b
a constant ¢ > 0 such that for any u € Xfr’/4,

[U)lx+ < cliulges,
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2.4. Basic properties of the eigenfunctions of the harmonic oscillator in
dimension d = 3. — In this fourth, we give some estimates of the tensor eigen-
functions of the harmonic oscillator.

Proposition 2.10. — For any § > 0, there exists a constant Cs > 0 such that for
alln,m,k € N,

(2.9) 1 hnll L (ms) CA, Y4 (log An)?,
(2.10) | oo (ra)y < O 1/6,

AN

Proof. — Denote by p, = v/2n + 1, so that (=02 + x2)e,, = p2e,. In dimension 1,
the following estimates are known by the work [51], namely

1/4

lenllzamy < Cry/*log pn, el < Crn /.

Let us prove (2.9). In dimension 3, as A2 = p2 + p2, + p2, then there exists
je {1, 2,3} such that ,u?Lj > % Thus, we obtain

th||L4(R3) = Hem”L4(R)Hen2”L4(R)Hen3HL4(R)

Crin i 4 4 (log iy ) (108 finy ) (10g )

CA Y4 (log A)3,

IA A

because fin, < An, fn, < A and py, < A\,. The estimate (2.10) is obtained in a
similar manner. O

Lemma 2.11. — For any s € R, there exists a constant C' > 0 such that for all
f.9,h € H¥(R),
1f(z1)g(@2)h(3) |35 3y <
< CUIf s llglzy 1Pl 2y + 1L 2@y gl ) 12l L2y +
+ 1 f 2wy 19l 2wy 1 ll s () ) -
Proof. — We write

+o00 +00 +o0
F@) = anen(z1), g(x2) = > bmem(x2), h(zs) =Y cper(ws).
n=0 m=0 k=0

Then, since the family (en(z1)em(z2)er(3))m,mk)ens forms a Hilbertian basis of
L?(R?) composed of eigenfunctions for H associated to the eigenvalue u2 + p2, + ui,
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we obtain

1f (1) g(@2)h(x3) e oy = D lanlom *lexl® (17, + i, + 17)° <

n,m,k

<C Y anPomlenlPui +C Y lanllom e+

n,m,k>0 n,m,k>0

+C Z |an|2’bm|2‘ck|2/‘z8

n,m,k>0
< C(”f”g-LS(R)HQH%Q(R)HhH%Q(R) + HfH%Q(]R)Hg”%-LS(R)HhH%Q(R)—'_
+ Ol ) 9l T2y 12130 (1))

which was the claim. O

Proposition 2.12. — For all§ > 0 and all s € [0, 1], there exists a constant C' > 0
such that for all n,m,k € N,

(2.11) A |3 msy < Cmax(Ap, A )21,
(2.12) [Pnhmbillys sy < Cmax(An, A, Ag)* /20
Proof. — To begin with, recall the following bilinear estimate which is proven in [20,

Lemma A.8|: for all 0 < 6 < 1, we have

—1/240 )1/2

(2.13) lenem 3o @) < C max (g, fim) min (10g P 108 fim
(R)

I

with the notation u, = v/2n + 1. We first prove (2.11) in the case s = 0. We can
2
suppose that max(A,, A) = A, and max(pin, , fings fng) = fn,, then '”7211 > %” >

2
Himq

% > —1. Thus, thanks to (2.13), we obtain that for all § >0

[Anhmllzz@s)y = llen em, llL2®)ll€nsems L2 (®) l€ns €ms | L2 (r)
< llenemallLz@)llens | o) llems [l La@) llens | aw) llems | 4 w)
< Cyugl/F
< CpA U/,
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We now consider the case s = 1. Then the general case 0 < s < 1 will follow by
interpolation. Using Lemma 2.11, (2.9) and (2.13) with # = 1, we obtain

thhmH”Hl(R?’) <
< C(HememlHHl(R) + ||€n26m2H’Hl(R) + H€n36m3||7{1(R))

1/246 1/246 1/2+5)

< C(max(tin, ; iy ) + max(finy , fims) + max(fing, fmg)

< C'max(An, A )2+,

which was the claim.
We turn to the proof of (2.12) with s = 0. Suppose that max(A,, A, Ak) = An.
Then, by (2.10) and (2.11), we obtain

< Nhnhmll 2 w3y | Akl oo (m3)
< Cé)\;l/?-l-é
<

Csmax(An, Am, Ag) "2+,

thhmhk ”LQ(R?’)

hence the result. Next, assume that s = 1. Thanks to the previous inequality,

IN

[Anhm |l sy |kl Loo m3) + [[Anhm || 2 w3y | P 100 (m3)
Cmax(An, Am) 2N 0 1 Cmax (A, Ay ) ~H/2HONY
< Cmax(An, Am, M) /240,

||hnhmhk H?-tl(R?’)

IN

The general case 0 < s < 1 follows by interpolation. O

Lemma 2.13. — Letd >0, ¢ > 4 and N > 1, then there exists a constant Cy > 0
such that if we assume A, > )\}L’;‘S and Apy > Apy > - > Ay, then

< CN/\EIN.

n H o ()
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Proof. — Using (2.9) and (2.10), we obtain for all £ > 1

1
b, (z)dz
11

< AEQ’“!!hmH'“Hh Mz re)
7j=2
L

g N P | A )
7j=2
< CiA, Qk)\2k H 2o || p2ce—1) (R3)
Jj=2

< a(52)

Any

2ké
S Ck)\n11+57

which was the claim. O

3. The bilinear estimate for the harmonic oscillator

The aim of this section is to prove the bilinear estimate of Theorem 1.3. We
notice that the result will follow from:
Theorem 3.1. — Let d > 2. For any 6 €]0, %], there exists a constant C' > 0 and
€ > 0 such that for all dyadic numbers N, M > 1 and u,v € S'(R%),

e AN (v) € Anr ()| 2(—e g 2Ry <

, a2 (min(N, M)\ /*?
< Cnin(V A% (2R AN 0 s ()l

ieH ieHy) to obtain

Indeed, we can replace u by e*“u and v by e

e FIH AN (v) e TN ()] g2 (e i n2(may) <

. d—2 ( min(N, M 1/2=6
< Cnin(V ' (2 1A 0 1A (0l

Then, we use the change of variables ¢t <— ¢ + ¢ and Theorem 3.1 to obtain that
€™ An (v) e Aps (W)l p2(|—c0q. 02 (Ra)) <

' a2 (min(N, M)\ />
< C'min(N, M)z (maX((NM))) IAN )]l L2y [ Anr (W) 22 (ra)-
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We can thus iterate the procedure 2E( %) times to establish Theorem 1.3 and we are
thus reduced to show Theorem 3.1.

Recall that n € C§°(R) is such that Mo,y = 1 and npp 1o = 0, and was used in
the definition (1.9) of Ay. Let » < 1 and ¢ € C§°(R) satisfy

1 for z € [1/4;2],
9(z) = {O for z€[0,1/4 —7r]U[2 4 r,+o0],

and set Ay = gb(%) Then using that ¢(x)(n(z) — n(dz)) = n(x) — n(4x) for all
z € R, we notice that for all N > 1

(3.1) Ay oAy =Ap.

Let us then observe that to prove Theorem 3.1, it is sufficient to show

(3.2) e Al (v) €™ A p(u) |l p2(e.er2may) <

) da—2 (min(N, M 1/2-3
< Cmin(N, M) 2 (max((N]\l))) ||UHL2(Rd)||U”L2(Rd)'

Indeed, if the previous inequality is satisfied, we can apply it to v replaced by Ay (v)
and u replaced by Ajs(u) then we can use (3.1) to obtain Theorem 3.1.

e Case M ~ N with M > N. For d = 2, we can use the Strichartz inequalities
(Proposition 2.1) to obtain that

e Aly (0) € Al (W) | 2 (e g.22(RAY) <
< HeitHAlN(v)HL4([—e,e];L4(Rd))”eitHA/N(v>HL4([—e,E];L4(Rd))
< e Al () (gt my) 1™ Al (0) ]| (e )24 (R
< Ol AN )| L2 @ay | AN (V)] £2(Ray
< Clvllzoayllull 2 @ay-
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For d > 3, using again Proposition 2.1 and the Sobolev embeddings, we establish
that

€™ Al (v) €7 Ay (u)| p2 (e, r2(mey) <

< ™ Al (0) || oo (e, paqray €™ Ay (v) 2d_

||L2([*6,6};Ld*2 (R4))

< [l Al (v) le™" Ay ()

H -2 o 2d,
Lo([~m,m);WW 2 2(RY)) LY ([~m,m;Ld-2 (R?))

< AN, o2 o I8N )2
d—2
< ON 7 |[v]| Lo (rey |l L2 (may-
Therefore (3.2) is proved in the case M ~ N.
e Case M > 10N. We now have to prove that

i i ws [N\ Y2
33 oy Wl cquran < ON'F (1) Iollgs ol

We can write

up = X(4|x|2)UM +(1—x) <4|x|2)uM

M? M?
with x € C°(R), 0 < x < 1, satisfying
1 if |z] <15/32,
M= 0 i J2) > 1/2.
By the triangle inequality, we have to estimate the following two terms:
tH tH
(3.4) | (ez X( M2 )“M) (e ow) HL2([—576};L2(R‘1))
and
. 4]x|? .
tH tH
(3.5) H(ez (1 _X)< WE )“M> (¢ UN)HLQ([fe,e];LQ(Rd))'

3.1. Estimate of the term (3.4). — We have the following result.
Proposition 3.2. — For all § > 0, there exists a constant Cs > 0 such that for all
we H-V2H(RY) and v e H7 ~I(RY),

HeitHu eitH

llp2(-x 2 r2ra)) < C(SHUHH*U?JF‘;(]IM)HUHH%—J(R%'
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Proof. — From [65, Theorem 2.4] (coming from [7]) we have that for all § > 0, there
exists a constant Cs > 0 such that for all u € H~Y/?*9(R%) and v € H%_‘S(Rd),

A,
e’ UHL2(R r2@®4)) < Csllull g-1/246gay HUH 5 gy’

Using the lens transformation (see Section 2.1) and the previous inequality, we obtain
that

HeitH thUHLQ (- ﬁ ﬂ] L2(R%)) =

—itH itH |12
= ||6 7 ue -t U||L2( _% %}LZ(Rd))

tan(2t) x
ztA ztA 2

dxdt
/w ™ /Rd |cos 2t ]2d|e vl ( 2 7cos(2t)> *

8’8
/ / ‘ ZtA ZtA |2 tan(Qt) x| dadt
|-z x[Jra | cos( 2t)]d 2 7

1/2 o
/ / (14 (20))Y2 1By P |2 (8, x) dadt
1/2 JRE

SC’// B e |2 (L, x)dadt
R4

< Cllullgg-vzes gy 0117 as

RGO
< CHUHH71/2+6(Rd)||UH2 b gy’

where in the last inequality we used (1.2). O

We will show that for all § €]0, %], there exists a constant Cs > 0 such that for
all dyadic N, M > 1, and u,v € L?(R%), if M > N then

itH Azl <
| (e vn) (e™x( e )UM)HLQ([—%,%]§L2(Rd))_

v [N\ /20
<o () Mullaololzzg,

To do this, using Proposition 3.2, it suffices to prove that for any § €]0, %], there
exists a constant Cs > 0 such that for all dyadic M > 1 and u € L?(R9)

4|z |? —
(A Yutas - srovs oy < O™ /24 e
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We have

Alz|?

(57

Thus, by interpolation, it is sufficient to show that there exists a constant C' > 0
such that for all dyadic M > 1 and u € L%*(R%),

Junllzeqgey < lunlz2gae) < Clull e,

(3.5 (22 ar -+ oy < OVl
We then use the semi-classical calculus. For a function u, we define u : x — u(%)
where h = ﬁ
Observe that
6n) (D[ @) = w2 + Pl (V)
and that

38 () [o(5)] (@) = e )o(—h2A + faf2) ) (Vo).

Thus, to prove (3.6), it is sufficient to show that there exists a constant C' > 0 such
that for all h €]0,1] and u € L?(R?),

(3.9) (422 P2 + 1RVl -1 gy < Chllull 2gay-
Indeed,
||x(‘§‘;f)um|ﬂl<m < [x@le)e(—=h2A + o)) @) (VR -1 gay
< 7| [y (d]2 ) e(—h2A + 2] () -1 ay
< Cha i luf gy
< ChY2|ull L2 (gay
< OM7ul| 2 (ray-

Let us then prove (3.9). Thanks to Proposition A.5, we have

Ix(@dlz?)(l2]* + RV [*)ull g1 (gay <
< lx(@lz?) [¢(|z* + [nV[*) = Opn (@2 + [€1*))x2] ull -1 (ray +
+ [Ix(4lz*)Opn (9|2 + €1) xeull g1 ey
< hl|ull 2 gay + Ix(4l2*) Opn(é(2l? + [€%) xoull -1 (ga)
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Thus, it is sufficient to evaluate ||x(4|z|?)Opp(é(|z|* + ‘5’2))X2U/HH—1(Rd). We have

X(41z)Opn (¢ (|2* + [¢1%)) xou =

33‘2 .
B 87'02)/ €O (wf + (hE)*)F (xau) (€)dg

/ Y |h|5|'2)¢< 2l + (h€)*)F (xau) (€)dé
( Z“X(,%L)w 2+ IR F (xau) () ) ds

X(4aP)
- /R e <(0e) - ¥ (XTI o1aP 4 he) Foam 1

= o (4 ([ e XD o+ ey P 1)

x(4ieP)
= [ eene) - v (AT oe + ) Foamde )

Then, since 4|z|? < § and §~ < |z|? + |¢[* < 27 implies 1~ < [¢]?, we deduce that

2
(2.6) — 5’“@‘@' Vool +1¢P) € 5°

and

x(4]z[?)
€17

(2.6 —&-9( ol +[€P)) € 5°.

Thus, by Theorem A.2, we have

e / b A+ 0O

2n)? H/Rd ””Mm o(lzl” + (h€)*) F (xau) (€)dg

< Ch||X2U||L2 (R4)
< Chljul| L2 (may

L2(R4)



BILINEAR STRICHARTZ ESTIMATES AND A.S. GLOBAL SOLUTIONS FOR NLS 25

and

s [, et v (XD oiap + et ) oxamierae],

<z [ 600 ¥ (SSE oo + e ) Foxaierae

L(Rd)

L2(R%)
< Chllx2ull L2(ra
< Chllul| 2 (ga)-

This proves (3.9) and the estimate (3.4) follows.
3.2. Estimate of the term (3.5). —

Proposition 3.3. — There exists a time T €]0, T[ such that for all K >0, there
exists a constant Cx > 0 such that for all M > 1 and u € L*(R%),

() =0 (o

Let us show that Proposition 3.3 implies the bound (3.5). From the Sobolev
embedding

<CprM K )
ey = CKM T el

and Proposition 3.3, we deduce for M > 10N that

8lf*\ 4z [? i
HX( M2 )<e M0 )“M> (e tH“N)’ L2(~TTIL2 (RD)) —

8|z 4|z |? i
< lx (1‘\4|2> (1 —x) < z|\4‘2 ) untl| 2 (a2 ay € O [l oo (oo )

Sl Ao
<0l (S ) -0 (g ) warlsqrimssgonlonl g g

d
< Ck M N2 ul| 2 gay vl 12 (ray

_K4d
<CxgM K+2+1||u”L2(Rd)HU”L2(Rd)-

And so, it is enough to estimate, for M > 10V, the following term:

H( 8\CL’| )) (eitH(l B X)(4]’\;‘22)UM) (eitHvN)‘

L2([-T,T};L2(R9))
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Thanks to Proposition 2.1, we obtain that for all R > 1,
GRS @wx‘;) (- X)(4Z|\§’22)“M> | L2([-T TR RY))
= H(@R(eitHvN)(xYR(l (8|x| > ( HH ( ]’\jLz)UMN
SM—R“<x>R(eitH ¥ =) <8|x! ) itH ( 4]\\j|22)uM>‘
=M 7RH(1 —X) <8J|\;’22> <x>R(eitHUN)‘ LA(-T,T); LA (RY))
eitH(l -X) <4]|\§’22> UM’
< M-y <8J|\§’22> (@) (e o) LI(-T.THIA®D)
e (1-x) <4]’\§’22> UM’
8|x|?

<0 @ =0 (N7 ) o) i M Tz,

Then, since

Supp{(l—x)<8]|\f,|22)}C{|x|2 ]\;;[ 12}C{| ? > 5N%}

from Proposition A.4, we deduce

H(l ) (8]\\?22) <x>ReitHUN‘

Proof of Proposition 3.3. — Using semi-classical analysis as in (3.8), it suffices to
prove the existence of a time 7" €]0, 7 [ such that for all N > 1, there exists a constant
Cn > 0 such that for all u € LQ(Rd) and h €]0, 1],

[x(8lz)e™ /M (1 = x) (4] *)g(|2* + |hV|?)

LA([-T.TL?(RY))

L2([-T,T];L2 (RY))

LA([=T, 1)L (RY))

d—2 2d_
LA(=TTw T T (Re))

LA([-T,T); L4(Rd)) CHUHLZ (Rd)-

N
UHL2([—T,T];L2(Rd)) < Onh[ull 2 ).

Using Proposition A.5, it is sufficient to establish the following result: for any func-

tion g(z, &) € C5° (R x R?) satisfying Supp(g) C {3 < |¢[*+]|z|? < 4} and all integer
N > 1, there exists a constant Cy > 0 such that for all u € L?(R?) and h €]0, 1],

“X(8|x’2)6itHh/h(1 - X)(4|x|2)Oph(g)uHL2([,T’T};L2(Rd)) < CNhN||u||L2(Rd)'
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Indeed, by Proposition A.5,

(Bl /(1 — x) @l )(Jaf? + 1) uHLQ([ na) S

< [|x(le ) /(1 = x) @z ) (] + AV ZhﬂOm 0] P
37 (Il (1 — X)) 0P (W5 )0 ooy

N—
< OB [ull gy + 3 B9 |x(Slal2)e™ /(1 — x) (4122 Opn (¥l 2 g7y, 02m0

S CNhNHuHL2(Rd)
O

Lemma 3.4. — There exists a time T €0, %[ such that if g € C§°(R? x R?)
satisfying Supp(g) C {§ < |€° + |x|* < 4} then for any integer K > 1, there exists
a constant Cx > 0 such that for all u € L*(R?) and h €]0,1],

||X(8|$|2)eitHh/h(1 - X)(4’$|2)Oph(g)uHL2([—T,T];L2(R<1)) < CKhK”uHLZ(Rd)'

Proof. — We define

w(s.0) = [ e ats,a 6 i) o

) (2wh)d

>|m

where
a(s,z,&,h) = Zhegsx{

Assume that
@(073376) = 67
Ds® — |VO|2 — |z|? =0,
ao(0,z,€) = (1 — x)(4]z*)g(z,¢),
85610 — QVCZ() Vo — a0A<I> = 0,
and for 1 <j < K

aj(07 z, é) = 0’
Osa; —2Va; - V® — a;A® = —iAa;_;.
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Then

ihOsw + (—h*A + |z|))w = —hK+2/ e%q)(s’x’g)A(GK(&Cﬂyf))ﬂ(%)
Rd

hEr2 .
Since wg = (1 — x)(4|z|?)Opp(g(x, €))u, hence

w = ™M1 — ) (4]z*)Opn(g(w, £))u — ik /O ittt/ hf(s)ds
which in turn implies
X(8Jz )™M (1 = ) (4]z[*)Opn(g(x, €))u =
= (Sl u(ts) — b (sl ?) [ (s
Let us notice that if ¥ is a solution of the equation 3;¥ + |[V¥|? = 0 with initial
data W(0,z,£) = - & then ®(¢,z,£) = U(—B2 _T_ ) 4 |m|2t;n2t is a solution of

2 7 cos2t?
the equation 9;® — |V®|? — |z|?> = 0 with the same initial data.

By the method of characteristics, we obtain

‘I’(t,ﬂf7§) = _t|€|2 + T 55

then we deduce that

tan(2t) ,, o 9 x-&
D(t = .
(t,€) = 56l + laf) + s
Hence
o = cos£(2t) + xtan(2t) and AP = dtan(2t).
Using the method of characteristics, we obtain
(3.10) x—2/V<I>§ 7a00x§)
| cos 2t|
and
d
cos(2s)

(3.11) aj(t,x—z/ Ve, ¢) = /Ot

Now, for any ¢ € R? and |z| < 1 5

" Aajy (s, - 2/ VO, €)ds
0

cos(2t)

aO(Oaxag) = 0.
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As a consequence, for all £ € RY, t €] — bz < % and j € N

t
aj(t,x—Q/O Ve, £) =0.

We have fot Vo =¢F(t)— %OS(%) with F' a continuous function satisfying F'(0
0. Thus, for all € > 0, there exists a time 7" €]0, 7] such that if |t| < T then |F(t)|
and |log cos2t| <e.

Observe that

) =
<e

t
y=x— 2/ V& = z(1 + logcos 2t) — 26 F (t)
0

can be solved by
Y+ 26F(1)
~ 1+logcos2t’

Soif ly| <1, |¢/2 <4 and [t| < T then |z| < 1/14:;46 < %, if € < 1 is small enough.

This implies that for any j € Nand [¢t| <T
Supp(a;j(t)) C By (0, %)C x B (0,2) .
Therefore, if |t| < T, since Supp(x(8|z|?)) C B(0, 1), we deduce that
X(8lz[*)e™ /M (1 — x) (4]z[*)Opn (g (@, €))u = —ih" T x (8| /t e =MIn/h £ (5)ds.
Then, by Theorem 2.1, we obtain ’
Ix (8l )e’ /" (1 = x) (4]2|*) Opn (g (x, €))ull p2((—1,17,12(Rt)) <

t
< W x(slaf?) [ e (s)as
0

L2([-T,T);L2(R%))
< KNl o ey e (ray)
< WAk o r ry e sz ull e,

The lemma is therefore proved if Aax € L} ([-T, T]; L2(RY; Lg(Rd))).

We prove by induction on K € N, that for all « € N,
Yax € Li (=T, T); LL(R%; LE(RY))).
For K = 0, using (3.10), we see by change of variables that
dgao € Li ([-T,T]; L3 (R%; LE(RY)))
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if 3a0(0) € L3 (R, LZ(R)). But ag(0) € C®(RYxR?) with Supp(ao(0)) C {(z,£) :
|z[? < 1,]¢]* < 4} and the case K = 0 is obvious.

Let us assume the result established at rank K — 1 and show it at rank K.
Using (3.11), we note that d%ax € L ([-7T,T]; L2(R% LE(R?))) if 05 %ax 1 €
LI ([-T,T); L2(R% Lg(Rd))). This last statement being clear by induction hypoth-
esis. O

3.3. Bilinear estimates and Bourgain spaces. — The aim of this section is to
write the bilinear estimate of Theorem 1.3 in Bourgain spaces. More precisely, we
establish the following result:

Proposition 3.5. — Let 1 € C°(R). There exists 0y €0, 3] such that for all
§ €]0,60], there exist b/ < & and a constant C > 0 such that for all dyadic numbers
N,M >1 and ug,u,v € S'(R?),

(3.12)  [AN(v)Anm(u)|lL2(r;r2(ray) <

1/2-6
) a—2_ 5 (min(N, M)
< Cmin(V A" (D) AN g I Aar(w) o
and
(3.13) HAN(¢(t)€7itHU0)AM(U)||L2(1R;L2(Rd)) <

min(N, M)\ /*7°
HW) HAN(UO)HLQ(Rd)”AM<U)HYO,I;'-

To prove these results, we adapt the proof of [18, Lemma 4.4]. Let us begin by
noting that it is sufficient to prove the following two propositions:
Proposition 3.6. — For all b €]%,1] and § €]0,1], there exists a constant C' > 0

such that for all dyadic numbers N,M > 1 and u,v € S'(R%),

< C'min(NV, M)d2;2+‘5 (

AN (V) A (u) || £2(r;22(RaY) <
) a—2 ((min(N, M)
< f—
< Cmin(N,M) = <max(N, )

Proposition 3.7. — Let ¢ € C§°(R) then for allb €]1,1] and § €]0, 5], there exists
a constant C' > 0 such that for all dyadic numbers N, M > 1 and ug,v € S'(R9)
AN (w(t)e_itHuo)AM(u)HLQ(R;L2(Rd)) <

. d—2 ( min(N, M
SCH’IID(N,M) 2 <Inax((]\f]\4))

1/2-6
) 1Al Al

1/2—6
) IAw s A ()l g
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Indeed, for any e > 0, according to Proposition 2.4 (with § = %), we obtain

HAN(U)HL‘l(R;L?(Rd))HAM(U ||L4(]R;L°°(]Rd))
ClAN(v)llo.1/ate [ Ans (W)l ar2tensate,

[AN(V)AM ()| L2mir2@ay) <
<

AN (0 () e ug) Apy (u) 22 R;2(Ray) <
< | An ()™ up) | za(rs oo ey | An (W) La(r; L2 (R4
< Ol AN (uo)lgar2-172+erayl| Anr ()]l 5p0.1/4+¢
< ClAN (o) |lpgar2temay | An ()| 50,1 /a4,

and

AN ()™ o) Aps (w)[| L2 (. 2 ray) <
AN (D(6)e™ o) | La (.2 (ray) 122 (W) || L2 (s Loo ()
< CIlAN (W (8)e™ ™ uo) | oo (r;12(Ray) | Anr (w) [lspar2te1/ate
< ClJAN (uo)ll L2 ey | Ans () [|a/2e1/ate.

Therefore, by interpolation, for all 6 € [0, 1], we obtain

AN (V) A (w)|| 2 (r; 2 (RaY) <

min(M, N) ) (1/2=0)(1-9)

max (M, N)

NAN () gosa-o+oasarol|Anr(w)l|gosa-o+oa a0

< C'min(M, N)z +001+9 (

and

AN ()™ uo) Ans (w)[| 2 (g, 2 ray) <

min(M, N) ) (1/2-9)(1-0)

max (M, N)

NAN (uo)l| 2(rayl| Ans (W) [l p0.00-00+00 /440 -

< C'min(M, N)z 001+ (

Choose § = g and 6 = i then

1 b 1
b(1—9)+6’(1+6) = b—f+i(1+e)
2
b_E+i+€ Sb_i
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It is then enough to take b = J + -5 and to set b’ = b(1 —6) +6(; +¢€) < 5 to obtain

1
2
AN (V) An(w)|| 2R 2 (Ray) <
min(M, N) >(1/2_5)(1_9)

max(N, M) AN (0) |0 | Anr (@) |0

< C'min(N, ]\4)%'~'6 <
and

AN ((t)e™ " Tug) Apy(u) L2 R;2(ReY) <
min(M, N) (1/2-9)(1-9)
max(M, N)

To conclude, it is sufficient to note that

1 1 5 € _ 1
Z_ 1—-@Q)=_- -4+ - >__
(2 ‘5>( )=3-5FTg237¢

and the inequalities (3.12) and (3.13) follow with dg = e.

Then, as for [18, Lemma 4.4], to prove Proposition 3.6, it is sufficient to establish
the following proposition:
Proposition 3.8. — For all b €]1,1] and § €]0, 3], there ezists a constant C > 0
such that for all dyadic numbers N,M > 1 and u,v € S'(R%)

d—
< Cmin(N, M)7* ( 1A ) 2y | A () | g

HAN(U)AM<U)HL2([0,1];L2(Rd)) <

. d—2 ( min(N, M
SCIHIH(N,M) 2 <Inax((]\[]\4'))

Finally, to obtain Proposition 3.7 and Proposition 3.8, it is enough to use [17,
Lemma 2.1] and Theorem 1.3.

1/2-5
) 1Al Al

4. The smoothing effect for the harmonic oscillator

4.1. Some preliminary results. — We start by establishing two preliminary
lemmas.
Lemma 4.1. — Let s1 and s9 be two real numbers.

(i) If max(sq,s1 + s2) < 1 then there exists a constant C' > 0 such that for all
u € L?(RY),

S1+s s
[ [\/ﬁ ' 2» (z) I]UHH(Rd) < CHUHLQ(Rd)v
(ii) If so > —1 then there exists a constant C > 0 such that for all u € H*~H(R?),
V=2, (@) ull 2y < Cllullgres-1 ey,
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(iii) If s3 < 1 then there exists a constant C' > 0 such that for all u € H* ~52(R?),
IVH™, (2)*2Jull 2 gy < Cllullygsr -2 may.

Proof. — To evaluate the regularity of the previous commutators, we use the Wey-
2
Hormander pseudo-differential calculus associated with the metric 1115;2 + %.

The class of symbols S(u, m) associated to the previous metric is the space of
regular functions on R? x R? which satisfy yagafa(x, )| < Cy plxyr=(e)mA.

Thus, we have (see [48, Section 18.5], [63] or [4]) that if a; € S(p1,m1) and ag €
S(p2, m2) then the commutator [Op(ai),Op(az)] is a pseudo-differential operator
with a symbol in the class S(u1 + po — 1,mg + mg — 1).

Here we will use that a(z, &) = (|z]? + |€]>)*/? € S(a, a).

(1) As a consequence, if max(s2,s1 + s2) <1

[\/ﬁsﬁsa? (x)7%1] € S(sg — 1,81 + 83— 1) C S(0,81 + 59 — 1).

Moreover, as recalled in [53], if ¢ € S(0, ) then for any s € R, there exists a constant
C > 0 such that

10p(@Q)ull prs—n(ray < Cllullgrs(ra)-
Thus, we can take s = y = s1 + s2 — 1 to obtain that
IVE™™, (@)™ ullaqgay < Cllull a1 aay < lull 2.
(73) Similarly
[V=A" (2)"%] € S(—s3 — 1,8, — 1) C 5(0,51 — 1),
and we can conclude as previously.
(7i7) We have
WH™  (2)"2VH ™" € §(=1,8,— 1) € 5(0, 55 — 1).
Then
IVE™ @)= V™ ull ey < Cllullz2ga),
and it is enough to replace u by vVH *17%24, to obtain the desired result. O
Lemma 4.2. — Let a € S(2¢,0). Then for all u € HY/?T¢(R%),

/Rd a(x) - Vu(z)u(z)dx| < C||U||3_[1/2+5(Rd)'
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Proof. — By duality, we have

(4.1)

/ a(z) - Vu(z)u(z)dz| < [lavllyz-cga) | Vully-1/2+cgay-
R4

We use again the Weyl-Hormander pseudo-differential calculus introduced in
the proof of Lemma 4.1. Since a € 5(2¢,0), we deduce that [lauly/2-cga) <

Cllullg1/2+e(may- Then we observe that [[Vully-1/24egay < Cllullgyi/24egay, Which
implies the result by (4.1). O

With these different lemmas established, we can proceed to the proof of the
smoothing effect.

4.2. Proof of (1.15). —
Step 1: Let us show that for any a < 1, there exists a constant C' > 0 such that
for any u € HZ=)/2(R%)

2

L2(R7)

< Cllulo-aragua) Re< /R d ["Z@ZH] u(:z:)u(:n)dx).

(42) 21— a)Hmla/QVu’

By Theorem A.1 with h = 1, we obtain, since V = iOp(¢),

) [Ta] =
x-V z-V
= ()~ 8 0G0)
P —c
— 20p ((5'; —a (é >'f+)z ) +ia(d+2) <f>;§2 —iaa+2) (:zxfo?'iP)
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Then, using that o < 1, we obtain

Re (/]Rd Op <<<‘gi -« (<§>a§2§)u($) u(:n)dx>> =
~ Re /Rd (@jfu + o V)z;aff V) u) dz
= Re /]Rd (Vu . V(<;;a) —a(x - Vu) div <<;>;:+2> — aw > dx
- L)

IS

—i—aRe/Rd <(a+2)w (d+2)mu> dx
> (1 —a)H<x>1a/2Vu‘ ;(Rd)+
—i—oaRe/Rd ((a+2)w (d+2)mu> de.

Thanks to Lemma 4.2 with ¢ = 0, we establish

x-& x|? .
(/R M Juuds|, | [ op (W)uudx( < Cllullp gy

‘/Rd I:z:I :z:aju u>d$ /Rd (w )dx‘ < Cllull3p o gay.

Thus by (4.3), for any a < 1, there exists a constant C' > 0 such that for any
ue HY 2(Rd)

Re</Rd [Zg,A]u( Ya(z )dx>>2 1faH mv ‘2

L2(R9)

R
and

)

- CHUH?{W(W)-

In a similar way, we have

xz-V |z|?
e ()
and therefore

Re(/}Rd [fﬂ;;,—\xﬂ u(x)u(a:))dm _ —Q/Rd Jili\u(m)\z do

> —CHUHi@wW(Rd)-

This implies (4.2).
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Step 2: We now prove that for any « €]0, 1], there exists a constant C' > 0 such
that for any 7' > 0 and ug € HZ~¥/2(R9),

(4.4) /0 ! | <x>1a V(e )| i

L2(R4)

dt < OT||uo ”i(%a)/?(Rd) '

Let us set u = e~ *H g, then we get

x-V
—1 —  H| u(t,z)u(t,z)dx =
L[] wearat.a
:/ M ta:d:c+z/ vV u(t, z) Hu(t, z)dx
R4 Rd

()« <:B o

:/ T - Vatu(t D) dx+/ e u(t, z) Opult, r)dx
Rd <fL'>a R4

(z)e
) ( /]R ) Z;U(t, z) u(t,:c)d$> .

Thus, thanks to (4.2), we obtain for 7" > 0,
L2(R9)

2(1 — ) /OT H <x>1a/2V(e_itHuo))
x - Vg T - V(e‘iTHuo)

< CT|uol|?, (- Re (i g — —iTHydy | .
> ”UOHH@ a)/2(Rd)+ e<Z/Rd <x>a ug <:C>0‘ e UQ a:)

Then, we can apply Lemma 4.2 with e = 1 — «/2, to deduce (4.4).

2

Step 3 : In (4.4), we choose a = 1 — 2¢ with € €0, 5[ so that we have

T
1 —itH 2 2
(4.5) /0 H<x>1/2_ev(e uo) HLZ(Rd)dt < CT|uoll31/2+¢ gay:

Using Lemma 4.1, we get

! 1 /2 itH, |7 <
/0 H( )1/2—€H ¢ uO‘L?(Rd)dt_

2 2
1/2 itH /2] pitH
<2 |m W-s o Ry A |

L2(Rd)
2
1/2 itH 5
32/ HH >1/2 ¢! UOHLQ(Rd)dwCTHUOHHI/M

dt

(R)
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Then, using (1.2) and (4.5), we obtain

g 12 1 it H
f e e
T .
SC/ H<x>1/2+eethuO’

0

2

L2(Rd) —

;(Rd)dt +C /DT H(_A)lm((a;;/z—eeimw) ‘

2

2

L2(R4)

< CT l[uoll31 /24 gay + C/OT Hv(<x>11/2€eitﬂuo>)

T 1 .
< OTuoll3p/24e(ray + o iz (e o)

< CT||U0H§_[1/2+5(R4)-

L2(R9)
2

L2(R4)

Therefore, we obtain

T
1 12 —itH, ||? 9
/0 H<x>1/2_EH i UOHLQ(Rd)dtgCTHUOHHUHE(W)_

And we can replace ug by H~/4=¢/2y4 to deduce (1.15).

4.3. Proof of (1.16). — Using Lemma 4.1 and (1.15), we get

d/2—2¢ 1 L H
H vH =t “0‘

d/2—2¢
/H eltHuo

L2([-m,m]xRd) —

L2([—7,m]xR%)

v el

= H<x>1l/2—e

L2([—7, 7] xR%)

< Olluollgga-1/2(ray-

Then, using (1.2), we establish

Hmd/Q—Ze ( <%)11/26 eitHuO) ‘

< Clluollpga-1/2(may-

L2([—m,m] xR%)
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And finally, using Lemma 4.1, we can conclude that

1 —2€, 4
md/Q 2 (ethuO)‘

H<>1/2— L2([-m,m]xRd) —

= H [T Md/HE] ¢"ug L2 ([~ ] xR9)

o [VE " (g

L2([—7,m]xR%)

< Clluollyya-1/2ray-

5. Random initial data and Sobolev spaces

This section is devoted to the proof of Theorem 1.1, which shows that the initial
randomized data does not gain any derivative in L?(R?) and does not enjoy any
better localisation property.

The proof of this result will rely on micro-analysis tools. We first step is to
establish the following statement which gives a precise description of the phase-
space localisation of the Hermite functions.

Proposition 5.1. — For all s > 0, there exist two constants C1,Co > 0 such that
for alln e N,

(5.1) CIX, < (=AY Phall ey < C2X3,

and

(52) X < 1) hl ey < oy

Proof. — Let us first prove this result in the particular case where (hy)p>0 is the

basis of the tensor eigenfunctions, since the argument is then particularly easy.
Using (1.2), we have

c(I(=A)2hnll p2(ray + [|(x) hn ||L2(Rd)) < AL = lhallygs ey <
( A)S/?2 bl g2 ray + ||<‘T>shn||L2(]Rd))v
then
C'l(=A)Phnll 2ray < Aj <
< C(II(=2)*"hn ]l p2ray + (= 2)(hn) r2ray + 1l 2 e ) -

But since the eigenfunctions are tensor functions, then h,(z) = ew"/l{n(a:), for some
0, € R, since this equality is true in dimension 1, and (5.1) follows. The proof
of (5.2) is similar.
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Let us now prove (5.1) in the general case. We set h = )\% and ®,(z) =

hd%hn()\nm) so that (—h?A+ |z —1)®;, = 0 and @l L2 (rey = 1. To prove (5.1), it

is sufficient to establish that there exists a constant C; > 0 such that for all h > 0,
D~ 8) 01 2y > O,

Let us proceed by contradiction and suppose that

(5.3) lim b (=)0 2 gy = 0.
h—0

By [14, Theorem 2], there exists a positive measure y € M, (R% x R?) such that for
any function a € C§°(R? x R?) |

Lim (a(z, h[V])®h, Pn) L2 (Ra)x L2 () :/ tr(a(z, §))p(dzds).
—0 Rd xRd

Let us recall that (z,£) € Supp(p)© if and only if there exists r > 0 such that for all
¢ € C5°(B(z,r) x B(§, 1)),
[, o ulds.ds) =o.
R4 x R4
By Proposition A.3, if a € C5°(R? x RY) with Supp(a) N{(z,&) : |22+ ¢ =1} =0
then for all N € N, there exists Ex € Op(T~2) and Ry € Op(T~®*D) such that
Ey o (=h?A + |z]? = 1) = a(z, h|V|) — BN TRy
Therefore
(a(z, h|V])Pp, Ph) 2 (rayx r2(ray = B THRN PR, Ph) p2(ra)x £2(R4);
then
[, alwou(dade) 0.
Rd x R4
And finally, we establish that
Supp(p) C {(z,€) : |z +|¢]* = 1}.

Again, by Proposition A.3, if a € C§°(R? x R?) with Supp(a) N {(x,&) : €2 =0} =0
then for all N € N, there exists Ey € Op(S—*) and Ry € Op(S~+1) such that
d
En oY |hdy|* = a(xz,h|V]) — BN Ry
j=1
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But according to [53] and (5.3), we get

d d
lim [(Ey o ]Z; 100, * @ B} gy ey < lim || By ; |10, " @] 2 ga)
d

,lllﬂ% H ; ’haﬂﬂj’sq’hHm(Rd) =0.

IN

Therefore
[, atwoutdzg) =0,
R4 xR4

and we establish that
Supp(p) C {(z,€) : [¢]* =0}
Then for a € C§°(R? x RY) we have

0 = [ WA+ [al ~ 10 Opy(a) T
Rd

1 - _
= 1 [ R e~ 1 Om(@)enTr 4 h [ Opu(R)BT,
1 JRd Rd
Thus, we deduce that for any function a € C§° (R9),
(5.4) / (£0za — x0ca) dp(x, &) = 0.
Rd xR
Let (z,&) € R% x R? and set for ¢ € R,
x(t) = x cos(t) + £ sin(t),
&(t) = £ cos(t) — xsin(t),

e i(t) = £(t) with z(0) = ,
{é(t) = —a(t) with £(0) = €.
Using (5.4), we get that for all t € R and a € C§°(R? x RY),
/ a(x cos(t) + &sin(t), € cos(t) — xsin(t))du(z, &) = / a(x,&)du(z,§).
RIxR4 RdxRd

Therefore if (9, &) € Supp(p) then for all r > 0, there exists a € C§°(B((zo, &), 7))
such that for all ¢t € R,

/ a(z cos(t) + Esin(t), £ cos(t) — xsin(t))du(z,§) # 0.
RIxR4
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However
Supp(a(x cos(t) + € sin(t), € cos(t) — z sin(t)))
 {(@,€) € RY x RY/(w cos(t) + Esin(t), € cos(t) — wsin(t)) € B((wo, &),7) }
C B(xg cos(t) — & sin(t), 2r) x B(xgsin(t) + &y cos(t), 2r),
and therefore, for all ¢t € R, (zg cos(t) — &osin(t), zo sin(t) + & cos(t)) € Supp(u).

But for & = 0, 23 = 1 then xgsin(t) + & cos(t) = zpsin(t) = 0 is impossible
and therefore the estimate (5.1) is proved by contradiction. The proof of (5.2) is
analogous. O

Recall the Paley-Zygmund inequality: Let X be a random variable in L?(9), then
forall 0 < X\ <1,

2 E(X)?
E(x?)

(5.5) P(X > AE(X)) > (1-))

For a function y € C§°(R?) such that 0 < x < 1, with y(x) = 1 if |#| < 1 and
x(x) = 01if |z| > 2, we define

)\2
2 _ 2 n 242
A= S ()l e

neN
H
Sy = I (72 ) wolruy
M = sup Sy.
NeN*

Let us turn to the proof of Theorem 1.1.
Lemma 5.2. — For all s > 0, we have

P(w € : ]31615* IIX(%)ugJHHs(Rd) = +oo) € {0,1}.

Proof. — The random initial condition can be written uf = ZXj(w), where
Jj=0

(X;)jen is a sequence of independent random variables satisfying X;(w) € H*(R?),

w—almost surely. Therefore, we have

sup
NeN*

(72 8]y =
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if and only if for all K € N,
H
X(W) ( 2 Xj(w)) HHS(Rd) =+,
J>K

so if we put F; = o(X;, Xj41,---) we have that

H
{w €Q : sup ||X<—2>u‘(j||Hs(Rd) = —1—00} € ﬂ Fk.
N N* N
€ KeN~

sup
NeN*

H
As a consequence, the set {w € : sup Hx(m)u‘é’HHs(Rd) = —i—oo} is an element
NeN*

of the asymptotic o-algebra and the lemma is proved by the 0-1 law. O
Lemma 5.3. — For s >0, if Y. |cn|?A25 = +o0 then
neN

H
P<w€Q : sup X(—)uw s(Rd :—l—oo):l.
s () e e

Proof. — Recall the notation M = sup Sy. Thus by Lemma 5.2 it is sufficient to
NeN*

establish that

(5.6) P(M = +00) > 0.

Thanks to (5.1), we get
H
2 2
B(5%) = B(Ix(553) w0l e )

> p (Zx (32)x (32) o onrmer | d(—A)S(hm(—A)S(hm)dx)

A2 s
5 (Z % (N) eal2lgn (@) P (=) (hn>||iz(Rd)>
neN
> C10']2\7.

Therefore, thanks to the Zygmund inequality (5.5) with X = S%;, we establish

P(M2 > CIZU?V> > P(S?v > (312‘712\7) E(i?\/))

P(S?V >
EE(HX () uonis(Rd))Q
4 E(HX(%)UoH‘}F(Rd)) '
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Then, thanks to (5.1), we have

H
(I ()l oy ) <

2 2 o
< B( XX (G entm 90()gm(@) /R () () (=) ()

n,m

2

+E(Z (j\\:g) (j\\;)cncm In(w )gm(w))Q

A2 a2
<CB( 3 (GG xR e

ni,n2,n3,nq

M(=2) (hna) | 22 ey 1 (= A)* (o )| 2 Rd)H(*A)s(hns)Hm(Rd)ll(*A)S(hm)HLz(Rd))

+CE(ZX el )2

< C’gajlv.

2
Croy

1C?
Therefore from (5.7) we deduce P(M 2> ) > 161 Finally, using the mono-
2

2

1C
tone convergence theorem, we obtain P (M = +o00) > Zﬁl’ which implies (5.6). O
2

We are now able to complete the proof of Theorem 1.1. Indeed, let us prove it
by contradiction and assume that P(w € Q : uf € H*(R?)) > 0. According to
Proposition A.6,

H
Vu € H5(R?), sup X(—)u srdy < Cllu|| gsray,
(RY) Sup X 77z ) ull s ey [lwll 75 (e
and from the latter inequality we deduce that
H
P(weQ ;. sup (—)u‘“ s(Rd <+oo> > 0.
NGN*HX N2 olla (R9)
Therefore
P(weQ sup Hx< )uOHHs Rd)—+OO) <1

which contradicts Proposition 5.3.

As a consequence, we have proven that if ug ¢ H*(R?) then u¥ ¢ H*(R?). The
fact that (z)*u% ¢ L?(R?) is obtained similarly, and this concludes the proof of
Theorem 1.1.
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To finish this part, we evaluate the Sobolev norm of the initial data. This will

establish that Theorem 1.2 will hold true for supercritical equations with large initial
data.

Proposition 5.4. — Let 0 > 0, ug € H°(R3) and s > 0. Assume that for all
n €N,

Alen]? <1
then for allt > 0,

H _H_
u(u : ||X(W>UHHS(R3) < t) <é 2= (Z)u u0 13,5 (r3)

Proof. — Using that —In(1 +u) < —§ for all u € [0,1] and the Markov inequality,
we obtain

H
:U’<’U/ c HU(RS) : HX(W)UHHS(R?’) < t) —
= P(w eN . einx(%)“g”isms) > 6,,52)
< etzE(e—nx(;g)uo ||HS<R3>)

<11 E(e—x2($§)>\25|0 X

neN

O
Remarks : For example, if ug ¢ H*(R3) and A\2%|c,|?> < 1, ¥n € N, we obtain

(4)
that for all ¢ > 0,

H

lim M(Uo € H(R?) :Hx(ﬁ)u(ﬂ

N—+oc0

ey S 1) =0.

This does mean that the Sobolev norm of the initial data is not small.

(74) For example, for € < 1, we can choose ¢, = )\%ﬁ and obtain for t > 0,

M(Uo e H(R?) : Hx(%)ud

2 127 2
5 (RY) §t) §exp(t —C'¢“In* N )N_>—+>OOO
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but H’U/OHHU(RS) =C"e< 1.

6. The fixed point argument in dimension d = 3, global existence, and
scattering

Let us introduce the following equation:

0
(6.1) 28—? — Hu = rcos(2t)|ul*u, (t,z) € R x R?

u(0,x) = up(z).

We will show that this equation is locally well posed. Then, thanks to the lens
transform we will be able to show that (1.3) is globally well-posed.

6.1. Some nonlinear analysis. — In this part, we establish the estimates which
will be used to apply a fixed point theorem.
Lemma 6.1. — There exists V' < % such that for all § > 0 and K > 1, there

exists a constant Cx > 0 such that if N1 > NQH'(S and No > N3 > Ny then for all
70 /
UL, U2, Uz, Uqy € X

< CgNy HHAN () [0
7j=1

‘ /R A () Ay (1) Aoy (03) Ao, () <
X

Proof. — We begin with the case u;(t,z) = c;(t)hy,(v). We have

‘/ AN, (u1) A, (u2) A, (us) AN, (ug)| =
RxR3

SN
:‘/RXjol;[lw( )0 ()il
)\2

< ITo) [lea-catat] [ (o) toras



46 NICOLAS BURQ, AURELIEN POIRET & LAURENT THOMANN

Then by Lemma 2.13 and Proposition 2.4, we deduce

(6.2) / A, (1) A, (u2) A, (u3) An, (ua)| <
RxR3
A2 4
< CxNy ™ de *2 ) [T sl caey
e lAF j=1
< CxN{ ¥ H AN, (ug) || Lo, 22 (r3))
j=1
4
< O Ny TT 1A, () o
j=1
For the general case, let u;(t, ) ch k(t)hi(z), then by (6.2)

k>0

‘ / ANy (u1) An, (u2) A, (ug) An, (usg)| <
RxR3

>

k1,k2,k3,ks>0

4
<CrNTE ST T AN, (e oo

k1,k2,k3,ka>0j=1

< CK]V{KJr12 Z H ||AN Cjk; hk )H—o b
k1,k2,k3,ka>0j=1

/R i, AN, (€1, Prky ) AN, (€2, 10 Py ) AN (€315 s ) AN, (Ca ey Pokey)
X

Then we have

Z (AN (ijkjhk'j)szO,b’ Z Z {7+ An) (C]k hi; )HL2 (R;L2 (R3))

k;>0 k;>0n>0
= D [+ M) (UJ)HLz (R:L2(R?))
n>0
= HujHQYO,b'a
which concludes the proof. O
Proposition 6.2. — There exists b < % such that for all b > % and s > %,

there exist two constants C' > 0 and k > 0 such that for any v € X* and all
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N3 < Ny < Ny,
(6.3) AN, (V) AN, (V) ANy (V)| s -0 < ONP ”HUH—sb

Proof. — By duality, it is sufficient to show that there exists a constant § > 0 such
that

[ A8 @)An (002 (w) £ ONTM ol slo] oo
RxR

Thanks to Lemma 6.1, we only need to treat the case where M < N11+6.
e Case N3 < M < N!*°. Using (3.12), we obtain

/ Ay (0) A,y (0) Ay (1) A s () <
RxR3

< [JAN, (V) AN, (V)] L2(; L2 (R3)) [ A 0 (W) AN, (V) || L2(R; 2 (R3Y)

N _s. N3 _
< (J\szs)”M(E)”2 ‘YM)”2 2N AN, (0) g0 AN (0) o 1A N ()l | Anr (w) [ o0
Ny 1/2—6 N3 1/2—6 1/2+46—s M 3
< (GG MNaNg) B () ol Sl e

_ _ — )
< (NpNg)! =M H2H NP0 g3 )|
<M~ 6M1/2 s+(1+s)6N1/2 S+25|| H3 stwH——s y

< MNP Sl g

e Case M < N3 < N11+5. Using (3.12), we get

/ Ay () Ay (0) Ay (0) Ay (w) <
RxR3
< [[AN; (V) AN, (V)] L2(R; 12 R3 [An (W) ANy (V)| L2 (s 2 (R3))

N
(JVQJW)”Z*&(]\,T)”2 () F AN () gos1AN, (0) o | AN, (v) gos 1A (w) o

)1/2—6(

Ng)

M
o [ )

< NaM( m> |

N3N,

< M—§N2173N31/2+25( 1/24s— §||vH3

spllwll g

Nl)
< M76N11—25+35HU||Y3,1>||wHy*S’b"

which concludes the proof. O
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Proposition 6.3. — There exists b/ < % such that for all b > % and s > %, there
exist two constants C, k > 0 such that if for some A > 0, we have for all N,

AN (€ ug) || 2 (| ] oo (r2)) < AN S

then for all v € Ys’b and all N3 < Ny < Ny,

(6.4) 12N, (0) AN, () A, ((E)e™ o) [l oo < CNT([J0]3s + A7),

(6.5) 1A N, (V) A, ($(E)e ™ o) Any (0) g < ONT ([0l +X%).

Proof. — We show (6.4), the proof of (6.5) being similar. By duality, it is sufficient
to show that there exists a constant § > 0 such that

[ )8 A, (90 o) Aps(w) <
RxR3

—k 0 3 3
< ONTEM (ol + Xl
Thanks to Lemma 6.1, we only need to treat the case where M < N11+5.

e Case Ny < M < N11+5. Using (3.12) and Proposition 2.3, we get

[ )8 A, (90 u0) Aps(w) <
RxR3

< ANy (V) A (W) r2(r; 2o |1 AN (W) e P o) | 2= m) poo o) |1 AN, ()| Lo (o ] 22 (R3))

1/246, N2 1 /9 i
< N,/?* (M)l/2 21 AN, (0) g0 [1AN, (v) o [| AN (e tHUU)HLQ([—mW];LOO(Rg’))HAM(w)HyOvb'

1246, Na\1/9_5, M _1/6
< NG N N o B

< Ny~ M PPN NG O] 2 |-
_ _ — P -
<M 6N21 le 1/2+(3+s) N3 1/6/\HU||2Ys,b||wHyfs,b/

< NP )12 o
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e Case M < Ny < N11+5. Using (3.12) and Proposition 2.3, we get

[ )8 0, (90 o) Aps(w) <
RxR3

< AN (V) A (w) | r2(r; 2o | AN (0 () e o) | 2 (= rm) Lo o) |1 AN, ()| Lo (o )22 (R3))

)2 AN, (0) gon | AN (0) o 1A Ny (7 0) | 2. e oo iy 1A 01 () [0,

M M

N2 N1N2
< N2_1/2—s+6M1+stsN3_1/6>\||v||2ys,b HwHy—sab/

< M1/2+5( )1/276(

)Ny N0l ] e

1/240 71— —1/6
< Ny PPN N O ol 2 oo
— 1/2—s+26
< MNP ol 2 e
whiv ]

Proposition 6.4. — There exists b < % such that for all b > % and s > %, there
exists a constant C' > 0 such that if for some X\ > 0, we have for all N,

AN (€™ uo) | pa(rmpzoo@sy < ANTYC and || [ ug)? | pa(r s (m2)) < A2
then for all v € Ys’b,
(6.6) o ($()e™ " u0) (e~ ug) |- < C(Jo]Es + A7),
Proof. — Using Proposition 2.5 and Proposition 2.3, we get
o (¥ (e u0) (Y (e ug) | o v <
< (e ()e M ug) ((t)e™ o) || 15 repes (m3))
< (W (®)e™" ) (v()e ™ o) || 145 ([ r s (m3))
< [0l poo e mipee @) 1€ w0l F(p .o m3yy +

10l L2 (o mfszoo @3 | (€T 0] || 4 (= ] 10 (B2
< N ollgen + AP0l L2 @ows o (ms))
< Cllvls +X%),

hence the result. O



50 NICOLAS BURQ, AURELIEN POIRET & LAURENT THOMANN

Proposition 6.5. — There exists b/ < % such that for all b > % and s > %, there
exists a constant C' > 0 such that if for some X\ > 0, we have

1€ w0 ) (| L (s (m2)) < AP
then for all v € Ys’b,

(6.7) | (p(t)e™ ug) (v(t)e aug) (v(t)eHuy) |

ey S ON.
<ot <

Proof. — Using Proposition 2.5, we get

[(@(&)e™ " u) (v (t)e M uo) (v(t)e™ M ug) [|gowr <
<| (‘/’(t)e_itHUO) (¢(t)e_itH“0) (Wt)e_itHuO) HL1+6(R;H5(R3))
< Ol [ o) || La((rm,m) 7 (R3))
< ON,

hence the result. O

Proposition 6.6. — There exists b < % such that for all b > % and s E]%, 1], there
exist C > 0,k > 0 and R € [2,400[ such that if for some A > 0, we have for all
N>1,

|uoll 23y < A,

HAN(eZtHuO)HL‘I([—W,W];L‘X’(RS')) < )\N_l/Gv

AN (€™ ug) || r(m mpveaqrey < AN,
then for all v € Ys’b and all N3 < Noy < Ny,

(6.8) 1AN, (¥(t)e™ o) Ay (V) Ay (V) [l go-or < ONTEON + [J0l3cs).

Proof. — Let § > 0 be small enough, to be fixed later.
1—s
Case N; > (N2N3)1=s-45. By duality, it is sufficient to establish

/ A, (D ()™ ug) A, (V) Ay (0) Anr(w) < CNTM 0wl v (N + 0] 30)-
RxR3
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Thanks to Lemma 6.1, we only need to treat the case where M < N11+6.
If N3 < M then using (3.12) and (3.13), we obtain

/ A, ((t)e™ ug) Ay, (V) An, (V) A (w) <
RxR3
< AN, (¥ (t)e " ug) Ay (v) | 2 r.22®3) | AN (V) Ans (W) || L2(Ro12(R%)

Na /a5, N3 1o
ﬁj)l/z 6(M3)1/2 21 AN, (o)l 211 A (0) o0 | A, (v) o | Anr () [ o
M

Ny N3 1725 s
N ) (m) M AN, ()l | AN (0) o0 | Anr (W) | -
< M_‘SNféNstHa(N2N3)1_S/\||U\|2ys,bHUJIIY—s,b/

< MﬁaNl_é)\HU”%s,b”’wHyfs,b/-

< (N2N3)1/2+5(

< (NoN3)l/2H0 (21275

Then, if N3 > M, using (3.12) and (3.13), we obtain

/ A, (D(E)e ™ 1g) Ay (1) A, (0) Agy (w) <
RxR3

< [|AN, (Y()e ™ ug) An, (0) || 2w r2 @2y 1 AN (V) Ans (W) || 2(R: L2 (R3))

Ny s M _

E)W 6(@)1/2 5||AN1(U0)||L2HAN2(U)Hy0ﬁ||AN3(U)||y0»b||AM(w)||yo,b/
Notos M1 s, M

EWQ () () AA N, (0)[[5s 0 [ ANz (V) [0 | A s (w)
< M‘5N1‘5Nl‘1+5+45(N2N3)1‘5)\HUH2YSJ7kuy,&b,

N3 N> N3
5 A8
< MONTON ol 2 ]

S (NzM)l/Q-i-(S(

< (NQM)1/2+6( Hyfsvb/
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Case N; < (N3N3) s, Using Proposition 2.5 and Proposition 2.3, we estab-
lish
800 (e 110) Ay (6) Ay () s <
< AN, (@) ug) Any (V) AN, (V)| L1+s s (m3)
(

< HANl e_itHuo)AJ\@(U)AN3(U)||L1+5([—7T,W];H5(R3))
2
itH
< lam @ vl angaen L) H 12N, ()] 220 ;o)

+ AN, (€™ o) | (s o (m2)) 1A Ny (0) | oo (o it (@39 | AN (0) || L2 (s ()
+ AN, (€ o) || (s noo (&2)) AN (0) | 22— e 6 R3)) | AN (V) | Loo (]2 (R2))
s—1/4 9__L__ 2 —1/6 2
SNy U (NeN3) 8 B A ol Sap + Ny A [0S

(1—s)(s—1/4+49)

T 1-s—45 9 I _sa— —
< (N2N3) 1=s—49 (N2N3)8 +35 ]\71 6/\‘|U||2Ys,b _|_N1 Uﬁ)‘”””%s,b,
with
(I-s)(s—1/4+6) 9 1 L
1—s—46 8 1426 -
1 46(s —1+0) 9 1
—g_— 4§ 4 7 -
STATOtY T e s irw f
ORI B B
T8 1-s—40 1425
1
= _g + 0((5) < 0.
And finally, the proposition is proved with R = w 0

6.2. Local well-posedness of equation (6.1). — Let A > 0 and define Ey())
as the set of functions ug € L?(R3) which satisfy

luoll 23y < A
I u0]® | 2 (om0 (m3)) < A2

(6.9) e ol | (o mrlipes oy < X°

AN (€™ ug) || (oo ry < AN YO YN > 1
LIAN (€ o)l La( g mpwsaqreyy < ANV VYN > 1
where R > 2 is fixed by Proposition 6.6.
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Proposition 6.7. — Let % < s < 1 then there exist C > 0 and b > 1/2 such that
if ugp € Eo(N\) with A > 0, then for allv € X
t
o) [ ety coss)its)e*Mua + o (s)e ™ uo + o), <
0
< O+ [vles)

Proof. — For all b > %, using Proposition 2.6 and Proposition 2.7, we obtain

t
Hw(t) /0 e it=s)H COS(QS)@Z)(S)W(S)e_iSHuo + U]Q(z/)(s)e_iSHuo + 'U)dSHYs,b <

< O cos(28)h(s)|1p(s)eHug + v|? (¢ (s)e *Hug + v) [[5ps.0-1
< Cll(s)e g + v (0(s)e o + )| oo

Then using (6 3), (6.4), (6.5), (6.6), (6.7), (6.8), we establish the existence of an
integer 0’ < 5 ! such that for all ug € Eo()),

[l (s)e™"* g +o* (W (s)e™"* Mg +0) || gev < OO + [[0]3e,0)-
It is then sufficient to choose b=1—b" > 5 and the proposition is proved. O

Proposition 6.8. — Let % < s < 1 then there exists a constant C > 0 and b > 1/2
such that if ug € Eo(X) with A > 0, then for all v € Y?b

t . .
Hw(t)/ e~ =9 og(25) 1) (s)]w(s) Ye sHy, —l—’U‘Q(LZJ(S)B_ZSHUO +v)dsH7 y <
0
<O+ IIUH—S b)-
Proof. — Let w € X" such that w][_Tﬂ = v then
t
Hd}(t)/ e ¢o5(25)) (s)]w(s) e~y +v}2(¢(s)e*“Huo +v dSH—sb <
0
t
< ||l (t) / eI cos(2)0b(s) |0 (s)e g + w|*((s)e " Tug + w)ds||es
< OO+ flwl..0)

for all w e X°°. O

In a similar way, one could prove the following result:
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Proposition 6.9. — Let % < s < 1 then there exists a constant C' > 0 and a real
b > 1/2 such that if ug € Eg(N) with A > 0, then for all vi,vs € Y?F’b

t
H@D(t)/ e ¢o5(25)) (s)]w(s) e Hyy + 0y ’2(1/1(5)6_i8Hu0 + v1)ds
0

t
—1(t) / e = cos(25)3h(s)[1h(s) ”Huo+v2!2<w(s>e—“Huo+v2)dsHYs,b
T
< Cllor = vallgen (X + lonlZs + llv2l3en0)-

Theorem 6.10. — Let % < 8 < 1 then there exists a constant C > 0 and a real
b > 1/2 such that if ug € Ep(\) with A < ﬁ then there is a unique solution to the

equation (6.1) with initial data ug in the space e *Hug + B (0, %\/g)
T
Proof. — We define

L(v) :==

t
— k() / e = ¢o5(25)) (s)]w(s) e Sy + v(s)f(w(s)e_“Hug + v(s))ds,
0

u = e~ yq + v is the unique solution to (6.1) in the space e~ uq + B+:»(0, R)
T

if and only if v is the unique fixed point of L in space Bys,b(O, R). According to

T

Proposition 6.8 and Proposition 6.9, there exists a constant C > 0 such that

L)1z < C(A3+Ilvll—sb)

[L(v1) = L(wa)ll e < Cllvl—vzl\—sb(AQJrllle! 2o ¥ v2ll%s0):

. 1 . . 1 1
Thus, if A < o then L is a contraction of the complete space By;b(o, i\g) and

therefore has a unique fixed point. O

6.3. Global solutions and scattering for the equation (1.3). — Thanks to
the lens transform and the result of Theorem 6.10, we are now able to establish the
existence of global solutions for the equation (1.3). We also prove the uniqueness of
the solution and then show that this solution scatters at ¢ — +o00. Recall that the
set Ep(A) is defined in (6.9).

Theorem 6.11. — If 3 5 <8 < 1 then there exist two constants C,c > 0 such
that if ug € Eo(\) with A < \F then there exists a unique global solution to the

equation (1.3) with initial data ug in the space e ug + Bxs(0, § &)
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Proof. — Let u be given by Theorem 6.10 and define

1 3/2  (arctan(2t) x ilz|?t
Ul(t,x) = (7) U , e1+4t2 |
\/1—|—4t2 2 ’/14—4752

According to Section 2.1, since u is a solution of (6.1) on [—7/4,7/4] then U is a
global solution of (1.3).
Thus, to obtain the theorem, it suffices to notice that

( itA )(t, z) < 1 >3/2( aH ) (arctan(Zt) T > i\i\j;
e u Y U) = | —F//7—— e u , e ,
" V1+4e2 0 2 VIt a2

and to use Proposition 2.9. O

The existence of the solutions being proved, one with analogous estimates, one
can show that the solutions are unique.

We then prove that the constructed solutions scatter for t — 400 and t — —oo.
Theorem 6.12. — Let U be the unique solution of (1.3) constructed in Theo-
rem 6.11, then there exist L, L_ € H*(R3) such that

lim [|U(t) — € (uo + Ly) | o (rsy = 0,

t——+o0

(6.10) : itA

Jim [U(0) = ¢ 0+ L) ey = O
and

i (e AU () = (w0 + Ly ) [l ey = 0,
(6.11) . —itA

im [|leT AU (1) — (uo + L-) [l sy = 0.

Proof. — Let us treat the case t — +o00. In the following, we set T'= 7. We have
shown that

—it(t) /O e =9H co5(28 )1 (5)|1h(s)e ™ Hug + v(s) |2 ((s)e ™ Hug + v(s))ds € X5

hence by Lemma 2.8,

— ie_itH/O " cos(2s)1(s) |1 (s)e ™ ug + v (s) (¢ (s)e Hug + v(s))ds

€ C°([-T, T} H*(R?)).
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And therefore, there exists a function L € H*(R?) such that

t
. o —itH isH —isH 2 —isH
th—%l“ L —ike /0 e** cos(2s)Y(s)|(s)e ug + v(s)[*(Y(s)e ug + U(s))ds‘ HORE)
t
T wHy isH . —isH 2 —isH
_th—%l“ e L m/o e"*7 cos(2s)Y(s)|(s)e uog +v(s)|“(¢(s)e uo +v(s))ds‘ HoRY)
t
= lim ||TH L — m/ e cos(25)1p(s)[vp(s)e *Hug + v(s)|? (¥ (s)e *Hug + v(s))ds‘ .
t—=T 0 Hs (R3)

=0.
But for t € [T, 711,

u(t) = e Mty —ike /t esH cos(23)w(s)|1/1(s)e_iSHuo+v(s)\2(¢(s)e_iSHuo+v(s))ds.
0
So, by (2.6), we obtain

U(t) = e™Pug+
arctan(2t)
2

+elta { — i/@/ " cos(28)1h(s) [ (s)e ™ Hug + v(s) > (¥ (s)e *Hug + v(s))ds
0

= ey + AR ().
Then
lim |[F(¢) = Lt|lys®s) = 0,

t—+o00

with L, = eTH [, ¢ #5(R?), which proves (6.11). Then we have

: itA itA _n
Jm [[e"2EF () — " Ly llgsgsy = lm [[F() = L[l gsee)
< ] — s =
< € i [F() ~ Ll =0
hence (6.10) follows. O

7. Estimation of the regularity of the random initial data and proof of
Theorem 1.2

7.1. Estimation of the regularity of the random initial data. — In this
section, we estimate the regularity of the random data by proving large deviation

type estimates. In particular, we establish that uy € |J Eo()\), for almost any w €
A>1
(recall that Ep(\) is defined in (6.9)).
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For A > 0 we define,
Oy = {W € ¢ {lu§lre ey < A}V P ug T | aqommms ey < A%}

ﬂ{ 1™ 01 | (e a2y < A}

(7.1) N {HAN( US| L (s poemsy) < AN 1/6}
N dyadic
N {HAN( U LR ([ s my) < AN 1/4}}
N dyadic

and the aim of this part is to prove the following theorem:
Theorem 7.1. — There are two constants C,c > 0 such that for any A > 0 and
all ug € HO(R3),

cA?

UOHHU(RS)

We start by establishing Wiener chaos type inequalities for complex Gaussian
random variables.
Proposition 7.2. — Assume that g, ~ N¢(0,1) are independent random variables,
then there exists a constant C > 0 such that for all ¢ > 2 and all sequences (¢p)n €
C(N), (cnm)nm € L2(N x N) and (cpmk)nmr € L2(N x N x N),

T3 | X engnl@)], o < CaF [3 lenl?
neN neN

w0 | 3 annim@),,, < W

(75) Z Cn,m,kgn(w)gm (w)gk (w)} La(Q < Cq% Z ‘Cn m k’2
n,m,keN n,m,keN

Proof. — The bound (7.3) is the Khintchine inequality, and we refer to [21] for a
proof.

Since the random variables g, are independent complex Gaussians, by [71, Propo-
sition 2.4] (Wiener chaos estimates) there exists a constant C' > 0 such that for any
q=22,

@6 | X enmomn@on(@)|, o < Ca| D cnmon(@lom()

n,meN n,meN

£2(9)’
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Next,

2

L2(Q)

| S cnmon(@lom()

n,meN

= Z CnymCn/ m' (gn(w)gm (w)m)

n,n’ ;m,m’eN

D DR I EE SN I EED DR I E SR

n=n'=m=m’'eN n=n/,m=m'/eN n=m,n’=m'/eN n=m/,n'=meN

Then

>

n=n'=m=m'eN

> lenal*E(lga(@)[*)

neN

> lenml®,

n,meN

o (o0 ) ) N )|

IN

and using that E(g,(w)?) = 0, we obtain

>

n=m,n’=m/€eN

e (1) 5 N ) | =

=3 lennllcmml E(gAwVW)

n,meN

= Z ’Cn7n’2E (‘gn(w)’4)

neN

< Z ’Cn,m‘27

n,meN

thus (7.4) is proved. We can proceed in the same way to obtain (7.5) since the
inequality (7.6) is true for any product of random variables. O
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We now prove Theorem 7.1. By definition (7.1) of the set 25 we have

PQF) <P (weQ : [[ufllyems) > A)
+P(w e | [ ug]? | pam ape ey > A%)
+P(we | [e"ug]? |24 ()i (R3)) = A%)

+p| U {weQ AN (EHU) | s (oo w5y = AN 1/6}
N dyadic

+ P U {UJ S Q : HAN( tH w)”LR 7r,7r];WSv4(]R3)) Z AN871/4}
N dyadic

so it is enough to establish the bound (7.2) for each of the terms. Let us carry out
the proof for the second and the fourth term (for the other terms, the approach is
similar).

e Case | [ ug]? || a(—n s (r3)) > A%, Since s €]3,3 + of, it is enough to
prove the following lemma:
Lemma 7.3. — For any € > 0, there exist two constants C,c > 0 such that for

any A > 0 and any function ug € H°(R3),

cA2
P <w cqO - H[ itH w] HL4 (o o +1/2-2¢(R3) > A2) < Ce e OHHU(RS)

Proof. — Note that it is sufficient to prove the estimate for A > C|luol|yo®s)-
Thanks to the Markov and Minkowski inequalities, we obtain for ¢ > 4,

P (w ISV H[ itH w] ||L4 ([~ m];Ho+1/2-2¢(R3)) = A )

= P(we : [HP MR g > A7)

< ATHE, (| BOEVA TG 2 e
:A72qHHU/2+1/4 6[ itH w] H Q; LA ([—7,w]; L2 (R3)))

< A_zq” Ha/2+1/4—5[ it w] HL4([—7r n};L2(R3;L9(Q)))"
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Then with (7.4) we get

H Hcr/2+1/4 e[ itH W} ||Lq(Q)

_ H Fo/2+1/4—e [ Z e“(ﬁl“%ﬂ)cncmhn(x)hm(x)gn(w)gm(w)} ‘

n,meN Laty
< H Z eit(A%+/\ﬁq)cncmHO/2+l/4—e [hn(:r)hm(x)]gn(w)gm(w) )Lq .
n,meN @
<Cq | D lenllem 2| HO2HA [hy(2) hn (2)] 2,
n,meN

By the triangle inequality, we obtain

P (w E Q N H[ itH w] HL4 [ 7T7T] ’H<7+1/2 26(R3)) > A )
/2
< o/2+1/4—€ q
_< ) Hn;NW el H i N ‘LQ( —m,w); L1 (R3))
Cq - e a/2
_CC9>(ZI%W%WH”““wmmwuw%mﬁ-
n,meN

Then thanks to Proposition 2.12 with 6 = €, we deduce that
| H @ ()2 ) < Comax(hn, A0
< C'max(Ap, A )*°

And finally, we have

P(w e M1 | gy sy = A2) <
Con g q/2
q o
< (A?> > lenleml? max(An, Ap)?
n,meN
< (CCIHUOH%J(RS))q
S\— e |-
Then it is enough to choose g = W > 4 to conclude. O
w HO (R3)

e Case |Ay[e!*H UGNl a((—m ;oo m3Y) = N 1/6A. Let us start by establishing the
following lemma:
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Lemma 7.4. — For all p1,p2 € [2,+00[ and € > 0, there exist two constants
C,c > 0 such that for all A >0, N > 1 and up € H°¢(R3),

P (w SRUN HAN(B“HU((A]))||Lp1([77r,7r];W61P2 (R3)) = AN—1/6_0+2€> <

(,A2

HAN<uO)“,HO. c®3)

< Ce

Proof. — We replace ug by An(ug), therefore we are led to prove that

cA?

P (Ld cq - ||A/]V(eitHu6J)HLPI([—TrJr];WEvP?(H@)) > AN_1/6—0'+26) < Ce HuoHHg c®3)

As for Lemma 7.3, it is sufficient to prove the estimate for A > C/|luol|3o—c(r3)-
Thanks to the Markov and Minkowski inequalities, we obtain for ¢ > p1, p2,

- <N1/6+026Ew(”A/]V( ltH )HLpl [—71— 7_(] Wes pQ(RS)))>q

p (w € Q| ANE T ug) | Lor (—m e ey > AN 1/6_‘”26) <

A

HHE/QAM )17,

N1/6+a 2¢
),LP1 ([—m,m]);LP2 (R3)

€/2 itH uv
HH/ A?V( * )HLm [ ﬂ—ﬂ-]) LPQ(]R3) Lq(Q)‘

("
(Nl/m(, )

But using (7.3),

| H2 A ()| oy < HZ¢ JAne ’”"Cnhn@)gn(“)hq(m
neN
< | Z ¢ APCE Zt}‘"cnhn(fv)gn(w)‘m(m
< C\/a Z d)z )\26| n|2|h ( )|

An~N
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Then, using (2.9) and (2.10), we obtain
[ H 2 AN (€ )| o ([ ]y L2 (82):20(02) <

/
<ovi| X ()N e 2o )

LP1/2([—m,m]);LP2/2(R3)

SC\@ Z ¢2 AQg‘Cn‘QHh (z )”Lpz(RS

An~N

A2 | g
<Cva,| 3 PN el

An~N

2
< OygNTomere 1Y ¢2(%)Ai(“*)|cn!2

MmN
< OGN MY Al () || 340 (r3)
< CVaN = V2 g o r3),-

Finally, we have for all ¢ > p1, pa,

- <C\/§|Uo||we(R3)>q
- A

P(W € Q | AN (€M ug) | Lo (o mpiwena (re)) = AN 0+2€) <

2
It is then sufficient to choose g = <40”u0|’\(3)> > p1,p2 to prove Lemma 7.4. [
HO (R

Then for ps = % + € , we have
WeP2(R3) < L°(R3).

Hence for all p; € [2,+o0[ and € > 0, there exist two constants C,c¢ > 0 such that
for all A >0, N > 1 and ug € H° ¢(R3),

cA2
P (UJ cq - ||AN( th )HLPI (] Lo (B3)) > AN~ 1/6— 0’+26) < Ce HAN(uo)HHg c®3)
Then we can choose p; = 4 and use that HAN(U’O)H?—[G—€(R3) < N*QEHuOH%G(Rg) to

obtain for any € > 0 the existence of two constants C, ¢ > 0 such that for all A > 0,
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N > 1 and uy € HO(R?),

eN2(o—€) p2

(7.7) P(w € Q ¢ | ANE U | Lt (mminoe sy = AN 1/6) < Ce "M

We have to prove that there exist two constants C,c¢ > 0 such that for all A > 0,
N > 1 and up € HO(R?),

(7.8) P <U {“’ €Q :[|AN (") 4 ((rmiomey) = ANT 1/6}) :
N
c/\2

< Ce Huouw(Rg)

2
. — A i
We can assume that A > Cllug||po (rs), and we set o = <C”u0”7—[‘7(R3)> and choosing

€ < o in (7.7), it is enough to show that

Vo >0, 3C,c>0/ Va>1, Z e—olN’ < Ce .
N dyadic

Using that there exists ¢ > 0, such that ck < 2% — 1

Z 0N’ _ —a Z e—o2*-1) £ Ze*m’f < Ce @,

N dyadic k>0 k>0

and (7.8) is proved. This completes the proof of Theorem 7.1.

7.2. Proof of Theorem 1.2. — Recall the definition (7.1) of the set Q4. To show
Theorem 1.2, it is sufficient to show that for any A > 0, P(Q2x) > 0. To do this, we
first establish that it is sufficient to show the result for a finite number of terms in
the initial data. For ug = Z Cnhn € L*(R?), we define for K € N*,

neN

[uo]xk = Z cnhn, [UO]K: Z cnhn.

An<K An>K
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By independence of the random variables, we obtain

A2
77

N[ >

o P o)) | (e s (r3)) <

i A
H (6 tH[UO]K)s ||L4([—7r,71'];HS(R3)) < ?7

. AN—Y/6
N {HAN(e”H[Uo]K)HM([w,ﬂ;Loo(RS)) < }7

P(Qs) Z#(H ol e ) <

N

‘ AN871/4
N {HAN(eZtH[UO]K)HLR([Tr,ﬂ;Ws"*(Rg)) = 2} >
N

N[ >

) A2
(D alcleo) < 5o 1€ fuali? s -rmaeeoy < -

H (eitH[uo]K)s HL4([—7T,71'];HS(R3)) < 77

~ ANTY/6
N {HAN(eltH[UO]K)”L‘l([7r,7r};L<>°(R3)) <— },

N

) ANS—1/4

N {HAN(E”H[UO]K)HLR([w,w};wsA(RS)) < 2} >
N

Let us denote by Pj g the first probabilistic term of this inequality. Then by The-
orem 7.1, for all A > 0 and K € N*,

cA\?

Pag>1-C -
w21 = O (e

);

with

. K 12 _
im0l [y =O.
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cA\?

Therefore, there is an integer K > 1 such that Cexp(—W
uo Ho (R3)

) < a, and

we deduce that

P()
, >
(19) T >
3 it H 2 A2
M(W) € HI(R?) « || [uo] k[l 3y < H( ol w) Npa(em mpe ey <
it H 3 A3
e [wolx)™ o (mmtires @3y < =7
, AN-L/6
N {HAN(e”H[UO]K)||L4([_7r,7r};Loo(R3)) < }>
N
A ANs—1/4
N {||AN(e’tH[uo]K)||LR([W,W];WM(RS)) S— }) :
N

As a result, we are reduced to prove the result for a finite number of terms in
the initial data. We notice that there are two constants C7,C5 > 0 such that
C’ln% <A< CQTL% then that [{\, < K}| < CK®. Thus by Proposition 2.10 and
by the Cauchy-Schwarz inequality

(7.10)
Q| [ug <AL Q A2%c,|? 2<A2 A
w0 €+ | W)k oy < 5 { =19 €2 5 D Alenllga(@)? < Gy | An
A <K
where

th [

—

weQ: ] )HL4[7r7T]’H R3)) <
e : || (" ug]k)? | L4 ([, (R3)) <

A
s}
A
)
itH A 16
{wefz AN gl i rateoy < 5N

M
M
M
M

7 w A S—
{0 DANE 10 o rspnsceoy < 571}

=D =D
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We are now able to complete the proof of Theorem 1.2. By (7.9) and (7.10), it is
sufficient to show that for any integer K > 1 and any A > 0,
A2
Pluen : 3 WlePlantel < o) > 0.

But, by independence,

Ploc: 3 Wleallgnw)P < g ) 2
M<K
A2
P Q :gn(w))? <
= ()\DK{W € lgn(w)]” < CKHH“O”%_[U(R;?,)})

A2
<
= CK[uo[3,.,

= H P(w e :gn(w)?
An<K

because for all R >0 and all n € N, P(w € Q : |g,(w)| < R) > 0.
It remains to show (1.7). By Theorem 6.11 and Theorem 6.12, it is sufficient to
establish that for any A > 0,

RB)) >0,

71113% P(weQn ¢ |lugllyses <n) = 1.

Actually, by adapting the proof of [23, Appendix A.2], we can obtain that

A2

PweQi « |ufllyems <n) <Ce 7,

and (1.7) is proven.

7.3. Proof of (1.8). — To prove (1.8), it is enough to show that for any A > 0
and any « €]0, 1], P(Qx) > 1 — . This result is clear from Theorem 7.1 since
C

P(Qp) >1—Crexp(— ———
[|uo| 7 (R3)

)21—04

if [luoll3o ®s) is small enough.

8. The fixed point argument for equation (1.11)

We introduce the following equation:

o _
(8.1) 18—1: — Hu = K cos(2t) A 1)_2|u]p_1u, (t,z) € R x RY,

u(0, ) = up(x),
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where p > 5 denotes an odd integer and k € {—1,1}. We will first show that this
equation is almost surely locally well-posed, and then deduce global well-posedness
of (1.11) using the lens transform.

8.1. Some nonlinear estimates and local well-posedness of equation (8.1).
— In this section, we establish estimates that will be useful to apply the Picard
fixed point theorem. We start by showing two preliminary lemmas.

Lemma 8.1. — Let (q,7) € [2,+00[X[2,+0], s,50 > 0 and assume that s — sy >
d_2_d

55w then there are two constants k, C' > 0 such that for allT > 0 and u € YST,

HUHLq([_T,T};wsom(Rd)) < CTHHUHTT-
Proof. — Let € > 0 then there exists k. > 0 such that

ull o=z, mpwsor@ay) < T Mull pate =m0 (R4Y) -

Now the couple (g + e, d2 qﬁzlji) is admissible with
2d(ate). d 2 d
Whiarrae1(RY) < WOrRY) i s—sg> 2 — — — 2,
2 g+4+e€e 7
But, as s —sg > $— 2 — 9 then there is 0 < e < 1 such that s—sg > ¢ —-2- -4 [
’ 0 2 q r 0= 2 q+e r’

Lemma 8.2. — Let s > 0 then there exists a constant C > 0 such that for all
functions f and g in S(RY),
(=22 (f@) I z2@ay < C(Ng(—=A)2 fll L2 qay + 1 (—2)*2g]| 2 (ma)) -
Proof. — Using the Fourier transform we obtain
I=A)2(f9)llr2ray < ClIEFF(FDr2ma)
= ClIEPF) * F(gl 2 way-

A

But for all £,1 € R?,
E1° < (Inl+ 1€ = nl)* < Cullnl® + 1€ = nl),
therefore
I(=2)2(f )l 2@ay < Cs(I(PF()) * F9)ll2ay + IF ) * (1 F(9) 2@y
= C(IF (=22 p2may + IF(F(=2)*29) 12 (ge))
= CS(HQ(—A)S/ZJCHH(W) + Hf(_A)S/QgHLQ(Rd))a

which was the claim. O

A

Then, the expected estimates are established.
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Proposition 8.3. — Let s > % — I% then there exist two constants C > 0 and
k > 0 such that if we assume

le™" ol o (|- m)spoo (ma)) < A
for some A >0, then for any 0 <T <1, v € YST and fj =v or f; = ey,
P
IV=2"0) T fill ooy re ey < CTP(WP + HUprsT)a
j=2

and

P
) TT fillororazeay < CTHN + ||UprsT)-
j=2
Proof. — According to the Holder inequality and (1.2),

p
IV=2"0) T fill ey zzcray) <

j=2
s p
< V=2l oo rpirzeayy [ 15l o-1 oz, oo mety
j=2
p
< Cloll po(r s @y LI Fill oot poe (ray)-
=2
and
p p
) o ] fillqerme@ey < 1@ 0l pooqerz@ey ] 15llmo—1 (o mpno ey
j=2 Jj=2
p
< Nollpooryeay [T Illmo-r(omm poo may) -
=2
If f; = v then as s > %l — 1%, we can use Lemma 8.1 to get

[Vl o—1 (1,77 100 () < CT[v]l55,-

If f; = e~y then according to the Holder inequality,

. [ S
le™  uoll o-s(-myryroomayy < TP 2 [le™  uo]l Lo a0 (ra)
< Tp(plfl)/\,

which completes the proof. O
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Lemma 8.4. — [f0<s < % then there exist two constants C' > 0 and k > 0 such
that if we assume that

||€ UOHLP([—F,TF];W%’OO(Rd)) =

and

_ <
ol 51 g <

for some X\ > 0, then for all0 <T <1,
) (™ w3 -2y < CTON.

Proof. — According to the Holder inequality and (1.2), we obtain

H<x>s(e_itHUO)pHLl([—T,T];LQ(Rd)) <

IA

4 —i
)2 (€™ uo)P || g1 7 7).22(RA)
d—1

. 1 i —
{2 2 e || Lo (117 L2(ray) || {2) 2P D e tHUO||ip}1([_T7T};Lm(Rd))

IN

< OTY?||u - o—itH,, 1p—1
= ol 5+ g oyt =y
< CTYPNP,
O
Lemma 8.5. — There exist s 6]% - %; %[ and constants C, k > 0 such that if we
assume that
”e—itH < )\7

Ol o b ey <

and

for some X\ > 0, then for all0 < T <1, v e X and fi=vorfi= ey,

p
[V=A" (e ) H Fillr (2 ray) < CT(N + ”UHPYST)'
=2
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Proof. — For all € €]0, %[, according to the Holder inequality, we have

V=2 (e Ty HfJHLl T TL2(RY)) S

7j=2

MS (e_itHuO)
=

<

P
576 ¢
L2([~T,T);L2(R4)) H fjHLQ(”‘”([—TVT];L“’(Rd))'

Then, we choose s = % — 2¢ with € < 1 to obtain by using (1.16) that

P
V=2 (e7" Hf]”Ll “TTL2(RY)) =

< /\H Ozta fjHL?(P*U([—T,T];LN(Rd))

p

<A1_£||fj||L2<p D ([~T,7): WPTT(? e)+e 'H(]Rd))
J

If f; = ey, by interpolation, we there exists a constant & > 0 such that

—itH
He ||L2(p71)([—T,T];WP%I(%76>+6’g+1(Rd)) —
< OT"||e—H o |1 o o—itH (110
= | 0||L2p([7T,T],W 0 (Rd))H 0” so([~T.T); st (]Rd))
where 6 = d—;i and sg = (%)(%) + ﬁ(% —€)+ 5
: —itH — B <\
Firstly, ||e UOHLOO([—T,T};H%(Rd)) HUOHH%(R"Z) < A. Then as
1 1
- _ - _4cC <=
50 2(p—1)+ €+0(e)_7
we deduce He*"tHu()||L2p([_T7T];Wso,oo(Rd)) < X and
lle=#H | <A

1 1 d
L= ([T, T);Wwr—T 2T et (Ray) =

1

If fj =, SiDCGS—ﬁG—E) > i_ﬁ_d+e (ife < 5= ))thenbyLemma81

we obtain

< r s
|| ”LQ(P 1>( TT} Wr— 1(7 €)+€7 (Rd)) - CT HUHXT’

hence the result. O
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We therefore introduce the natural set of initial conditions. Let A > 0 and define
d—1
Fo()\) as the set of functions ug € H 2 (R?) which satify

(8.2) { ey T (®Y) <A
. —th
lle o||L2p (= h o (R)) <A

Then, we can establish the two main results of this section.

Proposition 8.6. — There exists s E] p21; 2[ and constants C,k > 0 such that

if ug € Fo(\) for some X > 0 then for all v,v1,v2 € Xp and 0 < T <1,

. d(p—1) . 4
H / e M 6o5(25) 7T 2| B Hug 4 vfP (e g + v)ds”ys <
0 T
S OT (W + [[oli%),
X7

and

vt d(p—1) . )
H / e = ¢o5(25) E e Hyg o [P e  ug 4+ v1)ds
0

b d(p—1) , ,
— / e = ¢o5(25) e e g 4 v [P (e g + UQ)dSH—s
0 Xr
< OT"Jor — val55 (W~ + Hlep—s + flv2ll%s 1)

Proof. — We only prove the first estimate. Using Proposition 2.1 and (1.2), we
obtain

H/ —i=)H 6g(25) et e Hyg 4P e ZSlﬁ*’uo—i-v)dsHYs <
T

< Offcos(2s) ™7 ~2le™ M ug + vfP~ (e g + )| Lr (7 s (m))
< Cl e Mug + v[P~H (e Mug + 0) || L1 (34 (me)
< C| (=A)* (Je™*Mug + v[P~ (e ug + 0)) || g1 (11722 (R )
+ Cll(z)*le™ g + v’ (e uo + 0) || 1 (117,22 (R

Then, using Lemma 8.2 and Proposition 8.3, Lemma 8.4, and Lemma 8.5, we can
obtain a constant x > 0 such that for all ug € Fy(\), 0 < T <1 and v € X,

(=) (le™**ug + v[P~H (e7"*Mug + v)) L1 (=2 mayy < CT™(AP + HUH‘%;)’
and

1) e ug 4+ v[P~ (e Fug + v) | g (o r iy p2may < CTHN + ||U!|pysT)7
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which was to prove. O

We are now able to state the local well- posedness result for equation (8.1).
Theorem 8.7. — There exist s E]% - zﬁ’ 2[ C >0 and 6 > 0 such that for any
0<T <1, ifuy € Fo(\) with \ < CT~? then there is a unique solution to the
equation (8.1) on [—T,T) in the space e " uy+ B (0 A).

Proof. — Let us define

t
) (p—1) ) )
L(v) = —im/ e~it=s)H cos(2s)d En e Hyy +o(s) P e Hug + v(s))ds,
0
and note that u = e~ "y +v is the unique solution of (8.1) on [T, 7] in the space
e "Hyy + Bygs (O R) if and only if v is the unique fixed point of L on B (O R).

According to Proposition 8.6, there are two constants C' > 0 and « > 0 such that
1L ()55, < CT™(X + [[vll%gs )
— -1 -1
IL(v1) = L(va) gy < CT"[[or = vallgs A7 + o [l%s + [lvalli )

Therefore if A < (go=)7~1 then L is a contraction of Bygs :(0,A) and the theorem
follows. H

8.2. Global solutions and scattering for the equation (1.11). — Thanks to
the lens transform and the results of the previous section, we are able obtain the
existence of global solutions for the equation (1.11).

Theorem 8.8. — There exist s 6]%—}%; %[ and Cq,Ca > 0 such that if ug € Fy(\)

with A < C then there is a global solution to (1.11) in the space ¢*“ug+ Bxs(0, Cy).
Proof. — Let u be given by Theorem 8.7 with T" = 7. We apply to u the lens
transformation defined in Section 2.1 to obtain a function U which, according to

Proposition 2.2, satisfies the conditions of the theorem. O

Theorem 8.9. — There exist s E]% — Iﬁ’ 2[ C1,Co >0 and 6 > 0 such that for
any 0 < T < 1, if ug € Fy(\) with A < Cy(arctan2T)~° then there is a solution
o (1.11) on [T, T) in the space e ug + Bx:s (0,C2AP).

Proof. — Let u be given by Theorem 8.7 at T replaced by %arctan 2T. Then, as
for the previous proof, we apply to u the lens transformation, which yields the
result. O

We then prove the uniqueness of the constructed solutions.
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Proposition 8.10. — Let s €]4 — 21 40, up € Fy(\) and T €]0,1]. Let Uy and
Us be two solutions of (1.11) on [T, T)] on the space e ug + X5 then,
Ui(t) = Us(t) in L2(RY), Vt € [-T,T).

Proof. — By reversibility of the equation, is enough to consider the case t € [0, T].
For all t € R, we have

TN0(0) ~ Vo0 e =
= 2Re((0,(U1(t) = Ua(t)), Ur(t) — Ua(t)) 2 (ra)L2(RY))
= 2/{|U1 ()P~ UL (1) — [Ua(8) P~ U2(t), Ur () — Ua(t)) L2 ey 2 (et
< 2/|UL(t) = Ua(®) ]| 2@y Il UL (O P UL (E) — [U2() [P~ Ua(8) | L2 ey
< CULE) = Va2 (101 (O gy + 00 >HLW ).
Then, by the Grénwall Lemma, the result is proved if ||U;(2)[|7 (Rd L} ., since
IlU1(0) — Us(0 )||L2(Rd = 0. By using Proposition 2.2, we get
Uil 1o,y poorey < €™ uoll o1 o r1,n00 ey + N1Vill o107 Lo (1Y)
Cr(lle™ T uol| po-1((_rap:Looay) + 1Vl xs)
Cr(A + [Vjlixs),
hence the result. O

<
<

Finally, we prove that the global solutions constructed scatter at +oco and at —oo,
namely (1.12) and (1.13). The proof is the same as the proof of Theorem 6.12 and
is left here.

9. Estimation of the regularity of the initial random data and proof of
Theorem 1.4

9.1. Estimation of the regularity of the initial random data. — For A > 0,
recall the definition (8.2) of the set Fy(A), and define

Qp={weQ 1uj € F(A)}.

The purpose of this part is to establish the following theorem:
Theorem 9.1. — There exist constants C,c > 0 such that for any A > 0,

A2
P(Qf\)gCexp<—c 5 )
||u0HH(d—1)/2(Rd)
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Proof. — By the triangle inequality, we can write

(9.1) P(Q}) <

P(w e ||U(6}||H(d71)/2(Rd) > A)+P(w € : ||€7itHUOH = A)

L0 ([~ a W (RE)) =
and it suffices to bound each of the previous two terms.

We first estimate the first term of (9.1). It is sufficient to establish the estimate
for A > Clluollya-1/2(ra)- Let ¢ > 1 then according to the Markov inequality, we
get

P(w €0 ¢ ufllpya-ny/oqgay = A) - P(w € 3 N e Plga(w)? = A2>

neN
—2¢ d—1y. 121, 12|l
<A N enPlonl?), o
neN
_ _ q
< A2 (SN e Pllgn 20 )
neN
gy 1 l[uoll3a-1/2rayy 24
<(c(®: ) .
- ( (c) A
2
Then we can choose ¢ = 0(20||uoHH<d71)/2(Rd)) > 1 to get
1 cA\?
P(w ISV HU/(E)UHH(d—l)/Q(Rd) > A) < ﬁ = e—an(2)q < exp ( )

HuOH?H(d—l)/Q(Rd)

From then on, the second term of (9.1) remains to be estimated. For this, let us
recall the estimates of the eigenfunctions of the harmonic oscillator whose proof can
be found in [51, Corollary 3.2]. For all p € [4,+00], there exists a constant C' > 0
such that for all n € N,

144
(9.2) hnlloesy < Cha T2 it d > 2.

Since W%’T(Rd) — W%’W(Rd) ift—1> 4" we have to prove that there exist two

)

constants C, ¢ > 0 such that for all A > 0 and r > 2,

(9.3)
- A)<cC A
P Q e uy > < - :
(0 €0 T iy 2 4) S CoP (e )




BILINEAR STRICHARTZ ESTIMATES AND A.S. GLOBAL SOLUTIONS FOR NLS 75

It is sufficient to show the estimate for ¢t > Cllug||3o(gay- According to the Markov
and Minkowski inequalities, we obtain for ¢ > max(2p,r,2),

. —itH u
P(weQ e Gy b 2/\) <

<A q”e—th qu .
La(Q, L2 ([—m, W (RY))

<A™ q”lee itH “’HLQP ([=m,m); L7 (R, La ()"

Then, thanks to (7.3), we obtain

1
[H5 e 5 ey = | 32 Mhene™ ha(2)gn(w)
neN

La(Q) —

1
<0z |3 Adleal?|hn () 2.

neN

And finally, by the triangle inequality and (9.2), we have

. itH w
P (w €t e ™ ugl by k) 2 A) <
1
Cqg2\4
)\3 2 h 2‘
<A>H% lenl*l ‘URd
1
Cq2 L
< (VIS Mleat @[}
neN
1
Cqz q/2
< (S5 (S MlenP @)l )
neN
1
< (CQQHUOHH(dl)/Z(Rd))q
—_— A .
2
Thus, it is enough to choose ¢ = (20\\“0”7{(1171)/2(@)) to get (9.3). O
9.2. Proof of Theorem 1.4. — To complete the proof of this result, it is sufficient

to establish that for all A > 0,
(9.4) P(Q4) > 0.
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For ug = Z cnhy € LQ(]RC[)7 we define for N € N*,
neN

[uo)n = Z cnhn, [uO]N: Z cnhn.

An <N An>N

Lemma 9.2. — There exists N € N* such that

P() >

1 . w A itHy w A

(W €@ s )N lhyanraay < 5 M€ T GIN Loy oboe sy < 3)-
Proof. — By independence, using Theorem 9.1, we obtain

P(x) = P(w e Q ¢ [ [ugly + ]V lpa-/2(zay < A,

—itH itHi, wiN

e 00+ e G ot ey < )

" A A

> P(w e | [)llto-rny < 5o e MM oy gty < 3)
A , A

w1N —itH N

. P(W c Q : ” [UO] ||’H(d—1)/2(Rd) S 57 H@ t [ ] HL2p [ 7r7'r] W7 Oo(Rd)) 2)

" A A

> P(we® s | [§lvlhevega < 5 I MWy by < 3):

A2
(1= (- =71 )
2 Anenl?
A >N
cA?
But we have lim 1— Cexp ( — —7) = 1, thus there is N € N* such
N-—+00 S A e, |2
An>N
A2
that 1 - Coxp (- 20 ) 212 5
2 Anenl?
An>N

Therefore, to prove (9.4), it is sufficient to prove the following proposition:
Lemma 9.3. — For all A >0 and N € N*,

PlweQ i ||y e < A, [l u

’6 NHL2p( W,W};W%’m(Rd)) S A) > O
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Proof. — We get

7th

L2p([—m,x); W7 (R4)) = A) =

> P(we s Y A el @P < )
An <N

> P (wEQ: Z|gn CA” )

B N2dHu0”Hd 1(Rd)

Ploe@ s |81 e oy < A el

An<N
CA?
> P weEN 1 [gn(w))* <
(AQN{ N4d||u0H3_td—1(Rd) })
CA?
= 1] P<w€Q t o) < g )>0'
AL N4 uoll3ja-1 (gay

Appendix A. Tools of pseudo-differential operators and applications to
eigenfunctions

For m € R, we define T™ as the vector space of symbols ¢(z,£) € C®(R? x R?)
such that for all & € N% and 8 € N¢, there exists a constant Cq,p > 0 such that for
all (z,€) € R x R?, we have

10907 q(w, )| < Cap(1+ || + €)™,
Similarly, let S™ be the vector space of symbols satisfying
10200 4(2, )] < Carp(1 + JE)™ 7.
For g € S™UT™ and h > 0, let Opp(q) be the operator defined by

Om()f(@) = (e [ ey, )y
= (mh) [ g,/
= @0 [ e hfee
R4

Let p(z,&) = [£]2 + |22 — 1 and define Hy, = Opy(p) € Opn(T?).
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A.1. Microlocal analysis for the harmonic oscillator. — In [53], we can then
obtain the following two results:

Theorem A.1. — If g1 € S™ (respectively T™ ) and g € S™2 (respectively T™?2)
then there exists a symbol g € S™T™2 (respectively T ™2 ) such that

Opr(q1) © Opr(g2) = Opr(q)
with

|al
9= Ty % n0zae + W Hlry
o <N’

where ry € ST (NHD - fregpectively T +m2—(N+1)),
Theorem A.2. — If q(z,€) € SY then for any s € R, there exists a constant C > 0
such that for any h €]0,1] and any u € H*(R?),

10pr(@)ull s (mey < Cllull s mey-

We then state the following property which will allow us to invert the harmonic
oscillator modulo a very regular remainder term.
Let § > 0 and define a function n € C*°(R?) such that

0 if |z] <146,
(z) = 1 if |z| > 1+ 20.

Proposition A.3. — For any N € N*, there exist two pseudo-differential operators
En € Opp(T~2) and Ry € Opy (T~ N4V such that

EN o Hh = 77+ hNJrlRN.

Proof. — Recall that p(z,&) = |¢|* + |z|? — 1 and set
fo= n e T2
p
For n > 1, we define f,, by induction in the following way:
1 1
fo=== Y.  =0¢f0%p €T

£ lal
lae|+j=n,j#n

Finally we set

EN:Oph< Y hjfj>.

0<j<N
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Then, by Proposition A.1,

EnyoH, = Oph< Z hjfj>00ph(10)
0<j<N
h\oz|+j
~on( X gy
ol +i<N

plelti
lo|+i<N

with Ry = Opp(rn) € Opp (T*(N“)). Therefore

pled+i o e heo
Z Wag fi0:p = fop+ Z E 2ol 9% fi0zp
lal+i<N 1<U<N |al+j=¢
1

=+ w( o O2Li08p + fep)
n 1;}\[ |a|+j§_:£j;“ Z‘|a\ 3 f] z P ff D

=

which was the claim. ]

A.2. A localisation property of the eigenfunctions of the harmonic oscil-
lator in dimension d > 1. — We can now establish a localisation property of the
eigenfunctions of the harmonic oscillator.

Proposition A.}. — Let d > 1. For all integers K,N > 1, all ¢ > 1 and all
1 <p < +oo, there exists a constant C > 0 such that for all n > 0,

1(2) 5 B | Lo (2| enn) < CAZY

Proof. — By definition, we have (—A+|z|2—A2)h,, = 0. Therefore, if we set h = é
and ®(x) = h,(A,z) then
(=h%*A + |z]* = 1)® = 0.
Let § < 1 and set x € C*(RY) such that
0 if |z <1,

:{1ﬁ|ﬂ21+&

and set also Y € C*(R%) such that
~ 0 if |z <1+ 26,
B {1 if |z > 1+ 36.
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Then
Hy,(x®) = —h?®Ax — 2h2Vy - V.
Next, thanks to Proposition A.3, we obtain
nx® = —En(h2®Ax + 2h°Vy - V&) — VLR (x®).
And finally
(@)X Xnx® = —(2)“XEn (W ®Ax + 20V x - V&) — BN (2) KX Ry (x®).

e Estimate of (z)XXEN(®Ax): We have

X(2) i(o—y)€/h A
ot ey B )

X(2) En(®AX)(x) =

Since |z| > 1+ 20, then |x — y| > 0. Next, observe that we have

/ S / + / + o + \/ ’
|z—y|>d |x1—y1|>6 |x2—y2|>6 |zg—yaq|>

so that we are reduced to treat the term where |x; —y1| > 0.

From Z,M(;Ifyl)M agei(z*wf/h = ¢@=v)¢/h and from an integration by parts, we
deduce
() K ) By (B0 () =
(o X@) / MMV SMa) €05 By (@, @A),
= (2rh)d 5&?%3;;5 iM(zy — )M yag.
Therefore, as Ey € T2, we obtain
- - OA
) ) Ex(@A)(@)] < ChY () ORI dedy.

e1<lyl<i4e (1+|2] + [¢])2HM-K

We can then assume that M > 1 is such that M > 2d + K — 1, and therefore
[(2) X (@) Ex(2Ax) (2)] <

e X(@)| i
< ChY Y Ax®| L1 (ray (1 + [a|) I FM-K—d /Rd (1+ [€)*tt
1

(1 + ’x‘)l—i-M—K—d'

< ChM_d||<I>||L2(Rd)
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And finally, for all integers M, K > 1, there exists a constant C' > 0 such that for
all h €]0, 1],
) XEN (RAX) || o (ray < CBM @] L2 (ay.-

e Estimate of (x)XXEN(Vx - V®): Since ® satisfies (—h2A + |2|2)® = &, then
hIV®| 12(ray < [|®[|L2(ray- As a consequence we can proceed as the first term to get
the same kind of estimate.

e Estimate of AN (z)K YRy (x®): We have

! / TV VK @)ry (2, hE) F(xP)(€)de
]Rd

A ) S ) R () () = W

i ()X (x)yry(z, &) e TN IHTE c19c 8% for N>K 1.
Using Theorem A.2 and the Sobolev embeddings, we obtain

IR @) EXRN (@) | r@ey < BV HH[(@) S XRN (XP) | ases rey
ChNTH XD aj2+1 (ray
ChNTH || grajos1 gay-

Finally, we obtain that for all integers K, N > 1, for all p € [1,4o00] and ¢ > 1, that
there exists a constant C' > 0 such that for all 0 < h < 1, we have

1(2) @ Lo (jae) < CAY (|| grasar ray-

Then, returning to the initial variable, we get that for all integers K, N > 1, for all
p € [1,400] and ¢ > 1, there exists a constant C' > 0 such that for all 0 < h < 1 and
n € N with h = /\%, we have

IN

IN

(VAZ) S Bl 1o (ajzer,y < CRN-HGRI=d/A71/2

IN

1l gras2 1 ray

< Cthd/(Zp)*d/“l/Qth||Hd/2+1(Rd)
< ChN—d/(2p)—d/2—1||hnHL2(Rd)'
But
I bnllioazenn < Inliaizenn + 0 PHVR) Bullozon
< CRN=H P2 e

IN

C )\;2N+d/P+d+K+2 17| 2 &%)

which concludes the proof. O
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A.3. Functional and pseudo-differential calculus. — The following property
of functional calculus explains that some operators can be approximated by pseudo-
differential operators.

Proposition A.5. — Let ® € CP(R) and x2 € CP(RY) with xao(x) = 1 for
xz € B(0,17). Then for all N € N* and s > 0, there is a constant C s > 0 such
that for all h €]0,1] and u € L*(RY),

N-1
1@ (|21 + [BV[*)u = > B Opn()xaul s may < Cn,sh™ %[l p2 ey,
7=0

where Wo(z,€) = ®(|z> + [£]?), Supp(¥;) C {(,€) : x> + [¢]* € Supp(®)} and
\I/j eT—3cSY.

Proof. — We use [16, Proposition 2.1] (notice that stricto sensu [16, Proposi-
tion 2.1] is only for a semi-classical Laplace operator, but the proof given applies
also here). If x1 € C5°(R?) is such that x1x2 = x1 then

N-1
@ (2 + 1RV ) xaw = Y BOpR(W; (2, €))x2u|| o gy < COn,sh™ Il 2z,
§=0
with Wo(z,€) = ®(|z* + [¢]%), Supp(¥;) C {(z,€) : |z[> + [¢]* € Supp(®)} and
V; € T77. Then, it is enough to show that

[zl + [hV*) (1 = x)ul| yogay = O |[ull L2(gay.

)

We choose x1 = 1 on B(0,R),R > 1, and the result then follows from Proposi-
tion A.4. ]

A.4. A continuity result. — Thanks to the functional calculus, it is clear that

H
I ( N2)u||Hs ®d) < Cllullys(ray, however the continuity result stated in the next

proposition is not straightforward and relies on Proposition A.5.
Proposition A.6. — For any s > 0, there exists a constant C > 0 such that for
any N € N* and any function v € H*(R?),

H
(555 ) wllrs ey < Cllulrs -

Proof. — Using (3.7) and (3.8), it is sufficient to show that: Vs > 0, 3C > 0 and
ho such that ¥V 0 < h < hg, Yu € H*(R%)

(A1) Ix(al® + 1RV *)ull gs may < Cllullgrs a)-
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Indeed, recalling that u(z) = u(—~=), then

<

HX(%)U‘|H5(R¢) <
< ix(al? + RV PV s ey
<Dl + 1BVl 2 ey + V=27 [x(2* + RV P)u (V) | 2w
< B p2gay + 222 + IRV ) s ey
< Jullp2(ray + hs/Qid/ll”“HHs(Rd)
< lwll s may-
By interpolation, we can limit the proof to the case where s is an integer. Thanks

to Proposition A.5 (with N = s), there exists a constant C' > 0 such that for any
h €]0,1] and any function v € L?(R%), we have

N
Ix(2* + [V P)u = > W Opp (%) xau]| s ray < Cllull p2gay,
j=0
with Supp(¥;(x,€)) C {(x,€) : |z|> +[£[* € Supp(x)}.

Thus, to obtain (A.1l), it suffices to obtain that for any s > 0, there exist two
constants C' > 0 and hg > 1 such that for any h €]0, ho] and any function u €
H*(RY),

(A.2) 10pR () ull s (ray < Cllul| s may-
Finally, to establish (A.2), it is enough to use Theorem A.2 and to notice that
(,€) — x(lzl* + [¢]*) € $° and (2,§) — ¥;(a,€) € S,
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