

Co_2 Mn-based Heusler compounds for spintronics: Chemical order and interplay between the magnetic damping and the underlying electronic structure

C. Guillemard, A. M. Bataille, S. Petit-Watelot, J.-C. Rojas-Sánchez, F.

Bertran, S. Andrieu

▶ To cite this version:

C. Guillemard, A. M. Bataille, S. Petit-Watelot, J.-C. Rojas-Sánchez, F. Bertran, et al.. Co_2 Mnbased Heusler compounds for spintronics: Chemical order and interplay between the magnetic damping and the underlying electronic structure. Colloque Louis Néel XIX, May 2019, Toulouse, France. hal-04066240

HAL Id: hal-04066240 https://hal.science/hal-04066240

Submitted on 12 Apr 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Chemical order and interplay between the magnetic damping and the underlying electronic structure

Colloque Louis Néel XIX

C. Guillemard, S. Petit-watelot, F. Bertran, A. M. Bataille, J.-C. Rojas-Sanchez, S. Andrieu

- 1. Heusler compounds & spintronics
- 2. Crystal growth and structure
- 3. Testing the Half Metal Magnet behavior by SR-PES
- 4. Ultra-low damping materials

Heusler compounds

Half-Metal Magnets (HMM)

Half Metal Magnet

Interest for spintronics

Motivations

Why Co₂Mn- based Heusler compounds?

- High Curie temperature
- Convenient lattice parameters
- Predicted HMM (ab initio calc.)
- Ultra low damping
- Spin gap confirmed in Co₂MnSi S. Andrieu *et al.*, Phys. Rev. B **93**, 094417 (2016)

$$5,6 < a_{Co_2MnZ} < 6 \text{ Å}$$

 $T_{\rm C} > 800 \; {\rm K}$

- 1. Heusler alloys & spintronics
- 2. Crystal growth and structure
- 3. Testing the Half Metal Magnet behavior by SR-PES
- 4. Ultra-low damping materials

Molecular Beam Epitaxy features

Co-evap of each element Co: e-gun Mn: K-cell X: it depends

Growth temperature: ≈ 450°C Annealing ≈ 800°C Co₂MnZ [100] (001) // MgO [110] (001)

Surface structure

L2₁ RHEED patterns

Surface structure

B2 RHEED patterns

[110] RHEED patterns

Co_2MnZ with Z = AI, Si, Ga, Ge, Sn, Sb

Cross sections

HR-TEM

HAADF Co₂MnSn

Co₂MnSi

 \bigcirc

- 1. Heusler alloys & spintronics
- 2. Crystal growth and structure
- 3. Testing the Half Metal Magnet behavior by SR-PES
- 4. Ultra-low damping materials

The Cassiopée Beamline

Co₂MnZ_{IV} with Z_{IV}=Si, Ge, Sn

INSTITUT

13/05/2019

AMOUR

Same shape

Surface resonant state. [S. Andrieu *et al.*, Phys. Rev. B **93**, 094417 (2016)]

Loss of polarization at E_F

UNIVERSITÉ DE LORRAINE

Symmetry & Spin-Resolved PES

Co₂MnZ_{IV} with Z_{IV}=Si, Ge, Sn

- ✓ With S polarization, S₁ and S₂ are no longer excited
- ✓ Max of SP at E_F
- ✓ Spin gaps !

INSTITUT

13/05/2019

AMOUR

Co₂MnZ_V with Z_V=Sb

✓ Weakly polarized

 Certainly due to Sb segregation and/or reconstruction at the surface

- 1. Heusler alloys & spintronics
- 2. Crystal growth and structure
- 3. Testing the Half Metal Magnet behavior by SR-PES
- 4. Ultra-low damping materials

\bot **VNA-FMR**

CP-Waveguide

 \vec{H}_{DC} : out-of-plane static magnetic field

 \vec{h}_{RF} : in-plane RF magnetic field

INSTITUT JEAN LAMOUR 13/05/2019

- *H*_{DC} up to 2.5 T
- Kittel law : $f_r = \gamma_0 (H_0 - M_{eff})$
- Gilbert damping given by HWHM $\Delta f = 2\alpha f_r + 2\Delta f_0$
- 2-magnons scattering avoided
- No corrections (raw effective values)

⊥VNA-FMR

Co₂MnGe

- $\alpha = 5,3 \ 10^{-4}$
- *g* = 1,99
- $\Delta f_0 = 23,6 MHz$

13/05/2019

UNIVERSITÉ DE LORRAINE

\perp VNA-FMR

Co₂MnZ damping results

T. Devodler et al., Appl. Phys. Lett. 103, 242410 (2013)

- Elaboration of epitaxial films precisely controlled & chemical order resolved
 - . Trouble with Sb !
- Co₂MnZ are high spin polarized materials with very small damping
- Reduction of the damping when E_F far from any minority DOS
- Next step is to get PMA

