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Given a simple transient random walk (S n ) n≥0 in Z and a stationary sequence of real random variables (ξ(s)) s∈Z , we investigate the extremes of the sequence (ξ(S n )) n≥0 . Under suitable conditions, we make explicit the extremal index and show that the point process of exceedances converges to a compound Poisson point process. We give two examples for which the cluster size distribution can be made explicit.

Introduction

Extreme Value Theory (EVT) deals with rare events and has many applications in various domains such as hydrology [START_REF] Katz | Statistics of extremes in hydrology[END_REF], finance [START_REF] Embrechts | Modelling extremal events[END_REF] and climatology [START_REF] Yiou | Weather regime dependence of extreme value statistics for summer temperature and precipitation[END_REF]. It was first introduced in the context of independent and identically distributed (i.i.d.) random variables. It is straightforward that if (ξ(s)) s∈Z is a sequence of i.i.d. random variables then the following property holds: for any sequence of real numbers (u n ) n≥0 , and for τ > 0,

n P ( ξ(0) > u n ) -→ n→∞ τ =⇒ P max 0≤k≤n ξ(k) ≤ u n -→ n→∞ e -τ .
The above property has been extended for sequences of dependent random variables satisfying two conditions. The first one, referred to as the D(u n ) condition of Leadbetter, is a long range dependence property and the second one, known as the D (u n ) condition, ensures that, locally, there is no clusters of exceedances (see [START_REF] Leadbetter | Extremes and local dependence in stationary sequences[END_REF] for a statement of these conditions).

In 2009, Franke and Saigo [START_REF] Franke | The extremes of a random scenery as seen by a random walk in a random environment[END_REF][START_REF] Franke | The extremes of random walks in random sceneries[END_REF] considered the following problem. Let (X i ) i≥1 be a sequence of centered, integer-valued i.i.d. random variables and let S 0 = 0 and S n = X 1 + • • • + X n , n ≥ 1. Assume that (X i ) i≥1 is in the domain of attraction of a stable law, i.e. for each x ∈ R,

P n -1 α S n ≤ x -→ n→∞ F α (x),
where F α is the distribution function of a stable law with characteristic function given by ϕ(θ) = exp(-|θ| α (C 1 + iC 2 sgnθ)), α ∈ (0, 2].

When α < 1 (resp. α > 1), it is known that the random walk (S n ) n≥0 is transient (resp. recurrent) [START_REF] Kesten | A limit theorem related to a new class of sel-similar processes[END_REF][START_REF] Gall | The range of stable random walks[END_REF]. Now, let (ξ(s)) s∈Z be a family of R-valued which are i.i.d. random variables independent of the sequence (X i ) i≥0 . In the sense of [START_REF] Franke | The extremes of random walks in random sceneries[END_REF], the sequence (ξ(S n )) n≥0 is called a random walk in a random scenery. Franke and Saigo derive limit theorems for the maximum of the first n terms of (ξ(S n )) n≥0 as n goes to infinity. An adaptation of Theorem 1 in [START_REF] Franke | The extremes of random walks in random sceneries[END_REF] shows that in the transient case, i.e. α < 1, the following property holds: if n P ( ξ(0) > u n ) -→ n→∞ τ for some sequence (u n ) n≥0 and for some τ > 0, then

P max 0≤k≤n ξ(S k ) ≤ u n -→ n→∞ e -qτ , (1.1) 
where

q = P ( S i = 0, ∀i ≥ 1 ) . (1.2) 
Notice that q > 0 because the random walk (S n ) n≥0 is transient. The term q can also be expressed as (see e.g. [START_REF] Gall | The range of stable random walks[END_REF])

q = lim n→∞ R n n a.s., (1.3) 
where R n = #{S 0 , . . . , S n } is the range of the random walk. The result (1.1) was recently extended to a random scenery which is not necessarily based on i.i.d. random variables but on a sequence satisfying a slight modification of the D(u n ) condition [START_REF] Chenavier | Extremes for transient random walks in random sceneries under weak independence conditions[END_REF]. One of the difficulties is that the sequence (ξ(S n )) n≥0 does not satisfy the D (u n ) condition and clusters of exceedances can appear.

In this paper, we establish more precise results on the long range dependence and on the so-called point process of exceedances. To do it, we assume some additional properties on the random walk and on the random scenery. First, we let S 0 = 0 and

S n = X 1 + • • • + X n , n ≥ 1,
where (X i ) i≥1 is a family of independent random variables with distribution P ( X i = 1 ) = p and P ( X i = -1 ) = 1 -p, p ∈]0, 1[\{ 1 2 }. Notice that, as opposed to [START_REF] Chenavier | Extremes for transient random walks in random sceneries under weak independence conditions[END_REF] and [START_REF] Franke | The extremes of random walks in random sceneries[END_REF], the random variable X i is not centered. In what follows, the term q appearing in (1.2) also satisfies (1.3). It can easily be proved that q = |2p -1|. Secondly, we assume that the random scenery (ξ(s)) s∈Z satisfies a long range dependence property, which is referred to as the ∆(u n ) condition. To state it, we give some notation. For each n, m 1 , m

2 with 0 ≤ m 1 ≤ m 2 ≤ n, define B m 2 m 1 (u n ) as the σ-field generated by events {ξ(s) ≤ u n }, m 1 ≤ s ≤ m 2 ,
where (u n ) n≥0 is some sequence of positive numbers. Also for each n and 1 ≤ ≤ n -1, write

α n, = max 1≤k≤n- max A∈B k 0 (un),B∈B n k+ (un) {| P ( A ∩ B ) -P ( A ) P ( B ) |}.
We are now prepared to state the ∆(u n ) condition.

Definition 1

We say that the stationary sequence (ξ(s)) s∈Z satisfies the ∆(u n ) condition if there exists some sequence

( n ) n≥0 such that α n, n -→ n→∞ 0 and n = o(n).
The above condition is slightly more restrictive than the D(u n ) condition and was introduced by Hsing, Hüsler and Leadbetter [START_REF] Hsing | On the exceedance point process for a stationary sequence[END_REF] in the context of stationary sequence of random variables indexed by the set of positive integers.

The extremal index Assume from now on that, for any τ > 0, there exists a threshold

u n = u (τ ) n such that n P ( ξ(0) > u n ) -→ n→∞ τ. (1.4)
The existence of the threshold

u n = u (τ ) n is ensured when lim x→x f F (x)
F (x-) = 1, where x f = sup{u : F (u) < 1}, F (u) = P ( ξ(0) ≤ u ) and F = 1 -F (see Theorem 1.1.13 in [START_REF] Leadbetter | Extremes and related properties of random sequences and processes[END_REF]).

To state our first main result, we recall the D (k) (u n ) condition, introduced by Chernick, Hsing and McCormick [START_REF] Chernick | Calculating the extremal index for a class of stationary sequences[END_REF].

Definition 2 Let k ≥ 1. Assume that (ξ(s)) s∈Z satisfies the ∆(u n ) condition. We say that (ξ(s)) s∈Z satisfies the D (k) (u n ) condition if there exist sequences of integers (s n ) n≥0 and ( n ) n≥0 such that s n -→ n→∞ ∞, s n α n, n -→ n→∞ 0, s n n /n -→ n→∞ 0, and lim n→∞ n P ( ξ(0) > u n ≥ M 1,k-1 , M k,rn > u n ) = 0,
where M i,j = -∞ for i > j, M i,j = max 0≤i≤t≤j ξ(t) for i ≤ j, and r n = n/s n .

As noticed in [START_REF] Chernick | Calculating the extremal index for a class of stationary sequences[END_REF], the D (u n ) condition is slightly more restrictive than the D (1) (u n ) condition. Observe that the D (k) (u n ) condition is satisfied when the sequence (ξ(s)) s∈Z is k-dependent. Recall also that the (stationary) sequence (ξ(s)) s∈Z has an extremal index σ ∈ [0, 1] if, in conjunction to (1.4), we have

P max 0≤s≤n ξ(s) ≤ u n -→ n→∞ e -στ ,
for any τ > 0. The extremal index can be interpreted as the reciprocal of the mean size of a cluster of exceedances. According to Corollary 1.3. in [START_REF] Chernick | Calculating the extremal index for a class of stationary sequences[END_REF], under the assumptions that the ∆(u n ) and

D (k) (u n ) conditions hold for u n = u (τ )
n for any τ > 0, the extremal index exists and is equal to σ if and only if P ( M 1,k ≤ u n |ξ(0) > u n ) -→ n→∞ σ for any τ > 0. In particular, when the D (u n ) condition is satisfied, the extremal index exists and is equal to σ = 1 (Theorem 1.2. in [START_REF] Leadbetter | Extremes and local dependence in stationary sequences[END_REF]).

The following proposition ensures that, under suitable conditions, the extremal index of the sequence (ξ(S n )) n≥0 exists and can be made explicit.

Proposition 1 Let (ξ(s)) s∈Z be a stationary sequence satisfying the

D (k) (u n ) condition with k ≥ 1, for u n = u (τ )
n for any τ > 0 and such that (ξ(S n )) n≥0 satisfies the ∆(u n ) condition. Assume that the extremal index of (ξ(s)) s∈Z exists and is equal to σ ∈ (0, 1], i.e.

n P ( ξ(0) > u n ) -→ n→∞ τ and P max 0≤s≤n {ξ(s)} ≤ u n -→ n→∞ e -στ .
Then the sequence (ξ(S n )) n≥0 admits an extremal index which is equal to θ = σq, where q is as in (1.2).

In other words, Proposition 1 claims that

P ( max 0≤k≤n ξ(S k ) ≤ u n ) -→ n→∞ e -σqτ .
The D (k) (u n ) condition In [START_REF] Franke | The extremes of random walks in random sceneries[END_REF], Franke and Saigo proved that, when the ξ(s)'s are i.i.d., the sequence (ξ(S n )) n≥0 does not satisfy the D (u n ) condition. Since the D (1) (u n ) condition is slightly less restrictive than the D (u n ) condition and since Equation (1.5) (as stated below) is satisfied when the ξ(s)'s are i.i.d., the following result can be compared to Proposition 3 in [START_REF] Franke | The extremes of random walks in random sceneries[END_REF].

Proposition 2 Assume that (ξ(s)) s∈Z is a stationary sequence satisfying lim sup n→∞ nP ξ(0) > u n and there exists s ∈

{-k + 1, . . . , k -1} \ {0} s.t. ξ(s) > u n < τ. (1.5) Then (ξ(S n )) n≥0 does not satisfy the D (k) (u n ) condition for any k ≥ 1.
The point process of exceedances Before stating our next result, we give some notation. First, for any τ > 0 and n ≥ 1, we let

Φ n = Φ (τ ) n = i n : ξ(S i ) > u n , i ≤ n . (1.6)
The point process Φ n ⊂ [0, 1) is referred to as the point process of exceedances. Now, let (k n ) n≥0 be a sequence of positive integers with

k n -→ n→∞ ∞ and k n = o(n). For any j ≥ 1, let p n (j) = p (τ ) n (j) = P ( #Φ kn = j|ξ(0) > u n ) ,
where Φ kn is defined in the same spirit as Φ n by considering this time integers i ≤ k n . Recall that a compound Poisson point process in [0, 1] of intensity λ > 0 and cluster size distribution π is a point process of the form {(x j , n j ), j ≥ 1}, where {x j , j ≥ 1} is a stationary Poisson point process in [0, 1] of intensity λ and where (n j ) j≥1 is a family of i.i.d. random variables with distribution π which is independent of the x j 's.

The following proposition states that, under suitable conditions, the point process of exceedances converges to a compound Poisson point process.

Proposition 3 Let (ξ(s)) s∈Z be a stationary sequence satisfying the

D (k) (u n ) condition with k ≥ 1, for u n = u (τ )
n for any τ > 0 and such that (ξ(S n )) n≥0 satisfies the ∆(u n ) condition. Assume that p (τ 0 ) n (j) converges to some number p(j) for any j ≥ 1 and for some τ 0 . Then the point process Φ (τ ) n converges in distribution to a compound Poisson point process with intensity θτ , where θ = σq, and cluster size distribution π(j) = 1 θ (p(j) -p(j + 1)), for any τ > 0.

The above proposition is classical in EVT and is a simple application of Theorem 2.5 in [START_REF] Perfekt | Extremal behaviour of stationary Markov chains with applications[END_REF] and Theorem 5.1 in [START_REF] Hsing | On the exceedance point process for a stationary sequence[END_REF]. In a different context, asymptotic results on point processes associated with extremes in random sceneries are also established in [START_REF] Chenavier | Some properties on extremes for transient random walks in random sceneries[END_REF]. Our paper is organized as follows. In Section 2, we prove Propositions 1-3. In Section 3, we give some examples illustrating Proposition 3. In particular, we make explicit the cluster size distribution of the limiting point process of exceedances. In section 4, we shortly discuss possible ways to ensure that (ξ(S n )) n≥0 satisfies the ∆(u n ) condition to apply Propositions 1 and 3. Finally, the proof of a (technical) side-lemma is given in Appendix A.

2 Proofs of the main results

Proof of Proposition 1

Let R n = #{S 0 , . . . , S n } be the range associated with the random walk (S n ) n≥0 . Then

P max 0≤i≤n ξ(S i ) ≤ u n = E P max 1≤s≤Rn {ξ(s)} ≤ u n |R n .
Moreover,

P max 1≤s≤Rn {ξ(s)} ≤ u n |R n -P max 1≤s≤ qn {ξ(s)} ≤ u n ≤ 2 P ( ∃s ∈ (R n , qn ) : ξ(s) > u n ) ≤ 2|R n -qn | P ( ξ(0) > u n ) ,
where (R n , qn ) denotes the interval with (non-necessarily ordinated) extremities R n and qn .

According to (1.3) and (1.4), we deduce that

P max 1≤s≤Rn {ξ(s)} ≤ u n |R n -P max 1≤s≤ qn {ξ(s)} ≤ u n -→ n→∞ 0.
Therefore, to prove that (ξ(S n )) n≥0 has an extremal index which is equal to θ = σq, it is sufficient to prove that

P max 1≤s≤ qn {ξ(s)} ≤ u n -→ n→∞ e -σqτ . (2.1) 
We prove below (2.1). When k = 1, the identity follows from Corollary 1.3 in [START_REF] Chernick | Calculating the extremal index for a class of stationary sequences[END_REF] which also shows that the extremal index is σ = 1. Assume from now on that k ≥ 2. Because (ξ(s)) s∈Z satisfies the D (k) (u n ) condition, it follows from Corollary 1.3 in [START_REF] Chernick | Calculating the extremal index for a class of stationary sequences[END_REF] that

P max 1≤s≤k-1 {ξ(s)} ≤ u n |ξ(0) > u n -→ n→∞ σ.
In particular

P max 1≤s≤k-1 {ξ(s)} ≤ u (q) n |ξ(0) > u (q) n -→ n→∞ σ,
where u (q) n = u n/q . Observe that (ξ(s)) s∈Z also satisfies the ∆(u

(q) n ) and D (k) (u (q) n ) condition. Because n P ξ(0) > u (q) n -→ n→∞ qτ , it follows again from Corollary 1.3 in [3] that P max 1≤s≤n {ξ(s)} ≤ u (q) n -→ n→∞ e -σqτ .
Taking n = qn , we deduce that

P max 1≤s≤ qn {ξ(s)} ≤ u (q) qn -→ n →∞ e -σqτ .
Because

n qn /q -→ n →∞
1, the latter expression gives

P max 1≤s≤ qn {ξ(s)} ≤ u n -→ n →∞ e -σqτ ,
which proves (2.1).

Proof of Proposition 2

It is sufficient to prove that, for any sequence (r n ) n≥0 with r n -→ n→∞ ∞, we have lim inf

n→∞ n P ξ(S 0 ) > u n ≥ M1,k-1 , Mk,rn > u n > 0, (2.2) 
where, similarly to Definition 2, we let Mi,j = -∞ for i > j, Mi,j = max 0≤i≤t≤j ξ(S t ) for i ≤ j. Assume that k is even. We have

n P ξ(S 0 ) > u n ≥ M1,k-1 , Mk,rn > u n ≥ n P ξ(0) > u n ≥ M1,k-1 , S k = 0 = n P ( ξ(0) > u n , S k = 0 ) -n P ξ(0) > u n , M1,k-1 > u n , S k = 0 . (2.3)
First, because (ξ(s)) s∈Z and (S n ) n≥0 are independent, we obtain from (1.4) that

n P ( ξ(0) > u n , S k = 0 ) ∼ n→∞ τ P ( S k = 0 ) , (2.4) 
where P ( S k = 0 ) = 0 since k is even. Secondly, we have

n P ξ(0) > u n , M1,k-1 > u n , S k = 0 = n P   {ξ(0) > u n , S k = 0} ∩ 1≤i≤k-1 {S i = 0}   + n P   ξ(0) > u n , M1,k-1 > u n , S k = 0 ∩ 1≤i≤k-1 {S i = 0}   . (2.5)
The first term of the right hand-side of (2.5) is equal to

n P ( ξ(0) > u n ) P   {S k = 0} ∩ 1≤i≤k-1 {S i = 0}   ∼ n→∞ τ P   {S k = 0} ∩ 1≤i≤k-1 {S i = 0}   .
To deal with the second term of the right hand-side of (2.5), observe that

n P   ξ(0) > u n , M1,k-1 > u n , S k = 0 ∩ 1≤i≤k-1 {S i = 0}   ≤ n P ( ξ(0) > u n , ∃s ∈ {-k + 1, . . . , k -1} \ {0} s.t. ξ(s) > u n ) × P   1≤i≤k-1 {S i = 0} ∩ {S k = 0}   .
According to (1.5), it follows that lim sup

n→∞ n P   ξ(0) > u n , M1,k-1 > u n , S k = 0 ∩ 1≤i≤k-1 {S i = 0}   < τ P   1≤i≤k-1 {S i = 0} ∩ {S k = 0}   . (2.6) Then (2.3) -(2.6) implies (2.
2) when k is even.

In a similar way, we prove that the condition D (k) (u n ) is not satisfied when k is odd by considering this time the event {S k+1 = 0}.

Proof of Proposition 3

First, notice that, according to Proposition 1, the extremal index of (ξ(S n )) n≥0 exists and equals θ = σq > 0. Now, let τ 0 be such that p (τ 0 ) n (j) converges to some number p(j). In particular p

(τ 0 ) n (j) -p (τ 0 )
n (j -1) -→ n→∞ θπ(j) for any j ≥ 1, where π(j) = 1 θ (p(j) -p(j + 1)). Such a property ensures that Equation (2.5) in [START_REF] Perfekt | Extremal behaviour of stationary Markov chains with applications[END_REF] is satisfied. It follows from Theorem 2.5 in [START_REF] Perfekt | Extremal behaviour of stationary Markov chains with applications[END_REF] that Φ (τ 0 ) n converges to a point process Φ (τ 0 ) with Laplace transform

L Φ (τ 0 ) (f ) := E   exp   - x∈Φ (τ 0 ) f (x)     = exp -θτ 0 ∞ 0 (1 -L(f (t)))dt ,
for any positive and measurable function f , where L denotes the Laplace transform of π. In particular, Φ (τ 0 ) is a compound Poisson point process of intensity θτ 0 with cluster size distribution π. Moreover, according to Theorem 5.1 in [START_REF] Hsing | On the exceedance point process for a stationary sequence[END_REF], the fact that Φ (τ 0 ) n converges to Φ (τ 0 ) for some τ 0 > 0 ensures that Φ (τ ) n converges to Φ (τ ) for any τ > 0. This concludes the proof of Proposition 3.

Examples

In this section, we give two examples illustrating Proposition 3. The second one extends the first one. Being slightly easier to establish, we have chosen to present Example 1 separately for sake of simplicity.

Example 1

Assume that the ξ(s)'s are i.i.d.. Let N (0) = #{i ≥ 0 : S i = 0} be the number of visits of the random walk (S n ) n≥0 in site 0 and recall that q = P ( S i = 0, ∀i ≥ 1 ) = P ( N (0) = 0 ) .

Notice that q ∈ (0, 1) since the random walk is transient (p = 1/2) and that N (0) has a geometric distribution with parameter q. Moreover, since the ξ(s)'s are i.i.d., the extremal index of (ξ(s)) s∈Z equals 1. Thus, according to Proposition 1, the extremal index of (ξ(S n )) n≥0 exists and is equal to θ = q. Now, let Φ be a compound Poisson point process in [0, 1] with intensity θτ and cluster size distribution

π(j) = P ( N (0) = j ) -P ( N (0) = j + 1 ) θ = q(1 -q) j-1 .
Proposition 4 For any τ > 0, the point process of exceedances Φ n , as defined in (1.6), converges in distribution to Φ.

Proof of Proposition 4. Since the ξ(s)'s are i.i.d., the ∆(u n ) and the D (1) (u n ) conditions clearly hold for (ξ(s)) s∈Z . Let us justify that (ξ(S n )) n≥0 also satisfies the ∆(u n ) condition. By looking carefully at the proof of [5, Theorem 2.2], one can see that the argument, based on a suitable coupling, adapts verbatim -without assuming that the ξ(s)'s take their values in a finite set -to prove that (ξ(S n )) n≥0 is α-mixing. In particular, the ∆(u n ) condition holds for (ξ(S n )) n≥0 .

According to Proposition 3, it is sufficient to compute the cluster size distribution. First, let (k n ) n≥0 be a family of integers such that k n -→ n→∞ ∞ and k n = o(n) and let

Φ kn = i n : ξ(S i ) > u n , 0 ≤ i ≤ k n .
For any j ≥ 1, recall that p n (j) = P ( #Φ kn = j|ξ(0) > u n ) .

We proceed into two steps: first, we compute the limit of p n (j); then we compute π(j).

Step 1. We write

p n (j) = P ( #Φ kn ≥ j|ξ(0) > u n ) -P ( #Φ kn ≥ j + 1|ξ(0) > u n ) .
Moreover,

P ( #Φ kn ≥ j|ξ(0) > u n ) = P ( #Φ kn ≥ j, N kn (0) ≥ j|ξ(0) > u n ) + P ( #Φ kn ≥ j, N kn (0) < j|ξ(0) > u n ) ,
where

N kn (0) = #{0 ≤ i ≤ k n : S i = 0}
is the number of visits in 0 until time k n . We show below that the first term of the right-hand side converges to P ( N (0) = j ) and that the second term converges to 0. First, we notice that, conditional on the event {ξ(0) > u n }, we have

{#Φ kn ≥ j} ∩ {N kn (0) ≥ j} = {N kn (0) ≥ j}. Therefore P ( #Φ kn ≥ j, N kn (0) ≥ j|ξ(0) > u n ) = P ( N kn (0) ≥ j|ξ(0) > u n ) = P ( N kn (0) ≥ j ) -→ n→∞ P ( N (0) ≥ j ) , (3.1) 
where the second line comes from the fact that the random walk is independent of the scenery and where the third one follows from the Lebesgue's dominated convergence theorem (with

k n -→ n→∞ ∞).
Moreover, writing S kn = {S 0 , . . . , S kn }, we have

P ( #Φ kn ≥ j, N kn (0) < j|ξ(0) > u n ) ≤ P ( ∃s ∈ S kn \ {0} : ξ(s) > u n |ξ(0) > u n ) = P ( {∃s ∈ S kn \ {0} : ξ(s) > u n } ∩ {ξ(0) > u n } ) P ( ξ(0) > u n ) ≤ E s∈S kn \{0} P ( ξ(s) > u n , ξ(0) > u n ) P ( ξ(0) > u n ) ≤ P ( ξ(0) > u n ) E [ #S kn ] ,
where the last line comes from the fact that the ξ(s)'s are i.i.d.. Moreover, according to [START_REF] Gall | The range of stable random walks[END_REF], we know that #S kn kn -→ n→∞ q a.s.. Thus, according to the Lebesgue's dominated convergence theorem (which can be applied since #S kn ≤ k n ), we have

E #S kn kn -→ n→∞ q. Because P ( ξ(0) > u n ) ∼ n→∞ τ n , we have P ( #Φ kn ≥ j, N kn (0) < j|ξ(0) > u n ) = O (k n /n) ,
which converges to 0 since k n = o(n). This together with (3.1) gives that

P ( #Φ kn ≥ j|ξ(0) > u n ) -→ n→∞ P ( N (0) ≥ j )
and consequently that

p n (j) -→ n→∞ P ( N (0) ≥ j ) -P ( N (0) ≥ j + 1 ) = P ( N (0) = j ) =: p(j).
Step 2. We provide below an explicit formula for π. According to Theorem 4.1 in [START_REF] Rootzén | Maxima and exceedances of stationary Markov chains[END_REF] (see also Theorem 2.5 in [START_REF] Perfekt | Extremal behaviour of stationary Markov chains with applications[END_REF]), we have

p(j) = θ ∞ m=j π(m). Therefore π(j) = p(j) -p(j + 1) θ = P ( N (0) = j ) -P ( N (0) = j + 1 ) θ .
Remark 1 It is known that, under suitable conditions, the extremal index can be interpreted as the reciprocal of the mean size of a cluster of exceedances, i.e. θ -1 = ∞ j=1 jπ(j), see e.g. [START_REF] Hsing | On the exceedance point process for a stationary sequence[END_REF]. Such an identity holds in the above example since 1 q = ∞ j=1 jq(1 -q) j-1 .

Example 2

Let k ≥ 0. Assume that ξ(s) = max{Y s , Y s+1 , . . . , Y s+k }, where the family of random variables (Y (s)) s∈Z is assumed to be i.i.d.. For any subset A ⊂ Z, let N (A) be the number of visits of the random walk in A, i.e. N (A) = #{i ≥ 0 : S i ∈ A}.

The following proposition gives an explicit formula for the extremal index of (ξ(S n )) n≥0 and for the cluster size distribution. with p(j) = 1 2 (P ( N ({-1, 0}) = j ) + P ( N ({0, 1}) = j )) .

Step 2. In the same spirit as in Section 3.1, we have π(j) = p(j)-p(j+1) θ , that is, since q = 2θ π(j) = 1 q P ( N ({-1, 0}) = j ) -P ( N ({-1, 0}) = j + 1 )

+ P ( N ({0, 1}) = j ) -P ( N ({0, 1}) = j + 1 ) .

Discussion

In the examples provided in Section 3, the field (ξ(s)) s∈Z has a weak dependence property and (ξ(S n )) n≥0 gets stronger mixing properties than the one required in order to apply Propositions 1 and 3. One may wonder how to proceed to verify that (ξ(S n )) n≥0 satisfies the ∆(u n ) condition if the field (ξ(s)) s∈Z has a stronger dependence property. We obtain the following partial result in this direction.

Proposition 6 Let (S n ) n≥0 be a simple transient random walk, i.e. p = 1/2 and let (u n ) n≥0 be a sequence of positive integers. Assume that the following conditions hold.

(i) The sequence (ξ(s)) s∈Z satisfies the ∆(u n ) condition.

(ii) max A∈ Bn Then (ξ(S n )) n≥0 satisfies the ∆(u n ) condition.

Remark 2 In the above proposition, the notation Bn 0 (u n ) stands for the σ-algebra generated by events of the form {ξ(S i ) ≤ u n }, 0 ≤ i ≤ n, and S 0:n = {S 0 , . . . , S n }. The assumption (ii) is probably unnecessary, our result should hold if we only assume that (ξ(s)) s∈Z satisfies the ∆(u n ) condition. At least assumption (ii) can be replaced by the slightly weaker assumption (ii') stated below. Assumption (ii') seems more natural from the point of view of EVT but is a bit heavier to state. Moreover, it appears in our examples that it is not easier to check the latter than assumption (ii).

(ii') For some β ∈ (1/2, 1), 

max 1≤k≤n-˜ n max A∈ Bk 0 (un),B∈ Bn k+ ˜ n (un) E P ( A|S 0:k ) P B|S k+ ˜ n:n -P ( A ) P ( B ) -→ n→∞ 0, where ˜ n = 2n+1 + 2n β |2p -1| . ( 4 
{| P ( A ∩ B ) -P ( A ) P ( B ) |},
where Bm 2 m 1 (u n ) denotes the σ-field generated by events {ξ(S i ) ≤ u n }, m 1 ≤ i ≤ m 2 . We prove below that α˜ n,n -→ n→∞ 0. To do it, we will use the following lemma whose proof is given in Appendix A.

Lemma 7 Assume that p > 1/2. Let us consider the following event:

E n = k≤n-˜ n max{S 0 , . . . , S k } ≤ k(2p -1) + n β ∩ min{S k+ ˜ n , . . . , S n } ≥ (k + ˜ n )(2p -1) -n β .
Then there exist two positive constants c 1 and c 2 such that P

( E c n ) ≤ c 1 e -c 2 n 2β-1 .
In particular, Lemma 7 ensures that the event E n occurs with high probability since β > 1/2. Now, let k ≤ n -˜ n be fixed. Let us consider two events A ∈ Bk 0 (u n ) and B ∈ Bn

k+ ˜ n (u n ).
First, according to Lemma 7, we notice that

P ( A ∩ B ) = P ( A ∩ B ∩ E n ) + o(1) = E [ I En P ( A ∩ B|S 1:n ) ] + o(1),
where o(1) only depends on n. Moreover, conditional on S 1:n and on the event E n , we know that

|I En P ( A ∩ B|S 1:n ) -I En P ( A|S 1:n ) P ( B|S 1:n )| ≤ α 2n+1, 2n+1 . (4.2) 
Indeed, since A ∈ Bk 0 (u n ) and since we are on E n , conditional on S 1:n , the event A only depends of events of the form {ξ(s) ≤ u n }, with s ≤ k(2p -1) + n β . In the same way, the event B only depends of events of the form {ξ(s) ≤ u n }, with s ≥ (k + ˜ n )(2p -1) -n β . Equation (4.2) follows since the difference between k(2p -1) + n β and (k + ˜ n )(2p -1) -n β is at least 2n+1 . Now, because (ξ(s)) s∈Z satisfies the ∆(u n ) condition, we know that α 2n+1, 2n+1 converges to 0 as n goes to infinity. Thus, thanks again to Lemma 7, we have P ( A ∩ B ) = E [ P ( A|S 1:n ) P ( B|S 1:n ) ] + o(1).

This together with assumption (ii) concludes the proof of Proposition 6.

A Proof of Lemma 7

It is sufficient to prove that the events k≤n-˜ n max{S 0 , . . . , S k } > k(2p -1) + n β and k≤n-˜ n min{S k+ ˜ n , . . . , S n } < (k + ˜ n )(2p -1) -n β occur with probability smaller than c 1 e -c 2 n 2β-1 . We only deal with the first one since the second one can be dealt in a similar way. To do it, we notice that . This concludes the proof of Lemma 7.

0

  (un),B∈ Bn 0 (un) {|E [ P ( A|S 1:n ) P ( B|S 1:n ) ] -P ( A ) P ( B )|} -→ n→∞ 0.

1 2 n 2β- 1 .

 11 n max{S 0 , . . . , S k } > k(2p -1) + n β   ≤ k≤n-˜ n i≤k P S i > k(2p -1) + n β ≤ k≤n-˜ n k P S k > k(2p -1) + n β ,where the last line comes from the fact that S i is stochastically dominated by S k , with i ≤ k, since p > 1/2. Now, let k ≤ n -˜ n be fixed, and let S k be a binomial random variable with parameter (k, p), so that S k sto = 2S k -k. We have P S k > k(2p -1) + n β = P S k > kp + Hoeffding's inequality. Since k ≤ n, the last term is lower than e -Summing over k, we getP   k≤n-˜ n max{S 0 , . . . , S k } > k(2p -1) + n β   ≤ n 2 e -1 2 n 2β-1

 Proposition 5The point process of exceedances Φ n , as defined in (1.6), converges in distribution to a compound Poisson point process of intensity θτ , with θ = q k+1 , and cluster size distribution

for any τ > 0.

Proof of Proposition 5. Replacing the use of [5, Theorem 2.2] and its proof by the one of [4,

Theorem 2], one can show that (ξ(S n )) n≥0 satisfies the ∆(u n ) condition. Moreover, we notice that the extremal index of (ξ(s)) s∈Z is equal to σ = 1 k+1 . Moreover, because the ξ(s)'s are k-dependent, the sequence (ξ(s)) s∈Z satisfies the D (k) (u n ). Therefore, according to Proposition 1, the extremal index of (ξ(S n )) n≥0 exists and is equal to θ = q k+1 . Let us compute the cluster size distribution. We only deal with the case k = 1 since the general case can be dealt in a similar way. To do it, we proceed in the same spirit as in Section 3.1.

Step 1. First, we make explicit the limit of

We notice that

To deal with the first term of the right-hand side, we write

.

Proceeding in the same spirit as in Section 3.1, we can prove that P ( #Φ kn ≥ j|Y 0 > u n ) converges to P ( N ({-1, 0}) ≥ j ). Moreover, because ξ(0) = max{Y 0 , Y 1 }, where Y 0 and Y 1 are independent, and because n P ( ξ(0

In a similar way, we get

Moreover, for the last term of (3.2), we have

This, together with (3.2), gives p n (j) -→ n→∞ p(j),