

Epitaxial cobalt-based Heusler alloys for spintronic applications: Elaboration, structural and magnetic investigation

C. Guillemard, F. Bertran, A. Bataille, P. Le Fevre, S. Petit-Watelot, J.-C. Rojas-Sánchez, Stéphane Andrieu

▶ To cite this version:

C. Guillemard, F. Bertran, A. Bataille, P. Le Fevre, S. Petit-Watelot, et al.. Epitaxial cobalt-based Heusler alloys for spintronic applications: Elaboration, structural and magnetic investigation. GP-SPIN: Prospects of future Spintronics 2017, Tohoku University, Oct 2017, Sendai, Japan. hal-04066228

HAL Id: hal-04066228 https://hal.science/hal-04066228

Submitted on 12 Apr 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Half-metallicity and ultra-low damping investigation

<u>C. GUILLEMARD</u>, C. ROJAS-SANCHEZ, S. PETIT-WATELOT, A. M. BATAILLE, F. BERTRAN, S. ANDRIEU

Institut Jean Lamour

Outline

- I. Co₂MnX Heusler alloys & spintronics
- II. In situ SR-PES on the Cassiopée beamline
 - Elaboration of Co₂MnX
 - Spin-Resolved Photoemission Spectroscopy

III. Ferromagnetic resonance

- Out-of-plane geometry
- Low magnetic damping results

IV. Summary

Heusler alloys

Institut Jean Lamour

CNrs

Exp. 1996 % H. Liu *et al, App. Phys. Lett.* **101**, 2012

Interest for spintronic devices :

CNrs

Spin transfer torque (STT) and STT – MRAM :

 α = magnetic damping η = spin polarization rate

high (~7.10⁸ A/m²) [S. Mangin et al, App. Phys. Lett. 94, 2009]

Motivations

CNrs

Co₂MnX Heuslers good candidates for STT-MRAM :

- ✓ Predicted HMM (ab initio calc.)
- ✓ Ultra-low damping materials (down to 10^{-5})
- ✓ Appreciable T_C & M_S
- ✓ Lattice parameter close to MgO (tunnel barrier)
- ✓ (Perpendicular magnetic anisotropy ??)

Our strategy :

- Elaboration of epitaxial Co₂MnX thin films by MBE
- To confirm the predicted HMM behavior of Heuslers and tune the electronic structure (by switching X_{IV} by X_{III} , X_V etc.)
- Measurement of the Gilbert damping by VNA-FMR
- Link the HMM behavior and damping value

$J_c = \frac{2e\alpha M_S V}{\hbar\eta} \left(M_S + H_k \right)$

Outline

- I. Co₂MnX Heusler alloys & spintronics
- II. In situ SR-PES on the Cassiopée beamline
 - Elaboration of Co₂MnX
 - Spin-Resolved Photoemission Spectroscopy

III. Ferromagnetic resonance

- Out-of-plane geometry
- Low magnetic damping results

IV.Summary

The Cassiopée Beamline

CNrs

Mott detection SR-PES

Institut

SOLEIL : 2,75 GeV storage ring, Saint Aubin, Fr.

MBE growth

MgO(001) [100] // Co₂MnX(001) [110]

CNrs

Growth by co-evap. Controled by QCM (error : 5%)

Institut Jean Lamour

MBE growth The [110] RHEED patterns

cnrs

Co_2MnX with $>$	X =	Si	Sn	AI
		\checkmark	\checkmark	X Low chemical order
		Ge	Ga	Sb
		\checkmark	\checkmark	X Growth along (111) 2 Hex. domains

UNIVERSITÉ

DF

MBE growth XRD : the (111) asymmetric peak

cnrs

UNIVERSITÉ DE LORBAIN

Spin Resolved Photoemission

CINICS

Spin Resolved Photoemission

CNrs

Results on Co_2MnX_{III} (X_{III} = AI, Ga)

 Co_2MnAI 60% spin polarization at E_F

hv = 37 eV

 $hv = 37 \, eV$

UNIVERSI

 Co_2MnGa 100% spin polarization at E_F

not yet published

For the $Co_2MnX_{III,}$ the Fermi level slides down since there is one less valence e⁻ Spin gap at E_F for Co_2MnGa

Outline

- I. Co₂MnX Heusler alloys & spintronics
- II. In situ SR-PES on the Cassiopée beamline
 - Elaboration of Co₂MnX
 - Spin-Resolved Photoemission Spectroscopy

III. Ferromagnetic resonance

- Out-of-plane geometry
- Low magnetic damping results

IV. Summary

Ferromagnetic resonance

Perpendicular magnetic field VNA-FMR

CNrs

Low magnetic damping on Heuslers

CNrs

- Epitaxial Co₂MnX thin films can be grown by MBE
 → Why low chemical order for Co₂MnAl or (111) growth for Co₂MnSb ?
- High spin polarization for almost all of them
 → HMM confirmed for Co₂MnSi and Co₂MnGa !
- Ultra-low magnetic damping also confirmed \rightarrow In the 10⁻⁴ range for Co₂MnX_{IV}
- How does the chemical disorder impact the physical properties ?
- Link the SR-DOS with the calculated band structures
- Find connections between the magnetic damping and the spin polarization (and the electric conductivity)

Institut Jean Lamour

Institut Jean Lamour 101 team

S. Andrieu [†] C. Rojas-Sanchez S. Petit-Watelot

Soleil Synchrotron Cassiopée beamline

> F. Bertran [†] P. Le Fèvre

UNIVERSIT

Laboratoire Léon Brillouin

A. M. Bataille [†]