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Let (S n ) n≥0 be a transient random walk in the domain of attraction of a stable law and let (ξ(s)) s∈Z be a stationary sequence of random variables. In a previous work, under conditions of type D(u n ) and D (u n ), we established a limit theorem for the maximum of the first n terms of the sequence (ξ(S n )) n≥0 as n goes to infinity. In this paper we show that, under the same conditions and under a suitable scaling, the point process of exceedances converges to a Poisson point process. We also give some properties of (ξ(S n )) n≥0 .

Introduction

In 2009, Franke and Saigo [START_REF] Franke | The extremes of a random scenery as seen by a random walk in a random environment[END_REF][START_REF] Franke | The extremes of random walks in random sceneries[END_REF] considered the following problem. Let (X k ) k≥1 be a sequence of centered, integer-valued i.i.d. random variables and let S 0 = 0 a.s. and S n = X 1 + • • • + X n , n ≥ 1. Assume that, for any x ∈ R,

P S n n 1/α ≤ x -→ n→∞ F α (x),
where F α is the distribution function of a stable law with characteristic function given by

φ(θ) = exp(-|θ| α (C 1 + iC 2 sgn θ)), α ∈ (0, 2].
Let (ξ(s)) s∈Z be a stationary sequence of R-valued random variables which are independent of the sequence (X k ) k≥1 . The sequence (ξ(S n )) n≥0 is referred to as a random walk in a random scenery. In [START_REF] Franke | The extremes of random walks in random sceneries[END_REF], Franke and Saigo derive limit theorems for the random variable max i≤n ξ(S i ) as n goes to infinity when the ξ(s)'s are i.i.d.. The statements of their theorems depend on the value of α. When α < 1 (resp. α > 1), it is known that the random walk (S n ) n≥0 is transient (resp. recurrent) [START_REF] Kesten | A limit theorem related to a new class of self-similar processes[END_REF][START_REF] Gall | The range of stable random walks[END_REF]. An important concept concerning random walks is the 1 range. The latter is defined as the number of sites visited by the first n terms of the random walk, namely R n := #{S 1 , . . . , S n }. The following result, due to Le Gall and Rosen [START_REF] Gall | The range of stable random walks[END_REF], deals with its asymptotic behavior.

Theorem 1 (LeGall and Rosen). (i) If α < 1, then

R [nt] n -→
n→∞ qt P -a.s.

with q := P (S k = 0, ∀k ≥ 1).

(ii) If α = 1, then

h(n)R [nt] n -→ n→∞ t in L p (P),
where h(n) := 1 + n k=1 P (S k = 0).

(iii) If 1 < α ≤ 2, then for any L ∈ N and any

t 1 < • • • < t L , 1 n 1/α R nt 1 , . . . , R nt L -→ n→∞ (m(Y (0, t 1 )), . . . , m(Y (0, t L ))) , in distribution.
In the above result, {Y (t), t ∈ R} denotes the right-continuous α-stable Lévy process with characteristic function given by φ(tθ) and m is the Lebesgue measure on R. One of the results of [START_REF] Franke | The extremes of random walks in random sceneries[END_REF] is the following. If u n is a threshold such that nP (ξ > u n ) -→ n→∞ τ for some τ > 0, with ξ = ξ [START_REF] Chenavier | Extremes for transient random walks in random sceneries under weak independence conditions[END_REF], and if the ξ(s)'s are i.i.d. then

P max i≤n ξ(S i ) ≤ u n -→ n→∞ e -τ q
for α < 1. Such a result was generalized in [START_REF] Chenavier | Extremes for transient random walks in random sceneries under weak independence conditions[END_REF] for sequences (ξ(s)) s∈Z which are not necessarily i.i.d., but which satisfy a slight modification of the classical D(u n ) and D (u n ) conditions of Leadbetter (see [START_REF] Leadbetter | On extreme values in stationary sequences[END_REF][START_REF] Leadbetter | Extremes and local dependence in stationary sequences[END_REF] for a statement of these conditions).

In this paper, we give a more precise treatment of the extremes of (ξ(S n )) n≥0 . To do it, we assume that the threshold is of the form

u n = u n (x) = a n x + b n (a n ∈ R, b n > 0 and x ∈ R)
and that, for any x ∈ R, the following term exists and is finite:

ν(x, ∞) := lim n→∞ nP (ξ > u n (x)) . ( 1 
)
The quantity ν defines a measure on some topological space E. According to the Gnedenko's theorem [START_REF] Gnedenko | Sur la distribution limite du terme d'une série aléatoire[END_REF], if ξ is in the domain of attraction of an extreme value distribution G, then ν is of the form:

ν(x, ∞) =        x -β , E = (0, ∞] if G is a Fréchet distribution; (-x) -δ , E = (-∞, 0] if G is a Weibull distribution; e -x , E = (-∞, ∞] if G is a Gumbel distribution;
for some β, δ > 0. Notice that if P n denotes the distribution of ξ-an bn , then (1) can be rephrased as

nP n (A) -→ n→∞ ν(A), (2) 
for any Borel subset A ⊂ R. Secondly, we assume that the (stationary) sequence (ξ(s)) s∈Z satisfies conditions of type D(u n ) and D (u n ) in the same spirit as in [START_REF] Chenavier | Extremes for transient random walks in random sceneries under weak independence conditions[END_REF]. To introduce the first one, we write for each i 1 < • • • < i p and for each u ∈ R,

F i 1 ,...,ip (u) = P (ξ(i 1 ) ≤ u, . . . , ξ(i p ) ≤ u) .

D(u n ) condition

We say that (ξ(s)) s∈Z satisfies the D(u n ) condition if there exist a sequence (α n, ) (n, )∈N 2 and a sequence ( n ) of positive integers such that α n, n -→ n→∞ 0, n = o(n), and

|F i 1 ,...,ip,j 1 ,...,j p (u n ) -F i 1 ,...,ip (u n )F j 1 ,...,j p (u n )| ≤ α n, for any integers i 1 < • • • < i p < j 1 < • • • < j p such that j 1 -i p ≥ .
Notice that the bound holds uniformly in p and p . Roughly, the D(u n ) condition (see e.g. p29 in [START_REF] Lucarini | Extremes and Recurrence in Dynamical Systems[END_REF]) is a weak mixing property for the tails of the joint distributions.

The D (u n ) condition (see e.g. p29 in [START_REF] Lucarini | Extremes and Recurrence in Dynamical Systems[END_REF]) is a local type property and precludes the existence of clusters of exceedances. To introduce it, we consider a sequence (k n ) such that

k n -→ n→∞ ∞, n 2 k n α n, n -→ n→∞ 0, k n n = o(n), (3) 
where ( n ) and (α n,l ) (n,l)∈N 2 are the same as in the D(u n ) condition.

D (u n ) condition

In conjunction with the D(u n ) condition, we say that (ξ(s)) s∈Z satisfies the D (u n ) condition if there exists a sequence of integers (k n ) satisfying (3) such that

lim n→∞ n n/kn s=1 P (ξ(0) > u n , ξ(s) > u n ) = 0.
In the classical literature, the sequences (α n,l ) (n,l)∈N 2 and (k n ) only satisfy k n α n, n -→ n→∞ 0 (see e.g. (3.2.1) in [START_REF] Lucarini | Extremes and Recurrence in Dynamical Systems[END_REF]) whereas in (3) we have assumed that n 2 kn α n, n -→ n→∞ 0. In this sense, the D (u n ) condition as written above is slightly more restrictive than the usual D (u n ) condition.

Our paper is organized as follows. In Section 2, we prove that under suitable scaling the socalled point process of exceedances converges to a Poisson point process in the transient case.

In Section 3, we give some properties of the random walk in random scenery. More precisely, we show that the (stationary) sequence (ξ(S n )) n≥0 satisfies the classical D(u n ) condition of Leadbetter, but does not satisfy the D (u n ) condition. Our results generalize [START_REF] Franke | The extremes of random walks in random sceneries[END_REF] for sequences (ξ(s)) s∈Z which are not i.i.d. but which only satisfy the D(u n ) and D (u n ) conditions. We also give some remarks on the so-called extremal index and on the D (k) (u n ) condition.

2 Point process of exceedances

Poisson approximation

The main result of this section claims that the point process of exceedances converges to a Poisson point process in the transient case, i.e. α < 1. To introduce it, we denote for any k ≥ 1 by

τ k = inf{m ≥ 0 : #{S 1 , . . . , S m } ≥ k}
the time at which the random walk visits its k-th site. The point process of exceedances is defined as

Φ n = τ k n , ξ(S τ k ) -b m(n) a m(n) : τ k ≤ n k≥1 ⊂ [0, 1] × R, (4) 
where m(n) = qn .

Proposition 2. Let α < 1. Assume that the sequence (ξ(s)) s∈Z satisfies the D(u n ) and D (u n ) conditions for any threshold 

u n = u n (x) = a n x + b n , x ∈ R,
⊂ [0, 1] × R with m [0,1] ⊗ ν(∂B i ) = 0, 1 ≤ i ≤ K, (#Φ n ∩ B 1 , . . . , #Φ n ∩ B K ) D -→ n→∞ (#Φ ∩ B 1 , . . . , #Φ ∩ B K ) .
By using the Laplace functional, Franke and Saigo (Theorem 3 in [START_REF] Franke | The extremes of random walks in random sceneries[END_REF]) obtained a similar result when the ξ(s)'s are i.i.d. Proposition 2 extends it and is based on Kallenberg's theorem. Our result is stated only in the transient case, i.e. for α < 1. However, it remains true for α = 1 by taking m(n) = n h(n) . When α > 1, the point process of exceedances is defined in the same spirit as (4) by taking this time m(n) = n 1/α . In this case, similarly to Theorem 4 in [START_REF] Franke | The extremes of random walks in random sceneries[END_REF], we can show by adapting the proof of Proposition 2 that Φ n converges weakly to a Cox point process Φ Y , i.e. a Poisson point process in

[0, 1] × R with random intensity measure µ(dt, dx) = m Y (dt)ν(dx), where m Y (t) = m(Y (0, t)).

Technical results

The proof of Proposition 2 is mainly based on Kallenberg's theorem (see e.g. Proposition 3.22 in [START_REF] Resnick | Extreme Values, Regular Variation and Point Processes[END_REF]) and on two technical lemmas which are stated below.

Theorem 3 (Kallenberg). Suppose Φ is a simple point process on E and I is a basis of relatively compact open sets such that I is closed under finite unions and intersections and, for I ∈ I,

P (#Φ ∩ ∂I = 0) = 1,
where ∂I is the boundary of I. Let (Φ n ) be a sequence of point processes on E such that, for all I ∈ I,

lim n→+∞ E (#Φ n ∩ I) = E (#Φ ∩ I) and lim n→+∞ P (#Φ n ∩ I = 0) = P (#Φ ∩ I = 0) . Then Φ n converges weakly to Φ in distribution.
The following lemma is a direct adaptation of Lemma 1 in [START_REF] Franke | The extremes of random walks in random sceneries[END_REF] and deals with the independence between the sequence (ξ(S n )) n≥0 and the sequence (τ k ) k≥1 .

Lemma 1. For all measurable sets B ⊂ N + and A ⊂ R, we have

P (τ k ∈ B, ξ(S τ k ) ∈ A) = P (τ k ∈ B) P (ξ ∈ A) .
The second lemma is an extension of [START_REF] Chenavier | Extremes for transient random walks in random sceneries under weak independence conditions[END_REF]. More precisely, under the assumptions that the D(u n ) and D (u n ) conditions hold for the sequence (ξ(s)) s∈Z , we have shown in [START_REF] Chenavier | Extremes for transient random walks in random sceneries under weak independence conditions[END_REF] that, for almost all realization of (S n ) n≥0 ,

P (Sn)    k≥1: τ k n ∈(0,1] ξ(S τ k ) -b m(n) a m(n) / ∈ (x, ∞)    -exp - R n m(n) ν(x, ∞) -→ n→∞ 0
when (1) holds for any threshold u n = u n (x), x ∈ R. In the above equation, P (Sn) stands for the probability conditional on (S n ) n≥0 . The following lemma deals with the case where the interval (0, 1] (resp. (x, ∞)) is replaced by (a, b] (resp. A ⊂ R) in the above equation.

Lemma 2.

Let A be a Borel subset in R and let 0 ≤ a < b ≤ 1. Under the same assumptions as Proposition 2, for almost all realization of (S n ) n≥0 , we have

lim n→∞ P (Sn)    k≥1: τ k n ∈(a,b] ξ(S τ k ) -b m(n) a m(n) / ∈ A    -exp - R nb -R na m(n) ν(A) = 0.

Proofs

Proof of Lemma 1. Since the random walk and the random scenery are independent, we have

P (τ k ∈ B, ξ(S τ k ) ∈ A) = m∈B P (τ k = m, ξ(S m ) ∈ A) = m∈B s∈Z P (τ k = m, S m = s, ξ(s) ∈ A) = m∈B s∈Z P (τ k = m, S m = s) P (ξ(s) ∈ A) = P (τ k ∈ B) P (ξ ∈ A) .
Proof of Lemma 2. The proof will be sketched since it relies on a simple adaptation of the proof of Theorem 1 in [START_REF] Chenavier | Extremes for transient random walks in random sceneries under weak independence conditions[END_REF]. Let (k n ), ( n ) be as in (3) and let

r n = n k n -1 + 1, (5) 
for n large enough. Given a realization of (S n ) n≥0 , we write

S (na,nb] = S τ k : k ≥ 1, τ k n ∈ (a, b] and R nb -R na = #S (na,nb] .
To capture the fact that (ξ(s)) s∈Z satisfies the condition D(u n ), we construct blocks and stripes as follows. Let

K n = R nb -R na r n + 1.
We subdivide the set S (na,nb] into subsets

B i ⊂ S (na,nb] , 1 ≤ i ≤ K n , referred to as blocks, in such a way that #B i = r n and max B i < min B i+1 for all i ≤ K n -1. Notice that K n ≤ k n and #B Kn = R nb -R na -(K n -1)
• r n a.s.. For each j ≤ K n , we denote by L j the family consisting of the n largest terms of B j (e.g. if

B j = {x 1 , . . . , x rn }, with x 1 < • • • < x rn , j ≤ K n -1, then L j = {x rn-n+1 , . . . , x rn }). When j = K n , we take the convention L Kn = ∅ if #B Kn < n .
The set L j is referred to as a stripe, and the union of the stripes is denoted by L n = j≤Kn L j . Proceeding in the same spirit as in the proofs of Lemmas 1 and 2 of [START_REF] Chenavier | Extremes for transient random walks in random sceneries under weak independence conditions[END_REF], we can easily prove that for almost all realization of (S n ) n≥0 ,

• P (Sn)

s∈S (na,nb] ξ(s)-b m(n) a m(n) / ∈ A -P (Sn) s∈S (na,nb] \Ln ξ(s)-b m(n) a m(n) / ∈ A -→ n→∞ 0; • P (Sn) s∈S (na,nb] \Ln ξ(s)-b m(n) a m(n) / ∈ A -i≤Kn P (Sn) s∈B i \Ln ξ(s)-b m(n) a m(n) / ∈ A -→ n→∞ 0;
• i≤Kn P (Sn)

s∈B i \Ln ξ(s)-b m(n) a m(n) / ∈ A -i≤Kn P (Sn) s∈B i ξ(s)-b m(n) a m(n) / ∈ A -→ n→∞ 0;
• i≤Kn P (Sn)

s∈B i ξ(s)-b m(n) a m(n) / ∈ A -exp - R nb -R na m(n) ν(A) -→ n→∞ 0.
The first and the third assertions come from the fact that the size of the stripes is negligible compared to the size of the blocks, i.e. n = o(r n ). The second assertion is a consequence of the fact that the sequence (ξ(s)) s∈Z satisfies the D(u n ) condition and the last one is obtained by using the D(u n ) and D (u n ) conditions. Lemma 2 follows directly from the four assertions.

Proof of Proposition 2. According to Kallenberg's theorem, it is sufficient to show that

(i) lim n→∞ E (#Φ n ∩ I) = m [0,1] ⊗ ν(I), (ii) lim n→∞ P (#Φ n ∩ I = 0) = e -m [0,1] ⊗ν(I) ,
for all set I of the form I = (a, b] × A, where 0 ≤ a < b ≤ 1 and where A is an open subset of E.

To deal with (i), we write

E (#Φ n ∩ I) = k≥1 P τ k n , ξ(S τ k ) -b qn a qn ∈ I = k≥1 P τ k n ∈ (a, b] P ξ -b qn a qn ∈ A = k≥1 P τ k n ∈ (a, b] P qn (A),
where the second line comes from Lemma 1. Using the fact that k≥1

1 τ k n ∈(a,b] = R nb -R na , we have E (#Φ n ∩ I) = E   k≥1 1 τ k n ∈(a,b]   P qn (A) = E R nb -R na P qn (A).
Moreover, according to Theorem 1 and to the Lebesgue's dominated convergence theorem, we know that E(R nb -R na ) ∼ n→∞ nq(b -a). This, together with (2) implies

E (#Φ n ∩ I) -→ n→∞ (b -a) × ν(A) = m [0,1] ⊗ ν(I).
To deal with (ii), we observe that

P (#Φ n ∩ I = 0) = P    k≥1: τ k n ∈(a,b] ξ(S τ k ) -b qn a qn / ∈ A    .
According to Lemma 2, Theorem 1 and the Lebesgue's dominated convergence theorem, we have

P (#Φ n ∩ I = 0) = E exp - R nb -R na qn ν(A) + o(1) -→ n→∞ exp (-(b -a)ν(A)) .
This, together with the fact that (b-a)ν(A) = m [0,1] ⊗ν(I), concludes the proof of Proposition 2.

3 Properties of (ξ(S n )) n≥0

In this section, we give some properties of (ξ(S n )) n≥0 . More precisely, we show that the latter satisfies the D(u n ) condition and an extension of the so-called D (k) (u n ) condition, but does not satisfy the D (u n ) condition.

Distributional mixing property

For technical reasons, we assume only in this section that the random walk satisfies the following property

1 n 2 sup 0≤i 1 <•••<ip≤n V R i 1 ,...,ip -→ n→∞ 0, (6) 
where V [•] denotes the variance and R i 1 ,...,ip = #{S i 1 , . . . , S ip }. We hope that the above condition is not very restrictive since R i 1 ,...,ip ≤ n a.s.. The following result extends Proposition 2 in [START_REF] Franke | The extremes of random walks in random sceneries[END_REF], which deals with the case where the ξ(s)'s are i.i.d., to sequences which only satisfy the D(u n ) and D (u n ) conditions.

Proposition 4. Let α < 1. Assume that the sequence (ξ(s)) s∈Z satisfies the D(u n ) and D (u n ) conditions for a threshold u n such that nP (ξ > u n ) -→ n→∞ τ , with τ > 0. Then (ξ(S n )) n≥0 satisfies the D(u n ) condition.
Proof of Proposition 4. We adapt several arguments of [START_REF] Franke | The extremes of random walks in random sceneries[END_REF] 

in our context. Let 0 ≤ i 1 < • • • < i p < j 1 < • • • < j p ≤
n be a family of integers, with j 1 -i p > n and n = o(n). To prove that (ξ(S n )) n≥0 satisfies the D(u n ), we have to show that

|F i 1 ,...,ip,j 1 ,...,j p (u n ) -F i 1 ,...,ip (u n )F j 1 ,...,j p (u n )| ≤ αn, n ,
for some sequence (α n, ) (n, )∈N 2 such that αn, n -→ n→∞ 0, with

F i 1 ,...,ip (u n ) = P ξ(S i 1 ) ≤ u n , . . . , ξ(S ip ) ≤ u n .
We have

|F i 1 ,...,ip,j 1 ,...,j p (u n ) -F i 1 ,...,ip (u n )F j 1 ,...,j p (u n )| ≤ F i 1 ,...,ip,j 1 ,...,j p (u n ) -E exp - R i 1 ,...,ip,j 1 ,...,j p n τ + E exp - R i 1 ,...,ip,j 1 ,...,j p n τ -E exp - R i 1 ,...,ip + R j 1 ,...,j p n τ + E exp - R i 1 ,...,ip + R j 1 ,...,j p n τ -F i 1 ,...,ip (u n )F j 1 ,...,j p (u n ) . ( 7 
)
To deal with the first and the third terms of the right-hand side of (7), we will use the following lemma.

Lemma 3. We have

sup 0≤i 1 <•••<ip≤n E F i 1 ,...,ip (u n ) -exp - R i 1 ,...,ip n τ -→ n→∞ 0.
Proof of Lemma 3. Similarly to Lemma 2, the main idea is to adapt several arguments appearing in the proofs of Lemmas 1 and 2 in [START_REF] Chenavier | Extremes for transient random walks in random sceneries under weak independence conditions[END_REF] in our context. Let (k n ) and (r n ) be as in ( 3) and [START_REF] Franke | The extremes of random walks in random sceneries[END_REF]. Given 1

≤ i 1 < i 2 < • • • < i p ≤ n, we subdivide the random set {S i 1 , . . . , S ip } into K n blocks, with K n = R i 1 ,...,ip rn
+ 1, in the same spirit as we did in the proof of Lemma 2. More precisely, there exists a unique K n -tuple of subsets B i ⊂ S n , i ≤ K n , such that the following properties hold: j≤Kn B j = {S i 1 , . . . , S ip }, #B i = r n and max B i < min B i+1 for all i ≤ K n -1. In particular, we have K n ≤ k n and #B Kn = R n -(K n -1) • r n a.s.. Without loss of generality, we assume that #B Kn = #B i = r n for all i ≤ K n -1, so that R i 1 ,...,ip = K n r n . For each j ≤ K n , we also denote by L j the family consisting of the n largest terms of B j and we let L n = j≤Kn L j . In the rest of the paper, we write M B = max s∈B ξ(s) for all subset B ⊂ Z.

Adapting the proof of Lemma 1 in [START_REF] Chenavier | Extremes for transient random walks in random sceneries under weak independence conditions[END_REF], we can show that the following inequalities hold for almost all realization of (S n ) n≥0 and for n larger than some deterministic integer n 0 :

P (Sn) M {S i 1 ,...,S ip } ≤ u n -P (Sn) M {S i 1 ,...,S ip }\Ln ≤ u n ≤ k n n P (ξ > u n ) ; P (Sn) M {S i 1 ,...,S ip }\Ln ≤ u n - j≤Kn P (Sn) M B j \Ln ≤ u n ≤ k n α n, n ; j≤Kn P (Sn) M B j \Ln ≤ u n - j≤Kn P (Sn) M B j ≤ u n ≤ 2 τ k n n n . Since P (ξ > u n ) ∼ n→∞ τ n and F i 1 ,...,ip (u n ) = E P (Sn) M {S i 1 ,...,S ip } ≤ u n , we get sup 0≤i 1 <•••<ip≤n F i 1 ,...,ip (u n ) -E   j≤Kn P (Sn) M B j ≤ u n   -→ n→∞ 0.
Without loss of generality, we assume from now on that P (ξ > u n ) = τ n . We show below that sup

0≤i 1 <•••<ip≤n E   j≤Kn P (Sn) M B j ≤ u n   -E exp - R i 1 ,...,ip n τ -→ n→∞ 0. ( 8 
)
To do it, we adapt several arguments of Lemma 2 in [START_REF] Chenavier | Extremes for transient random walks in random sceneries under weak independence conditions[END_REF]. First, we notice that for n large enough, j≤Kn

P (Sn) M B j ≤ u n -exp - R i 1 ,...,ip n τ ≥ exp (K n log(1 -r n P (ξ > u n ))) -exp - R i 1 ,...,ip n τ ≥ exp -K n r n P (ξ > u n ) -K n (r n P (ξ > u n )) 2 -exp - R i 1 ,...,ip n τ ,
where the last line comes from the facts that log(1 -x) ≥ -x -x 2 for |x| small enough and that

r n P (ξ > u n ) -→ n→∞ 0. Because K n r n = R i 1 ,...,ip and P (ξ > u n ) = τ n , we have j≤Kn P (Sn) M B j ≤ u n -exp - R i 1 ,...,ip n τ ≥ exp - R i 1 ,...,ip n τ exp -K n (r n P (ξ > u n )) 2 -1 ≥ exp(-k n (r n P (ξ > u n )) 2 ) -1,
where the last line comes from the fact that

K n ≤ k n a.s.. Since k n r n ∼ n→∞ n, we have j≤Kn P (Sn) M B j ≤ u n -exp - R i 1 ,...,ip n τ ≥ c • 1 k n .
Moreover, because j≤Kn P (Sn) M B j ≤ u n ≤ exp -j≤Kn P (Sn) M B j > u n , it follows from the Bonferroni inequalities (see e.g. p110 in Feller [START_REF] Feller | An introduction to probability theory and its applications[END_REF]) that j≤Kn

P (Sn) M B j ≤ u n ≤ exp   -(K n -1)r n P (ξ > u n ) + j≤Kn α<β;α,β∈B j P (ξ(α) > u n , ξ(β) > u n )   . Since K n r n = R i 1 ,...,ip and P (ξ > u n ) = τ n , we have j≤Kn P (Sn) M B j ≤ u n -exp - R i 1 ,...,ip n τ = exp - R i 1 ,...,ip n τ ×   exp   r n P (ξ > u n ) + j≤Kn α<β;α,β∈B j P (ξ(α) > u n , ξ(β) > u n )   -1  
and therefore j≤Kn

P (Sn) M B j ≤ u n -exp - R i 1 ,...,ip n τ ≤ exp   r n P (ξ > u n ) + j≤Kn α<β;α,β∈B j P (ξ(α) > u n , ξ(β) > u n )   -1.
Proceeding along the same lines as in the proof of Lemma 2 in [START_REF] Chenavier | Extremes for transient random walks in random sceneries under weak independence conditions[END_REF], we can show that exp

  r n P (ξ > u n ) + j≤Kn α<β;α,β∈B j P (ξ(α) > u n , ξ(β) > u n )   -1 ≤ c   1 k n + n n/kn s=1 P (ξ(0) > u n , ξ(s) > u n )   .
Thus, for almost all realization of (S n ) n≥0 , j≤Kn

P (Sn) M B j ≤ u n -exp - R i 1 ,...,ip n τ ≤ c   1 k n + n n/kn s=1 P (ξ(0) > u n , ξ(s) > u n )   ,
This shows (8) by taking the expectations and the triangular inequality. It remains to prove that sup

0≤i 1 <•••<ip≤n E exp - R i 1 ,...,ip τ n -E exp - R i 1 ,...,ip τ n -→ n→∞ 0.
To do it, we write for any ε > 0,

E exp - R i 1 ,...,ip τ n -E exp - R i 1 ,...,ip τ n = E exp - R i 1 ,...,ip τ n -E exp - R i 1 ,...,ip τ n 1 |Ri 1 ,...,ip /n-E[R i 1 ,...,ip /n]|≤ε + E exp - R i 1 ,...,ip τ n -E exp - R i 1 ,...,ip τ n 1 |Ri 1 ,...,ip /n-E[R i 1 ,...,ip /n]|>ε .
The first term of the right-hand of the equality is lower than some function f (ε), with f (ε) -→ ε→0 0 whereas the second one is lower than

2 n -2 ε -2 sup 0≤i 1 <•••<ip≤n V R i 1 ,...,ip
, which converges to 0 as n goes to infinity according to [START_REF] Gnedenko | Sur la distribution limite du terme d'une série aléatoire[END_REF]. This concludes the proof of Lemma 3 by taking first the limit over n → ∞ and then the limit over ε → 0.

As a consequence of Lemma 3, the first and the third terms of the right-hand side of (7) converge to 0 as n goes to infinity. To deal with the second one, we write

exp - R i 1 ,...,ip,j 1 ,...,j p n τ -exp - R i 1 ,...,ip + R j 1 ,...,j p n τ = exp - R i 1 ,...,ip + R j 1 ,...,j p n τ   exp   R j 1 ,...,j p i 1 ,...,ip n τ   -1   ≤ exp   R ip+ n+1,...,n 1,...,ip n τ   -1,
where the last line comes from the fact that j 1 -i p > n , with

R j 1 ,...,j p i 1 ,...,ip = #{S i 1 , . . . , S ip } ∩ {S j 1 , . . . , S j p } = R i 1 ,...,ip + R j 1 ,...,j p -R i 1 ,...,ip,j 1 ,...,j p .
Since n ≥ 0, we get

sup exp - R i 1 ,...,ip,j 1 ,...,j p n τ -exp - R i 1 ,...,ip + R j 1 ,...,j p n τ ≤ sup i≤n exp   R i+1,...,n 1,...,i n τ   -1, (9) 
where the supremum in the left-hand side is taken over all integers 0

≤ i 1 < • • • < i p < j 1 < • • • < j p ≤ n, with j 1 -i p > n .
Moreover, using the fact that R i+1,...,n 1,...,i = R 1,...,i + R i+1,...,n -R 1,...,n and following [START_REF] Gall | The range of stable random walks[END_REF], we have sup i≤n R i+1,...,n 1,...,i n -→ n→∞ 0 a.s.. This, together with (9) and the Lebesgue's dominated convergence theorem implies

sup E exp - R i 1 ,...,ip,j 1 ,...,j p n τ -E exp - R i 1 ,...,ip + R j 1 ,...,j p n τ -→ n→∞ 0
and consequently concludes the proof of Proposition 4.

The

D (k) (u n ) as k → ∞
In [START_REF] Chernick | Calculating the extremal index for a class of stationary sequences[END_REF], the authors introduce a local mixing condition, referred to as the D (k) (u n ) condition, which allows to express the extremal index in terms of joint distribution. We recall the latter below.

Condition D (k) (u n ) Let (ξ(s)) s∈Z be a sequence of random variables and let u n be a threshold such that nP (ξ > u n ) -→ n→∞ τ , for some τ > 0. In conjunction with the D(u n ) condition, we say that the D (k) (u n ) condition, k ≥ 1, holds if there exist two sequences of integers (k n ) and ( n ) such that

k n → ∞, k n α n, n → 0, k n n = o(n) and lim n→∞ nP (ξ(1) > u n ≥ M 2,k , M k+1,rn > u n ) = 0, ( 10 
)
where r n is as in ( 5) and where M i,j = max{ξ(i), ξ(i + 1), . . . , ξ(j)} for all i ≤ j, with the convention M i,j = -∞ if i > j. As mentioned in [START_REF] Chernick | Calculating the extremal index for a class of stationary sequences[END_REF], Equation ( 10) is implied by the condition

lim n→∞ n rn s=k+1 P (ξ(1) > u n ≥ M 2,k , ξ(s) > u n ) = 0.
Observe that the last line is the

D (u n ) condition if k = 1.
Roughly, the following proposition states that the sequence (ξ(S n )) n≥0 satisfies the D (k) (u n ) condition as k goes to infinity.

Proposition 5. Under the same assumptions as Proposition 4, we have

lim k→∞ lim n→∞ n rn j=k+1 P ξ(S 1 ) > u n ≥ M 2,k , ξ(S j ) > u n = 0,
where M i,j = max i≤t≤j ξ(S t ) if i ≤ j and M i,j = -∞ if i > j.

Proof of Proposition 5. For all k ≥ 1, we have

n rn j=k+1 P ξ(S 1 ) > u n ≥ M 2,k , ξ(S j ) > u n = n rn j=k+1 P ξ(S 1 ) > u n ≥ M 2,k , ξ(S j ) > u n |S j = S 1 P (S j = S 1 ) + n rn j=k+1 P ξ(S 1 ) > u n ≥ M 2,k , ξ(S j ) > u n |S j = S 1 P (S j = S 1 ) . (11)
The first term of the right-hand side of [START_REF] Lucarini | Extremes and Recurrence in Dynamical Systems[END_REF] tends to zero as k, n → ∞. Indeed, To prove that the second term of the right-hand side of [START_REF] Lucarini | Extremes and Recurrence in Dynamical Systems[END_REF] goes to 0, we write

P ξ(S 1 ) > u n ≥ M 2,k , ξ(S j ) > u n |S j = S 1 P (S j = S 1 ) ≤ P (ξ(S 1 ) > u n ) P (S j = S 1 ) .
n rn j=k+1 P ξ(S 1 ) > u n ≥ M 2,k , ξ(S j ) > u n |S j = S 1 P (S j = S 1 ) = n rn j=k+1 P ξ(S 1 ) > u n ≥ M 2,k , ξ(S j ) > u n |S j ∈ B * (S 1 , r n ) P (S j ∈ B * (S 1 , r n )) + n rn j=k+1 P ξ(S 1 ) > u n ≥ M 2,k , ξ(S j ) > u n |S j / ∈ B(S 1 , r n ) P (S j / ∈ B(S 1 , r n )) , ( 12 
)
where

B(S 1 , r n ) := {S ∈ S n : |S -S 1 | ≤ r n } and B * (S 1 , r n ) = B(S 1 , r n ) \ {S 1 }.
We prove below that the last two terms in ( 12) converge to 0. For the first one, we write

n rn j=k+1 P ξ(S 1 ) > u n ≥ M 2,k , ξ(S j ) > u n |S j ∈ B * (S 1 , r n ) P (S j ∈ B * (S 1 , r n )) ≤ n rn j=2 P (ξ(0) > u n , ξ(S j -S 1 ) > u n |S j ∈ B * (S 1 , r n )) .
The last quantity converges to 0 as n goes to infinity since the sequence (ξ(s)) s∈Z satisfies the D (u n ) condition. To deal with the second term of (12), we write

n rn j=k+1 P ξ(S 1 ) > u n ≥ M 2,k , ξ(S j ) > u n |S j / ∈ B(S 1 , r n ) P (S j / ∈ B(S 1 , r n )) ≤ n rn j=k+1 P (ξ(S 1 ) > u n , ξ(S j ) > u n |S j / ∈ B(S 1 , r n )) ≤ n rn j=k+1 P (ξ > u n ) 2 + n rn j=k+1 P (ξ(S 1 ) > u n , ξ(S j ) > u n |S j / ∈ B(S 1 , r n )) -P (ξ > u n ) 2 .
The first series tends to 0 as n goes to infinity because

n rn j=k+1 P (ξ > u n ) 2 ≤ nr n P (ξ > u n ) 2 ∼ n→∞ τ 2 r n n ,
and r n = o(n). To deal with the second series, we use the D(u n ) condition. This gives

n rn j=k+1 |P (ξ(S 1 ) > u n , ξ(S j ) > u n |S j / ∈ B(S 1 , r n )) -P (ξ > u n ) 2 | ≤ nr n α n,rn ≤ n 2 k n α n,rn ,
which converges to 0 as n goes to infinity according to (3). This concludes the proof of Proposition 5.

The extremal index

Let (k n ) and (r n ) be as in ( 3) and ( 5). Let us denote by R n = #S n and K n = Rn rn + 1. The following proposition deals with M Sn under the D(u n ) condition. Proposition 6. Let α < 1. Assume that the sequence (ξ(s)) s∈Z satisfies the D(u n ) conditions for a threshold u n such that nP (ξ > u n ) -→ n→∞ τ , with τ > 0. Then for almost all realization of (S n ) n≥0 ,

P (Sn) (M Sn ≤ u n )-exp   - Kn j=1 rn i=1 P (Sn) ξ(S ((j-1)rn+i) ) > u n ≥ M ((j-1)rn+i+1, jrn)   -→ n→∞ 0,
where

M (i,j) :=    max i≤t≤j ξ(S (t) ), i ≤ j -∞, i > j
and where S (t) is the t-th largest value of the ξ(S i ) s, i ≤ n.

A similar result was obtained by O'Brien (Theorem 2.1. in [START_REF] O'brien | Extreme values for stationary and Markov sequences[END_REF]). However, the above proposition is not a consequence of the latter. Proposition 6 remains true if the sequence (ξ(s)) s∈Z only satisfies the D(u n ) condition (i.e. when k n α n, n -→ for some θ ∈ [0, 1], then P (M Sn ≤ u n ) -→ n→∞ e -θτ . In this case, the term θ is referred to as the extremal index (see e.g. [START_REF] Leadbetter | Extremes and local dependence in stationary sequences[END_REF]) and can be interpreted as the reciprocal of the mean size of a cluster of exceedances. As stated in Theorem 1 in [START_REF] Chenavier | Extremes for transient random walks in random sceneries under weak independence conditions[END_REF], when the sequence (ξ(s)) s∈Z satisfies the D(u n ) and D (u n ) conditions,

P (M Sn ≤ u n ) -→ n→∞ e -qτ . ( 13 
)
In other words, under these conditions, the extremal index θ exists and θ = q.

Proof of Proposition 6. Let us write S n = {S (1) , . . . , S (Rn) } with S (1) < S (2) < • • • < S (Rn) , and partitition S n into K n blocks as in Lemma 2. Without loss of generality, assume that the last block has the same size as the others, so that Rn Kn is an integer. Let B j = {S ((j-1)rn+1) , . . . , S (jrn) } be the j-th block of size r n . According to Lemma 1 in [START_REF] Chenavier | Extremes for transient random walks in random sceneries under weak independence conditions[END_REF], for almost all realization of (S n ) n≥0 , we have This together with (14) concludes the proof of Proposition 6.

The D (u n ) condition

Recall that, in the classical literature (see e. The following result is an extension of Proposition 3 in [START_REF] Franke | The extremes of random walks in random sceneries[END_REF]. However, we give a simpler proof which is based on [START_REF] Leadbetter | Extremes and local dependence in stationary sequences[END_REF].

P

  Moreover, because (S n ) n≥1 is a transient random walk, we have∞ j=2 P (S j = S 1 ) < ∞, which implies lim k→∞ lim n→∞ nP (ξ(S 1 ) > u n ) rn j=k+1 P (S j = S 1 ) = 0, ξ(S 1 ) > u n ≥ M 2,k , ξ(S j ) > u n |S j = S 1 P (S j = S 1 ) = 0.

n→∞ 0 instead of n 2 P

 2 kn α n, n -→ n→∞ 0). As a direct consequence of such a result, if for almost all realization of (S n ) n≥0 , (Sn) M ((j-1)rn+i+1, jrn) ≤ u n |ξ(S ((j-1)rn+i) ) > u n -→ n→∞ θ,

P 2 ≤

 2 (Sn) (M Sn ≤ u n ) -exp   j≤Kn log 1 -P (Sn) M B j > u n | log(1-x)+x| ≤ Cx2 for |x| small enough and because P (Sn) M B j > u n ≤ r n P (ξ > u n ) converges to 0 as n goes to infinity, we havej≤Kn log 1 -P (Sn) M B j > u n + j≤Kn P (Sn) M B j > u n ≤ j≤Kn log 1 -P (Sn) M B j > u n + P (Sn) M B j > u n ≤ C j≤Kn P (Sn) M B j > u n Ck n r 2 n P (ξ > u n ) 2 .The last term converges to 0 as n goes to infinity sincek n r n ∼ n→∞ n, nP (ξ > u n ) -→ n→∞ τ and r n P (ξ > u n ) -→ n→∞ 0. This shows that for almost all realization of (S n ) n≥0 P (Sn) (M Sn ≤ u n ) -exp   -j≤Kn P (Sn) M B j > u n the same lines as[START_REF] O'brien | Extreme values for stationary and Markov sequences[END_REF], we haveP (Sn) M B j ≤ u n = 1 -P (Sn) M B j > u n = 1 -rn i=1P (Sn) ξ(S ((j-1)rn+i) ) > u n ≥ M ((j-1)rn+i+1, jrn)

P

  g. (3.2.1) in[START_REF] Lucarini | Extremes and Recurrence in Dynamical Systems[END_REF]), the D (u n ) condition holds for the sequence(Z n ) if, in conjunction with the D(u n ) condition, (Z 1 > u n , Z i > u n ) = 0, for some sequence of integers (k n ) such that k n -→ n→∞ ∞, k n α n, n -→ n→∞ 0 and k n n = o(n).

  satisfying Equation[START_REF] Chenavier | Extremes for transient random walks in random sceneries under weak independence conditions[END_REF]. Then Φ n converges weakly to a Poisson point process Φ with intensity measure m [0,1] ⊗ ν, where m [0,1] denotes the Lebesgue measure in [0, 1], i.e. for any Borel subsets B 1 , . . . , B K

Proposition 7. Under the same assumptions as Proposition 4, the sequence (ξ(S n )) n≥0 does not satisfy the D (u n ) condition.

Proof of Proposition 7. On the opposite, if (ξ(S n )) n≥0 satisfies the D (u n ) condition, then P (M Sn ≤ u n ) -→ n→∞ e -τ according to Theorem 1.2 in [START_REF] Leadbetter | Extremes and local dependence in stationary sequences[END_REF]. This contradicts (13) since q = 1.