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UMR5008, F-69621, Villeurbanne, France.
12 Department of Mechanical and Mechatronics Engineering, University of Waterloo,
200 University Ave. W, Waterloo ON, Canada
13 Cnes, Toulouse, France
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Abstract

It was recently shown that radiation, conduction and convection can be combined within
a single Monte Carlo algorithm and that such an algorithm immediately benefits from
state-of-the-art computer-graphics advances when dealing with complex geometries. The
theoretical foundations that make this coupling possible are fully exposed for the first
time, supporting the intuitive pictures of continuous thermal paths that run through the
different physics at work. First, the theoretical frameworks of propagators and Green’s
functions are used to demonstrate that a coupled model involving different physical
phenomena can be probabilized. Second, they are extended and made operational using
the Feynman-Kac theory and stochastic processes. Finally, the theoretical framework
is supported by a new proposal for an approximation of coupled Brownian trajectories
compatible with the algorithmic design required by ray-tracing acceleration techniques
in highly refined geometry.
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1 Introduction 1

1.1 The proposition 2

In corpuscular physics, radiative transfer can be described in the framework of the linear 3

Boltzmann theory for photon transport and this leads quite naturally to path-space 4

formulations. The Monte Carlo (MC) method then allows to estimate the quantity of 5

interest by sampling the paths according to their probability law so as to identify the 6

contributing boundary conditions or sources. This statistical method is the only one able 7

to provide an unbiased estimate along with its statistical uncertainty. Furthermore, as 8

MC methods are able to handle complex integration domain (spatial, angular, spectral...), 9

it is widely used as a reference method. Finally, the insensitivity of the method to the 10

size and level of refinement of the geometric scenes and volumic heterogeneities (see, for 11

example, [1–4] ) has further widened its applicability, up to the industrial scale. 12

In the present paper, we give the theoretical basis for extending MC methods to 13

problems including coupled linear heat transfers. We aim at providing a complete 14

framework for describing, in a single MC algorithm, the coupled energy transfers as 15

conductive, convective and radiative paths, while retaining the flexibility of standard 16

MC methods applied to linear transport theory. 17

Our standpoint being here theoretical, we will not consider any implementation 18

associated with a specific system in practice. Starting from earlier developments [5], 19

successful implementations have already been reported for several practical heat transfer 20

applications. For instance, using this framework to model detailed thermal transfers in 21

cities has been proposed as a way to improve climate services [6]. Applied works are 22

also in progress in complex cooling systems design such as power electronic systems 23

that are cooled by air or two-phase exchangers, thermal receivers in concentrated solar 24

power plants, electric motors, or thermal housing issues... [7–15]. These are mostly 25

based on a free-licensed library (the Stardis project [16]) which implements most of the 26

elements presented below. Although their common theoretical foundations are based 27

on traditional linear physics, there is no written work yet that combines them into a 28

unique comprehensive framework, and fully exposes why and how MC implementations 29

of coupled heat transfers are now possible. 30

With this framework, the full power of the method is then made available both 31

for computations and analysis. In the following, the idea of thermal paths is built 32

up progressively using different formal propositions, each of which is translated into a 33

corresponding algorithm. In the end, the physical images generated by our proposition 34

should allow physicists and engineers to renew their interpretation of the coupling of 35

heat transfers in a given system. It may also open didactic perspectives that will be 36

discussed in forthcoming articles in educational sciences. 37

1.2 The theoretical framework 38

In this framework, the objective is to estimate a given quantity at so-called “probe 39

points” such as the temperature at a given point in space at a given time. Such probes 40

can be as well quantities integrated over time, surface and volume, in which case the 41

integral is estimated statistically, without solving the detailed integrand. It is therefore 42

fundamentally different from the “swarm” MC algorithms [17] or “direct” algorithms [18] 43

that aim to evaluate the whole field but are limited in their capacity to tackle high levels 44

of geometrical, temporal or phenomenological complexity. 45
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The main question is then to express the temperature at any location as the ex- 46

pectation of a random variable in the pure filiation of the MC method as it is used in 47

linear transport physics. Indeed, expressing this quantity as a definite integral, which 48

can be considered as a unique statistical estimator, is the guarantee that all the good 49

properties of the method are preserved. This practice of the MC method presents the 50

advantage of preserving an intuitive understanding by analogy with the underlying 51

physics, while systematically providing the associated formalisation (for foundational 52

references, see [19,20]). 53

In Section 3 “Linearity and Propagators”, we show how to build this expectation for 54

a particular physical study case, using propagation formalism [21–24]. The objective is 55

to express the quantity of interest at the probe point, as an integral over the boundary 56

conditions (here “boundary conditions” comprise the edge conditions and the initial 57

condition) and the sources in the field, using a propagator: the role of the propagator is to 58

quantify the relative contributions by the boundary conditions and by the sources. Here, 59

the corresponding formulations are backward formulations and are generally built using 60

adjoint-based methods. These integral formulations are then reformulated as expectations 61

in order to design MC algorithms. At this stage, the generality of the approach, which 62

simply reflects the essential property of linear physics, should be distinguished from the 63

ability to produce explicit calculations (in the analytical sense), most often limited to 64

academic configurations where the propagator is explicitely known [23, 25–32]. Many 65

works have proposed quite useful and interesting extensions, some of them in terms of 66

applicability domains [33–42], but, as far as sampling is concerned, addressing problems 67

with high geometrical complexity remains either very cumbersome or impractical. 68

To circumvent these difficulties, we turn to the theory of Stochastic Processes [43]. 69

Building upon the work of Feynman and Kac on the statistical representations of 70

parabolic equations [44–47], we show how the temperature at the probe point can also 71

be expressed as an expectation over a stochastic process. Each realization of the process 72

is a path that starts at the probe point and ends at a boundary condition or at a source, 73

thereby sampling the various possible contributions to the quantity of interest. Averaging 74

a large number of contributions sampled from either the propagator or the stochastic 75

process yields an unbiased estimate of the same expectation, that is, both methods 76

converge to the very same value, although by sampling different path-spaces. This strict 77

equivalence means that stochastic processes can be used instead of propagators, yielding 78

two important advantages: first, stochastic processes can be sampled efficiently even in 79

the presence of complex geometry, and second, since different procedures can be designed 80

to sample a given stochastic process, algorithms can be optimized. 81

In the part of MC literature that discusses Green’s formalism or stochastic processes, 82

the question of coupling phenomenologies of various physics is not an issue that is 83

addressed as such, and this is for very different reasons in each case. On the one 84

hand, in Green’s formalism, coupling by sources is self-evident due to the formalism 85

itself, and there are no conceptual difficulties associated to this question. Yet, from an 86

implementation point of view, if MC proposals are only based on this formalism, they 87

are essentially limited to academic cases and do not fit in the present framework. On 88

the other hand, in the stochastic processes formalism, the path description conveys an 89

intuitive picture by analogy with corpuscular tracking, but this picture remains narrowly 90

limited to the phenomenology that is being treated. In this case, the coupling between 91

different phenomenologies is an issue that has no self-evident formal translation. As 92

a consequence, proposals of MC probe point algorithms for solving coupled thermal 93

transfers are scarce in the literature. 94

Any theoretical framework that claims to deal with coupled thermal transfers by MC 95

must articulate how paths should be sampled at the coupling locations. We make an 96

extensive use of the double randomization principle [48, 49] as it allows the sampling 97
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procedure to rely on a local description of the probabilistic model at each step, including 98

at the coupling locations, whereas the integral approach of Feynman-Kac is built upon a 99

global understanding of the physical subsystems and is hence much more challenging to 100

implement. 101

1.3 The particular model supporting the presentation of the 102

theoretical development 103

A particular heat transfer model has been chosen to support the exposition of the 104

framework. It is described in Section 2 and summarized in Eq. (6). This choice of model 105

is by no means limiting, and various other choices could have been made, such as those 106

described in [12,13]. 107

Each fundamental element of the proposal will be described in a general manner, 108

and its translation and consequences illustrated in this specific case. In particular, all 109

the choices that aim at preserving the good properties of the MC method, that is, its 110

inherent power of analysis and computational practicability (insensitivity to geometrical 111

refinements, ease of implementation...) will be emphasized. This practicability is allowed 112

by the tools developed for image synthesis: ray-tracing and grid acceleration, such that 113

the computation time is almost insensitive to the degree of refinement of geometrical 114

data. As it is crucial for us to preserve the ability of the MC method to scale up to 115

infinite geometric complexity, we ensure that our algorithms are compatible with the 116

well-established tools developed in the computer graphics community. This implies 117

that the interaction between the algorithms and the geometry must essentially rely on 118

scanning the scene through state-of-the-art ray-surface intersectors [50–52]. To ensure 119

both compatibility with ray-surface intersectors and flexibility of implementation, we 120

show in the last part that the practical implementation of MC algorithms on any geometry 121

requires to formulate an approximation of the description of Brownian motions. The 122

proposed approximation is theoretically justified and validated on different application 123

cases. Notwithstanding, it could easily be replaced or modified in case of specific needs. 124

2 The thermal model 125

The thermal model used below for illustrative purposes is fully described in the present 126

section. Throughout the text, the symbol θ is reserved to designate temperatures (with 127

notably extended meanings for the radiative model). The conductive and convective 128

transfers are linear and the radiative transfer is linearized around a reference temperature 129

θref . The thermophysical parameters are (possibly constant) functions of space. The 130

geometry is arbitrary and the spatial representations are three-dimensional. If necessary, 131

the formalism also allows to reduce the descriptive dimension according to the symmetries 132

of the system. 133

These choices are motivated by our intention of proposing a linear heat transfer 134

model that gathers most of the conceptual difficulties with respect to the objective 135

of the paper: demonstrating how the coupling between the transfer modes is carried 136

out in a probabilized formalism. Of course, this could have been done with somewhat 137

different models (especially for the convective and radiative parts). For example, here, 138

radiation takes place in a semi-transparent medium rather than exchanging between 139

opaque surfaces; the convective cavities are described with an unsteady model and 140

perfectly homogeneous temperature, rather than by an advecto-diffusive description 141

of the temperature; Neumann-type boundary conditions (heat flux imposed at the 142

boundary), as well as situations with volumic power sources only, are left aside (their 143

consideration is a bit different but is not a source of difficulty). 144

October 18, 2022 6/64



As an example, Fig. 1 presents a geometrical abstraction of a configuration with solid 145

sub-systems and fluid cavities where the three types of heat transfers can operate in a 146

coupled manner. This type of configuration, associated with the chosen model, depicts a 147

whole diversity of situations encountered in physical or technological questions. 148

⌦S

⌦F1

⌦F2

⌦F3

⌦F1

@⌦R

@⌦Fi

⌦F4

@⌦D

∂ΩD
F

Fig 1. Illustration of a conducto-convecto-radiative configuration. The solid domain
ΩS is shown in gray, m fluid cavities ΩFi are shown in light blue, and the surrounding
fluid cavity ΩF∞ is shown in dark blue. Radiation is present within the whole scene and
the system is entirely semi-transparent. Conduction takes place only in solids.

2.1 Radiative Heat Transfer 149

From the point of view of radiative transfer, the system is entirely semi-transparent 150

(both in the solid and fluid parts). The radiative transfer equation that governs this 151

phenomenology allows to take into account the effect of absorption and scattering of 152

radiation within the system, even where optical properties are heterogeneous. 153

The radiative transfer equation (RTE) is given with the following two restrictions: 154

• The refractive index is uniform throughout the system (no ray curvature within 155

solids, no refraction/reflection at solid/fluid interfaces). The writings are simplified 156

and none of our conclusions would be impeded by alleviating this assumption. 157

• The equation is linearized around the specific equilibrium intensity at a temperature 158

θref . This assumption is fundamental to remain in the framework of linear heat 159

transfers, and it is widely used in applications where the temperature differences 160

in the system are small compared to the absolute temperatures. 161

Under these assumptions, the radiative model is given by the usual radiative transfer 162

equation written in monochromatic specific intensity Iν ≡ Iν(~x, ~u, t) at position ~x, in 163

direction ~u at time t and at frequency ν (Eq. (64) in Appendix A). 164

To ensure formal coherence for the coupling with the other transfer modes, we replace 165

the specific intensity by its translation in terms of radiance temperature θνR,~u (also known 166

as brightness temperature, which is widely used in the experimental field). Appendix 167

A presents how the version written in monochromatic radiance temperature in the ~u 168
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direction is derived from Eq. (64), and reads: 169

~u.~∇θνR,~u = −kνe θνR,~u + kνaθ + kνs

∫
S2

pνS(~u|~u′)d~u′θνR,~u′ (1)

where kνa , kνs , kνe = kνa + kνs are the monochromatic absorption, scattering and 170

extinction coefficients, pνS is the scattering phase function, and S2 denotes the unit 171

sphere in a three dimension space. 172

It should be noted that even if the radiative equation is taken to be stationary, the 173

radiance temperature θνR,~u(~x, t) depends on time because θ evolves in the system due to 174

the coupling with conductive and convective processes. 175

The energy conservation equations for solid and fluid parts (heat equation for a semi- 176

transparent medium) are formulated below in such a way that the radiative contribution 177

appears through the radiative power density ψR ≡ ψR(~x, t) defined as the difference 178

between the absorbed and the emitted power densities. Under the stated assumptions, 179

it can be written in the following form (see Appendix A): 180

ψR = ζ

∫ +∞

0

pN (ν)dν

∫
S2

1

4π
d~u
(
θνR,~u − θ

)
(2)

where ζ = 16kaσθ
3
ref is the linearized radiative transfer coefficient and pN (ν) is defined 181

by Eq. (75). 182

The complete formulation of the radiative model then reads: 183

ψR = ζ (θR − θ)

θR =

∫
S2

1

4π
d~u θR,~u

~u.~∇θR,~u = −keθR,~u + kaθ + ks

∫
S2

pS(~u|~u′)d~u′θR,~u′

(3)

The temperature θR is often called the radiative temperature (the angular integral of 184

the radiance temperature). 185

To close the radiative problem, an incident radiance temperature θR,∂ΩR,~u is imposed 186

at a fictitious boundary ∂ΩR enclosing the whole domain, with ~u entering the domain 187

(~u ∈ S2
+). 188

2.2 Heat equation for solid sub-domain 189

The thermal model for the solid is established by combining diffusive energy transfer 190

with the radiative source term described above. The conductive energy flux density 191

vector is classically given by the Fourier law ~j = −λ~∇θS in which λ is the thermal 192

conductivity of the material and θS ≡ θS(~x, t) is the local temperature of the solid. 193

Thus, the local energy balance in the semi-transparent solid is written as follows: 194

ρC∂tθS = −~∇.
(
−λ~∇θS

)
︸ ︷︷ ︸
conductive exchange

+ ζ (θR − θS)︸ ︷︷ ︸
radiative exchange

(4)

where ρ and C are the mass density and the heat capacity of the material. ζ and θR 195

were defined in the previous section. 196

As illustrated in Fig. 1, the material medium under consideration is not necessarily 197

connected but is bounded by a surface denoted ∂ΩS where two types of conditions can 198

be imposed (Neumann-type boundary conditions are not considered in this text): 199

• Dirichlet-type boundary conditions: θS = θD on the interface ∂ΩD where θD is 200

the imposed temperature, 201
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• Robin-type boundary conditions: −λ~n.~∇θS = −λ∂θS∂n = hF (θF − θS) on the 202

complementary surface to ∂ΩD noted ∂ΩS\∂ΩD. 203

~n is the incoming normal to the solid surface, θF is the temperature of the fluid 204

whose model will be given in the following section and hF is the local convective 205

exchange coefficient. Robin’s condition specifies the coupling constraint between 206

the solid and the fluid by simply stating the continuity of the flux at the solid-fluid 207

interface. 208

The initial condition at time tI is generically noted θI ≡ θI(~x). 209

2.3 Heat equation for fluid sub-domain 210

As illustrated in Fig. 1, the fluid domain is composed of m cavities noted ΩFi(i ∈ 211

{1, 2, . . . ,m}) and of a domain ΩF∞ partially or totally enclosing the ΩS solid domain. 212

The fluid domain is therefore the union of these m+ 1 domains: 213

ΩF ≡ ΩF1
∪ ΩF2

∪ · · · ∪ ΩFm ∪ ΩF∞

In each cavity ΩFi (of volume VFi) and each surface ∂ΩFi , the fluid is assumed to 214

be perfectly mixed by convection at each instant and the heat flux density at the solid 215

walls is modeled by a linear transfer law (Newton’s law). Under this assumption, the 216

temperature of the fluid contained in the ith cavity, noted θFi is spatially uniform and 217

varies only as a function of time. The mass density ρi, the heat capacity Ci and the 218

linearized radiative heat transfer coefficient ζi are also spatially uniform. 219

The temperature of the fluid contained in the enclosing cavity ΩF∞ of surface ∂ΩF∞ 220

is imposed, it is noted θF∞ and can depend on time. 221

The energy balance of the semi-transparent fluid inside the ith cavity is as follows: 222

ρiCiVFi
dθFi
dt

(t) = ζi

∫
ΩFi

(θR (~xR, t)− θFi (t)) d~xR︸ ︷︷ ︸
radiative exchange

+

∫
∂ΩFi

hF (~yS) (θS(~yS , t)− θFi(t)) d~yS︸ ︷︷ ︸
convective exchange

(5)
ζ and θR are defined in the section on radiative transfer. The initial condition at time 223

tI is θI . 224

In this correlative model, which is widely used in industrial thermal issues, the 225

convective exchange coefficient hF summarizes the phenomenological complexity of the 226

exchanges between the fluid and the wall (here hF depends explicitly on the position at 227

the wall; it may also depend on time with no additional difficulties). Many works in 228

the literature aim at providing correlations adapted to different study cases, generally 229

parameterized with a set of dimensionless numbers [53,54]. As mentioned above, diffusion- 230

drift models for temperature could have been chosen without changing our main message. 231

As an example, the work described in [13] is focused on the MC resolution of convective- 232

conducting-radiative coupled models using a local heat equation for the fluid (with a 233

prescribed velocity field). 234

2.4 Summary: the coupled model 235

Let us define, for any domain ΩJ : the adherence Ω̄J = ΩJ
⋃
∂ΩJ and the interior 236

◦
ΩJ = ΩJ\∂ΩJ . For boundary surfaces, the complementary of ∂ΩJ to ∂ΩK is denoted 237

∂ΩKJ = ∂ΩJ\∂ΩK . 238

As illustrated in Fig. 1, the domain consists of: 239
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• an enclosing fluid cavity ΩF∞ of boundary ∂ΩF∞ , in which the temperature θF∞ 240

is known; 241

• m fluid cavities noted ΩFi of boundary ∂ΩFi ; 242

• a solid domain ΩS of boundary ∂ΩS = ∂ΩD ∪ ∂ΩDS with a Dirichlet condition on 243

∂ΩD and a Robin condition on ∂ΩDS = ∂ΩDF∞ ∪mi=1 ∂ΩDFi ; 244

• a fictitious boundary to handle the radiative boundary condition ∂ΩR. 245

Let θ denote the spatio-temporal temperature field, solution of the following system: 246

Solid

&

Fluid


θ ≡ θS , ~x ∈ Ω̄S , t ∈]tI ,+∞[

θ ≡ θFi , ~x ∈
◦
ΩFi , t ∈]tI ,+∞[

θ ≡ θF∞ , ~x ∈
◦
ΩF∞ , t ∈]tI ,+∞[

(6a)

Solid

i ∈ {1, . . . ,m}



ρC∂tθS = −~∇.
(
−λ~∇θS

)
+ ζ (θR − θS) ,~x ∈

◦
ΩS , t ∈]tI ,+∞[

θS = θI ,~x ∈ Ω̄S , t = tI

θS = θD , ~y ∈ ∂ΩD, t ∈]tI ,+∞[

− λ∂θS
∂n

= hF (θFi − θS) , ~y ∈ ∂ΩDFi , t ∈]tI ,+∞[

− λ∂θS
∂n

= hF (θF∞ − θS) , ~y ∈ ∂ΩDF∞ , t ∈]tI ,+∞[

(6b)

Fluid

i ∈ {1, . . . ,m}



ρiCiVFi
dθFi
dt

= ζi

∫
ΩFi

(θR(~xR, t)− θFi(t))d~xR

+

∫
∂ΩFi∩∂ΩS

hF (~yS)(θS(~yS , t)− θFi(t))d~yS

+

∫
∂ΩFi∩∂ΩD

hF (~yS)(θD(~yS , t)− θFi(t))d~yS , ~x ∈
◦
ΩFi , t ∈]tI ,+∞[

θFi = θI , ~x ∈
◦
ΩFi , t = tI

(6c)

Solid

&

Fluid


θR(~x, t) =

∫
S2

1

4π
d~uθR,~u(~x, t) ,~x ∈

◦
Ω, t ∈]tI ,+∞[

~u.~∇θR,~u = −keθR,~u + kaθ + ks

∫
S2

pS(~u|~u′)d~u′θR,~u′ ,~x ∈
◦
Ω, ~u ∈ S2, t ∈]tI ,+∞[

θR,~u = θR,∂ΩR,~u , ~y ∈ ∂ΩR, ~u ∈ S2
+, t ∈]tI ,+∞[

(6d)

247

In the following sections, we present the two fundamental proposals that will permit: 248

• to express the temperature θ(~x, t) at position ~x at time t, solution of System (6), 249

as the expectation of a random variable. This first proposal proceeds from the 250

rewriting of the problem in Green’s formalism. The theory will first be given in 251

full generality (Section 3), then applied for each of the three heat transfer modes 252

separately (Section 4), and finally to the coupled model (Section 5); 253
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• to define the thermal paths that ensure that this random variable can be sampled 254

by a MC method. This second proposal introduces the notion of trajectory from 255

the theory of stochastic processes and yields the construction of a path space for 256

sampling. The theory and its application to the thermal model under consideration 257

are first provided (Section 6), and then a practical proposition for sampling the 258

conductive paths is developed (Section 7). 259

3 Linearity and propagators 260

The objective of this section is to produce a probabilization of the expressions in order 261

to write the quantity of interest as the expectation of a random variable. The link 262

with the MC method is made explicite by pseudo-algorithms that describe the sampling 263

procedure of this random variable. 264

3.1 The formal proposition 265

The thermal sub-models described in the previous section by Eqs. (3), (4), (5), along 266

with their respective boundary conditions, are all linear and can be formally written in 267

a similar way. This leads to a system of linear integro-differential equations representing 268

a well-posed boundary value problem, which can be written generically in the following 269

operational form: 270
c(~w, t)∂tf(~w, t) + L(f)(~w, t) = a(~w, t)fW(~w, t) , t ∈ [tI ,+∞[ , ~w ∈

◦
W

L∂W(f)(~w, t) = f∂W(~w, t) , t ∈]tI ,+∞[ , ~w ∈ ∂W
f(~w, tI) = fI(~w) , ~w ∈ W̄

(7)

where the temporal dimension of the problem is specifically marked and the corre- 271

sponding variable is noted t. The non-temporal part of the integration domain on which 272

the model is built can be of any dimension and noted W ; the vector w represents a way 273

to name a point in this space. Depending on the model, W may simply be the geometric 274

space, as in the model for solids, or the space of locations and directions (phase space) 275

in the case of radiative transfer. The particular case where this space has dimension 276

zero can be treated without difficulty and is not the object of a specific development; 277

it is typically the case for the fluid model. L and L∂W are homogeneous and linear 278

integrodifferential operators (here homogeneity means that there are no constant terms). 279

fW , f∂W and fI are source terms with the same dimension as f (they are assumed to 280

be prescribed functions for the moment). 281

Functions c(~w, t) and a(~w, t) are part of the problem definition and they are known. 282

f , fW , f∂W and fI are real-valued functions. 283

Based on Eq. (7), we construct a generic form for the sub-models. 284

Restrictions We will restrict the proposition to models which satisfy the second 285

principle, or H theorem, as it is understood in thermodynamics. More precisely, we only 286

consider systems that exhibit an equilibrium solution (understood here as the uniformity 287

of the f function) for particular conditions on the sources. In the generic framework of 288

Eq. (7), this implies that the model must satisfy the following property: 289

∀a1, a2, a3 ∈ R, fW = a1, f∂W = a2, fI = a3 ⇒ min(a1, a2, a3) < f(~w, t) < max(a1, a2, a3)
(8)

The thermal model that has been presented above in System (6) satisfies this property. 290

Similar choices of generic models satisfying this equilibrium property could have been 291

made. To provide a counter-example, if the balance equation for the solid sub-domain 292
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was a diffusion equation with a prescribed power source instead of the radiative term 293

ζ (θR − θS) (for example, the contribution of an electric heater, without any loss) the 294

equilibrium condition Eq. (8) can not be satisfied. The same conclusion is obtained with 295

a non-zero imposed flux (Neumann boundary condition). This does not mean that it is 296

not possible to probabilize these models up to a Monte-Carlo implementation, but the 297

strategies to be implemented for this are quite specific and lead to ad-hoc propositions 298

that will be detailed in dedicated papers (some propositions are already implemented in 299

the Stardis library). 300

3.2 Expression for f(~w, t) 301

Since the model is linear, one can write the solution of Eq. (7) as 302

f(~w, t) =+

∫
W
gI(~w, t|~wI , tI)fI(~wI)d~wI

+

∫
∂W

∫ t

tI

g∂W(~w, t|~w∂W , t∂W)f∂W(~w∂W , t∂W)dt∂Wd~w∂W

+

∫
W

∫ t

tI

gW(~w, t|~wW , tW)fW(~wW , tW)dtWd~wW

(9)

where the functions gI , g∂W and gW are the propagators for the different sources 303

(respectively, the initial condition, on the surface, in the volume). 304

Reading Eq. (9) is quite intuitive as it combines the concepts of superposition and 305

causality: the observable f at point ~w and time t results from the effects of three sources 306

in the sense of Green’s theory (that is, the inhomogeneous (right-hand) terms in Eq. 307

(7)): 308

• the effect of the initial condition fI at any point in phase space ~wI ∈ W and at 309

time tI , provided by the propagator gI(~w, t|~wI , tI), 310

• the effect of the boundary conditions f∂W at any point on the edge of phase 311

space ~w∂W ∈ ∂W and at any time t∂W ∈ [tI , t], provided by the propagator 312

g∂W(~w, t|~w∂W , t∂W), 313

• the effect of the source fW at any point in phase space ~wW ∈ W and at any time 314

t∂W ∈ [tI , t], provided by the propagator gW(~w, t|~wW , tW). 315

3.3 The Green function g( ~w, t| ~w′, t′) 316

In most non-academic systems, it is not possible to obtain the explicit form of the 317

propagators. Nevertheless, propagators are the solution of linear mathematical models 318

which can most often be written without much difficulty. The production of adjoint 319

models, as well as Green’s formalism, traditionally provide a unifying technical framework 320

for this purpose. 321

Hereafter we briefly describe the Green’s formalism approach in the case of Eq. (7). 322

Technically, the contribution of the sources are constructed from Dirac distributions and 323

convolution operators. Since the equation is linear, the solution f can be reconstructed 324

by superposition (see [21,55–57] for more details). 325

From Eq. (7), the following system is constructed: 326
c(~w, t)∂tg(~w, t|~w′, t′) + L(g)(~w, t|~w′, t′) = δ(~w − ~w′)δ(t− t′), t, t′ ∈]tI ,+∞[, ~w ∈ W̄, ~w′ ∈ W̄
L∂w(g)(~w, t|~w′, t′) = 0, t, t′ ∈]tI ,+∞[, ~w ∈ W̄, ~w′ ∈ ∂W
g(~w, t|~w′, t′) = 0, t < t′, ~w ∈ W̄, ~w′ ∈ W̄

(10)
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where the volume source fW have been replaced by a Dirac distribution δ in phase space 327

and time, centered at (~w′, t′), and where the boundary and initial conditions have been 328

made homogeneous (there is no source except fW). Intuitively, g(~w, t|~w′, t′) can be 329

considered as the effect of a point source at (~w′, t′) ∈ W̄ × R on the quantity of interest 330

f at point (~w, t). The last line in Eq. (10) ensures causality — it simply reflects the 331

idea that an effect cannot occur before its cause — and at the same time, it closes the 332

problem by providing initial conditions. 333

Then, propagators gI , g∂W and gW are directly constructed from g:

gI(~w, t|~wI , tI) = c(~wI , tI)g(~w, t|~wI , tI)

gW(~w, t|~wW , tW) = a(~wW , tW)g(~w, t|~wW , tW)

g∂W(~w, t|~w∂W , t∂W) does not have a generic expression without knowledge of the 334

operator L∂W ; it will be addressed on a case-by-case basis later on. 335

3.4 Probabilistic reformulation 336

The following quantities are introduced:

pI ≡ pI(~w, t|tI) =

∫
W
gI(~w, t|~wI , tI)d~wI

p∂W ≡ p∂W(~w, t|tI) =

∫
∂W

∫ t

tI

g∂W(~w, t|~w∂W , t∂W)dt∂Wd~w∂W

pW ≡ pW(~w, t|tI) =

∫
W

∫ t

tI

gW(~w, t|~wW , tW)dtWd~wW (11)

Using the restriction Eq. (8) into Eq. (9) leads to: 337

pI + p∂W + pW = 1 (12)

Indeed, Green functions only depend on the linear and homogeneous operator parts 338

in Eq. (7) (left-hand side of the equations). This property can be demonstrated by 339

considering any value for the sources, for example a1 = a2 = a3. Eq. (12) enables us to 340

consider pI , p∂W and pW as probabilities in the following. 341

Let us define the following independent random variables (r.v.): 342

B1(p), ...,Bn(p) are n independent Bernoulli r.v. with parameter p

~WI is a r.v. with distribution p ~WI
(~w, t|~wI , tI)

( ~W∂W , T∂W) is a paired r.v. with distribution p( ~W∂W ,T∂W)(~w, t|~w∂W , t∂W)

( ~WW , TW) is a paired r.v. with distribution p( ~WW ,TW)(~w, t|~wW , tW)

where probability density functions are: 343

p ~WI
(~w, t|~wI , tI) = gI(~w, t|~wI , tI)/pI(~w, t|tI)

p( ~W∂W ,T∂W)(~w, t|~w∂W , t∂W) = g∂W(~w, t|~w∂W , t∂W)/p∂W(~w, t|tI)
p( ~WW ,TW)(~w, t|~wW , tW) = gW(~w, t|~wW , tW)/pW(~w, t|tI)

Eq. (9) can then be reformulated to write f(~x, t) as the expectation of a random 344

variable F : 345

f = E[F ] (13)
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with 346

F = B1(pI)fI( ~WI)+(1− B1(pI))
{
B2(p2)f∂W( ~W∂W , T∂W) + (1− B2(p2)) fW( ~WW , TW)

}
(14)

where p2 = p∂W
1−pI 347

3.5 Monte-Carlo algorithm 348

Based on the above formulations, it is straightforward to construct the sampling algorithm 349

for F : i) sample one of the three types of sources according to the probabilities pI , 350

p∂W and pW , ii) sample a location and possibly a time according to the corresponding 351

probability density function and iii) keep the value of the source at this sampled location 352

and time (see Algorithm 1). The MC algorithm estimating f = E[F ] consists in sampling 353

a set of realizations f̂ of F and estimating f as the arithmetic mean of this set. 354

Algorithm 1: Sampling algorithm for the random variable F at phase space
position ~w and time t. f̂ is the corresponding realization of the random variable

Sample r1 uniformly on [0, 1];
if r1 < pI then

Sample ~wI according to the law of ~WI ;

f̂ = fI(~wI);

else
Sample r2 uniformly on [0, 1];
if r2 < p2 then

Sample (~w∂W , t∂W) according to the law of ( ~W∂W , T∂W);

f̂ = f∂W(~w∂W , t∂W);

else

Sample (~wW , tW) according to the law of ( ~WW , TW);

f̂ = fW(~wW , tW);

355

Fig. 2 illustrates the proposition of probabilization in the simple case where the 356

problem is only time-dependent (there is no integration over W in this case), as for 357

instance in the fluid sub-domain. 358
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Mathematical view point

Let us consider the equation:
df

dt
= −α (f − f∗) , t ∈]tI ,+∞[

f(tI) = fI

where α is a constant and f∗ ≡ f∗(t).

For t ∈]tI ,+∞[, t′ ∈ R we get

1

α

dg

dt
(t|t′) + g(t|t′) = δ(t− t′)

hence
g(t|t′) = H

(
t > t′

)
α exp

(
−α(t− t′)

)
gI(t|t′) = g(t|t′)/α
gW(t|t′) = g(t|t′)

and

f(t) = gI(t|tI)fI +
∫ t

tI

gW(t|t′)f∗(t′)dt′

Probabilistic view point
Define the probabilities

pI = gI(t|tI)
pW = 1− pI

pTW (t|tW) = g(t|tW)/pW

which leads to

F (t) = B(pI)fI + (1− B(pI)) f∗(TW)

f(t) = E[F (t)]

where B is a Bernoulli r.v. with parameter pI and TW
is a r.v. with distribution pTW .

Algorithm 2: Sampling algorithm for
F (t)

Sample r uniformaly on [0, 1];
if r < pI(t|tI) then

f̂ = fI ;
else

Sample tW according to the law of TW ;

f̂ = f∗(tW);

Fig 2. Implementation example for the probabilization proposition in the case of a
problem that is only time-dependent.

4 Implementation of the uncoupled thermal model 359

The previous section has exposed our probabilization strategy based on the propagative 360

formulation of the solutions of linear models when the equilibrium condition Eq. (8) 361

is met. We propose here to directly apply the procedure on each submodel in Eq. 362

(6), considered independently (i.e decoupled from each other). In this section, we will 363

therefore consider that, for each submodel, crossed variables ensuring the coupling are 364

prescribed (for instance, if we consider a fluid cavity, the solid temperature θS at the 365

interface is assumed to be known). 366

4.1 Fluid sub-domain 367

Eq. (6c) details the contributions on the fluid sub-domain boundary ∂ΩFi so that the 368

coupling can be expressed unequivocally. But the distinction between the different 369

parts of the boundary (∂ΩFi ∩ ∂ΩD and ∂ΩFi ∩ ∂ΩS) is useless here as we aim to first 370

formalize the uncoupled problem by assuming that the temperature is known on all of 371

them. Thus, we just start from the generic form provided by Eq. (5) in which we write 372

the development as if temperatures θR and θS were known and prescribed time-space 373

functions. This balance equation and the corresponding probabilization can be written 374

in exactly the same way as in Fig. 2. To obtain the final propagative form, there 375

is however an additional step due to the fact that the source term of the differential 376

equation involves integral terms. Appendix B describes these developments that finally 377
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lead to the expression of the fluid temperature: 378

θFi(t) =gFi,I(t|tI)θI

+

∫ t

tI

∫
∂ΩFi

gFi,S(t|~yS , τ)θS(~yS , t)d~ySdτ

+

∫ t

tI

∫
ΩFi

gFi,R(t|~xR, τ)θR(~xR, τ)d~xRdτ

(15)

where gFi,I , gFi,S and gFi,R stand for the propagation to fluid subvolume ΩFi from initial 379

conditions, surface (Solid) and volume (Radiation) respectively. 380

A random variable whose expectation is the temperature θFi(t) is constructed following 381

the proposition stated in the general case (Eq. (7) to Eq. (14)), applied to the particular 382

case where the state variable is only time-dependant (as in Fig. 2): 383

θFi(t) = E [ΘFi(t)] (16)

with 384

ΘFi(t) =B1(pFiI )θI

+
(

1− B1(pFiI )
){
B2(pFiR )θR( ~XFi

R , TFi) +
(

1− B2(pFiR )
)
θS(~Y Fi

S , TFi)
}
(17)

To simplify the presentation, the complete definition of the random variables and 385

probabilities involved in this equation are reported to Appendix B. 386

Algorithm 3 describes the sampling procedure for ΘFi defined as above, and Fig. 3 387

illustrates corresponding typical realizations. 388

4.2 Solid sub-domain 389

For the solid sub-domain, we start from the model as described by Eq. (6b). In the 390

description of the boundary conditions, temperatures θD and θF∞ are known functions of 391

time and space. By contrast, temperatures θFi result from the whole coupling dynamics. 392

As above, we consider that, here, they are prescribed and known. 393

In agreement with the general form of Eq. (7) and Eq. (10), the Green function 394

gS ≡ gS(~x, t|~x′, t′) associated with Eq. (6b) is solution of: 395

ρC∂tgS − ~∇.
(
λ~∇gS

)
+ ζgS = δ(~x− ~x′)δ(t− t′) , t ∈]tI ,+∞[,~x ∈

◦
ΩS

gS = 0 , t ∈]tI ,+∞[,~x ∈ ∂ΩD

− λ

hF

∂gS
∂n

+ gS = 0 , t ∈]tI ,+∞[,~x ∈ ∂ΩDF

gS = 0 , t < t′

(18)

The solid temperature can thus be written as: 396

θS(~x, t) =

∫
ΩS

gS,I(~x, t|~xI , tI)θI(~xI)d~xI

+

∫ t

tI

∫
∂ΩDF

gS,∂ΩDF
(~x, t|~yF , tF )θF (~yF , tF )d~yFdtF

+

∫ t

tI

∫
∂ΩD

gS,∂ΩD (~x, t|~yD, tD)θD(~yD, tD)d~yDdtD

+

∫ t

tI

∫
ΩS

gS,R(~x, t|~xR, tR)θR(~xR, tR)d~xRdtR

(19)
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Algorithm 3: Sampling algorithm for the random variable ΘFi defined

by Eq. (17) assuming the functions θR and θS are known. θ̂Fi is the
corresponding realization of the random variable.

Sample r1 uniformly on [0, 1];

if r1 < pFiI then

θ̂Fi = θI ;
else

Sample r2 uniformly on [0, 1];

if r2 < pFIR then

Sample (~xR, τ) according to the law of ( ~XFI

R , TFI );

θ̂Fi = θR(~xR, τ);

else

Sample (~yS , τ) according to the law of (~Y FI

S , TFI );

θ̂Fi = θS(~yS , τ);

ΩFΩS
ΩF

∂ΩS

(., t) •

hF

•
θR( ~xR, tR)

•
θS( ~yS, tS)

θI

Fig 3. Illustration of the three possible realizations for ΘFi . Each realization
represents one of the three contributions that can be returned: initial temperature
θI , a radiance temperature θR and a boundary temperature with the solid θS . The
notation (., t) means that the temperature of the fluid is not dependent on the
location in the cavity and that the probe can be positioned anywhere.
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where: 397

• gS,I = ρCgS denote propagation from Initial condition, 398

• gS,∂ΩDF
= hF gS denote propagation from surfaces ∂ΩDF corresponding to a Robin 399

condition. In this case, θF takes the value θFi of domain i to which ~yF belongs, 400

• gS,∂ΩD = λ∂gS∂n denote propagation from surfaces ∂ΩD which a Dirichlet boundary 401

condition (θD), 402

• gS,R = ζgS denote propagation from volume radiation. 403

A random variable whose expectation is the temperature θS(~x, t) is constructed 404

following the proposition stated in the general case (Eqs. (7) to (14)), with the domain 405

W consisting in the geometric space ΩS . It is thus possible to write: 406

θS(~x, t) = E [ΘS(~x, t)] (20)

with 407

ΘS(~x, t) =B1(pSI )θI( ~X
S
I ) +

(
1− B1(pSI )

)
B2(pS2 )θR( ~XS

R, T
S
R)

+
(
1− B1(pSI )

) (
1− B2(pS2 )

)
B3(pS3 )θF (~Y SF , T

S
F )

+
(
1− B1(pSI )

) (
1− B2(pS2 )

) (
1− B3(pS3 )

)
θD(~Y SD , T

S
D)

(21)

To simplify the presentation, the definition of the random variables and probabilities 408

involved in this equation are reported to Appendix C. 409

For given values of ~x and t, Algorithm 4 describes the sampling procedure for ΘS 410

defined as above and Fig. 4 illustrates corresponding typical realizations. 411

4.3 Radiative transfer in fluid and solid sub-domain 412

We start from the radiative transfer model described by Eq. (6d): here phase space 413

is the union of the sets of positions and directions, and boundary conditions are given 414

by the known function θR,∂ΩR,~u on the fictive surface ∂ΩR. The temperature θ which 415

appears in the equation is either a fluid temperature, or a temperature in the solid, and 416

results from all the coupling dynamics. As in the two previous paragraphs, we are going 417

to consider first that θ is known and prescribed so that we can build the probabilization 418

on the uncoupled model. 419

In agreement with the general form of Eqs. (7) and (10), the Green function gR ≡ 420

gR(~x, ~u|~x′, ~u′) associated with the model in Eq. (6d) is solution of: 421

~u.~∇gR + kegR − ks
∫
S2

pS(~u|~u′)d~u′gR = δ(~x− ~x′)δ(~u− ~u′), ~x ∈
◦
Ω, ~u ∈ S2

gR = 0 , ~y ∈ ∂ΩR, ~u ∈ S2
+

(22)
Radiance temperature in the fluid and solid domains is therefore written as: 422

θR,~u(~x, t) =

∫
Ω

∫
S2

gR,A(~x, ~u|~xA, ~uA)θ(~xA, t)d~uAd~xA

+

∫
∂ΩR

∫
S2
+

gR,∂ΩR(~x, ~u|~yR, ~uR)θR,∂ΩR,~uR(~yR, t)d~uRd~yR

(23)

where gR,A = gR(ke − ks) = gRka stands for the propagator from the temperature in 423

the solid or fluid volumes (Absorption) and gR,∂ΩR = gR stands for the propagator from 424

the radiative boundary condition on ∂ΩR. 425
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Algorithm 4: Sampling algorithm for the random variable ΘS defined
by Eq. (21) assuming the functions θR and θF are known. θ̂S is the
corresponding realization of the random variable.

Sample r1 uniformly on [0, 1];

if r1 < pSI then

Sample ~xI according to the law of ~XS
I ;

θ̂S = θI(~xI);

else
Sample r2 uniformly on [0, 1];

if r2 < pS2 then

Sample (~xR, τR) according to the law of ( ~XS
R, T

S
R);

θ̂S = θR(~xR, τR);

else
Sample r3 uniformly on [0, 1];

if r3 < pS3 then

Sample (~yF , τF ) according to the law of (~Y SF , T
S
F );

θ̂S = θF (~yF , τF );

else

Sample (~yD, τD) according to the law of (~Y SD , T
S);

θ̂S = θD(~yD, τD);

~yF

(~x, t)•

•
θF (tF )

•
θI(~xI)

•
θD(~yD, tD)

•
θR(~xR, tR)

h

ΩS
ΩF

∂ΩS

Fig 4. Illustration of four realizations of ΘS(~x, t)): an initial condition θI at point
~xI , a radiance temperature θR at point (~xR, tR), a fluid temperature θF at time
tF and a temperature θD imposed at the boundary at point (~yD, tD). For clarity,
we represent only one fluid cavity.
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A random variable whose expectation is the radiance temperature θR,~u(~x, t) is 426

obtained following the proposition stated in the general case (Eqs. (7) to (14)): 427

θR,~u(~x, t) = E [ΘR,~u(~x, t)] (24)

with 428

ΘR,~u(~x, t) = B
(
pRA(~x, ~u)

)
θ( ~XR

A , t) +
(
1− B

(
pRA(~x, ~u)

))
θR,∂ΩR,~UR

(~Y RR , t) (25)

To simplify the presentation, the definition of the random variables and probabilities 429

involved in this equation are reported to Appendix D. 430

A new random variable is defined in order to formulate the temperature θR(~x, t) as 431

an expectation: 432

ΘR(~x, t) = ΘR,~U (~x, t) (26)

where ~U follows a uniform law on the sphere, hence: 433

θR(~x, t) =

∫
S2

1

4π
d~uθR,~u(~x, t) = E [ΘR(~x, t)] (27)

For given values of ~x and t, Algorithm 5 describes the sampling procedure for ΘR 434

defined as above and Fig. 5 illustrates corresponding typical realizations. 435

4.4 Summary 436

In this section, we have built probabilized forms for heat balance equation inside fluidic 437

cavities, heat balance equation inside solid matrix and radiative transfer equation. This 438

was done by partitioning the model: for each case, an uncoupled form was considered, 439

i.e all the variables involved in the coupling between submodels were assumed to be 440

known. Under this assumption, we obtained a random variable whose expectation is the 441

temperature of interest within each submodel, with a corresponding sampling algorithm. 442

Practical implementation of these algorithms is not discussed at this point; it will be the 443

object of Section 7. We focus now on re-coupling the three submodels. 444
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Algorithm 5: Sampling algorithm for the random variable ΘR

defined by Eq. (27) assuming the function θ is known (depending
on the location, θ(~xA, t) corresponds to a fluid temperature or

a solid temperature). θ̂R is the corresponding realization of the
random variable.

Sample ~u according to the law of ~U ;
Sample r uniformly on [0, 1];

if r < pRA(~x, ~u) then

Sample ~xA according to the law of ~XR
A ;

θ̂R = θ(~xA, t);

else

Sample (~yR,~uR) according to the law of (~Y RR , ~UR) ;

θ̂R = θR,∂ΩR,~uR
(~yR, t);

h

θS(~xS, t)

θR,∂ΩR,~uR
(~yR, t)

θF (t)

(~x, t)
•

•

• •ΩS

ΩF

∂ΩS

Fig 5. Representation of three realizations of ΘR: a radiance temperature
imposed on the boundary θR,∂ΩR,~uR

at point ~yR (at this point, the boundary ∂ΩR
coincides with ∂ΩS), a solid temperature θS at point ~xS , and a fluid temperature
θF . We note ~xA ≡ ~xS and θ(~xA, t) ≡ θS(~xS , t) if ~xA ∈ ΩS , and ~xA ≡ ~xF and
θ(~xA, t) ≡ θF (~xF , t) = θF (t) if ~xA ∈ ΩF . For clarity, we represent here only one
fluid cavity.
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5 The coupling 445

Under the decoupling assumption, there exists for each submodel a random variable 446

whose expectation is the temperature we are looking for, with a corresponding sampling 447

algorithm. The key point is that we built formulations in which the re-coupling can now 448

be done solely through sources in Green’s sense, i.e through inhomogeneous terms in 449

the descriptive equations. It will allow us to solve the whole coupled system by building 450

random walks switching from one algorithm to another; this translates in probabilistic 451

terms how we handle the recursivity of the implicit formulations. 452

To illustrate this question, the propagator equations are summarized below, keep- 453

ing only the basic structure of the partitioning/re-coupling (Eq. (15) for the fluid 454

temperature, Eq. (19) for the solid temperature, Eqs. (27) and (23) for the radiative 455

temperature): 456

θF = gFi,IθI +

∫
∆t∪ΩF

dµgF,RθR +

∫
∆t∪∂ΩF

dµgF,SθS

θS =

∫
ΩS

dµgS,IθI +

∫
∆t∪ΩS

dµgS,RθR +

∫
∆t∪∂ΩDF

dµgS,∂ΩDF
θF +

∫
∆t∪∂ΩD

dµgS,∂ΩDθD

θR =

∫
S2∪Ω∪S2

dµ
1

4π
gR,AθF/S +

∫
S2∪∂ΩR∪S2

+

dµ
1

4π
gR,∂ΩRθR,∂ΩR

(28)
where µ is the measure associated to each integration space, θF is the generic form for a 457

fluid temperature whatever the cavity, and θF/S stands for the fluid or solid temperature 458

according to the location in the domain. 459

Each equation in System (28) involves prescribed terms (known initial conditions θI , 460

boundary conditions θD or θR,∂ΩR) and cross-coupling terms between solid, fluid and 461

radiative temperatures, which are space-time functions. Formally this system of integral 462

equations is a Fredholm equation of the second kind for the vector ~θ ≡ (θF , θS , θR): 463

~θ = ~f + ~I
(
~θ
)

(29)

where ~f contains the prescribed terms and ~I is a linear integral vector operator acting 464

on the temperatures vector ~θ. 465

By construction of the model in Eq. (6) the integral operator ~I has contracting 466

kernel, which enables to apply the iterated kernel technique to establish solutions in 467

the form of integral Neumann-series. Thanks to this property, solving Eq. (29) fits 468

into the standard of the MC method [58–60]. With this approach, contributions of 469

the terms in the infinite Neumann-series expansion are statistically sampled, leading 470

to the algorithmic construction of random walks providing unbiased estimation of the 471

solution. In this regard, solving Fredholm equation of the second kind with MC can 472

be considered as the functional extension of classical MC methods for algebraic linear 473

systems of any dimension [61–63]. From a practical point of view, such methods estimate 474

a probe quantity and in no way the whole field (in continuous cases) or the ensemble of 475

the unknown (in discrete cases). Typically, when solving algebraic linear systems with 476

MC, one of the unknown is estimated without assessing the others, but the implemented 477

random walk statistically crosses the entire set of equations in order to ensure the 478

exactness of the result. In the present case, we will estimate the temperature at a given 479

location and time, without having to estimate the entire fields of temperature, thanks to 480

the implementation of random walks switching from one submodel to the other. 481
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5.1 Double randomization: a key point. 482

As in MC methods solving Fredholm equations, we base our proposition on the estimation 483

of potentially infinitely nested expectations: for example, the random variable ΘS , whose 484

expectation is the temperature in the solid, is a function of the temperatures θFi 485

in the fluid cavities, which are themselves expectations of random variables ΘFi . To 486

understand the recursive mechanics of probabilized coupling through nested expectations, 487

it is interesting to isolate the essential MC property that is classically named double 488

randomization [48, 49]. This property is trivial but leads to a subtle gesture that is very 489

powerful because it enables to think the question of the nesting (or the coupling in the 490

present case) locally, i.e when the question is raised, at one point of the random walk 491

sampling. 492

The following elementary illustration contains all the features of the double random- 493

ization: 494

We consider an observable θ1, written as the expectation of a random variable B, 495

which is itself defined as an algebraic linear operator L on the function θ2 of a random 496

variable X. 497{
θ1 = E(B)

B = L (θ2(X))
(30)

In this case, the sampling algorithm for B is trivial: 498

Algorithm 6: b is a realization of B in the case where θ2 is an explicit and
known function (Eq. (30))

Sample x according to the law of X;
b = L (θ2(x))

499

Double randomization takes place as soon as the function θ2(x) itself is expressed as 500

an expectation of another random variable A(x) parametrized by x. 501

θ2(x) = E[A(x)] (31)

In a naive approach, one could think that it is required to evaluate the expectation of 502

A(x) for each realization x of X in order to be able to use the Algorithm 6 to sample B. 503

Yet, the law of iterated expectations enables to define a new random variable B̃ such 504

that 505{
θ1 = E[B̃]

B̃ = L (A(X))
(32)

which leads to the following algorithm to sample B̃: 506

Algorithm 7: b̃ is a realization of B̃ in the case where θ2 is defined from an
expectation (Eq. (31))

Sample x according to the law of X;
Sample a according to the law of A(x);

b̃ = L[a]

507

In practice, this double randomization operation is invoked whenever it is necessary 508

to estimate a quantity written in the form of an expectation at a step of random walk 509

sampling. Double randomization is essential in standard MC practice but often, it is not 510

made explicit because the processes which make the algorithmic proposal analogous to 511

physics rely on an intuitive vision that enables to circumvent formalization. For instance, 512

in linear transport physics, when intuitively sampling multiple scattering paths, at each 513

scattering event, the path continues in only one randomly sampled direction: this is 514
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the hallmark of double randomization. If, by contrast, probabilization of Fredholm 515

integral equations is the starting point, then double randomization allows for an increased 516

range of flexible application by simply avoiding to address systematically the whole 517

Neumann-series expansion. 518

This property vanishes as soon as the operators combining the expectations are no 519

longer linear [64–66]. However, recent works [67, 68] have shown that it is possible to 520

extend the proposition to nonlinear cases, by expanding the nonlinear functions as a 521

Taylor-series and then writing each monomial in the series as the product of independent 522

and identically distributed random variables. 523

5.2 A recursive algorithmic approach: towards a coupled path 524

space 525

For each equation in System (28) taken independently, a probabilistic version was built 526

by defining random variables whose expectation are the temperatures of interest (Eqs. 527

(17), (21), (26)). To find the solution of the coupled system with an iterative procedure, 528

we now face the fact that the different functions θ of the random variables are only 529

known at the boundaries of the overall problem (temporal and spatial); everywhere else 530

they are themselves the expectation of new random variables. Double randomization 531

is here used to address this question. The strength of this approach is that double 532

randomization can be used in a nested manner, as many times as necessary, whenever 533

the situation arises. Hence, random processes are going to interlock recursively until an 534

outcome is found, at a boundary or an initial condition. 535

The algorithmic translation of this proposition becomes trivial from the algorithms 536

defined for each uncoupled equation (Algorithms 3, 4, 5): the estimation of unknown 537

θ functions (θS , θR or θF ) at a given location and/or time is simply replaced by a call 538

to the corresponding sampling procedure. Then, the iterative sequence switching from 539

one process to another (based on explicit probabilities) is ended as soon as an initial 540

condition θI or a boundary condition θD or θR,∂ΩR is met. 541

The result of the coupled procedure for a full realization is therefore to generate 542

from the probe at ~x and at a given observation time, a sequence of points that move in 543

space and back in time toward the initial condition. This sequence of points creates a 544

thermal path consisting of a succession of sub-paths associated with each transfer mode. 545

These sub-paths sampled according to Algorithms 3, 4, 5 will be named convective path, 546

conductive path and radiative path respectively. At this stage a sub-path is defined only 547

by its origin and its endpoint. 548

If ~x is within the solid, the first step in the MC algorithm consists in sampling a 549

conductive path. If ~x is within the fluid, this first step is a convective path. There 550

are also situations where the first step is a radiative path, typically when producing an 551

infrared image by simulating a camera sensor. In all cases, at the end of this sub-path, 552

either the temperature is known and the algorithm stops, or the temperature is unknown 553

and a new path is sampled: 554

• if the unknown temperature is a solid temperature, the new path is a conductive 555

path within the solid, 556

• if the unknown temperature is a fluid temperature, the new path is a convective 557

path within the fluid, 558

• if the unknown temperature is a radiative temperature, the new path is a radiative 559

path that may travel through both the solid and the fluid, 560

The process is continued until a sub-path ends at a location and time for which the 561

temperature is known. This succession of sampled conductive, convective or radiative 562
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paths will be named a recursive path. An illustration of such a sequence is proposed in 563

Fig. 6. 564

(., tF )

(~yF
S , t

F
S )

(~xS
R, tS)

(~xR
A, tS)

θI(~xI)
•

•

•

• (~x, t)•

•

h

Ω
ΩF

∂Ω

Fig 6. Illustration of a realization of a recursive path starting from (~x, t) in the
framework of model (6). Information first spreads by conduction in the solid domain,
until it reaches the fluid domain. Once in the fluid, it propagates by convection until it
reaches the solid boundary at point (~yFS , t

F
S ). Back in the solid, information continues to

spread by conduction until reaching a radiative source at (~xSR, tS). Then it propagates
by radiation until being absorbed in the solid at point (~xRA, tS), before finally reaching
by conduction the point (~xI , tI) where temperature is known. Through this example
recursive path, the contribution to temperature θ(~x, t) is the initial condition θI(~xI).

In the proposition made here, we do not discuss the practicability of sampling the 565

different random variables. In particular cases where propagators (and therefore the 566

probability density functions) have an explicit and known form, building this sampling is 567

undemanding. It leads to an easy and very efficient numerical implementation providing 568

an exact solution in the statistical meaning of the term (this is the case for the model in 569

fluid cavities for example). However, in most situations involving complex geometries, 570

the analytical expressions of the propagators are inaccessible. This situation is often 571

encountered in MC methods and indeed, sampling paths does not always require the 572

functional form of the propagators to be explicit. The following section will focus on this 573

question. The main difficulty will be related to the diffusive component appearing in the 574

energy conservation equation within the solid sub-domain (Eq. (6b)). To overcome this 575

difficulty, we get into the theory of stochastic processes, in relation with Feynman-Kac 576

formulation. 577
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6 Feynman-Kac approach and the definition of con- 578

tinuous sub-paths 579

The Green approach of the three previous sections is self-consistent in the definition of a 580

coupled heat transfer MC algorithm. The recursive nature of this algorithm is a way 581

to address the propagator of the overall system from a statistical reading of separate 582

conduction, convection and radiation propagators. 583

When describing this recursivity, we defined recursive paths made of random succes- 584

sions of conductive paths, convective paths and radiative paths. At this stage, these paths 585

are not yet fully defined, since only the sub-path ending and succession probabilities 586

pFiI , pFiR , pSI , pS2 , pS3 and pRA have been provided (Eqs (17), (21), (25)). Hence, the Green 587

formulations of Eqs. (15), (19) and (23) define propagators, from the sources (at the 588

boundary and within the domain) to the observation location, but with no time-resolved 589

path-like interpretation. 590

In this section, the path definition is completed using a stochastic interpretation of 591

the very same physics. Three processes are introduced, ~X , ~R and ~U , together with 592

four random variables, τX , τR, εX and εR. They can be used to write a set of three 593

coupled Feynman-Kac formulations of the solid, fluid and radiative temperatures in 594

strict correspondence with Eq. (6) and the propagators are built from the statistics of 595

these sub-paths. 596

~X is defined on a domain Ω that is either a solid or a fluid connex domain, Ω ≡ ΩS 597

or Ω ≡ ΩF . The notation ~X ~x,t
p is for ~X at time p, conditioned to reach location ~x at 598

time t (i.e. ~X ~x,t
t = ~x). The associated random variable τ~x,tX is defined as the time at 599

which ~X hits the parabolic boundary (Ω× {tI}) ∪ (∂Ω× [tI , t]). 600

When located inside a solid domain, ~X is designed to allow a Feynman-Kac for- 601

mulation of the solution of Eq. (6b) and defines a conductive path. Eq. (6b) is a 602

source-diffusion equation with Robin boundary condition (the particular situation of 603

a Dirichlet condition is, by construction, included in this case), which leads to a Par- 604

tially Reflected Brownian Motion (PRBM) with ~X solution of the following Stochastic 605

differential equation (Skorokhod stochastic process, for further details see [69–71]): 606

d ~Xp = dWp + n( ~Xp)H∂ΩS ( ~Xp)lp (33)

where W is a three-dimensional Brownian motion, lp a local boundary time process, n a 607

function on ΩS and H∂ΩS (~x) = 1 if ~x ∈ ∂ΩS . When located inside a fluid domain, ~X 608

is designed to allow a Feynman-Kac formulation of the solution of Eq. (6c) and defines 609

a convective path. Eq. (6c) can be rewritten in probabilistic form (Eqs. (15), (17) and 610

Appendix B) which leads to the definition of ~X as a white noise uniformly distributed 611

on ΩF that hits the boundary with a constant rate µ = h̄FSF (h̄F is the average hF 612

over the boundary ∂ΩF of area SF ) at locations ~Y FS ≡ ~XτX distributed according to 613

p~Y F
S

(~yS) =
hF (~yS)

µ
(34)

~R is defined on the whole system, i.e. the union of all solid and fluid connex domains, 614

i.e. ΩS ∪ ΩF1
∪ ΩF2

∪ ΩF3
. . . ∪ ΩF∞ and ~U is defined on the unit sphere. These two 615

processes are designed to allow a Feynman-Kac formulation of the solution of Eq. (6d) 616

and define a radiative path. Eq. (6d) is a stationary linear Boltzmann equation, which 617

leads to a Stochastic Transport Process, i.e. the standard Markov process of linear 618

transport theory [72,73]: 619

d ~Rp = c ~Updp (35)
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where c is the speed of light and ~U jumps according to the single scattering phase 620

function at instants given by a Poisson process of rate
∫ p

0
ks

(
~R~x,t
v

)
dv, that is, the 621

duration between two consecutive collisions is exponentially distributed. 622

These three definitions lead to the following three coupled functional integrals, that 623

are strictly compatible with Eqs (6b), (6c) and (6d): 624

~x ∈ ΩS , t ∈ [tI ,+∞[ : θS(~x, t) = E
[
qS( ~X ~x,t

τ~x,t
X

, τ~x,tX ) exp

(
−
∫ t

τ~x,t
X

α( ~X ~x,t
p , p)dp

)

+

∫ t

τ~x,t
X

α( ~X ~x,t
p , p)θR( ~X ~x,t

p , p) exp

(
−
∫ t

p

α( ~X ~x,t
v , v)dv

)
dp

]
(36)

625

~x ∈ ΩF , t ∈ [tI ,+∞[ : θF (~x, t) = E
[
qF ( ~X ~x,t

τ~x,t
X

, τ~x,tX ) exp

(
−
∫ t

τ~x,t
X

α( ~X ~x,t
p , p)dp

)

+

∫ t

τ~x,t
X

α( ~X ~x,t
p , p)θR( ~X ~x,t

p , p) exp

(
−
∫ t

p

α( ~X ~x,t
v , v)dv

)
dp

]
(37)

626

t ∈ [tI ,+∞[ : θR(~x, t) = E
[
θ̃R( ~R~x,t

τ~x,t
R

, ~U ~x,t

τ~x,t
R

, τ~x,tR ) exp

(
−
∫ t

τ~x,t
R

β( ~R~x,t
p , p)dp

)

+

∫ t

τ~x,t
R

β( ~R~x,t
p , p)θF/S( ~R~x,t

p , p) exp

(
−
∫ t

p

β( ~R~x,t
v , v)dv

)
dp

]
(38)

with 627

qS(~x, t) ≡


θI(~x) if t = tI , ~x ∈ ΩS

θF (~x, t) if t > tI , ~x ∈ ∂ΩDF
θD(~x, t) if t > tI , ~x ∈ ∂ΩD

(39)

qF (~x, t) ≡
{
θI(~x) if t = tI , ~x ∈ ΩF

θS(~x, t) if t > tI , ~x ∈ ∂ΩF
(40)

α =
ζ

ρC
(41)

β = kac (42)

where θ̃R ≡ θR,∂ΩR,~u is the directional radiative temperature in incoming directions at 628

the limit of the composite domain, and θF/S is either the temperature of the fluid θF or 629

the temperature of the solid θS , depending on the position. 630

These sub-path statistics then achieve the objective of completing the spatio-temporal 631

description of section 4 on decoupled models for each of the three heat transfer modes 632

separately. 633

Of course, eqs. (36), (37) and (38) are coupled: θR appears as an integrated source 634

in Eqs. (36)-(37) and θ as an integrated source in Eq. (38). To recover the recursive path 635

description of Section 5, this coupling must be translated into thermal paths switching 636

from one mode to the other (whether in the domain or at an interface). Following a very 637

standard MC approach, this is achieved by defining random variables εX and εR that 638

turn the source integrations into expectations. When conditionned by ~x and t, ε~x,tX is 639
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defined on [τ~x,tX , t] with a probability density 640

p
ε~x,tX

(ε) = exp

(
−
∫ t

τ~x,t
X

α( ~X ~x,t
p , p)dp

)
δ(ε−τ~x,tX )+α( ~X ~x,t

ε , ε) exp

(
−
∫ t

ε

α( ~X ~x,t
p , p)dp

)
(43)

Similarly, ε~x,tR is defined on [τ~x,tR , t] with 641

p
ε~x,tR

(ε) = exp

(
−
∫ t

τ~x,t
R

β( ~R~x,t
p , p)dp

)
δ(ε− τ~x,tR ) + β( ~R~x,t

ε , ε) exp

(
−
∫ t

ε

β( ~R~x,t
p , p)dp

)
(44)

Reporting these definitions into Eqs. (36), (37) and (38) leads to 642

~x ∈ ΩS , t ∈ [tI ,+∞[ : θS(~x, t) = E
[
rS( ~X ~x,t

ε~x,tX

, ε~x,tX )

]
(45)

643

~x ∈ ΩF , t ∈ [tI ,+∞[ : θF (~x, t) = E
[
rF ( ~X ~x,t

ε~x,tX

, ε~x,tX )

]
(46)

644

t ∈ [tI ,+∞[ : θR(~x, t) = E
[
rR( ~R~x,t

ε~x,tR

, ~Ω~x,t
ε~x,tR

, t)

]
(47)

with 645

rS(~x, t) ≡


θI(~x) if t = tI , ~x ∈ ΩS

θF (~x, t) if t > tI , ~x ∈ ∂ΩDF
θD(~x, t) if t > tI , ~x ∈ ∂ΩD

θR(~x, t) if t > tI , ~x ∈ ΩS

(48)

rF (~x, t) ≡


θI(~x) if t = tI , ~x ∈ ΩF

θS(~x, t) if t > tI , ~x ∈ ∂ΩF

θR(~x, t) if t > tI , ~x ∈ ΩF

(49)

rR(~x, ~ω, t) ≡


θ̃R(~x, ~ω, t) if ~x ∈ ∂ΩR

θS(~x, t) if ~x ∈ ΩS

θF (~x, t) if ~x ∈ ΩF

(50)

Eqs (45) to (50) allow to find the same recursive structure as the one described in Section 646

5: 647

• In Eq. (45) the solid temperature is defined as an expectation that involves the 648

fluid temperature at the boundary, via θF in Eq. (48). 649

• In Eq. (46) the fluid temperature is defined as an expectation that involves the 650

solid temperature at the boundary, via θS in Eq. (49). 651

• Both equations involve the radiative temperature of Eq. (47), itself an expectation 652

that involves both the solid and fluid temperatures, via θS or θF in Eq. (50). 653

Now, the recursivity is expressed in terms of processes, such that the physical picture of 654

randomly alternating conductive, convective and radiative paths is justified. 655

Through coupled stochastic processes, we have then developed a probabilized path 656

space that makes the propagation viewpoint of the previous section operational. Scanning 657

these paths according to the laws of the corresponding stochastic processes leads to 658
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(b) Stochastic process method

Fig 7. The figure on the left corresponds to Fig. 6 for which only the points
corresponding to the end of sub-paths (coupled propagators) are defined. In comparison,
the figure on the right, illustrates the whole path starting from the observation point
(~x, t) until finding a prescribed temperature (here a temperature at the initial condition
at ~xI). Brownian paths are black lines, radiative paths red lines and convective paths
by blue dotted lines. The illustrated sequence is: conduction → convection →
conduction → radiation → conduction.

strict sampling of the random variables defined by the Eqs. (17), (21), and (25). Fig. 7 659

illustrates both visions for the realization of a path. 660

A MC algorithm of the coupled problem can be designed based on the recursive 661

sampling of the sub-paths defined by stochastic processes. Fig. 8 gives the corresponding 662

algorithmic prototype. 663
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sum = 0;
sumOfSquares = 0;
foreach recursive path i in 1:N do

Set recursion to true;
while recursion do

case (~x is within the solid) do
Sample a conductive path starting at (~x, t);

case (~x is within the fluid) do
Sample a convective path starting at (~x, t);

case (the path ends at an intial condition) do
Get the location ~xI of the end of the path;
w = θI(~xI);
Set recursion to false;

case (the path ends at a radiative source) do
Get the location ~xR and time tR of the end of the path;
Sample a radiative path γ starting at location ~xR at time tR;
Get the location ~xγ and the direction ~ωγ of the end of the radiative
path;
if (~xγ is at a radiative limit) then

w = θ̃(~xγ , ~ωγ , tR);
Set recursion to false;

else
Set ~x = ~xγ and t = tR;

case (the path ends at a boundary) do
Get the location ~xC and time tC of the end of the path;
if (the solid or fluid temperature θ is known at the end of the path)
then
w = θ(~xC , tC);
Set recursion to false;

else
Set ~x = ~xC and t = tC ;
case (the path is a conductive path) do

Set ~xC as belonging to the fluid;
case (the path is a convective path) do

Set ~xC as belonging to the solid;

sum = sum+ w;
sumOfSquares = sumOfSquares+ w2;

m = sum
N ;

s = 1√
N

(
sumOfSquares

N −m2
)

;

Fig 8. The recursive algorithm evaluating temperature at location ~x and time t with a
full conduction/convection/radiation coupling. ~x and t may be within the solid or
within the fluid. N recursive paths are sampled, starting at ~x, backward in time from t.
The estimator is m and s is its statistical uncertainty.
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7 The practice of sampling Brownian Motion with 664

confinement and radiation coupling 665

From the algorithm provided in Fig. 8, the “Sample a convective path starting at 666

(~x, t)” part does not raise any specific issue, and has been described in the Algorithm 667

3. We can simply mention that the ΘFI random variable can be sampled using the 668

null-collision technique [74–76] as soon as the convective exchange coefficient hF is 669

spatially heterogeneous. The “Sample a radiative path γ starting at location ~xR at 670

time tR” part consists in the realization of a stationary radiative path, as described 671

in the previous section by “the standard Markov process of linear transport theory”. 672

The realization of such a path in the presence of an absorbing, emitting and scattering 673

medium has been widely described in the literature (see for instance [3,4,77]). Numerous 674

radiative transfer simulation codes have implemented this path sampling technique, and 675

various nuances and subtleties are presented in reference books [78–81]. 676

As mentioned before, the main remaining issue for an efficient algorithmic imple- 677

mentation in a confined environment is to generate Brownian trajectories coupled to 678

a radiative source field in a solid medium. The issue of sampling Brownian motion in 679

confined environments with heterogeneous sources is well documented in the literature 680

and is the subject of active research (the Appendix E gives an overview of the most 681

popular approaches to confined Brownian motion). Here we make an alternative choice 682

which is not directly derived from the most standard first passage approaches. It is 683

motivated by the desire to stay as close as possible to path-sampling procedures that are 684

compatible with the efficient ray-tracing techniques developed by the computer graphics 685

community. Our proposal, denoted δ-sphere random walk for conductive paths, can be 686

summarized as follows: 687

1. The diffusion equation is transformed by approximating the Laplacian term by its 688

finite difference version while remaining entirely continuous. 689

2. Near the boundaries the random walk is adjusted to guarantee a certain level of 690

accuracy, the scheme being exact for linear temperature profiles at steady state. 691

3. The continuity of the heat flux that ensures the coupling condition at the interfaces 692

is treated with the same level of approximation as the steps described above. 693

The advantage of reformulating the model with this set of approximations is that 694

once the probabilization is done, it can be solved exactly in the strict MC sense. It 695

allows to separate the approximations of very different nature: on the one hand, the 696

part associated with the rewriting of the model and, on the other hand, the statistical 697

uncertainty of the unbiased estimator of the corresponding expectation. The result in 698

terms of ray tracing and trajectories is illustrated in Fig. 9. Let us note in particular 699

two rays of opposite directions at each step of the conductive random walk, jumps of 700

variable size near the boundaries and standard multiple scattering trajectories for the 701

radiative part. We develop in this paragraph the theoretical considerations that lead 702

to this particular scheme. In order to justify the complete random walk scheme in a 703

didactic way, we will separate the steps as follows: 704

• Approximations of conducto-radiative coupled system in an infinite medium. 705

• Modifications to the scheme to account for confinement (essentially with conse- 706

quences near the boundaries). 707

• Additional steps related to boundary coupling conditions 708
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Fig 9. Illustration of thermal path sampling in a confined environment with a δ-sphere
random walk for conductive paths. The bidirectional arrows represent the fact that an
intersection test must be performed in two opposite directions at each jump, in order to
obtain the local δ step value. In red: the walking step is smaller than in the rest of the
field, and the walk ends exactly at the boundary. At position ~x2 the conductive path
switches to a radiative path until position ~x3

7.1 The approximation of the coupled conducto-radiative sys- 709

tem in an infinite medium 710

We start with the model 6b rewritten in an infinite geometric space of dimension n, with 711

constant thermophysical properties: 712{
ρC∂tθS = λ∆θS + ζ (θR − θS) , (t,~x) ∈]tI ,+∞[×Rn
θS(~x, tI) = θI(~x, tI) ,~x ∈ Rn

(51)

From previous sections, θR (required for the radiative coupling) can be expressed 713

from a process that completely defines a path space over which it is possible to formally 714

write the temperature as an expectation: 715

θR(~x, t) =

∫
DΓ

pΓ(γ)dγθS(~xγ , t) , (t,~x) ∈]tI ,+∞[×Rn (52)

in which DΓ ≡ DΓ(~x) represents the radiative path space of origin ~x over which the 716

path random variable Γ ≡ Γ(~x) of density pΓ is defined. It is worth noting that the 717

temperature retained at the end of the γ path, ~xγ , is taken with no modification of date 718

t, which means that radiative processes are considered at a stationary state, because 719

they are very fast compared to the other processes involved. Sampling this path space is 720

straightforward using MC methods: sampling of the Γ random variable is easy no matter 721

the complexity of the underlying radiative physics (for instance, taking into account 722

multiple scattering or multiple reflections in all kinds of situations). 723

The only required approximation in Eq. (51) consists in replacing the Laplacian 724

operator by its centered finite differences counterpart. In order to obtain an expression 725
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that does not depend on a given cartesian basis, the finite difference is averaged over all 726

possible basis orientations. The retained approximate model is finally: 727


ρC∂tθ̃S = λ

(
2n
∫
Sn−1

1
Sn−1

d~uθ̃S,~u − 2nθ̃S

δ2

)
+ ζ(θ̃R − θ̃S) , (t,~x) ∈]tI ,+∞[×Rn

θ̃S(~x, tI) = θI(~x) ,~x ∈ Rn

θ̃R(~x, t) =

∫
DΓ

pΓ(γ)dγθ̃S(~xγ , t) , (t,~x) ∈]tI ,+∞[×Rn

(53)

where Sn−1 is the surface of sphere Sn−1 in dimension n and θ̃S,~u ≡ θ̃S,~u(~x, t) = 728

θ̃S(~x+ δ~u, t). It was chosen to use the θ̃S notation for the temperature that is a solution 729

of Eq. (53) to specifically mention its dependence to the δ parameter. 730

In Appendix F, the model 53 is analytically studied in an infinite medium. Its 731

consistency with the exact model of Eqs. (51), (52) is discussed, as well as the convergence 732

of the solution θ̃S towards θS . 733

7.2 Walk on δ-sphere without radiative coupling 734

In order to understand the approximation proposition, this paragraph first describes 735

the random walk in pure diffusion (i.e. on the only mechanism that is approximated in 736

the field, the radiation being treated in an exact manner). The first equation of (53) 737

without the radiative term (which is the case when ζ = 0) can easily be reformulated as 738

a second kind Fredholm integral: 739

θ̃S(~x, t) =

∫ +∞

0

pT (τ)dτ

 H(τ − t)θI(~x)

+ H(t− τ)

∫
Sn−1

p~U (~u)d~uθ̃S(~x+ δ~u, t− τ)

 (54)

That can be re-written as an expectation: 740

θ̃S(~x, t) = E
[
H(T − t)θI(~x) +H(t− T )E

[
θ̃S(~x+ δ~U , t− T )

]]
(55)

where pT is the density probability of T that follows an exponential law of parameter 741

2nD/δ2, where D = λ
ρC is the thermal diffusivity of the material and p~U is the density 742

probability of the ~U random variable (uniform over the sphere of dimension n − 1). 743

Notation H(x) stands for the Heaviside function, that takes a value of 1 for x > 0 and a 744

value of 0 for x < 0. 745

Temperature θ̃S at position ~x and at time t is expressed as the expected value of 746

a linear function of an expectation; the double randomization principle can then be 747

invoked in order to express the temperature as a unique expectation. 748

θ̃S(~x, t) = E
[
θI( ~XN )

]
(56)

with: 749

• ~XN = ~x+ δ
∑N
i=0

~Ui, ~U0 ≡ ~0, T0 = 0, 750

• N = min {n ∈ N;
∑n
i=0 Ti > t− tI} 751

• (Ti)i∈{0,...,N} and (~Ui)i∈{0,...,N} two series of independent and identically dis- 752

tributed random variables (IID) respectively for T and ~U . 753
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It should be noted that ~XN can be read as a process that replaces the Brownian 754

process W that was defined in the previous section. Eq. (56) is a Feynman-Kac equation 755

in the study case. Algorithm 8 gives the simple way in which the sampling of θI( ~XN) is 756

done for given ~x and t. 757

Algorithm 8: δ-sphere algorithm in infinite medium without coupling. w is
the generic notation for a realization of the sampled random variable

while t > tI do
Sample τ according to the law of T ;
t = t− τ ;
if t < tI then

w = θI(~x);
else

Sample ~u according to the law of ~U ;
~x = ~x+ δ~u;

Under the hypothesis of a linear temperature profile in every direction, the δ-sphere 758

random walk provides an exact solution to the problem of stationary diffusion within an 759

infinite medium, whatever the value of δ. Let’s assume, for instance, that at steady state 760

the temperature depends linearly on the position: Whatever the value of ~u, we have: 761

θS(~x) =
θS(~x+ δ~u) + θS(~x− δ~u)

2
(57)

The δ-sphere random walk guarantees the exactness of this relation, from a statistical 762

point of view. 763

In the case when the temperature profile is not globally linear, a value of the δ 764

parameter that locally ensures a linear profile can be found in almost all cases; this 765

makes the δ-sphere random walk a good approximation, including during non-stationary 766

phases. 767

7.3 Walk on δ-sphere with radiative coupling 768

Eq. (53) is now considered with its radiative coupling term. From a formal point of 769

view, there is no additional difficulty to obtain a version of this equation as a second 770

kind Fredholm equation: 771

θ̃S(~x, t) =

∫ +∞

0

pT (τ)dτ



H(τ > t− tI)θI(~x)

+ H(τ < t− tI)


pC

∫
Sn−1

p~U (~u)d~uθ̃S(~x+ δ~u, t− τ)

+pR

∫
DΓ

pΓ(γ)dγθ̃S(~xγ , t− τ)




(58)

That can be re-written as an expectation: 772

θ̃S(~x, t) = E

[
H(T − t)θI(~x)

+ H(t− T )
(
B(pC)E

[
θ̃S(~x+ δ~U , t− T )

]
+ (1− B(pC))E

[
θ̃S(~xΓ, t− T )

]) ]
(59)
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where pT is the density probability of T that follows an exponential law of parameter 773

(2nλ + ζδ2)/(ρCδ2); pC = (2nλ)/(2nλ + ζδ2), pR = 1 − pC and p~U is the probability 774

density of the ~U random variable (uniform over the sphere of dimension n− 1). B(pC) 775

is a Bernouilli random variable of parameter pC . 776

Similarly to the no-radiation case, the double randomization principle is used in order 777

to evaluate this expectation by MC. It consists in writing: 778

θ̃S(~x, t) = E
[
θI(~YN )

]
(60)

The random variable ~YN is not formally defined here; the Algorithm 9 for the sampling 779

of θI(~YN) for given ~x and t is sufficient to clarify its meaning. 780

Algorithm 9: δ-sphere algorithm in infinite medium with radiative coupling.
w is the generic notation for a realization of the sampled random variable.

while t > tI do
Sample τ according to the law of T ;
t = t− τ ;
if t < tI then

w = θI(~x);
else

Sample r uniformly on [0,1];
if r < pC then

Sample ~u according to the law of ~U ;
~x = ~x+ δ~u;

else
Sample γ according to the law of Γ(~x);
~x = ~xγ ;

7.4 The approximation of conductive path near the boundary 781

The δ-sphere random walk has been detailed in an infinite medium. Coupling with 782

radiative transfer does not require any approximation, nor does it introduce any additional 783

difficulty. Remains the question of approximating the Brownian walk in a confined 784

medium, more precisely, how the diffusive random walks deal with boundaries. As in any 785

“Walk on Sphere” method [82–85], the δ-sphere walk never really ends at a boundary. 786

With a small enough value of δ, it could be considered that, when the random walk 787

crosses the boundary, the intersection position is the final position of the path. An 788

alternative to this trivial solution is proposed here, that reduces the numerical error for 789

a given value of the walking step. 790

We keep the constraint of using only random walks built upon ray-surface intersections, 791

since our δ-sphere random walk aims at using computer sciences methods for identifying 792

the intersection between a ray and a scene defined by a huge number of geometrical 793

primitives. 794

When boundaries have to be taken into account, the average expressed in Eq. (57) 795

must be statistically ensured, in order to keep an exact solution for the stationary regime. 796

To that purpose, the value of the walking step is adjusted along direction ~u: 797

δ ≡ δ(~x, ~u) = min {δref , δ∂ΩS (~x, ~u)}
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where δref represents the maximum step of the random walk, and δ∂ΩS (~x, ~u) is the 798

distance to the closest boundary in directions ~u or −~u. 799

From an algorithmic point of view, the proposition is rather straightforward. After 800

sampling a direction ~u and before enacting the displacement, the value of the random 801

walk step has to be evaluated by testing the distance to the boundary in both directions 802

~u and −~u. The random walk will therefore always use a value δref for positions far from 803

the boundary; and for positions that are close to the boundary, the value of the walking 804

step will be automatically reduced (see Fig. 9). In the spatial sub-domains where δ 805

is lower than δref , the random walk will therefore statistically stop at the boundary 806

half the time. If the temperature of the boundary is known (Dirichlet limit condition), 807

the random walk ends at the boundary. Otherwise (Robin limit condition), a specific 808

treatment must be performed, that is described in the following paragraph. 809

It should be emphasized that Eq. (55) is still perfectly valid, even in the presence 810

of boundaries. The main difference in this case is that, in a confined medium, the δ 811

parameter and the random variable T both depend of the random variable ~U . This will 812

translate in terms of algorithm by the fact that the first sampling must be performed 813

for random variable ~U . The algorithm for sampling random variables for ~x and t is 814

described in Algorithm 10. 815

Algorithm 10: δ-sphere algorithm in bounded domain without radiative cou-
pling. w is the generic notation for a realization of the sampled random variable.

while t > tI or ~x /∈ ∂ΩS do

Sample ~u accordind to the law of ~U ;
Compute the distances d± to the boundary in the ±~u directions ;
δ = min(δref , d

±);

Sample τ according to the law of T ∼ E( 2nD
δ2 );

t = t− τ ;
if t < tI then

w = θI(~x);
else

~x = ~x+ δ~u;
if ~x ∈ ∂ΩS then

w = θ∂ΩS (~x, t);

7.5 Interface conditions and flux continuity 816

The temperature at the boundary is generally unknown, except in the particular case of 817

a Dirichlet condition (set temperature). When the temperature is unknown, a discretized 818

version of the flux continuity relation for the interface between two media is used, in 819

order to express the boundary temperature as an expectation. The double randomization 820

technique then makes it possible to continue generating the recursive thermal path, as 821

previously shown. 822

The continuity of the surface flux density over an interface with a Robin condition is 823

written as in Eq. (6b): 824

λ~n.~∇θS = −λ∂θS
∂n

= hF (θF − θS) , (t,~x) ∈]tI ,+∞[×∂ΩDS (61)

where ~n is the incoming normal at the surface of the solid and θF is the temperature 825

of the fluid. As for the field approximation, the normal derivative at the boundary is 826

October 18, 2022 36/64



translated into its finite difference counterpart: 827

λ
θ̃S(~x, t)− θ̃S(~x+ δb~n, t)

δb
= hF

(
θF (t)− θ̃S(~x, t)

)
, (t,~x) ∈]tI ,+∞[×∂ΩDS (62)

From which the boundary temperature is obtained: 828

θ̃S(~x, t) = pδb θ̃S(~x+ δb~n, t) + pF θF (t) , (t,~x) ∈]tI ,+∞[×∂ΩDS (63)

with pδb =
λ
δb

λ
δb

+hF
and pF = hF

λ
δb

+hF
. 829

δb is a numerical parameter just like δ. In some cases it may be useful to be able to 830

impose δb and δ separately but in many applications δb = δ is a relevant choice. 831

Expression 63 is interpreted as the expectation of a random variable Θ̃int(~x, t): 832

θ̃S(~x, t) = E
[
Θ̃int(~x, t)

]
with: 833

Θ̃int(~x, t) = B(pδb)θ̃S(~x+ δb~n, t) + (1− B(pδb)) θF (t)

It was previously shown that the temperature at any position in the solid and the 834

temperature of the fluid can be interpreted as the expectation of well defined random 835

variables. The double randomization technique is then used once again in order to deal 836

with nested expectations; by doing so, the thermal path continues either in the fluid or 837

in the solid, at a distance δb from the boundary. 838

7.6 The path space with random walk on δ-sphere 839

All items are now available in order to completely define the thermal path space. The 840

Brownian process in the field and the connecting condition between the solid and fluid 841

are the only mechanisms that are approximated. Other processes, as well as all couplings 842

in the field, are treated in an exact manner. 843

Fig. 10 completes Fig. 7 by adding a representation of the conductive paths under 844

the approximation of δ-sphere random walk. 845
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(b) Stochastic Processes viewpoint
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(c) Walk on δ-sphere viewpoint

Fig 10. Fig. 7 is completed by the representation of a diffusive random walk under the
approximation of a δ-sphere random walk.
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8 Conclusions and Outlooks 846

The proposal of the present text combines several points of view over MC methods with 847

one leading intention: benefiting from the solid foundations laid in a vast literature. As 848

far as propagation, stochastic processes and integral relations are concerned, the formal 849

background is well established and the corresponding probabilistic description provides 850

a common language that supports simple algorithmic proposals. The presentation was 851

focused on coupled thermal transfers for their very wide application significance, but the 852

illustrated framework is nonetheless much wider than this particular disciplinary field 853

and other linear coupled physics can be studied similarly (see for instance [86–88]). Of 854

course, many questions about coupled path spaces are still widely open, which were left 855

out from the present article. Several of these questions are getting addressed in ongoing 856

works that already started to provide insightful perspectives, as for instance: 857

• computing spatial gradients or parametric and geometric sensitivities; solutions 858

are starting to emerge from a better understanding of the information carried by 859

thermal paths that is available for further quantitative analysis [8, 89–92]; 860

• the question of non-linearly coupled physics; several theoretical advances in the 861

domain may lead to practical solutions for probe computations, which preserve 862

the essential properties of the present methodology [68,88,93–95]. 863

• in a very general way, revisiting physical intuitions using path integrals that include 864

coupling has consequences in terms of analysis because of the possibility to read 865

the structure of the coupling inside a single trajectory space. 866
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APPENDIX

A Radiation linearized in temperature 867

We start from the stationary radiative transfer equation formulated in terms of monochro- 868

matic specific intensity Iν ≡ Iν(~x, ~u, t) at position ~x, in direction ~u at time t and 869

frequency ν: 870

~u.~∇Iν = −kνaIν + kνaI
eq
ν − kνs Iν + kνs

∫
4π

pνs (~u|~u′)I ′νd~u′ (64)

where kνa is the absorption coefficient, kνs the scattering coefficient, pνs the scattering 871

phase function, I ′ν ≡ Iν(~x, ~u′, t) and Ieqν ≡ Ieqν (θ(~x, t)) the specific equilibrium intensity 872

at temperature θ(~x, t) of the solid or fluid. Although the radiative transfer is stationary, 873

Iν depends on t due to the evolution of the solid/fluid temperature. 874

Assuming that at all times and positions, the solid/fluid temperature remains close 875

to a reference temperature θref , the temperature dependence of the specific equilibrium 876

intensity can be linearized: 877

Ieqν (θ) ≈ Ieqν (θref) + ∂θI
eq
ν (θref)(θ − θref) (65)

Equilibrium properties allow to write: 878

0 = −kνaIeqν + kνaI
eq
ν − kνs Ieqν + kνs

∫
4π

pνs (~u|~u′)Ieqν d~u′ (66)

Introducing the notation Ĩν = Iν − Ieqν (θref) for the perturbations and subtracting 879

Eqs. (64) and (66), the radiative transfer equation under the assumption (65) can be 880

written as follows: 881

~u.~∇Ĩν ≈ −kνa Ĩν + kνa∂θI
eq
ν (θref )(θ − θref )− kνs Ĩν + kνs

∫
4π

pνs (~u|~u′)Ĩ ′νd~u′ (67)

We choose to rewrite this equation using the radiance temperature θνR,~u in the 882

direction ~u. This radiance temperature is a spectral and directional quantity defined 883

as the temperature for which the equilibrium specific intensity is equal to the specific 884

intensity: 885

Ieqν (θνR,~u(~x, t)) = Iν(~x, ~u, t) (68)

Using Eq. (65), 886

Iν ≈ Ieqν (θref) + ∂θI
eq
ν (θref)(θ

ν
R,~u − θref) (69)

and therefore, 887

Ĩν ≈ ∂θIeqν (θref)(θ
ν
R,~u − θref) (70)

Eq. (67) becomes: 888

~u.~∇θνR,~u ≈ −kνaθνR,~u + kνaθ − kνs θνR,~u + kνs

∫
4π

pνs (~u|~u′)θνR,~u′d~u′ (71)

In the energy conservation equation, the radiation balance term ψR is defined as the 889

difference between the absorbed and emitted power densities, ψR = ψabsorbed − ψemitted 890

with 891

ψabsorbed =

∫
4π

d~u

∫ +∞

0

dν kνaIν (72)
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and 892

ψemitted =

∫
4π

d~u

∫ +∞

0

dν kνaI
eq
ν (73)

Using the Stefan-Boltzmann law, 893∫ +∞

0

Ieqν (θref)dν =
σθ4

ref

π

and the previous assumptions, we can write: 894

ψR =

∫
4π

d~u

∫ +∞

0

dνkνa∂θI
eq
ν (θref)(θ

ν
R,~u − θ)

=

∫
4π

d~u

∫ +∞

0

dνkνa∂θI
eq
ν (θref)θ

ν
R,~u −

(∫
4π

d~u

∫ +∞

0

dνkνa∂θI
eq
ν (θref)

)
θ

= 16kaσθ
3
ref

((∫
4π

1

4π
d~u

∫ +∞

0

dνpN (ν)θνR,~u

)
− θ
) (74)

with 895

pN (ν) =
kνa
ka
pk(ν) (75)

where 896

pk(ν) =
π∂θI

eq
ν (θref)

4σθ3
ref

(76)

and 897

ka =

∫ +∞

0

pk(ν)dν kνa (77)

We finally retain: 898
ψR = ζ(θR − θ)

θR =

∫
4π

1

4π
d~u

∫ +∞

0

dνpN (ν)θνR,~u
(78)

with ζ = 16kaσθ
3
ref 899
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B Definitions for ΘFi(t) 900

Eq. (5), which is a first order time equation for the fluid temperature variable, fits 901

perfectly into the illustrative case described in Fig. 2 and can be reformulated as: 902

dθFi
dt

(t) = −αFi
(
θFi(t)− θ∗Fi(t)

)
αFi =

ζiVFi +
∫
∂ΩFi

hF (~yS)d~yS

ρiCiVFi

θ∗Fi(t) =
ζi
∫

ΩFi
θR(~xR, t)d~xR +

∫
∂ΩFi

hF (~yS)θS(~yS , t)d~yS

ζiVFi +
∫
∂ΩFi

hF (~yS)d~yS

θFi(tI) = θI

(79)

The development then leads to the same probabilistic formulation as in Fig. 2, with 903

Θ̃Fi the random variable whose expectation is θFi : 904

Θ̃Fi(t) = B(pFiI )θI +
(

1− B(pFiI )
)
θ∗Fi(T

Fi) (80)

θFi(t) = E
[
Θ̃Fi(t)

]
(81)

where: 905

• pFiI = exp (−αFi(t− tI)); with tI the initial time. 906

• B(p) is a Bernoulli r.v. with parameter p 907

• TFi is a r.v with an exponential distribution of parameter αFi 908

Meanwhile, expressions provided by 80 and 81 are not fully satisfactory because the 909

source term θ∗Fi(t) involves integrals of both temperatures θR and θS . It is thus necessary 910

to carry out the probabilization of θ∗Fi(t) by writing the temperature of the fluid as the 911

expectation of a random variable which takes either the value of θR or that of θS (or 912

θI). Such an expression will be compatible with the final objective, which remains the 913

coupling between submodels. Indeed, the temperatures θR and θS , which are prescribed 914

here, will be the coupling variables when solving the whole model in Eq. (6). 915

Let us define the area SFi of the domain ∂ΩFi and h̄Fi =
∫
∂ΩFi

hF (~yS)d~yS/SFi the

convection coefficient hF averaged over the boundary. Hence:

θ∗Fi(t) =
ζiVFi

ζiVFi + h̄FiSFi

∫
ΩFi

1

VFi
θR(~xR, t)d~xR+

h̄FiSFi
ζiVFi + h̄FiSFi

∫
∂ΩFi

hF (~yS)

h̄FiSFi
θS(~yS , t)d~yS

Which finally leads to the expression of the fluid temperature (Eq. (15)): 916

θFi(t) =gFi,I(t|tI)θI

+

∫ t

tI

∫
∂ΩFi

gFi,S(t|~yS , τ)θS(~yS , t)d~ySdτ

+

∫ t

tI

∫
ΩFi

gFi,R(t|~xR, τ)θR(~xR, τ)d~xRdτ

where 917

• gFi,I(t|tI) = pFiI 918
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• gFi,S(t|~yS , τ) = (1− pFiR )
h(~yS)

h̄SFi
αFi exp (−αFi(t− τ)) 919

• gFi,R(t|~xR, τ) = pFiR
1

VFi
αFi exp (−αFi(t− τ)) 920

with pFiR =
ζiVFi

ζiVFi + h̄FiSFi
. 921

Defining the two independent variables 922

• ~Y Fi

S a random position variable following the distribution hF (~yS)

h̄FiSFi
on the surface 923

∂ΩFi 924

• ~XFi

R a random position variable following the uniform distribution 1
VFi

on ΩFi 925

we can write Eq. (16) and Eq. (17) which define the temperature of the fluid as an 926

expectation: 927

θFi(t) = E [ΘFi(t)]

with 928

ΘFi(t) =B1(pFiI )θI

+
(

1− B1(pFiI )
){
B2(pFiR )θR( ~XFi

R , TFi) +
(

1− B2(pFiR )
)
θS(~Y Fi

S , TFi)
}

When dealing with coupling, we will then work, for each fluid subvolume ΩFi , with the 929

random variables ΘFi(t) rather than Θ̃Fi(t). 930

October 18, 2022 42/64



C Definitions for ΘS(~x, t) 931

This appendix aims at providing the definitions of the random variables and probabilities 932

that appear in expression 21, reported here for the sake of clarity: 933

ΘS(~x, t) =B1(pSI )θI( ~X
S
I ) + (1− B1(pSI ))B2(pS2 )θR( ~XS

R, T
S
R)

+ (1− B1(pSI )(1− B2(pS2 ))B3(pS3 )θF (~Y SF , T
S
F )

+ (1− B1(pSI )(1− B2(pS2 ))(1− B3(pS3 ))θD(~Y SD , T
S
D)

• Definition of the probabilities: 934

pSI (~x, t|tI) =

∫
ΩS

gS,I(~x, t|~xI , tI)d~xI

pSR(~x, t|tI) =

∫ t

tI

∫
ΩS

gS,R(~x, t|~xR, tR)d~xRdtR

pS∂ΩDS
(~x, t|tI) =

∫ t

tI

∫
∂ΩDS

gS,∂ΩDS
(~x, t|~yF , tF )d~yF dtF

pS∂ΩD (~x, t|tI) =

∫ t

tI

∫
∂ΩD

gS,∂ΩD (~x, t|~yD, tD)d~yDdtD

with the relation (under the restriction conditions defined in Eq. (8))

pSI + pSR + pS∂ΩDS
+ pS∂ΩD = 1

so that the following quantities can be considered as probabilities:

pS2 =
pSR

1− pSI
and pS3 =

pS
∂ΩDS

1− pSI − pSR

• Definition of the probability density functions: 935

p ~XS
I

(~x, t|~xI , tI) = gS,I(~x, t|~xI , tI)/pSI (~x, t|tI)
p( ~XS

R,T
S
R )(~x, t|~xR, tR) = gS,R(~x, t|~xR, tR)/pSR(~x, t|tI)

p(~Y S
F ,TSF )(~x, t|~yF , tF ) = gS,∂ΩDS

(~x, t|~yF , tF )/pS∂ΩDS
(~x, t|tI)

p(~Y S
D ,TSD)(~x, t|~yD, tD) = gS,∂ΩD (~x, t|~yD, tD)/pS∂ΩD (~x, t|tI)

• Definition of the random variables: 936

– B(p) is a Bernoulli r.v. with parameter p 937

– ~XS
I is a r.v. with distribution p ~XS

I
938

– ( ~XS
R, T

S
R) is a paired r.v with distribution p( ~XS

R,T
S
R ) 939

– (~Y SF , T
S
F ) is a paired r.v with distribution p(~Y S

F ,TSF ) 940

– (~Y SD , T
S
D) is a paired r.v with distribution p(~Y S

D ,TSD) 941

which are independent from each others. 942
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D Definitions for ΘR,~u(~x, t) 943

This appendix aims at providing the definitions of the random variables and probabilities 944

present in expression 25, reported here for the sake of clarity: 945

ΘR,~u(~x, t) = B
(
pRA(~x, ~u)

)
θ( ~XR

A , t) +
(
1− B

(
pRA(~x, ~u)

))
θR,∂ΩR,~UR

(~Y RR , t)

• Definition of the probabilities: 946

pRA(~x, ~u) =

∫
Ω

∫
S2

gR,A(~x, ~u|~x′, ~u′)d~u′d~x′

pRR(~x, ~u) =

∫
∂ΩR

∫
S2
+

gR,∂ΩR(~x, ~u|~y, ~u′)d~u′d~y

with the relation (under the restriction conditions defined in Eq. (8)):

pRA + pRR = 1

• Definition of the probability density functions: 947

p ~XR
A

(~x, ~u|~xA) =

(∫
S2

gR,A(~x, ~u|~xA, ~uA)d~uA

)
/pRA(~x, ~u)

p(~Y R
R ,~UR)(~x, ~u|~yR, ~uR) = gR,∂ΩR(~x, ~u|~yR, ~uR)/pRR(~x, ~u)

• Definition of the random variables: 948

– B(p) is a r.v with parameter p 949

– ~XR
A is the r.v with distribution p ~XR

A
950

– (~Y RR , ~UR) is a paired r.v. with distribution p(~Y R
R ,~UR) 951

which are independent from each others. 952
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E Random Walk on Sphere and equivalent 953

For sampling Brownian motion in a confined environment, there are almost only ap- 954

proximate methods that use numerical parameters on which the accuracy of the method 955

depends [33, 43]. Among the most popular applications, it is worth mentioning the 956

elegance of so-called “first passage of a trajectory over a fictitious boundary” meth- 957

ods [96,97]. 958

The most common approach when it comes to sampling contributions according to 959

the conductive Green function, in a close domain Ω with a Dirichlet boundary condition, 960

is the Walk on Sphere proposition [82–85]. It consists in the random sampling of a point 961

(both in space and time) over successive spheres of maximal radius, centered on the 962

current position, as illustrated in Fig. 11a (spheres are tangent to the boundary of the 963

domain, and entirely fit inside the domain). From the first passage Green function over 964

a sphere, it is possible to deduce: 965

1. a distribution of exit times, 966

2. a distribution of exit positions over the sphere (that follows a uniform law when 967

conductivity λ is uniform!) 968

3. a distribution of positions inside the sphere, given that information is confined to 969

the inside of the sphere during the time elapsed from the initial condition. 970

The numerical strategy in order to find a exit position over the boundary of the 971

domain consists in setting an arbitrary thickness ε to the boundary. As a consequence, 972

a position is considered to have reached the boundary as soon as its distance to the 973

boundary is less than ε (this is necessary, since the contact between the sphere and Ω is 974

most of the time reduced to a point). 975

With this approximation and using the previously described three distributions, the 976

contribution associated with the current sphere can be sampled. In this case, three 977

situations must be considered: 978

• either the initial condition has been reached inside the sphere, and the MC 979

weight is the initial temperature for the corresponding position, sampled using the 980

distribution of point 3., 981

• or a position is reached at the surface of the sphere located at a distance smaller 982

than ε from the boundary, in which case the MC weight is the known temperature 983

at the boundary, 984

• or a position is reached at the surface of the sphere located at a distance greater 985

than ε from the boundary (at a time that is per construction closer to the initial 986

condition), in which case recursivity occurs. 987

A “walk” over spheres therefore emerges, until a boundary condition is reached. First, 988

thickening the boundary using parameter ε is a source of uncertainty. This approximation 989

is not, in fact, an issue, because the average number of jumps that is required to reach 990

the boundary increases as |log(ε)| [83, 96]; it is therefore possible to imagine a value 991

of ε that is compatible with the numerical accuracy inherent to the representation of 992

numbers, which is the limiting approximation. Secondly, the implementation needs, for 993

each jump, to solve an optimization problem: identify the sphere of maximal radius 994

contained in Ω and centered on the current position. This optimization problem may be 995

computationally expensive for a high level of geometric complexity. Current research on 996

this topic has already been translated in more efficient intersection libraries [98,99]. 997

In the same line of thought, recent advances [36–39] propose an effcient methodology 998

in order to sample contributions in a general polyhedral domain with a Dirichlet boundary 999
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(b) Walk-on-rectangle-parallelepiped

Fig 11. Illustration of methods based on Green’s function first-passage algorithms

condition, as illustrated by Fig. 11b (the strategy is similar to the Walk on Sphere, 1000

but with parallelepipedic rectangles). This proposition consists in computing the Green 1001

function within a parallelepipedic rectangle of arbitrary dimensions, in order to obtain: 1002

1. a distribution of exit times (that depends on the probe position) 1003

2. a distribution of exit positions (that depends on the probe position and the exit 1004

time) 1005

3. a distribution of positions inside the rectangle, knowing that the information 1006

remains confined to the inside of the rectangle domain during the time period from 1007

the initial condition (that depends on the probe position and the observation time) 1008

The proposition then consists in a practical and ingenious process to generate 1009

parallelepipedic rectangles contained in the polyhedron and containing the probe position, 1010

while maximizing the contact area between this rectangle and the boundary of the 1011

polyhedron. It is then possible, from the three distributions, to sample a contribution 1012

associated with the rectangle. In each case, three situations have to be examined: 1013

• either the initial condition inside the rectangle is reached, and the MC weight is 1014

the initial temperature at the corresponding position, 1015

• or a position is reached at the portion of the surface of the rectangle that is shared 1016

with the surface of the polyhedron, and the MC weight is the imposed boundary 1017

temperature, 1018

• or a position is reached at the portion of the surface of the rectangle that is inside 1019

the polyhedron (at a time closer to the initial condition), in which case recursivity 1020

occurs. 1021

A “walk” on rectangles emerges, until a limit condition is reached. Contrary to the 1022

Walk on Sphere, there is no thickening parameter, making this approach a reference 1023

method since the various contributions are sampled in a exact way. One of the remaining 1024

questions, that is currently not addressed on a theoretical point of view, is the capacity 1025

to generate such parallelepipedic rectangles efficiently enough in a complex geometry. 1026
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Nonetheless, even if it was possible to produce these volumes in an optimal way, account- 1027

ing for couplings and heterogeneous parameters is a consequent additional work that 1028

remains to be conducted. 1029

Attempts to address this question were made, notably by trying to sample contri- 1030

butions in a domain with non-uniform conductivity, as for instance in the case of a 1031

discontinuity at an interface [34, 40–42], or with Robin or Neumann boundary condi- 1032

tions [69,100,101]. 1033

October 18, 2022 47/64



F Consistency of the approximate δ-sphere random 1034

walk on infinite domains 1035

In order to investigate the consistency of the approximate model and the convergence 1036

speed of θ̃S towards θS as a function of δ, a solution to the coupled conducto-radiative 1037

tridimensional model provided by Eqs. (51) and (52) will be proposed, while specifying 1038

the radiative physics of interest. 1039

Eq. (52) can be seen as the solution of a radiative transfer equation that is obtained 1040

after describing the underlying process. A rather simple way of obtaining this formulation 1041

consists in reformulating the differential radiative transfer equation under its integral 1042

form. In the considered radiative physics, the collisional term is associated to absorption 1043

and scattering processes for spatially uniform radiative properties. For the needs of the 1044

computation presented in this appendix, the phase function is chosen isotropic. The 1045

radiative transfer equation under its integral form can then be written as: 1046

θR(~x, t) =

∫
S2

1

4π
d~u

∫ +∞

0

kee
−keldl

(
ka
ke
θS +

ks
ke
θR

)
|(~x+~ul,t)

, (t,~x) ∈]tI ,+∞[×R3

(82)
Note that using the iterated kernel procedure over the Fredholm Eq. (82), the solution 1047

appears as a development of a Neumann series, which formally defines the integration 1048

path space as described by Eq. (52). This additionnal step is not useful for the needs of 1049

this appendix. 1050

Using Eq. (82), θS and θ̃S are respectively the solutions of coupled Eqs. (83) and 1051

(84). For the original model, 1052


ρC∂tθS = λ∆θS + ζ(θR − θS) , (t,~x) ∈]tI ,+∞[×R3

θS(~x, tI) = θI(~x) ,~x ∈ R3

θR(~x, t) =

∫
S2

1

4π
d~u

∫ +∞

0

kee
−keldl

(
ka
ke
θS +

ks
ke
θR

)
|(~x+~ul,t)

, (t,~x) ∈]tI ,+∞[×R3

(83)
and for the approximate model, 1053

ρC∂tθ̃S = λ

(
6
∫
S2

1
4πd~uθ̃S,~u − 6θ̃S

δ2

)
+ ζ(θ̃R − θ̃S) , (t,~x) ∈]tI ,+∞[×R3

θ̃S(~x, tI) = θI(~x) ,~x ∈ R3

θ̃R(~x, t) =

∫
S2

1

4π
d~u

∫ +∞

0

kee
−keldl

(
ka
ke
θ̃S +

ks
ke
θ̃R

)
|(~x+~ul,t)

, (t,~x) ∈]tI ,+∞[×R3

(84)
where ka, ks and ke = ka + ks are respectively the absorption, scattering and extinction 1054

coefficients. Let us recall that θ̃S,~u ≡ θ̃S(~x + δ~u, t) and that S2 is the unit sphere of 1055

dimension two. 1056

Fourier expansion 1057

θ̃S(~x, t) is obtained by a development over a Fourier basis, in order to get the dispersion 1058

relation for the approximate model. Notation
ˆ̃
θS(~k, t) is used for the component on the 1059
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basis associated with the wave vector ~k (Fourier transform). 1060

ρC∂t

(∫
R3

ˆ̃
θS(~k, t)ei

~k.~xd~k

)
=



6λ

δ2

∫
S2

1

4π
du

∫
R3

ˆ̃
θS(~k, t)ei

~k.(~x+δ~u)d~k

−6λ

δ2

∫
R3

ˆ̃
θS(~k, t)ei

~k.~xd~k

+ζ

(∫
R3

ˆ̃
θR(~k, t)ei

~k.~xd~k −
∫
R3

ˆ̃
θS(~k, t)ei

~k.~xd~k

)


(85)

that is reformulated as follows, 1061

∫
R3

ρC∂t
ˆ̃
θS(~k, t)ei

~k.~xd~k =

∫
R3


6λ

δ2

(∫
S2

1

4π
d~ueiδ

~k.~u − 1

)
ˆ̃
θS(~k, t)

+ζ
(

ˆ̃
θR − ˆ̃

θS

)
 ei

~k.~xd~k (86)

Using the fact that {~x 7→ ei
~k.~x}~k∈R3 is a Hilbert basis, a relation for each component of 1062

the associated wave vector ~k is obtained: 1063

∂t
ˆ̃
θS =

6D

δ2

(∫
S2

1

4π
d~u eiδ

~k.~u − 1

)
ˆ̃
θS +

ζ

ρC

(
ˆ̃
θR − ˆ̃

θS

)
∂t

ˆ̃
θS =

6D

δ2

(∫
S2
+

1

2π
d~u

eiδ
~k.~u + e−iδ

~k.~u

2
− 1

)
ˆ̃
θS +

ζ

ρC

(
ˆ̃
θR − ˆ̃

θS

)
∂t

ˆ̃
θS =

6D

δ2

(∫ 2π

0

1

2π
dφ

∫ π/2

0

sin(θ)dθ cos(δ||~k|| cos(θ))− 1

)
ˆ̃
θS +

ζ

ρC

(
ˆ̃
θR − ˆ̃

θS

)
∂t

ˆ̃
θS =

6D

δ2

(
sin(δ||~k||)
δ||~k||

− 1

)
ˆ̃
θS +

ζ

ρC

(
ˆ̃
θR − ˆ̃

θS

)
(87)

where D = λ/ρC is the thermal diffusivity. Similarly, the Fourier transform for θ̃R is 1064

straightforward: 1065

ˆ̃
θR =

kaarctan
(
||~k||
ke

)
||~k|| − ksarctan

(
||~k||
ke

) ˆ̃
θS (88)

Combining Eqs. (87) and (88): 1066

∂t
ˆ̃
θS =

6D

δ2

(
sin(δ||~k||)
δ||~k||

− 1

)
ˆ̃
θS +

ζ

ρC

 kaarctan
(
||~k||
ke

)
||~k|| − ksarctan

(
||~k||
ke

) − 1

 ˆ̃
θS (89)

from which it is deduced that: 1067

ˆ̃
θS(~k, t) = θ̂I(~k, t)e

−(t−tI)/τ̃ (90)

where the characteristic time τ̃ associated to ~k verifies: 1068

τ̃ =

−6D

δ2

(
sin(δ||~k||)
δ||~k||

− 1

)
− ζ

ρC

 kaarctan
(
||~k||
ke

)
||~k||+ ksarctan

(
||~k||
ke

) − 1

−1

(91)
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Altogether, the analytical solution for θ̃S is: 1069

θ̃S(~x, t) =

∫
R3

θ̂I(~k, t)e
(t−tI)/τ̃ei

~k.~xd~k (92)

In order to perform a similar development over the θS(~x, t) model, the Fourier transform 1070

of the finite differences operator has to be replaced by the Fourier transform of the 1071

Laplacian operator: 1072

θS(~x, t) =

∫
R3

θ̂I(~k, t)e
−(t−tI)/τei

~k.~xd~k (93)

where the characteristic time τ associated to ~k verifies: 1073

τ =

D||~k||2 − ζ

ρC

 kaarctan
(
||~k||
ke

)
||~k||+ ksarctan

(
||~k||
ke

) − 1

−1

(94)

The consistency of the approximate model is now straightforward: 1074

τ = lim
δ 7→0

τ̃

and the approximate model converges as δ2: 1075

1

τ
− 1

τ̃
=

6D||~k||4
5!

δ2 + o(δ4) (95)

The θ̃S model approximation only finds its origin in the Laplacian associated to 1076

the diffusive process. The radiative part is evaluated exactly, which means that in 1077

parametric regions where radiation dominates over conduction, the approximation of 1078

the temperature field is nearly independent of the walk parameter δ. 1079

For illustration purposes, and without seeking completeness, Fig. 12 shows how θ̃S and 1080

θS temperature fields behave for a given set of parameters that correspond to radiative 1081

processes without scattering (ks = 0) and equivalent weights for the conductive and 1082

radiative processes. It is worth mentioning that, without surprise, the MC computation 1083

behaves exactly as the approximate model whatever the value of the walk parameter δ 1084

(MC reconstructs Eq. (92)). Furthermore, it should be noted that for a walking step 1085

equal to 1/20 of the characteristic length, the approximate model and the exact model 1086

agree within an outstanding level of accuracy. 1087
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(d) δ = L/20

Fig 12. Each θS and θ̃S curve are the exact solutions of respectively (83) and (84).
Points that are denoted MC and associated errorbars are the solutions of a numerical
resolution by MC over the approximate model. The initial temperature field is:

θI(~x) = θref +A cos
(
~k.~x

)
. Results have been obtained for a characteristic time τ and

for position x ∈ [0, L], y = z = 0 with ~k = (2π/L, 2π/L, 2π/L), for each figure. The
only differentiating parameter for the four figures is the value of δ that is taken
respectively in the {L/2, L/5, L/10 and L/20} set. The scattering radiative coefficient
is null (ks = 0) and the reference temperature θref that is used in coefficient ζ is chosen
so that a equivalent weight is given to conduction and radiation, through the constraint

D||~k||2 = ζka
ρC||~k||

arctan
(
||~k||
ke

)
.
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Nomenclature 1088

( ~WW , TW) Paired random variable with distribution p( ~WW ,TW) = gW/pW 1089

( ~W∂W , T∂W) Paired random variable with distribution p( ~W∂W ,T∂W) = g∂W/p∂W 1090

( ~XFi

R , TFi) Instantiation of ( ~WW , TW) in the fluid model 1091

( ~XS
R, T

S) Instantiation of ( ~WW , TW) in the solid model 1092

(~Y SD , T
S) Instantiation of ( ~W∂W , T∂W) in the solid model for the Dirichlet boundary 1093

(~Y SF , T
S) Instantiation of ( ~W∂W , T∂W) in the solid model for the Robin boundary 1094

(~Y RR , ~UR) Instantiation of ~W∂W in the radiative transfer model 1095

(~Y Fi

S , TFi) Instantiation of ( ~W∂W , T∂W) in the fluid model 1096

α Parameter in the system of coupled functional integrals (= ζ/(ρC)) 1097

αFi Inverse characteristic time in a fluid cavity model 1098

h̄F Average convective exchange coefficient over the fluid / solid boundary 1099

h̄Fi Average convective exchange coefficient over the fluid / solid boundary of the 1100

ith cavity 1101

Ω̄J The adherence of domain ΩJ 1102

β Parameter in the system of coupled functional integrals (= kac) 1103

~∇ Nabla, differential operator 1104

~θ Vector of fluid, solid and radiative temperatures in the Fredholm equation 1105

~f Prescribed terms in the Fredholm equation 1106

~j Conductive energy flux density vector 1107

~n Incoming normal vector to the solid boundary ∂ΩS 1108

~U Random variable that follows a uniform law on the sphere 1109

~u Direction vector 1110

~WI Random variable with distribution p ~WI
= gI/pI 1111

~XN Position random variable after N jumps of size δ 1112

~XR
A Instantiation of ~WW in the radiative transfer model 1113

~x Position vector 1114

~I Linear integral vector operator acting on the temperature vector in the Fredholm 1115

equation 1116

L Algebraic linear operator 1117

W Generic integration domain of any dimension 1118

∩ Intersection of ensembles 1119
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∪ Union of ensembles 1120

∆ Laplacian, differential operator 1121

δ Step of the δ-sphere random walk 1122

δ(·) Dirac distribution 1123

δb Step of the finite difference discretization of the normal derivative at the 1124

solid/fluid boundary in the δ-sphere random walk 1125

δ∂Ω Distance to the closest boundary in the ~u or −~u directions in the δ-sphere 1126

random walk 1127

δref Maximum step of the δ-sphere random walk 1128

ε Arbitrary thickness of the boundary in the δ-sphere approximation 1129

εX , εR Time random variables 1130

Γ Random variable “radiative path” 1131

θ̂Fi Realization of ΘFi 1132

θ̂R Realization of ΘR 1133

θ̂S Realization of ΘS 1134

f̂ Realization of F 1135

λ Thermal conductivity of the material 1136

E Expectation of a random variable 1137

R Real vector space of dimension 1 1138

Rn Real vector space of dimension n 1139

S2 2-sphere, the ensemble of points that lie on the surface of a three-dimensional 1140

ball 1141

Sn−1 (n-1)-sphere, the ensemble of points that lie on the surface of a n-dimensional 1142

ball 1143

S2
+ The ensemble of directions towards the interior of the sphere 1144

B(p) Bernoulli random variable with parameter p 1145

µ Rate at which ~X hits the surface of the fluid domain 1146

ν Frequency 1147

ΩF Fluid domain (the union of the m fluid cavities and the surrounding fluid cavity) 1148

ΩS Solid domain 1149

ΩF∞ Surrounding fluid cavity 1150

ΩFi ith fluid cavity 1151

◦
ΩJ The interior of domain ΩJ 1152
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∂n Partial derivative with respect to n 1153

∂ΩD Part of ∂ΩS with Dirichlet-type boundary conditions 1154

∂ΩF Boundary of the union of fluid cavities 1155

∂ΩR Fictitious spherical boundary enclosing the whole domain 1156

∂ΩS Boundary of the (disconnected) solid medium 1157

∂ΩFi Boundary of the ith fluid cavity 1158

∂ΩKJ The complementary of ∂ΩJ to ∂ΩK 1159

∂θ Partial derivative with respect to temperature 1160

∂t Partial derivative with respect to time 1161

∂W Boundary of the generic integration domain 1162

ψR Radiative power density, difference between absorbed and emitted power densities 1163

ρ Mass density of the material 1164

ρi Mass density of the fluid in the ith cavity 1165

τX , τR Random variables, the time at which the associated process reaches the parabolic 1166

boundary 1167

θ Temperature 1168

θ1 Observable 1169

θ2 Function of a random variable X 1170

θD Temperature on ∂ΩD 1171

θF Temperature in the fluid 1172

θI Initial temperature at time tI 1173

θR Radiative temperature (the angular and spectral integral of the monochromatice 1174

radiance temperature) 1175

θS Temperature in the solid 1176

θF/S Temperature in the fluid or solid depending on location 1177

θF∞ Temperature in the surrounding fluid cavity 1178

θFi Temperature in ith fluid cavity 1179

ΘR,~U Random variable whose expectation is θR 1180

ΘR,~u Random variable whose expectation is θR,~u 1181

θR,~u Radiance temperature (or brightness temperature) associated with the monochro- 1182

matic specific intensity of frequency ν in direction ~u 1183

θνR,~u Monochromatic radiance temperature (or brightness temperature) associated 1184

with the monochromatic specific intensity of frequency ν in direction ~u 1185

θref Reference temperature for linearized radiative transfer 1186
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ΘS Random variable whose expectation is θS 1187

Ĩν Monochromatic specific intensity perturbation with respect to equilibrium 1188

θ̃R, θR,∂ΩR,~u Radiance temperature on ∂ΩR 1189

Θ̃Fi , ΘFi Random variable whose expectation is θFi 1190

Θ̃int Random variable whose expectation is θ̃S 1191

θ̃S,~u The temperature of the solid in the δ-sphere approximation, at (~x+ δ~u, t) 1192

θ̃S The temperature of the solid in the δ-sphere approximation, at (~x, t) 1193

~w Point in W 1194

~X , ~R, ~U Stochastic processes defined on either a solid or fluid domain, on the whole 1195

domain (union of solid and fluid cavities) and on the unit sphere respectively 1196

~X ~x,t
p

~X at time p conditioned to reach ~x at time t 1197

ζ Linearized radiative transfer coefficient in the solid 1198

ζi Linearized radiative transfer coefficient in the ith fluid cavity 1199

A Random variable whose expectation is θ2 1200

a Realization of A 1201

a(~w, t), c(~w, t) Functions that are part of the generic model definition 1202

b Realization of B 1203

B, B̃ Random variables whose expectation is θ1 1204

C Heat capacity of the material 1205

Ci Heat capacity of the fluid in the ith cavity 1206

D Thermal diffusivity of the material in the δ-sphere approximation 1207

F Random variable whose expectation is f 1208

f Generic quantity of interest (real-valued function) 1209

fW , f∂W , fI Generic source terms (real-valued functions) 1210

g The Green function in the generic model 1211

gR The Green function for the radiative transfer model 1212

gS The Green function in the solid model 1213

gW , g∂W , gI Propagators of the generic source terms 1214

gFi,I , gFi,S , gFi,R Instantiation of the propagators of the source terms in the fluid model 1215

(initial conditions, solid boundary, radiation in the volume) 1216

gR,∂ΩR , gR,A Instantiation of the propagators of the source terms in the radiative 1217

transfer model (boundary conditions, absorption/emission in the volume) 1218
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gS,I , gS,∂ΩD , gS,∂ΩDF
, gS,R Instantiation of the propagators of the source terms in the 1219

solid model (initial conditions, Dirichlet and Robin boundary conditions, radiation 1220

in the volume) 1221

hF Convective exchange coefficient at the fluid / solid boundary 1222

HJ(k) Test function, 1 if k ∈ J , 0 otherwise 1223

Iν Monochromatic specific intensity 1224

Ieqν Monochromatic specific equilibrium intensity 1225

kνa Absorption coefficient at frequency ν 1226

kνe Extinction coefficient at frequency ν 1227

kνs Scattering coefficient at frequency ν 1228

L, L∂W Generic homogeneous and linear integrodifferential operators 1229

lp Local boundary time process 1230

m Number of fluid cavities 1231

n Dimension of the geometric space in the δ-sphere approximation 1232

pRA For radiative model : probability of ending at a solid ou fluid temperature 1233

pI , p∂W , pW Probabilities associated with the different sources 1234

pFiI , pFiR For fluid model : probability of ending at initial condition, probability of 1235

ending at radiative temperature 1236

pSI , pS2 , pS3 For solid model : probability of ending at initial condition, probability of 1237

ending at a radiative temperature, probablity of endind at a fluid temperature 1238

pN Frequency probability distribution function 1239

pνS Phase function at frequency ν 1240

pX(x) Probability density function associated with the random variable X 1241

qF Either θI or θD 1242

qS Either θI , θF or θD 1243

rF Either θI , θS or θR 1244

rR Either θ̃R, θS or θF 1245

rS Either θI , θD, θF or θR 1246

T Random variable “time” 1247

t Time 1248

tI Time of the initial condition 1249

W Three-dimensional Brownian motion 1250

X Random variable 1251

x Realization of X 1252
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DΓ Radiative path space 1253

H(x) Heaviside function, 1 if x > 0, 0 otherwise 1254

SF Area of the boundary of the union of fluid cavities ∂ΩF 1255

VFi Volume of the ith fluid cavity 1256
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3 Paul Sabatier; 2020. Available from: https://hal.archives-ouvertes.fr/
tel-03266863.

94. Gattepaille V, Dauchet J, Gros F, Roudet M, Supplis C, Cornet JF. Integral
formulations of multi-scale models for the optimization of solar photo-catalytic
processes. In: International Congress/3rd days of GdR Solar Fuels: Artificial
photosynthesis and Solar Fuels; 2018.

95. Tregan J, Blanco S, Caliot C, Dauchet J, El Hafi M, Eymet V, et al. Transient
Conducto-Radiative Heat Transfer in a Single Monte Carlo Algorithm: Handling
the Nonlinearity. In: 9th International Symposium on Radiative Transfer, RAD-
19; 2019.

October 18, 2022 63/64

http://www.theses.fr/2017PERP0048/document
http://www.theses.fr/2020EMAC0009/document
http://www.theses.fr/2020EMAC0009/document
http://www.theses.fr/2021UCFAC014/document
http://www.theses.fr/2021PERP0017/document
http://www.theses.fr/2021PERP0017/document
http://www.theses.fr/2020EMAC0018/document
https://hal.archives-ouvertes.fr/tel-03266863
https://hal.archives-ouvertes.fr/tel-03266863


96. Sabelfeld KK. Monte Carlo methods in boundary value problems. vol. 274.
Springer; 1991.

97. Hwang CO, Mascagni M. Analysis and comparison of Green’s function first-
passage algorithms with “Walk on Spheres” algorithms. Mathematics and
computers in simulation. 2003;63(6):605–613.

98. Shellshear E, Ytterlid R. Fast distance queries for triangles, lines, and points
using SSE instructions. Journal of Computer Graphics Techniques Vol. 2014;3(4).

99. Wald I, Woop S, Benthin C, Johnson GS, Ernst M. Embree: A Kernel Framework
for Efficient CPU Ray Tracing. ACM Trans Graph. 2014;33(4):143:1–143:8.
doi:10.1145/2601097.2601199.

100. Fyrillas MM, Nomura KK. Diffusion and Brownian motion in Lagrangian
coordinates. The Journal of chemical physics. 2007;126(16):164510.

101. Dhuriya R, Dalia V, Sunthar P. Diffusiophoretic enhancement of mass transfer
by nanofluids. Chemical Engineering Science. 2018;176:632–640.

October 18, 2022 64/64


	Introduction
	The proposition
	The theoretical framework
	The particular model supporting the presentation of the theoretical development

	The thermal model
	Radiative Heat Transfer
	Heat equation for solid sub-domain
	Heat equation for fluid sub-domain
	Summary: the coupled model 

	Linearity and propagators
	The formal proposition
	Expression for . 
	The Green function g(,t|',t')
	Probabilistic reformulation
	Monte-Carlo algorithm

	Implementation of the uncoupled thermal model
	Fluid sub-domain
	Solid sub-domain
	Radiative transfer in fluid and solid sub-domain
	Summary

	The coupling
	Double randomization: a key point.
	A recursive algorithmic approach: towards a coupled path space

	Feynman-Kac approach and the definition of continuous sub-paths
	The practice of sampling Brownian Motion with confinement and radiation coupling
	The approximation of the coupled conducto-radiative system in an infinite medium
	Walk on -sphere without radiative coupling
	Walk on -sphere with radiative coupling
	The approximation of conductive path near the boundary
	Interface conditions and flux continuity
	The path space with random walk on -sphere

	Conclusions and Outlooks
	Radiation linearized in temperature
	Definitions for Fi(t)
	Definitions for S(,t)
	Definitions for R,(,t)
	Random Walk on Sphere and equivalent
	Consistency of the approximate -sphere random walk on infinite domains

