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Abstract 19 

Multibeam bathymetric and seismostratigraphic data collected in the Clyde fjord-20 

cross-shelf trough system (eastern Baffin Island, Canadian Arctic Archipelago) display 21 

glacial landforms and depositional assemblages that enable the identification of the 22 

maximal extent of the Laurentide Ice Sheet (LIS) margin and delineating the patterns and 23 

controls on its subsequent retreat. Additionally, 10 new sediment cores – from which 24 

seven radiocarbon ages were acquired – allow the recognition of depositional processes. 25 

Results show that, during the Last Glacial Maximum, the LIS margin extended almost to 26 

the edge of the continental shelf. Early deglaciation of the trough was marked by an initial 27 

ice-shelf collapse and rapid retreat of the ice stream, as evidenced by the absence of ice 28 

marginal landforms and the presence of extensive iceberg ploughmarks across a large 29 

portion of the outer trough. It was followed by a slow retreat and successive stabilizations 30 

of the ice margin that led to the deposition of recessional moraines and GZWs. 31 

Deglaciation of the fjord in the early Holocene occurred in an episodic style, whereby 32 

rapid retreat was punctuated by relatively long standstills that enabled major moraine 33 

formation. Long-term stabilizations of the ice margin in the Clyde fjord-cross-shelf 34 

trough system are interpreted to coincide with major climatic cooling events, such as the 35 

Younger Dryas and early Holocene cold reversals. Ages derived from sediment cores and 36 

previous work suggest that higher retreat rates correspond with periods of significant 37 

global sea level rise, suggesting that oceanic forcing exerted a minor control on the 38 

deglaciation. GZWs and large moraine ridges are observed at pinning points in the trough, 39 

indicating that the location of ice margin stabilizations was influenced by topography. 40 

The reconstruction of the deglaciation of the Clyde fjord-cross-shelf trough system allows 41 

us to refine deglacial models for similar systems of northeastern Baffin Island, in 42 

particular beyond the coast and along the steeper section of the fjord where chronological 43 

gaps remained.   44 

 45 

Keywords: Laurentide Ice Sheet; Baffin Island; Deglaciation; Holocene; Submarine 46 

landforms; Marine sediment cores; Abrupt climatic events 47 
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1. Introduction 48 

Reconstructing the history of past ice sheets allows to document their inter-49 

relationship with the climate system, especially by providing boundary conditions to test 50 

models that aim to simulate climate and ice sheet evolution (Joughin et al., 2012; Stocker 51 

et al., 2013; Rasmussen et al., 2014; Tinto et al., 2019; Briner et al., 2020; Lowry et al., 52 

2020). Past marine-based ice sheet margins such as those of the Laurentide Ice Sheet 53 

(LIS), which was in contact with the western Atlantic Ocean during the Last Glacial 54 

Maximum (LGM; ~24 ka BP), are believed to have operated in a comparable way to the 55 

present Antarctic Ice Sheet, with a network of ice streams channeled in bathymetric 56 

troughs and mass loss dominated by calving (Ottesen et al., 2005; De Angelis and 57 

Kleman, 2007; Margold et al., 2018). Reconstructing palaeo-ice sheet dynamics and 58 

deglaciation patterns is therefore fundamental for understanding the long-term behaviour 59 

of modern ice sheets (i.e., Antarctica and Greenland) and their interconnection with global 60 

climate (i.e., Danielson and Bart, 2019; Smith et al., 2019; Briner et al., 2020; Young et 61 

al., 2020, 2021).  62 

Controls and ice-retreat patterns during the deglaciation that followed the LGM 63 

still remain poorly documented in the eastern Canadian Arctic Archipelago (CAA) 64 

compared to other deglaciated regions of the Northern Hemisphere, such as Norway (e.g., 65 

Lyså and Vorren, 1997; Aarseth et al., 2007; Laberg et al., 2009; Bjarnadóttir et al., 2012), 66 

Svalbard (e.g., Winsborrow et al., 2010; Streuff et al., 2018; Flink and Noormets, 2018; 67 

Howe et al., 2019; Allaart et al., 2020) and the British Isles (e.g., Arosio et al., 2018; 68 

Callard et al., 2020). Off Baffin Island, marine geophysical data suggest that ice retreat 69 

was punctuated by successive stabilizations of the late glacial ice margin on the 70 

continental shelf (Brouard and Lajeunesse, 2017), while onshore data suggest a rapid ice 71 

decay into the fjords during the early Holocene (Miller et al., 2005; Briner et al., 2005, 72 
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2007, 2009a; Young et al., 2015; Margreth et al., 2017). However, recent offshore 73 

investigations show that multiple ice-margin stabilizations occurred within the fjords of 74 

northeastern Baffin Island during the last deglaciation (Brouard and Lajeunesse, 2019a). 75 

Stabilizations both on the shelf and in the fjords of northeastern Baffin Island were found 76 

to be strongly influenced by bed geometry (Brouard and Lajeunesse, 2017, 2019a), 77 

similarly to observations made in other deglaciated fjords and continental shelves  (i.e., 78 

Aarseth et al., 1997; Hodgson et al., 2014; Batchelor et al., 2019a). These contrasting 79 

patterns of ice retreat, which probably arise from the scarcity of valuable data from the 80 

submarine domain, complicate the establishment of a reliable model of deglaciation and 81 

outline the need for improved understanding of LIS extent and retreat patterns in the fjord-82 

cross-shelf trough systems of Baffin Island by bridging submarine and continental data.  83 

Here we map and analyse submarine landforms and sediment assemblages in the 84 

180 km-long Clyde fjord-cross-shelf trough system, with the aim of refining our 85 

understanding of the retreat patterns of the marine-based margin of the northeastern LIS. 86 

By using a combination of multibeam bathymetric data, acoustic and seismic profiles as 87 

well as sediment cores, the key objectives are to 1) define a chronology for the 88 

deglaciation of the LIS in the region; 2) reconstruct changes in the morpho-sedimentary 89 

system and dynamics on the shelf and in the fjord; and 3) identify the factors that 90 

controlled ice margin retreat rates and stabilization during deglaciation.  91 
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 92 

Figure 1  (A) Baffin Bay and the proposed LGM limit on northeastern Baffin Island, modified from 93 

Brouard and Lajeunesse, 2017. LS: Lancaster Sound; BT: Buchan Trough; ST: Scott Trough; SFT: Sam 94 

Ford Trough; CT: Clyde Trough. The dashed line represents the LIS extent at the LGM from Dalton et al., 95 

2020. (B) Location of the study area. (C) Map showing the multibeam bathymetric data used in this study 96 

draped on the International Bathymetric Chart of the Arctic Ocean data gridded at a 500 m cell-size 97 

resolution (IBCAO; Jakobsson et al., 2014). The hillshade is from the Canadian Digital Elevation model 98 

(CDEM). 99 



5 

 

2. Regional setting 100 

2.1. Study area 101 

The studied area comprises the fjord of Clyde Inlet and its offshore extension 102 

across the continental shelf, namely Clyde Trough (Fig. 1). This fjord-cross-shelf trough 103 

system stretches from the interior plateau of Baffin Island to the shelf break facing Baffin 104 

Bay.  105 

The continental shelf off Clyde Inlet is generally shallow (< 200 m) with a deeper 106 

trough carved by repeated occupation by ice streams during Quaternary glaciations 107 

(Løken and Hodgson, 1971; Praeg et al., 2007). Precambrian crystalline rocks extend 108 

halfway across the continental shelf, where they are overlain by upper Cretaceous-109 

Tertiary strata of the Baffin Bay Basin (Jackson et al., 1984; Fader et al., 1989; Praeg et 110 

al., 2007). Clyde Trough is 20 to 30 km-wide, extends from SW to NE, on >60 km, and 111 

bends slightly toward the east near the shelf break. Existing coarse resolution bathymetry 112 

data (GEBCO) show that the trough is flat-bottomed and has a reverse-gradient slope 113 

(Fig. 1C), characteristic of troughs in formerly glaciated areas (Ottesen et al., 2007; 114 

Slabon et al., 2016; Arndt et al., 2017; Bart et al., 2017; Brouard and Lajeunesse, 2017), 115 

with water depths decreasing seaward from ~375 m at the mouth of the fjord to ~150 m 116 

at the shelf break.  117 

Clyde Inlet is a fjord that has been glacially incised into the Precambrian 118 

crystalline rocks of the eastern coastal mountains of Baffin Island during Quaternary 119 

glaciations (Jackson et al., 1984; Kessler et al., 2008). With its U-shaped profile and a 120 

succession of deep basins separated by intervening sills, it has a typical mid- and high-121 

latitude fjord morphology (Syvitski and Shaw, 1995). Clyde Inlet is 120 km-long, 122 

between 3 and 20 km-wide and consist of basins between 200 and 500 m-deep (Fig. 1C). 123 

Many hanging valleys of various widths and depths drain into Clyde Inlet, providing 124 
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localized sediment input through proglacial rivers. Inugsuin Fjord, a 100 km-long fjord, 125 

and Patricia Bay also merge into Clyde Inlet near its mouth. Clyde Inlet is directly 126 

connected to the cross-shelf trough, forming a 180 km-long submarine glacial valley 127 

system connecting Baffin Island to Baffin Bay and separated by a shallow bedrock sill at 128 

the fjord mouth.  129 

Most of the valleys, lowlands, fjords and trough of Clyde Inlet and nearby areas 130 

are covered by a thick sequence of Quaternary deposits (Jackson et al., 1984; Praeg et al., 131 

2007; Brouard and Lajeunesse, 2017, 2019a, 2019b).  132 

2.2. Late Quaternary glacial history 133 

Late Wisconsinan (MIS 2) ice sheets started building up at ~28 ka BP (Stokes et 134 

al., 2012; Klassen et al., 2010; Batchelor et al., 2019b) and reached their maximal extent 135 

by 24 ka BP in many sectors of North America (Dyke, 2002; Andrews and Dyke, 2007; 136 

Hughes et al., 2013). Although many models have been proposed for establishing the 137 

maximal extent of the LIS at the LGM, recent studies indicate that the ice margin 138 

extended at or near the edge of the northeastern Baffin Island shelf (Briner et al., 2006; 139 

Li et al., 2011; Brouard and Lajeunesse, 2017; Jenner et al., 2018; Dalton et al., 2020; 140 

Lévesque et al., 2020; Couette et al., 2022). In between the fjords, cosmogenic exposure 141 

ages on glacial erratics and bedrock suggest an extensive LIS cover during the LGM 142 

(Briner et al., 2005; Davis et al., 2006). Marine geophysical data also show that an ice 143 

shelf covered northern Baffin Bay during the LGM, possibly buttressing peripheral ice 144 

streams and impacting their flow to the ocean (Couette et al., 2022).  145 

Following the LGM, the break up of the  Baffin Bay ice shelf between 16 and 14.6 146 

ka BP provoked a major reorganization of the ice-sheet drainage system by removing the 147 

buttressing effect on ice streams (Couette et al., 2022), and therefore led to ice-flow 148 

acceleration in systems from northeastern Baffin Island (Jenner et al., 2018). This event 149 
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was found to be more or less coeval with the deposition of a detrital carbonate sediment 150 

layer in Baffin Bay (BBDC-1), corresponding to massive ice discharge from ice streams 151 

of the CAA and northwest Greenland and characterized by Ca-rich sediments (Hiscott et 152 

al., 1989; Andrews et al., 1998; Simon et al., 2014; Jackson et al., 2017; Jenner et al., 153 

2018). This iceberg discharge event was followed by a period of important ice retreat on 154 

the shelf off eastern Baffin Island coinciding with the Bølling-Allerød warm period (Dyke 155 

et al., 2002; Briner et al., 2005; Margreth et al., 2017; Brouard and Lajeunesse, 2017; 156 

Jenner et al., 2018). The subsequent retreat towards Baffin Island mainland was 157 

punctuated by glacier readvances or stabilizations during the cold phase of the Younger 158 

Dryas (12.9-11.7 ka BP) which led to the building of major moraine systems (Briner et 159 

al., 2007; Margreth et al., 2017; Young et al., 2020). Following the Younger Dryas, and 160 

under the warmer climate of the early Holocene period, the ice margin retreated rapidly 161 

to reach the inner fjord (Andrews and Ives, 1978; Briner et al., 2007, 2009b). This rapid 162 

ice-margin retreat was temporarily interrupted by ice-margin stabilizations during short 163 

cold events at 10.3, 9.3 and 8.2 ka (Briner et al., 2007, 2009b; Young et al., 2012, 2020; 164 

Crump et al., 2020). The latter event is recorded at the fjord heads on eastern Baffin Island 165 

and referred to as the Cockburn stage moraine (Andrews and Ives, 1978; Briner et al., 166 

2007, 2009b; Brouard and Lajeunesse, 2019a; Young et al., 2021). Subsequently, the LIS 167 

margin retreated steadily from the fjord head and separated to form what are today’s 168 

Barnes and Penny ice caps (Dyke, 2004; Miller et al., 2005; Briner et al., 2009b).  169 

3. Material and methods 170 

This study is based on multibeam bathymetric data, shallow acoustic data, seismic 171 

data, and sediment core data. The main bathymetric dataset was acquired during 172 

expedition MSM66 of the German research vessel RV Maria S. Merian in August 2017 173 

(Dorschel et al., 2017). The MSM66 data are complemented by bathymetric data collected 174 
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during ArcticNet cruises onboard the CCGS Amundsen (2003-2017). Shallow acoustic 175 

data and sediment cores were also collected during MSM66 (Dorschel et al., 2017). 176 

Seismic data were acquired by the Geological Survey of Canada during airgun surveys in 177 

1978 and 1980.  178 

3.1. Multibeam bathymetric data 179 

MSM66 bathymetric data were collected with a Kongsberg Simrad EM122 (12 180 

kHz) multibeam echosounder (MBES), while the CCGS Amundsen data were collected 181 

with a Kongsberg Simrad EM302 (30 kHz) MBES. These datasets were processed for 182 

anomalous data points and artefacts removal using Caris Hips and Sips software. The 183 

datasets were gridded with a 10 m cell-size resolution and then imported into ESRI 184 

ArcGIS 10.8 software for geomorphological mapping and interpretation.  185 

3.2. Shallow acoustic and seismic data 186 

Shallow acoustic data were recorded with an Atlas Parasound DS P-70 system (5-187 

33 kHz) during MSM66. The raw data were recorded into PS3 format and then converted 188 

into SEGY using ps32segy software of Dr. Hanno Keil (University of Bremen). The 189 

acoustic profiles were then imported into the SMT Kingdom Suite software for processing 190 

and interpretation.  191 

Seismic lines 78029_AG_275_0130 and 80028_AG_RAYT_257_0200 were 192 

acquired on expeditions 78029 (1978) and 80028 (1980) by Brian MacLean of the 193 

Geological Survey of Canada-Atlantic (Cruise reports available via https://ed.marine-194 

geo.canada.ca/cruise_report_e.php). Extraction and interpretation was performed using 195 

the LizardTech GeoViewer software. Both acoustic and seismic data were transferred into 196 

Adobe Illustrator for figure production. Thicknesses and water depth were calculated 197 

using a velocity of 1500 m/s. 198 
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3.3. Core data 199 

The sediment cores collected during expedition MSM66 were between 137 and 200 

965 cm long (Table 1). On board, all cores were split, visually described with a particular 201 

focus on noting the lithology, texture, contacts, sedimentary structures and Munsell 202 

colour, as well as digitally photographed.  203 

Table 1  Information on cores collected in the Clyde fjord-cross-shelf trough system. 204 

Core name Latitude Longitude Water depth (m) Core length (cm) 

GeoB22344-3 70°03.90’N 70°02.93’W 367 483 

GeoB22346-3 69°54.18’N 70°13.54’W 203 783 

GeoB22348-3 69°58.47’N 69°57.47’W 362 896 

GeoB22350-3 70°08.52’N 69°44.36’W 435 137 

GeoB22351-3 70°10.16’N 69°38.30’W 364 523 

GeoB22353-3 70°13.35’N 69°00.16’W 489 862 

GeoB22356-3 70°27.68’N 67°58.36’W 338 965 

GeoB22357-3 70°36.28’N 67°53.63’W 315 902 

GeoB22358-3 70°41.69’N 67°41.83’W 261 500 

GeoB22359-3 70°46.06’N 67°27.96’W 196 166 

 205 

X-ray fluorescence (XRF) scanning were used to characterize elemental 206 

properties of the sediments by using a XRF Core Scanner II (AVAATECH Serial No. 2) 207 

at MARUM, University of Bremen. Data were collected every 2 cm down-core over a 15 208 

mm2 area with down-core slit size of 10 mm using generator settings of 10 kV, a current 209 

of 0.2 mA and a sampling time of 10 seconds directly at the split core surface of the 210 

archive half. The split core surface was covered with a 4 µm thin SPEXCerti Prep 211 

Ultralene1 foil to avoid contamination of the XRF measurement unit and desiccation of 212 

the sediment. Raw spectra data were processed by the analysis of X-ray spectra in the 213 

Iterative Least square software (WIN AXIL) package from Canberra Eurisys.  214 

Accelerator Mass Spectrometry (AMS) radiocarbon dating was carried out on 215 

benthic foraminifera assemblages and shell fragments. Samples were sent to the 216 

MICADAS-laboratory (Alfred Wegener Institute, Bremerhaven), where CO2 from small 217 

amount of foraminiferal carbonate (~0.5mg) were analysed. Additionally, three dates 218 
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based on shell fragments were obtained. The AMS 14C ages were converted to calendar 219 

years before present (cal. BP) using the online software Calib 8.2 with the Marine20 220 

radiocarbon age calibration curve (Heaton et al., 2020). The Marine20 calibration curve 221 

uses a global marine reservoir age that is not suitable for the polar regions, an issue that 222 

requires the application of additional reservoir correction (ΔR) values to high-latitudes 223 

samples (Heaton et al., 2020). Therefore, an additionnal local ΔR of 81 ± 18 was used to 224 

account for the regional offset of the world ocean 14C age (Pieńkowski et al., 2022). The 225 

ΔR value is kept constant for the entire period, although we acknowledge that 226 

oceanographic conditions such as circulation, ventilation and extensive sea-ice cover 227 

during glacial periods may result in the overestimation of the actual calendar ages (Heaton 228 

et al., 2022; Pieńkowski et al., 2022). However, as our ages are from the early Holocene, 229 

they were likely little affected by such changes in oceanographic conditions. We argue 230 

that using only an additional local reservoir correction therefore provides an appropriate 231 

estimate for these ages, with relatively minimal uncertainties. 232 

4. Results 233 

4.1. Seafloor geomorphology 234 

Complete multibeam bathymetric coverage of the Clyde fjord-cross-shelf trough 235 

system allowed identifying several submarine glacial landforms (Fig. 2 and 3) that are 236 

here described and interpreted for reconstructing the past configuration, stages and 237 

dynamics of the LIS margin.  238 
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 239 

Figure 2  (A) Multibeam bathymetry of Clyde Trough. Boxes show the location of Figs. 4 and 5. Dashed 240 

brown lines represent moraine ridges from Briner et al. (2007). Ages derived from the sediment cores 241 

represent minimum age for deglaciation at the core site. (B) The mapped distribution of submarine 242 

landforms in the trough. 243 

4.1.1. Subglacial landforms 244 

Several streamlined landforms oriented along the fjord and trough axis occur in 245 

the Clyde fjord-cross-shelf trough system and represent variations in ice-flow direction 246 

and velocity. They are here grouped under the generic term glacial lineations. 247 
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Glacial lineations - Sets of streamlined and curvilinear ridges oriented parallel to 248 

the trough axis are observed at depths between 100 m and 500 m; they are up to 5 km-249 

long (Fig. 4, 5A, 5C, 6A and 6D). These streamlined landforms are between 50 m to 500 250 

m-wide and can be as much as 60 m-high compared to the surrounding seafloor. These 251 

ridges are mostly aligned parallel to each others, but are in some cases divergent where 252 

the trough widens. Features with lower length to width ratios (between 1:5 and 1:20) tend 253 

to be asymmetrical, with a gentler seaward slope, and occur mostly beyond bedrock 254 

outcrops. Conversely, ridges with higher length to width ratios (up to 1:50) are more 255 

symmetrical, subtle and tend to have a smoother appearence. These ridges are in some 256 

cases superimposed on grounding line landforms.  257 

These streamlined landforms are interpreted as glacial lineations, such as mega-258 

scale glacial lineations (MSGLs), drumlins and crag-and-tails, which provide evidence 259 

for former ice-flow directions as they are parallel to another (Clark, 1993; Stokes and 260 

Clark, 2001; Spagnolo et al., 2014; Dowdeswell et al., 2016; Maclean et al., 2016; 261 

Batchelor et al., 2018; Ottesen et al., 2022). Glacial lineations are differentiated on the 262 

basis of their width to length ratio and their formation processes. MSGLs are generally 263 

highly elongated (up to 1:50 length to width ratio) and are produced by the deformation 264 

of soft till beneath a fast-flowing ice stream (e.g., Clark, 1993) or as a product of ice keels 265 

ploughing through sediments (e.g., Tulaczyk et al., 2001; Clark et al., 2003). In turn, crag-266 

and-tails and drumlins are less elongated (between 1:5 and 1:20 length to width ratio) and 267 

formed by the accumulation of sediments on the seaward side of bedrock obstacles or the 268 

streamlining of bedrock by ice (Stokes and Clark, 2001; Ottesen et al., 2007). The position 269 

of most crag-and-tails beyond bedrock in Clyde Inlet suggests that they were formed by 270 

the streamlining action of warm-based ice (Dowdeswell et al., 2016; Maclean et al., 271 

2016).  272 
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 273 

Figure 3  (A) Bathymetry of Clyde Inlet. Boxes show the location of Fig. 6A-D. Brown lines represent 274 

moraine ridges from Briner et al. (2007). Ages derived from the sediment cores represent minimum age for 275 

deglaciation at the core site. Blue dots indicate cosmogenic exposure (CE) and radiocarbon (14C) dating 276 

discussed in the text, compiled from previous studies along Clyde Inlet (in ka ± 1 SD uncertainties). (B) 277 

The mapped distribution of submarine landforms in the fjord. 278 

4.1.2. Ice marginal landforms 279 

Several sediment wedges and ridges are observed on the multibeam bathymetry 280 

imagery and record the extent and retreat pattern of the LIS during the LGM and the 281 

deglaciation. GZWs, morainal bank, and end moraines represent major grounding line 282 

landforms (refered to as GL in Figs. 2-3 and in the discussion) that record former, 283 

successive position of the ice margin along the Clyde fjord-cross-shelf trough system. 284 

Grounding-zone wedges (GZWs) - Asymmetric transverse wedges characterized 285 

by steeper ice-distal slope are identified in the outer and middle part of Clyde Trough 286 

(Fig. 4 and 7). These wedges are present at water depths ranging from 150 m to 350 m, 287 

have lengths between 3 and 10 km and rise from 20 to 50 m above the surrounding 288 

seafloor. On the seismic data, they correspond to wedge-like deposits reaching 15 to 20 289 

m in thickness and 5 km in length (Fig. 7) with low-reflectivity, transparent and 290 
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sometimes chaotic acoustic signature. Smooth and gently sloping fan-shaped surfaces 291 

(between 0.5 and 2°) are usually identified on the seafloor in front of those large 292 

transverse wedges.  293 

Due to their asymmetric geometry and steep ice-distal slopes, these asymmetric 294 

wedges are interpreted as grounding-zone wedges similar to ice-contact wedges reported 295 

on other deglaciated continental shelves (e.g., Ottesen et al., 2007, 2022; Slabon et al., 296 

2016; Brouard and Lajeunesse, 2017). Large GZWs are formed during relatively long-297 

term ice margin stabilizations (decadal- to centennial-scale) which enable subglacial 298 

sediment accumulation at the grounding line (Powell and Domack, 1995; Dowdeswell 299 

and Fugelli, 2012; Batchelor and Dowdeswell, 2015). The accumulation of sediment is 300 

interpreted to be vertically limited by the presence of a floating ice shelf seaward from 301 

the grounded ice, thus favoring horizontal progradation of sediments and forming low-302 

amplitude extensive wedges (Dowdeswell and Fugelli, 2012 ; Batchelor and Dowdeswell, 303 

2015). The fan-shaped surfaces are interpreted as ice-marginal debris flow lobes 304 

deposited by sediment delivery at the grounding line of a marine terminating glacier 305 

(Syvitski and Shaw, 1995; Ó Cofaigh and Dowdeswell, 2001; Bjarnadóttir et al., 2012; 306 

Batchelor and Dowdeswell, 2015; Dowdeswell et al., 2015; Ottesen et al., 2017). 307 
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 308 

Figure 4  Multibeam bathymetry of submarine landforms in the outer trough. CIS – Clyde Ice Stream and 309 

BIC – Baffin Island Current. For further interpretation and discussion, see Couette et al. (2022). 310 

Morainal banks – A large asymmetric wedge with a steeper ice-distal side and 311 

overprinted by transverse zigzag-shaped ridges and recessional moraines is located in the 312 

center of Clyde Trough at a depth of 325 m (Fig. 5A and 7B). The wedge is 75 m-high, 6 313 

km-long and 12 km-wide, while the overprinting zigzag-shaped ridges are 5-10 m-high, 314 

100 to 200 m-long and between 500 and 1000 m-wide (Fig. 5A). The seismic data show 315 

three distinct morpho-sedimentary units composing the underlying sediment body: (1) a 316 

bottom unit showing evidence of glaciotectonism including folds and thrust sheets; (2) an 317 

upper unit showing seaward dipping reflectors; and 3) ridges with a chaotic acoustic 318 

signature located on the stoss side of the system. Gently sloping fan-shaped surfaces are 319 

identified in front of this large asymmetric wedge. The associated deposits attenuate 320 

underlying landforms such as glacial lineations and recessional moraines (Fig. 5A). 321 



16 

 

Based on its morphology and the overprinted zigzag-shaped ridges, this landform 322 

is interpreted as a morainal bank. Morainal banks are generally associated with a quasi-323 

stagnant ice margin position during overall deglaciation, coherent with the presence of 324 

recessional moraines (Powell, 1981; Christofferson and Tulaczyk, 2003; Laberg et al., 325 

2009; Dowdeswell et al., 2015). Zigzag-shaped ridges are, in turn, associated with 326 

sediment deformation related to push and thrust of ice proximal deposits by glacier 327 

readvances (Powell, 1981; Christofferson and Tulaczyk, 2003; Laberg et al., 2009). They 328 

could also represent crevasse-squeeze ridges, produced subglacially by basal till being 329 

squeezed into crevasses at the glacier bed during an ice advance (Evan and Rea, 1999; 330 

Ottesen et al., 2022). The complex acoustic signature with folds and thrust sheets 331 

observed on the seismic profile (Fig. 7B) further support the interpretation of a readvance 332 

of the ice margin that lead to the formation of the morainal bank (Laberg et al., 2009). 333 

The fan-shaped surfaces observed in front of the morainal bank are interpreted as ice-334 

marginal debris flow lobes (Syvitski and Shaw, 1995; Ottesen et al., 2017). 335 

Major end moraines - Arcuate asymmetrical ridges with a steeper ice-proximal 336 

slope are observed at several locations along Clyde Inlet (Figs. 6B-C). These landforms 337 

range between 10 m and 150 m in height, and between 1 km and 6 km in width. They are 338 

500 m to 3 km-long and are observed at depths reaching 450 m. On the distal flank, fan-339 

shaped surfaces occasionally emanate from the ridges over distances of several 340 

kilometers. Ridges located in Patricia Bay have a more subtle and smoother appearance 341 

(Fig. 3). Partially buried transverse ridges with steep-scarps are also observed at a few 342 

locations in the fjord, where they bound step-like basins (Figs. 6B-C). Several linear 343 

ridges running parallel to the fjord axis and specifically located on the flanks of the fjord 344 

are also observed in Clyde Inlet (Fig. 6B). These ridges are 500 m to 3 km-long, 100 m 345 
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to 500 m-wide, up to 100 m-high and appear to be, in some cases, the lateral extension of 346 

the arcuate ridges (Figs. 5A and 6B).  347 

Due to their geometry and their position transverse to the fjord axis, the arcuate 348 

ridges are interpreted as major end moraines, whereas the linear and parallel-to-the-fjord 349 

morphologies are, in turn, interpreted as lateral moraines (Dowdeswell and Vásquez, 350 

2013; Dowdeswell et al., 2014; Hodgson et al., 2014). Major end moraines are formed by 351 

the deposition and pushing of sediment during long-term ice margin stabilizations of at 352 

least decades to centuries (Powell and Alley, 1997; Dowdeswell et al., 2014; Batchelor et 353 

al., 2018). In contrast to GZWs, moraine ridges usually develop at the margin of tidewater 354 

glacier that are vertically unrestricted accommodation space at the grounding line (Powell 355 

and Alley, 1997). Similarly to observations in front of GZWs and the morainal bank, the 356 

fan-shaped surfaces are inferred to be ice-marginal debris flow lobes (Syvitski and Shaw, 357 

1995; Ottesen et al., 2017). The moraine ridges in Patricia Bay probably represent 358 

deposition by a secondary ice flow across the bay and onto the Clyde forelands (Briner et 359 

al., 2005). The step-like basins observed in the fjord are interpreted to be the result of 360 

high sediment deposition from transverse deltas fed by nearby rivers and overfilling some 361 

of the basins confined by a succession of receding moraines (Hodgson et al., 2014; 362 

Brouard and Lajeunesse, 2019a). 363 

Recessionnal moraines - Small ridges transverse to the former ice flow are 364 

specifically identified on the multibeam bathymetric data of the trough (Fig. 5A). They 365 

are observed in the mid- to inner section of the trough in water depths ranging from 200 366 

m to 300 m; their size varies between 2 m and 12 m-high and 100 m to 500 m-wide. Some 367 

of them can be traced for lengths of >5 km, although the majority do not exceed 1 km. 368 

Most of the ridges are arcuate and symmetric. They occur in two distinct clusters of 369 

parallel to sub-parallel features spaced a few hundred meters apart.  370 
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These small parallel ridges are interpreted as recessional moraines, formed by the 371 

delivery and pushing of subglacial sediments by minor stillstands or readvances of the 372 

grounded glacier front in subaqueous conditions (Boulton, 1986; Lindén and Möller, 373 

2005; Dowdeswell et al., 2008; Ó Cofaigh et al., 2008; Arndt et al., 2017; Batchelor et 374 

al., 2018; Howe et al., 2019; Ottesen et al., 2022). The presence of recessional moraines 375 

in marine environments is usually associated with a relatively slow retreat of the ice 376 

margin in water typically shallower than 350 m (Lindén and Möller, 2005; Dowdeswell 377 

et al., 2008; Ó Cofaigh et al., 2008; Howe et al., 2019).  378 

 379 

Figure 5  (A) Multibeam bathymetry of submarine landforms in the middle trough. (B) Example of a 380 

glaciofluvial fan, with associated canyons and CSBs, in the middle trough. (C) Example of mega-scale 381 

glacial lineations (MSGLs) in the inner trough. 382 

Ice stream lateral moraines - Elongated ridges orientated parallel to the former 383 

ice flow are observed at the lateral boundaries of Clyde Trough (Fig. 4). They are up to 384 

25 m-high, 1 to 3 km-wide and occur at depths between 50 m to 175 m. These ridges have 385 

a steeper trough-proximal slope and are observed on both sides of the trough.  386 
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These extensive elongated ridges are interpreted as ice-stream lateral moraines 387 

based on their shape, dimensions and location at the margins of the trough (Ottesen et al., 388 

2007; Rydningen et al., 2013; Batchelor and Dowdeswell, 2016; Brouard and Lajeunesse, 389 

2019b). They have been suggested to be formed mainly from the accumulation of 390 

subglacial till at the shear zone between fast-flowing ice stream and slow-flowing 391 

portions of an ice sheet or ice free terrain (Dyke and Morris, 1988; Stokes and Clark, 392 

1999, 2002; Batchelor and Dowdeswell, 2016).  393 

 394 

Figure 6  (A) Multibeam bathymetry of submarine landforms in the outer fjord. (B) Multibeam bathymetry 395 

of submarine landforms in the middle fjord. (C) Example of glaciofluvial fan and moraines in the inner 396 

fjord. (D) Example of the crag-and-tails and grooves in Cormack Arm. 397 

4.1.3. Proglacial landforms 398 

Two other sets of landforms are identified in the Clyde fjord-cross shelf trough 399 

system and characterise the glacial dynamics in front and beyond the receding margin of 400 

the ice sheet: iceberg ploughmarks and glaciofluvial fans. 401 
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Iceberg ploughmarks - Straight and sinuous V- or U-shaped furrows are observed 402 

at varying depths along the fjord-cross-shelf trough system (Figs. 4, 5A and 6A). They 403 

are more common on the continental shelf, whereas in the fjord they mostly occur on the 404 

sill. They are usually associated with berms or levees on either side and often cross-cut 405 

each other. They are 2 m to 10 m-deep, up to 200 m-wide and in some cases can be traced 406 

for >5 km. Two predominant orientations can be distinguished for the larger furrows in 407 

the outer trough area: 1) near the shelf break, iceberg ploughmarks superimpose the 408 

outermost GZW, are observed at depths ranging between 175 and 225 m and have a NNW 409 

to SSE orientation; 2) on the stoss side of the second GZW, ploughmarks are observed at 410 

depths between 150 and 200 m and have a nearly orthogonal (SW-NE) along-trough 411 

orientation (Fig. 4). Some large zones of chaotic scouring patterns are also identified in 412 

the outer trough, regardless of shallower surrounding seafloor area (Fig. 4). They are 413 

between 1 to 5 km-wide and present both depressions and mound-like morphologies with 414 

irregular furrows. The depressions are generally between 2 to 5 m-deep, while the mounds 415 

are <2 m-high. The SE flank of the trough is also densely incised by randomly oriented 416 

semi-circular pockmarks (Fig. 2A). They are generally <5 m-deep and rarely exceed 100 417 

m-wide.  418 

Due to their straight and sinuous character, V- and U-shaped cross-profiles and 419 

chaotic patterns, these furrows are interpreted as ploughmarks – also termed iceberg 420 

scours – from iceberg keels associated with calving outlet glaciers during deglaciation 421 

(King, 1976; Vorren et al., 1989; Jakobsson et al., 2011; Dowdeswell et al., 2014; Lewis 422 

et al., 2016; Brouard and Lajeunesse, 2019a, 2019b). The SSE oriented ploughmarks 423 

suggest influence of the Baffin Island Current (BIC), which delivered large icebergs from 424 

northern Baffin Bay in the early phases of deglaciation (Andrews et al., 1998; Jennings 425 

et al., 2011), whereas the NE orientated iceberg ploughmarks is probably related to ice 426 
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calving from the Clyde Ice Stream (CIS) margin. The larger chaotic zones possibly 427 

correspond to large iceberg (>5 km2) grounding areas and may have been produced by 428 

the ploughing of the seafloor by the keel of larger ice masses that were stuck for long 429 

periods of time. Tides and meltwater currents may have caused these iceberg shifts, 430 

creating the chaotic pattern. To our knowledge, such features have rarely been identified 431 

on continental margins and the genesis presented here remains speculative. The semi-432 

circular pockmarks are interpreted as pits formed by the short-term grounding of icebergs 433 

that were semi-buoyant or that turned over, as described by Woodworth-Lynas et al. 434 

(1991).  435 

Glaciofluvial fans - Several smooth and gently sloping fan-shaped morphologies 436 

are observed on the flanks of the fjord-cross-shelf trough system, at the mouth of tributary 437 

valleys (Fig. 5B, 6B-C). They are generally 1 to 5 km-long and observed at depths 438 

between 200 m and 400 m. On their upper reaches, they are dissected by series of parallel 439 

15 m-deep channels. On their lower reaches, they are superimposed by transverse 5 m-440 

high and 200 m to 1 km-wide curvilinear ridges.  441 

These fan-shaped landforms are interpreted as glaciofluvial fans formed by 442 

sediment delivery by glacial meltwaters from adjacent alpine valleys (Powell, 1990; 443 

Normandeau et al., 2019). Similar landforms were previously identified from several 444 

glaciated locations (Powell, 1990; Lønne, 1995; Dowdeswell and Vásquez, 2013; 445 

Normandeau et al., 2019; Brouard and Lajeunesse, 2019a, 2019b). Parallel channels are 446 

more common on glacially-fed fans suggesting higher turbidity currents activity used for 447 

delivering sediments downslope (Dowdeswell and Vásquez, 2013; Batchelor et al., 2018; 448 

Normandeau et al., 2019). Transverse curvilinear ridges observed on foreset beds are 449 

crescent-shaped landforms formed by turbidity currents (Normandeau et al., 2019).450 
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 451 
Figure 7  (A) Airgun profile 78029_AG_275_0130 in the outer Clyde Trough showing GL1 and deeply buried GDFs. (B) Airgun profile 80028_AG_RAYT_257_0200 along 452 
Clyde Trough showing the sedimentary assemblages. The depth is based on two-way travel time (TWTT) of 1500 m s-1.453 
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4.2. Acoustic stratigraphy 454 

Six acoustic facies (AF) were distinguished from >2,500 km of Parasound profiles 455 

in the Clyde fjord-cross-shelf trough system. They were differentiated on the basis of their 456 

acoustic signatures, bounding reflectors and internal geometries. Additionally, airgun 457 

profiles allow identifying the general stratigraphy in the middle to outer trough and in 458 

places the limit between the seaward-dipping strata of the bedrock and Quaternary 459 

sediments (Fig. 7). They also allow delineating an erosional surface, which represent an 460 

unconformity in the sedimentation sequence. This surface is overlain by an acoustically 461 

chaotic to semi-transparent unit, which is in turn overlain by a thin unit (<10 m) of high 462 

amplitude parallel reflectors. The erosional surface and overlying sediments identified on 463 

airgun data likely represent the complete glaciation/deglaciation cycle, with an ice sheet 464 

advance across the continental shelf during the LGM followed by deglacial to postglacial 465 

sedimentation. The Parasound profiles however allow for a more in-depth analysis of the 466 

different facies represented along the system during deglaciation. 467 

4.2.1. AF0: Acoustically impenetrable to homogenous facies 468 

AF0 is an impenetrable and homogenous acoustic facies and forms the acoustic 469 

basement in most profiles (Figs. 8A-D). This facies is not visible in some basins where 470 

the attenuation of the acoustic signal in thick sediment prevents penetration. It is 471 

internally structureless and is characterised by a weak, high-amplitude rugged upper 472 

reflector; in most cases it shows an irregular to hyperbolic geometry.  473 

4.2.2. AF1: Acoustically homogenous, non-conformable facies 474 

AF1 rarely exceeds 5 m thickness and is restricted to the outer trough (Fig. 8A). 475 

It is characterised by chaotic and discontinuous acoustic reflectors with occassional 476 

hyperbolae near the surface. This facies is acoustically homogenous and exhibits weak 477 

lower reflectors. It shows in-filled small-scale (~5 m-deep, ~100 m-wide) V-shaped 478 

depressions and a non-conformable configuration.  479 
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 480 

Figure 8  Parasound profiles along the Clyde Inlet fjord-cross-shelf trough system showing the different 481 
acoustic facies (Table 1). See Figs. 2 and 3 for location of the profiles. Color coding for the different 482 
acoustic facies is the same as the one used for the lithological facies in Fig. 9. 483 
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 484 

Figure 8  Continued. 485 
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4.2.3. AF2: Acoustically stratified, conformable facies 486 

AF2 is an acoustically stratified and conformable facies with a sharp upper 487 

reflector and low to medium amplitude parallel to sub-parallel irregularly-spaced internal 488 

reflectors (Figs. 8B-D). AF2 drapes the underlying unit and in sometimes exhibits discrete 489 

wedge-shape geometries at its lateral boundaries. It is observed over distances of several 490 

kilometers in the deeper parts of basins located within the fjord, but is also present at 491 

some locations on the inner trough and possibly on the upper slope of the shelf edge (Fig. 492 

7B). AF2 is generally between 5 and 20 m-thick, but reaches >30 m in the inner fjord. 493 

This facies is usually observed immediately seaward from grounding line landforms (i.e., 494 

GZWs, morainal bank and moraines), although their connection remains elusive.  495 

4.2.4. AF3: Acoustically stratified, onlapping fill facies 496 

AF3 is an acoustically stratified facies with parallel medium to high amplitude 497 

reflectors (Figs. 8B-D). It has an onlapping or ponded basin-fill configuration and is 498 

interbedded with occasionnal thicker transparent units. This facies is usually between 10 499 

and 40 m-thick, but can reach >75 m in the fjord. Acousticaly chaotic and transparent 500 

lenticular sediment bodies are in many cases observed within AF3.  501 

4.2.5. AF4: Acoustically stratified, conformable facies 502 

AF4 is an acoustically stratified facies with parallel, closely spaced high 503 

amplitude and opaque reflectors (Figs. 8B-D). It forms a conformable drape of <5 m on 504 

the underlying AF3. It characterizes the uppermost sediment bodies deposited in the 505 

Clyde fjord-cross-shelf trough system.  506 

4.2.6. AF5: Acoustically transparent to semi-transarent facies  507 

AF5 is an acoustically transparent to semi-transparent chaotic facies with rare or 508 

poorly defined internal reflectors (Figs. 8C-D). Sediment bodies showing AF5 usually 509 

have an erosive base, an hummocky surface and are either lenticular or taper on slopes. 510 
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It is often observed interfingered within the stratified AF2 or AF3. It is generally a few 511 

meters-thick, but can exceed 10 m-thick locally. AF5 is mostly observed inside the fjord, 512 

near slopes and tributary valleys.  513 

4.3. Lithological facies 514 

Glacial lithological facies (LF) were identified from the gravity cores collected in 515 

the Clyde Inlet fjord-cross-shelf trough system by combining visual core descriptions, 516 

photographs of split cores and XRF data. Five facies and three subfacies were determined 517 

based on colour, texture, sedimentary structures (e.g., lamination, bioturbation) and Ca/Ti 518 

ratio changes (Fig. 9). Ratios of calcium (Ca) to titanium (Ti) were used for correlation 519 

between the cores along the Clyde Inlet transect.  520 

4.3.1. LF1: Unstratified sandy mud with dropstones  521 

LF1 consists of unstratified olive dark gray sandy mud with dropstones and 522 

dispersed pebble-sized clasts. This lithofacies shows no or few traces of bioturbation and 523 

occurs in the cores of the outer trough. LF1a consists of a gray coarse sandy mud, IRD-524 

rich facies with occasional sand lenses. LF1b has a more reddish brown color with a finer 525 

sandy mud matrix and fewer apparent clast. LF1b is only found in core GeoB22359-3 and 526 

is characterized by a high peak in Ca/Ti ratio.  527 

4.3.2. LF2: Poorly sorted diamicton  528 

LF2 only occurs at the base of core GeoB22357-3 and consists of dark gray 529 

weakly stratified, poorly sorted muddy-sand matrix diamicton. It is characterized by thick 530 

horizons (50-75 cm) of abundant sub-angular to sub-rounded clasts ranging from granules 531 

to pebbles, resulting in relatively higher and more chaotic peaks of Ca/Ti ratio. Diamicton 532 

beds of LF2 have conformable bedding contact and are interbedded with massive to 533 

laminated and faulted silty mud beds of LF3.  534 
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 535 

 536 
Figure 9  Simplified lithological logs, Ca/Ti ratios and calibrated radiocarbon ages of sediment cores 537 
collected along the Clyde Inlet fjord-cross-shelf trough system. Note that Ca/Ti ratios have a different scale 538 
for GeoB22344-3, GeoB22346-3 and GeoB22348-3. Color coding for the different lithological facies is the 539 
same as the one used for the acoustic facies in Fig. 8. 540 
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 541 

Figure 9 Continued. 542 

4.3.3. LF3: Laminated mud with sandy layers 543 

LF3 is a laminated gray to dark gray silty mud characterised by a lack of 544 

bioturbation and the presence of scattered angular to sub-angular clasts. It also contains 545 

individual thin sand laminae that has sharp basal contacts. The sand layers are coarser and 546 

thicker at the base of the unit, defining an overall fining upward trend. LF3a is defined 547 

by the presence of faulting, as well as more irregular and prominent laminae. LF3b shows 548 

no faulting but contains faint thinner beds of coarser sediments. Curves of Ca/Ti ratios 549 

from LF3b are chaotic with numerous peaks generally corresponding to coarser laminae. 550 

The laminae become less prominent and more spaced upward at the transition from LF3a 551 

to LF3b. 552 

4.3.4. LF4: Massive bioturbated silty mud 553 

LF4 consists of massive olive gray, bioturbated silty mud and occur at the top of 554 

most cores, except GeoB22350-3 and GeoB22359-3. This lithofacies generally contains 555 

black mottles and few clasts. The transition with the underlying unit is gradational; LF4a 556 

is weakly bioturbated, while LF4b contains high concentrations of bioturbation and black 557 

mottles. Ca/Ti ratios in the fjords are relatively low with distinct peaks representing sandy 558 
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layers. In the trough, these ratios are higher and more irregular with peaks representing 559 

longer events or of bigger magnitude. 560 

4.3.5. LF5: Unstratified sand 561 

LF5 is characterized by unstratified gray coarse sand with lenses of olive gray 562 

silty mud and occur only at the top of core GeoB22350-3 and at the base of core 563 

GeoB22353-3. This unit rest on LF4 and shows traces of bioturbation in the silty mud 564 

lenses. Ratios of Ca/Ti in LF5 are characterized by chaotic and irregular peaks.  565 

4.4. Correlation of acoustic stratigraphy and lithological facies 566 

Combining the acoustic stratigraphy and lithological facies allows drawing the 567 

sedimentary architecture of the Clyde fjord-cross-shelf trough system. Table 2 presents a 568 

summary of the acoustic stratigraphy and lithofacies descriptions in their context of unit 569 

correlations. 570 

4.4.1. Unit 0: Bedrock or ice-contact sediments 571 

Based on its stratigraphic position, acoustic appearance and rugged upper 572 

reflector, Unit 0 represents bedrock and/or ice-contact sediments (Syvitski and Shaw, 573 

1995; Streuff et al., 2018). Due to the absence of penetration in coarse sediments, it is 574 

usually difficult to differentiate between the two types on acoustic profiles (Streuff et al., 575 

2018; Hogan et al., 2020). Nevertheless, Mesozoic to Tertiary sedimentary bedrock is 576 

recognizable on airgun profiles by seaward-dipping strata, whereas ice-contact deposits 577 

have a chaotic internal signature (Fig. 7). These profiles also reveal an unconformity that 578 

lies above >50 m of undifferentiated Quaternary sediments. 579 

4.4.2. Unit 1: Iceberg-influenced sedimentation 580 

Unit 1, comprising AF1 and LF1, is interpreted as iceberg-influenced 581 

sedimentation, with ploughing and subsequent infilling by ice rafted sediments 582 

(Woodworth-Lynas et al., 1991; Arosio et al., 2018; Callard et al., 2018; Streuff et al., 583 
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2018; Olsen et al., 2022). Hyperbolic signals present in this facies are characteristic of 584 

point-source diffractions from dispersed cobbles and boulders (Arosio et al., 2018; 585 

Callard et al., 2018). The unstratified structure and high pebble-sized clasts content 586 

suggest that iceberg calving was an important sediment source (Dowdeswell et al., 1994, 587 

2000; Ó Cofaigh and Dowdeswell, 2001; Ó Cofaigh et al., 2013a; Hogan et al., 2016; 588 

Sheldon et al., 2016). Its occurrence in heavily iceberg-disturbed area, as shown by 589 

multibeam bathymetry (Fig. 4), is consistent with this interpretation. The reddish brown 590 

color and the high Ca/Ti ratio of LF1b might correspond to a predominantly detrital 591 

carbonate input from northern Baffin Bay – possibly BBDC-0 (Simon et al., 2014; 592 

Jackson et al., 2017; Jenner et al., 2018; Lévesque et al., 2020).  593 

4.4.3. Unit 2: Glacigenic debris-flows 594 

Based on its conformable geometry, stratified acoustic signature and sandy 595 

matrix-supported diamicton facies, AF2 and LF2 are interpreted as glacigenic debris-596 

flows likely sourced during stillstands of the ice margin (Powell, 1990; Powell and Alley, 597 

1997; King et al., 1998; Ó Cofaigh and Dowdeswell, 2001; Flink and Noormets, 2018). 598 

The alternating nature of LF2 with the laminated/faulted mud of LF3 is consistent with 599 

an origin of distinct pulses of glacigenic debris-flows interbedded with meltwater plumes 600 

(Ó Cofaigh et al., 2013a; Callard et al., 2018; Jenner et al., 2018; Prothro et al., 2018). 601 

High sand and gravel content often indicate an ice-proximal sedimentation located within 602 

a few kilometers of the grounding line, which requires a stable ice margin over a period 603 

of years to decades in case of a thick accumulation (Ó Cofaigh et al., 2008; Dowdeswell 604 

et al., 2015; Callard et al., 2018; Prothro et al., 2018). Comparable facies have commonly 605 

been identified near glacier-influenced submarine fans and are inferred to be related to 606 

the remoblization of glacigenic debris at the grounding line by abundant subglacial 607 

meltwater discharge (Syvitski, 1991; King et al., 1998; Ó Cofaigh et al., 2013b; 608 
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Dowdeswell et al., 2015). The occurrence of such facies at a relatively short distance (<2 609 

km) from former major grounding line positions in the Clyde fjord-cross-shelf trough 610 

system therefore support this interpretation. 611 

4.4.4. Unit 3: Ice-proximal glaciomarine sedimentation 612 

Unit 3, comprising AF3 and LF3, is interpreted as stratified ice-proximal 613 

glaciomarine sedimentation (Ó Cofaigh and Dowdeswell, 2001; Hodgson et al., 2014; 614 

Normandeau et al., 2017; Brouard and Lajeunesse, 2019a; Trottier et al., 2020; Olsen et 615 

al., 2022). The well-preserved laminations suggest fallout sediment deposition from 616 

meltwater plumes (Syvitski, 1991; Ó Cofaigh and Dowdeswell, 2001; Sheldon et al., 617 

2016; Jenner et al., 2018; Callard et al. 2020; Olsen et al., 2022). Laminae probably 618 

correspond to seasonal changes in sedimentation, where finer layers result from reduced 619 

subglacial meltwater input during winter (Flink and Noormets, 2018; Prothro et al., 2018). 620 

The sand layers with sharp basal contacts correspond to deposition by turbidity currents 621 

or turbid meltwaters sourced from the ice margin (Sheldon et al., 2016; Olsen et al., 2020). 622 

Dispersed clasts, indifferentially found in fine- or coarse laminae are interpreted as ice-623 

rafted debris (IRD). The occurrence of randomly dispersed IRDs indicates that rain-out 624 

from icebergs was a minor sedimentation process contributing to LF3 (Syvitski, 1991; 625 

Sheldon et al., 2016) and/or accumulation rates were high, with dilution of the IRD signal 626 

(Syvitski and Shaw, 1995; Dowdeswell et al., 2000; Olsen et al., 2022). The latter 627 

interpretation is in agreement with the lack of bioturbation (Ó Cofaigh and Dowdeswell, 628 

2001; Sheldon et al., 2016; Callard et al. 2020). Rapid sediment loading causing minor 629 

submarine slope failures may explain the abundant occurrence of faults in LF3a (Callard 630 

et al., 2018; Allaart et al., 2020). The decrease of the thickness and grain size of the 631 

laminae and the disappearence of faulting in LF3b together reflect a progressively distant 632 

marine terminating ice margin, representing ice-proximal to distal glaciomarine 633 
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sedimentation (Ó Cofaigh and Dowdeswell, 2001; Dowdeswell et al., 2015; Streuff et al., 634 

2017; Callard et al., 2018, 2020; Jenner et al., 2018; Allaart et al., 2020).  635 

4.4.5. Unit 4: Ice-distal hemipelagic sedimentation 636 

The acoustic appearance of AF4 and LF4 corresponds to typical ice-distal 637 

hemipelagic sedimentary systems. Comparable acoustic facies have been identified in 638 

polar regions and are usually deposited by meltwater run off, tidal processes and, in a 639 

lesser extent, ice rafting sedimentation (Syvitski, 1991; Syvitski and Shaw, 1995; Hogan 640 

et al., 2016, 2020; Normandeau et al., 2017; Callard et al., 2018; Arosio et al., 2018; 641 

Streuff et al., 2018). The sediments show little to no ice-rafting debris (IRDs), suggesting 642 

a distal or terrestrial ice margins (Syvitski, 1991; Syvitski and Shaw, 1995; Sheldon et 643 

al., 2016; Callard et al., 2018; Olsen et al., 2020, 2022; Syvitski et al., 2022). The 644 

transition from weakly (LF4a) to intensively (LF4b) bioturbated mud essentially 645 

represents decreasing sedimentation rates with landward retreating glacier fronts (Callard 646 

et al., 2018; Jenner et al., 2018). The heavy bioturbation indicates hemipelagic 647 

sedimentation, similar to that of today.  648 

4.4.6. Unit 5: Turbidites or mass-movement deposits 649 

Based on the transparent acoustic signature of AF5 and the unstratified sandy 650 

structure of LF5, unit 5 is interpreted as a coarse-grained unit from various high-energy 651 

sources such as turbidites or mass-movement deposits, which is supported by its 652 

occurrence at the foot of slopes or in front of glacially-fed tributary valleys (Syvitski and 653 

Shaw, 1995; Streuff et al., 2017; Hogan et al., 2020; Olsen et al., 2022). The presence of 654 

bioturbated mud lenses in between beds of coarse sand suggest that Unit 5 is not the 655 

continuity of Unit 4, but they are rather intermittent. The position of the coring sites in 656 

front of major valley deltas may indicate distinct cohesionless mass-movement deposits 657 

from remobilized coastal sediments (Gilbert et al., 1990).  658 
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Table 2  Description of sedimentary units identified in the sub-bottom profiles data and sediment cores from the Clyde fjord-cross-shelf trough system. Color coding for the 659 
different units is the same as the one used for the acoustic facies in Fig. 8 and the lithological facies in Fig. 9. 660 

661 

662 

Unit 
Acoustic 

facies 
Example Description 

Lithological 
facies 

Example Description Interpretation 

U0 AF0 

 

Acoustically impenetrable. Homogenous 

and structureless. High-amplitude upper 

reflector. Occasional hyperbolas. 

 

 

 
Acoustic basement 

(bedrock/ice-contact) 

U1 AF1 

 

Semi-transparent and chaotic. 

Discontinuous and homogenous reflectors. 

Non conformable geometry. 

LF1 

 

Unstratified olive dark gray sandy mud. 

Randomly disseminated pebble-sized 

clasts. Few traces of bioturbation. 

Iceberg-influenced 

sedimentation 

U2 AF2 

 

Acoustically stratified. Low to medium 

amplitude parallel to sub-parallel internal 

reflectors. Conformable geometry. 

LF2 

 

Dark gray muddy-sand matrix diamicton. 

Weakly stratified and poorly sorted. 

Dispersed sub-angular to sub-rounded 

clasts. Interbedded with LF3. 

Glacial debris-flows 

U3 AF3 

 

Acoustically stratified. Medium to high 

amplitude parallel internal reflectors. 

Basin fill (ponded) or onlapping geometry. 

LF3 

 

Laminated gray to dark gray silty mud. 

Sand laminae with sharp basal contact. 

Lack of bioturbation. Occasional clasts. 

Presence of faults at the base. 

Ice-proximal 

glaciomarine 

sedimentation 

U4 AF4 

 

Acoustically stratified. High amplitude 

parallel and closely-spaced opaque 

reflectors. Conformable geometry. 

LF4 

 Massive olive gray silty mud. Moderately 

to heavily bioturbated. Presence of black 

mottles and rare clasts. Gradational 

transition from LF3. 

Ice-distal hemipelagic 

sedimentation 

U5 AF5 

 

Acoustically transparent to semi-

transparent. Chaotic with rare internal 

reflectors. Hummocky surface and 

lenticular shaped geometry. 

LF5 

 

Unstratified gray coarse sand with 

bioturbated lenses of olive gray silty mud. 

Turbidites and mass-

movement deposits 
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4.5. Radiochronology 663 

Seven ages were obtained from radiocarbon dated material collected from the 664 

sediments cores (Table 3).  665 

Table 3  Radiocarbon and calibrated radiocarbon ages from material collected in sediment cores. 666 
Core number Depth in core (cm) Dated material Laboratory ID 14C age yr BP Calibrated age yr BP (2σ) 

GeoB22344-3 472-483 Mixed benthic foraminifera AWI-2620.1.1 8280 ± 90 8520 (8280-8840) 

GeoB22346-3 387 Shell fragment AWI-1726.1.1 5930 ± 50 6070 (5900-6250) 

GeoB22346-3 765 Shell fragment AWI-1727.1.1 8900 ± 190 9300 (8770-9850) 

GeoB22346-3 766-783 Mixed benthic foraminifera AWI-2619.1.1 8510 ± 100 8810 (8500-9120) 

GeoB22348-3 888-896 Mixed benthic foraminifera AWI-2618.1.1 8940 ± 100 9360 (9050-9600) 

GeoB22358-3 92 Shell fragment AWI-1728.1.1 10670 ± 177 11710 (11190-12290) 

GeoB22359-3 156-166 Mixed benthic foraminifera AWI-2617.1.1 10500 ± 100 11460 (11170-11800) 

The AMS 14C ages were calibrated within the age-depth modelling process, using the online software Calib 8.2 with the Marine20 667 
radiocarbon age calibration curve (Heaton et al., 2020). A local reservoir correction (ΔR) of 81±18 was used to account for the regional 668 
offset of the world ocean 14C age, as determined by Pieńkowski et al. (2022). 669 
 670 

In Clyde Trough, at the base of core GeoB22359-3, mixed benthic foraminifera 671 

in iceberg-influenced sediments (LF1) provided an age of 11.5 ka cal. BP. A shell 672 

fragment from ice-proximal glaciomarine sediments (LF3), at 92 cm from the top of core 673 

GeoB22358-3, yielded an age of 11.7 ka cal. BP. These ages in deglacial sediments 674 

provide a minimum age for the deglaciation of the outer trough (Fig. 2). However, the 675 

age in GeoB22358-3 shows that it is most likely an underestimation of the deglaciation 676 

as the sample was collected near the top of the core.  677 

In the inner Clyde Inlet (Fig. 3), three ages were provided from samples collected 678 

in ice-proximal glaciomarine sediments (LF3) from the base of two sediment cores. The 679 

sample at the base of sediment core GeoB22348-3, taken approximately 25 km from the 680 

fjord head, revealed an age of 9.4 ka cal. BP. The base of sediment core GeoB22346-3, 681 

taken 10 km from the fjord head, yields an age of 8.8 ka cal. BP. A shell fragment near 682 

the base of GeoB22346-3, yielding an age of 9.3 ka cal. ka BP, was rejected because it 683 

was inconsistently older than the benthic foraminifera sample taken a few centimeters 684 

below. The shell fragments could have been reworked, as the age range is consistent with 685 
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a reworked shell found in a delta at the fjord head and another one found in a nearby 686 

tributary valley (Briner et al., 2007). Therefore, the benthic foraminifera sample is 687 

favoured as being the most reliable age available for the base of that core. An age of 6.1 688 

ka cal. BP was also obtained from a shell fragment at 387 cm downcore, in ice-distal 689 

glciomarine sediments (LF4).  690 

Similarly, a foraminifera sample collected in ice-distal glaciomarine sediments 691 

(LF4) from the base of sediment core GeoB22344-3 yielded an age of 8.5 ka cal. BP. It 692 

thus provides a minimum age for full deglaciation of Cormack Arm.  693 

5. Discussion 694 

5.1. Extent and retreat of the LIS margin 695 

The analysis of the multibeam bathymetry, acoustic profiles and lithological 696 

facies allowed the identification of landforms and sedimentary assemblages that are 697 

typical of high-latitude fjord-cross-shelf trough systems (e.g., Praeg et al., 2007; 698 

Winsborrow et al., 2010; Ó Cofaigh et al., 2013b; Sheldon et al., 2016; Slabon et al., 2016;  699 

Brouard and Lajeunesse, 2017; Ottesen et al., 2022). They provide valuable information 700 

on the maximal extent of the LIS margin and its retreat patterns along the entire Clyde 701 

fjord-cross-shelf trough system. However, deglacial ages on the shelf and nearby fjords 702 

of Baffin Island are scarce and correlations with other systems is therefore tentative. The 703 

radiocarbon dated horizons of the cores are stratigraphically too shallow to construct 704 

reliable age extrapolations to the base of the deglacial units. Nevertheless, they represent 705 

minimum-limiting ages at the coring sites and thus provide some constraints on ages of 706 

the deglaciation patterns we present. The compatibility with land-based studies provides 707 

independent corroboration that allow us to draw a more accurate chronology of the 708 

deglaciation for the Clyde fjord-cross-shelf trough system (Fig. 10).  709 
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 710 

Figure 10  Schematic representation of the ice dynamics on the shelf corresponding to the different stages 711 
of ice retreat during deglaciation in Clyde fjord-cross-shelf trough system. 712 
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 713 

Figure 10 Continued. 714 

  715 
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5.1.1. LGM extent and collapse of the Clyde ice shelf 716 

Couette et al. (2022) asserted that the LIS did not reach the shelf break in Clyde 717 

Trough on the basis of geomorphological, sedimentological and glaciological evidence. 718 

They argued that the absence of gullies on the trough mouth fan and glacial lineations in 719 

the outer trough – which are both diagnostic of a grounded ice margin extending at the 720 

shelf break – suggest that the LIS had a receded position in Clyde Trough. It is also 721 

possible that the extensive iceberg ploughmarks observed in the outer trough have 722 

obscured any landforms that provide evidence for the LIS margin reaching shelf break 723 

during the LGM. In the absence of such evidence, the GZWs observed near the shelf edge 724 

are therefore identified as the most probable maximal position of the LIS in Clyde Trough 725 

during the LGM (Fig. 10a). The onset of deglaciation around Baffin Bay appears to have 726 

occurred between 16 and 14.6 ka cal. BP on eastern Baffin Island (Jennings, 1993; Briner 727 

et al., 2007; Margreth et al., 2017) and western Greenland (Sheldon et al., 2016; Jennings 728 

et al., 2017). This timing for the deglaciation of the shelves is in agreement with 729 

cosmogenic exposure dating from the Clyde Foreland, where deglaciation is interpreted 730 

to have started at ~15 ka BP (Briner et al., 2005). As no direct dating has yet yielded 731 

absolute ages on these landforms, it can not be asserted with certitude which of the two 732 

GZWs, if any, represent the LGM maximal extent. The change in orientation and density 733 

of iceberg ploughmarks suggest that the CIS margin was possibly grounded at GL2 during 734 

the early phases of deglaciation, when numerous icebergs were released into Baffin Bay 735 

and transported via the Baffin Island Current (Andrews et al., 1998). The large iceberg 736 

ploughmarks parallel to the trough on the stoss side of GL2 and the IRD-rich facies in the 737 

outer trough are, in turn, evidence of a period of extensive iceberg release provoked by 738 

the collapse of the Clyde ice shelf and rapid retreat of the CIS (Fig. 10b). Therefore, this 739 

period of rapid ice decay might correspond to Meltwater Pulse 1a (MWP-1a – 14.6-14.0 740 

ka cal. BP; Carlson, 2009; Harrison et al., 2018; Lin et al., 2021), which coincides with 741 
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the release of icebergs and detrital carbonate-rich sediments into Baffin Bay (BBDC layer 742 

1 – ~14.2-13.7 ka cal. BP) from northwestern Greenland and the eastern CAA (Andrews 743 

et al., 1998; Simon et al., 2012, 2014; Jackson et al., 2017).  744 

It is unclear why the LIS margin did not reach the shelf break in Clyde Trough, as 745 

ice extended across the continental shelf in Lancaster Sound as well as in the Buchan and 746 

Scott trough systems of northeastern Baffin Island (Li et al., 2011; Brouard and 747 

Lajeunesse, 2017). Recent studies (i.e., Miller et al., 2002; Margreth et al., 2017) also 748 

suggest that the ice margin did not reach the shelf break on Cumberland Peninsula 749 

(eastern Baffin Island). The position of the ice margin at the LGM along the coast of 750 

eastern Baffin Island was most probably variable. Clyde Trough might represent a zone 751 

of transition between the “Big ice” model of northeastern Baffin Island and the “Just-752 

Right ice’’ model observed on Cumberland Peninsula (see Miller et al., 2002). This 753 

intermediate position was also reported in Sam Ford Trough – just north of Clyde Trough 754 

–, although this system is considered to have been occupied by slow flowing ice during 755 

the LGM (Brouard and Lajeunesse, 2017). Slower flowing ice could also explain the 756 

receded position of the ice margin in Clyde Trough, as sparse and undefined glacial 757 

lineations in the outer trough suggests limited ice streaming activity at the LGM. 758 

However, the lack of glacial lineations on the outer trough possibly reflects the significant 759 

disturbance of the seafloor by iceberg ploughmarks. Nonetheless, it is worth noting that 760 

a slow ice flow regime was observed for the adjacent Clyde Lowlands, where ice flowing 761 

through Ayr Lake was non-erosive and slow flowing in its outermost part (Briner et al., 762 

2005). The opening/diffluent configuration of the outer trough could have favored 763 

reduced ice velocity, thus limiting the formation of glacial lineations at the base of the ice 764 

stream. A reduced ice velocity could result from a limited catchment size due to the 765 

presence of more competent ice stream system on either side of the Clyde fjord-cross-766 
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shelf trough system. Similar observations have been made on the shelf of northeastern 767 

Baffin Island, where piracy of ice drainage basins controlled the volume of ice flow into 768 

Sam Ford Trough system (Brouard and Lajeunesse, 2019c). Additionally, the CIS was 769 

sustained by cold-based ice on the banks in front of the Clyde and Aston lowlands (Briner 770 

et al., 2005). GZWs geometry indicates that cold-based ice also had a receded position on 771 

the inter-trough on both sides of Clyde Trough. Sediment assemblages on the Baffin slope 772 

further support that position, at least for the later part of the LGM (Jenner et al., 2018). 773 

Stacked tills underneath GL1 indicate that some earlier glaciations were, however, more 774 

extensive, as previously proposed by various authors for Arctic Canada (i.e., Miller et al., 775 

1977; England et al., 2009). 776 

5.1.2. Slow late glacial retreat on the shelf 777 

The absence of large GZWs in the middle and inner trough suggests that the ice-778 

retreat following the initial breakup of the CIS occurred in a steady fashion as shown by 779 

sets of recessional moraines (Fig. 10c i). This slow retreat pattern differs from 780 

observations from other trough systems of northeastern Baffin Island, where deglaciation 781 

occurred in a more stepwise pattern with prolonged stillstands indicated by GZWs 782 

(Brouard and Lajeunesse, 2017). This deglaciation pattern, situated on the retrograde 783 

sloping part of the trough, is uncommon compared to other global occurrences which 784 

generally present few stillstand indicators and are usually attributed to a rapid ice margin 785 

retreat (Weertman, 1974; Favier et al., 2014; Wise et al., 2017). Similar variations in style 786 

and rate of ice retreat along a continental shelf has also been observed on the Antarctic 787 

Peninsula (Dowdeswell et al., 2008; Ó Cofaigh et al., 2014 and references therein) and 788 

may thus reflect the influence of local controls (i.e., bathymetry and topography) on ice 789 

dynamics of northeastern Baffin Island (see section 5.2). 790 
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The morainal bank (GL4) in the middle trough indicates a stage of ice margin 791 

readvance and short-term stabilization during the generally slow deglaciation of the 792 

trough (Fig. 10c ii). It aligns roughly with lateral moraines dated by Briner et al. (2005) 793 

near Patricia Bay, indicating that this event occurred at ~12.5 ± 0.7 ka. It is therefore 794 

probable that an ice margin readvance during the colder Younger Dryas (~12.9 – 11.7 ka 795 

BP) favoured the formation of the morainal bank. Regardless of their genesis as 796 

glaciotectonic push-and-thrust or crevasse-squeezed ridges, the transverse and zigzag-797 

shaped ridges on the morainal bank suggest readvance of the LIS margin. These 798 

landforms may reflect warm-based fast flow conditions changing to cold-based freeze-on 799 

conditions near the ice margin (Christofferson and Tulaczyk, 2003; Laberg et al., 2009). 800 

Cold-based conditions at the ice-margin can be caused by ice thinning, fast downward 801 

advection of cold surface ice or basal freezing of the ice stream termination 802 

(Christofferson and Tulaczyk, 2003). Zigzag-shaped ridges have also been associated to 803 

ice readvances on the Værøy and Røst morainal banks, in northern Norway (Laberg et 804 

al., 2009). The Røst morainal bank is also seismically similar to the middle trough 805 

morainal bank with its folded reflectors at the front and the irregular thrusted sheets in its 806 

core (Laberg et al., 2009). Folding and thrusting of sediment sheets by glaciotectonism 807 

(Fig. 7B), which is caused by movements at the front of the glacier (i.e., a readvance of 808 

the LIS margin), have been speculated to increase the height of ice-contact deposits 809 

(Powell, 1990; Lønne, 1995; Lyså and Vorren, 1997).  810 

The moraine system on top of a bedrock sill at the fjord mouth (GL5) indicates 811 

that the ice margin stabilized here for a short period (Fig. 10d). In the cores collected 812 

along Clyde Trough, ages of 11.7 and 11.5 ka cal. BP below the transition from ice-813 

proximal glaciomarine sediments to ice-distal hemipelagic sediments provide a minimal 814 

age for the ice margin retreat into the fjord. This transition is also marked by a peak in 815 
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Ca/Ti in the shelf cores, corresponding to an increase in detrital carbonate-rich sediments 816 

(BBDC layers) from northern Baffin Bay. This increase was also recorded along West 817 

Greenland and the onset of this event was dated at ~11.6 ka cal. BP (Jennings et al., 2014, 818 

2017). This timing for ice retreat from the fjord-mouth at the onset of the Holocene is 819 

further supported by data from Scott Trough suggesting ice-distal sedimentation from ~12 820 

ka cal. BP (Osterman and Nelson, 1989). Cosmogenic exposure dating from the 821 

continental domain indicates that the LIS margin was located at the Clyde Inlet mouth 822 

until ~11.7 ± 2.2 ka (Briner et al., 2005). These results suggest that the ice margin 823 

retreated into Clyde Inlet from the bedrock sill at the end of the Younger Dryas. 824 

Stabilizations commonly occur at fjord mouths due to the narrowing of the ice stream 825 

width, which reduces the ice flux across the grounding line (Åkesson et al., 2018). This 826 

stabilization could also be the result of a forced equilibrium in glacial mass balance, where 827 

accumulation is too high for the ice sheet margin to retreat into the deeper and narrower 828 

fjord but ablation is too high to allow a readvance onto the shelf and the open sea (Syvitski 829 

and Shaw, 1995).  830 

5.1.3. Episodic early Holocene retreat in the fjord 831 

The multibeam bathymetry imagery and acoustic sub-bottom profiles show series 832 

of moraine systems along the fjord, indicating a step-wise retreat of the LIS margin in the 833 

early Holocene, punctuated by intervening periods of fast retreat (Fig. 10e). Two 834 

continental moraine ridges located 10 km and 25 km up-fjord from Ailsa Island yielded 835 

cosmogenic exposure ages of 11.2 ± 1.2 and 10.0 ± 1.5 ka, respectively (Briner et al., 836 

2007). These ages represent minimum ages for the deglaciation and are probably coeval 837 

or younger than the outer fjord moraine (GL6).  838 

Few ages are available in the middle section of Clyde Inlet. However, basal ages 839 

collected in three lakes near the adjacent Inugsuin Fjord constrain the deglaciation of the 840 
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middle section to ~10.5 ka cal. BP (Thomas et al., 2010). Ice retreat was probably more 841 

or less synchronous in Clyde Inlet, as the continental moraine ridges in the outer fjord 842 

yield slightly older ages and a bedrock sample from an unnamed island yielded a 843 

cosmogenic exposure age of 10.2 ± 2.2 ka (Briner et al., 2007). Furthermore, cosmogenic 844 

dating in Naqsaq Valley indicate alpine glacier stabilization and moraine deposition at 845 

~10.2 ± 0.2 ka (Young et al., 2021). It is therefore possible that the middle fjord moraines 846 

(GL7 and GL8) were deposited around that time. 847 

During the Cockburn substage, multiple moraines were deposited in the inner 848 

fjord and at the fjord head (Fig. 10f). Wood and shell samples collected in a tributary 849 

valley 40 km upstream  from the fjord head by Briner et al. (2007) yielded identical ages 850 

of ~9.3 ka cal. BP for deglaciation of the inner fjord. These ages are in agreement with 851 

new basal ages from sediment cores GeoB22348-3 and GeoB22346-3 (Fig. 9), which in 852 

turn are constraining the timing of the inner fjord moraines (GL9-GL11) between 9.4 and 853 

8.8 ka cal. BP. Similarly, radiocarbon ages from shells collected in deltas at the head of 854 

Clyde Inlet indicate that the ice margin retreated beyond the fjord head between 9.1 and 855 

8.6 ka cal. BP (Briner et al., 2007). Similar ages from adjacent Inugsuin Fjord and Sam 856 

Ford Fjord corroborate these observations (Andrews and Drapier, 1967; Briner et al., 857 

2009a; Syvitski et al., 2022). An ice-contact delta located at the fjord head yielded 858 

cosmogenic exposure age of ~8.3 ka ± 0.3 ka (Briner et al., 2007; Young et al., 2013). 859 

Radiocarbon ages collected 4 km upstream of the ice-contact delta yielded an age of ~7.9 860 

ka cal. BP for the deglaciation of the fjord head (Briner et al., 2007). Deglaciation of the 861 

fjord head is marked by a steep decline in Ca/Ti, corresponding to a decrease in coarser 862 

sediment input from the ice margin directly into the fjord. The age of ~7.9 ka cal. BP is 863 

also in agreement with the shell sample from core GeoB22346-3 indicating that ice had 864 

retreated from the fjord head before 6.2 ka cal. BP.  865 
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The results from Clyde Inlet notably contrast with models previously proposed 866 

from eastern Baffin Island, where the LIS was believed to have retreated in a catastrophic 867 

pattern along the fjords (Briner et al., 2007, 2009a). Alternatively, the results support a 868 

more episodic deglaciation model with multiple ice margin stabilizations and moraine 869 

formation proposed for fjords of northeastern Baffin Islands (Brouard and Lajeunesse, 870 

2019a).  871 

Subsequently to the withdrawal of its ice margin from Clyde Inlet (Fig. 10g), the 872 

LIS began a slow retreat towards the south until the Barnes Ice Cap became isolated 873 

(Miller et al., 2005; Briner et al., 2009). The LIS and local glaciers receded beyond their 874 

current position until the onset of the Neoglacial ~4.5 ka BP (Miller et al., 2005; Young 875 

et al., 2015). During that period, cooler climatic conditions prevailed and local glaciers 876 

readvanced into the fjord, as marked by lateral moraines from tributary valleys and 877 

glaciofluvial fans (Fig. 6A-B). Rapidly deposited layers are identified in cores of the inner 878 

fjord and are marked by sharp peaks in Ca/Ti ratios and could relate to these readvances. 879 

These coarse layers could also either represent increased sediment input by glacial 880 

meltwater or deposits by glacier-lake outburst floods caused by the oscillation of the 881 

Barnes Ice Cap repeatedly blocking the Clyde River outlet (Barnett and Holdsworth, 882 

1974; Andrews and Barnett, 1979). 883 

5.2. Controls on stabilizations and variability of ice retreat  884 

Several external (e.g., atmospheric temperatures, changes in sea level and ocean-885 

driven melting) and local factors (e.g., topography and bathymetry) have possibly 886 

asserted a certain control on the deglaciation patterns in the Clyde fjord-cross-shelf trough 887 

system. Comparing the chronology presented in the previous section to a compilation of 888 

climatic records allows establishing correlations between the deglaciation and potential 889 

factors that may have influenced retreat of the ice margin across the system (Fig 11). 890 
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 891 

Figure 11  (A) Average retreat rates between stabilizations in the Clyde fjord-cross-shelf trough system. 892 
The dashed line represents the uncertainties regarding the length and magnitude of the ice margin readvance 893 
during the Younger Dryas. (B) Exposure ages of moraine ridges along Clyde Inlet from Briner et al. (2007), 894 
recalculated using the Baffin Bay production rate (Young et al., 2013). (C) Chironomid-derived July 895 
temperature reconstruction from Lake CF8, eastern Baffin Island (dark blue; Axford et al., 2009). (D) 896 
Greenland mean-annual temperatures reconstructed using gas-phase δ15N-N2 measurements (purple - ±1σ; 897 
Buizert et al., 2014). (E) Greenland mean-annual temperatures reconstructed using gas-phase δAr-N2 898 
measurements (red - ±2σ; Kobashi et al., 2017). (F) δ18O record from NGRIP project (orange; Rasmussen 899 
et al., 2014). (G) Ice volume equivalent sea-level (blue - ±1σ; Lambeck et al., 2014). Vertical bars represent 900 
cold and warm intervals discussed in the text. B-A: Bølling–Allerød; YD: Younger Dryas; PB: Preboreal. 901 
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5.2.1. External forcing as the principal driver of ice retreat patterns 902 

The temporal framework presented in the previous section suggest that climate 903 

played a dominant role in driving first-order deglaciation patterns in Clyde Inlet, as ice 904 

retreat coincides with periods of warming climate and stabilizations are synchronous with 905 

cooling events (Fig. 11). In turn, sea level changes and oceanic forcing might also have 906 

influenced the retreat rates of the ice margin along the Clyde fjord-cross-shelf trough 907 

system (Fig. 11). 908 

Rapidly rising sea-level (>40 mm/year; Lambeck et al., 2014) probably favored 909 

the initial collapse of the Clyde ice shelf and rapid retreat of the CIS in the early phases 910 

of the deglaciation (Couette et al., 2022). Changes in the eustatic level may have provoked 911 

the lift-off of the local ice shelf, increasing the area of the ice margin in contact with the 912 

water column, making it more vulnerable to ocean forcings (Joughin et al., 2012; 913 

Jamieson et al., 2014; Jennings et al., 2018). The global sea-level rise initiated at ~16.5 914 

ka eventually led to the ice front destabilization, which induced rapid retreat of the ice 915 

margin (~25 m/year). Rapidly rising global sea level has been speculated to have triggered 916 

the collapse and/or rapid retreat of marine-based ice sheets in the Northern Hemisphere 917 

following the LGM (e.g., Winsborrow et al., 2010; Jakobsson et al., 2011; Rydningen et 918 

al., 2013; Hogan et al., 2016; Arndt et al., 2017; Callard et al., 2018). In turn, the timing 919 

of ice-margin retreat from outer Clyde Trough is synchronous with the onset of the 920 

Bølling–Allerød interstadial (~14.5 – 12.9 ka BP), a period of globally warmer 921 

temperatures (Rasmussen et al., 2014). It also coincides with extensive ice mass loss 922 

around Baffin Bay, as ice streams were retreating from the outer shelf in Western 923 

Greenland (i.e., Sheldon et al., 2016; Jennings et al., 2017) and large numbers of icebergs 924 

were released from northern Baffin Bay (i.e., Andrews et al., 1998; Simon et al., 2012; 925 

Jackson et al., 2017). Reduced global sea level rise during the second half of the Bølling–926 
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Allerød (~12 mm/year – Lambeck et al., 2014) probably contributed to a slow-down of 927 

the ice-margin retreat in Clyde Trough (~12.5 m/year). However, lower rates of sea level 928 

rise alone do not explain the slower deglaciation pattern, as it was not observed in 929 

neighbouring troughs (Brouard and Lajeunesse, 2017).  930 

The beginning of the Younger Dryas (~12.9 – 11.7 ka BP) was regionally marked 931 

by an abrupt lowering of the temperature by 2°C (Rasmussen et al., 2014). This sudden 932 

decrease in temperature likely favoured a readvance of the LIS margin, before resuming 933 

its slow retreat as the temperature gradually increased again. The presence of the moraine 934 

indicating stagnation at the fjord mouth is consistent with the relatively cold conditions 935 

across Baffin Bay at the end of the Younger Dryas (Buizert et al., 2014; Rasmussen et al., 936 

2014) that promoted a positive mass balance and possibly counteracted ice loss by calving 937 

at the ice margin.  938 

Alternatively, the early Holocene was marked by warmer atmospheric 939 

temperature around the Baffin Bay region, which favoured extensive ice margin retreat 940 

(Pendleton et al., 2019; Lesnek et al., 2020). While temperatures were generally warm 941 

during the Holocene, cold spells were recorded in different proxies (i.e., Axford et al., 942 

2009; Rasmussen et al., 2014) and appear to have favored ice margin stabilizations in 943 

Clyde Inlet. This deglaciation model is in agreement with observations around Baffin Bay 944 

where widespread moraine deposition have been associated with cold-climate oscillations 945 

at 11.3, 10.4, 9.3 and 8.2 ka (Young et al., 2020; Lesnek et al., 2020).  946 

Inflow of subsurface water might have been an additional contributor to retreat 947 

rates in our study area through deglaciation. The intrusion of subsurface warm water have 948 

provoked accelerated melting and enhanced ice-margin retreat in modern-day marine-949 

terminating glaciers (e.g., Straneo et al., 2011; Jeong et al., 2016; Howe et al., 2019), as 950 
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well as on the shelves and fjords of many formerly glaciated regions (e.g., Sheldon et al., 951 

2016; Arndt et al., 2017; Batchelor et al., 2019a; Allaart et al., 2020). However, the Baffin 952 

Island Current incorporates colder Arctic water from the CAA and Nares Strait (Tang et 953 

al., 2004; Münchow et al., 2015), therefore lowering the layer of warmer subsurface 954 

water. A reduction in the depth of warmer currents would weaken its influence on ice 955 

retreat along the Baffin shelf, in particular for the shallower Clyde Trough. Moreover, the 956 

shallow fjord-mouth sill (< 200 m) probably prevented subsurface warm water from 957 

entering the fjord and triggering a catastrophic retreat. It is therefore unlikely that inflow 958 

of warmer currents had major influence on the retreat of the CIS. 959 

Although external forcing played an unequivocal role in the deglaciation of Clyde 960 

Inlet, the variability in retreat patterns when compared to other neighbouring fjord-cross-961 

shelf trough systems indicates a local control on LIS margin oscillations. 962 

5.2.2. Fjord/trough geometry controlling ice margin stabilization 963 

Local-scale topography appears to have been a key factor in controlling the 964 

location of stabilizations during the retreat of the CIS. Depositional wedges and related 965 

stabilizations have been noted where topographic constrictions, highs and/or bends in the 966 

trough orientation occur. Although most topographic controls in the trough are bedrock-967 

influenced, older GZWs might have produced a pinning point adequate enough to help 968 

the ice margin stabilize in the outer trough at the LGM (Fig. 7). Acting as a topographic 969 

high, these older GZWs restrained the LIS from flowing farther seaward regardless of the 970 

wider diffluent bed morphology by increasing the basal drag exerted on the ice stream 971 

(Dowdeswell and Fugelli, 2012; Batchelor and Dowdeswell, 2015; Hogan et al., 2016; 972 

Bart et al., 2017; Danielson and Bart, 2019; Greenwood et al., 2021; Ottesen et al., 2022). 973 

A bend in the trough orientation, corresponding to a change in bedrock lithology, possibly 974 

further contributed to the formation of the morainal bank by enhancing lateral drag on the 975 
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side of the glacier (Syvitski and Shaw, 1995; Lyså and Vorren, 1997; Laberg et al., 2009; 976 

Jamieson et al., 2012, 2014; Ó Cofaigh et al., 2014; Bradwell et al., 2019). The relatively 977 

shallower depths compared to other cross-shelf trough systems of northeastern Baffin 978 

Island probably restricted the area of the ice front in contact with the ocean, resulting in 979 

a slower deglaciation in the middle trough as observed in similar settings (Arndt et al., 980 

2017; Jakobsen et al., 2020). The shallower depths likely also contributed to the slower 981 

deglaciation pattern observed across the retrograde slope of the mid- and inner trough 982 

following the YD readvance.  983 

In contrast, deeper water in the fjord may have favored the acceleration in ice 984 

retreat (>50 m/year). Loss of contact with vertical pinning point reduces drag which, in 985 

turn, increases mass flow and iceberg calving rates (Syvitski and Shaw, 1995; Jamieson 986 

et al., 2014; Batchelor et al., 2019a). Coupled with the generally warmer atmosphere 987 

temperature of the early Holocene, it created an ideal setting for an enhanced retreat rate 988 

of the LIS in Clyde Inlet. However, cold events probably provoked intervening 989 

stabilizations of the ice margin in Clyde Inlet, while the fjord geometry influenced the 990 

location of most stabilizations. The outer fjord moraine is located at a pinning point 991 

created by multiple islands at the confluence of Clyde Inlet and Inugsuin Fjord. This 992 

pinning-point allowed the ice margin to anchor and stabilize on the topographic high 993 

between islands. The location of the middle fjord moraine at the confluence of Clyde Inlet 994 

and Cormack Arm suggests, however, the influence of a funnel-shaped constriction of the 995 

ice (i.e., Syvitski and Shaw, 1995; Brouard and Lajeunesse, 2019a). Other ice-margin 996 

stabilizations in the inner fjord occurred at bends and lateral constrictions of the fjord 997 

width because of enhanced lateral-drag (Jamieson et al., 2012; Åkesson et al., 2018; 998 

Batchelor et al., 2019a; Brouard and Lajeunesse, 2019a). It must be emphasized here that 999 
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not all constrictions or bends are associated with a stabilization in the fjord, as climate is 1000 

likely the main driver for initiating a slow-down of the ice retreat. 1001 

6. Conclusions 1002 

The combination of multibeam bathymetry imagery, seismostratigraphic profiles 1003 

and sediment cores collected in the Clyde Inlet fjord-cross-shelf trough system (NE 1004 

Baffin Island) provide new insights into the extent and retreat patterns of the Laurentide 1005 

Ice Sheet margin in the region during the Last Glacial cycle. Key results of this analysis 1006 

are: 1007 

• The LIS margin probably did not extend all the way across the continental shelf in 1008 

Clyde Trough during the LGM; its maximal extent was rather located some 10 km 1009 

from the shelf break. However, as the absence of direct dating on the upper continental 1010 

slope restrains us from providing confirmation, the question of the maximal extent of 1011 

the LIS in Clyde Trough remains open.  1012 

• Deglaciation on the shelf was temporally constrained to the late glacial (16-11.7 ka). 1013 

It was marked by an initial collapse of the Clyde ice shelf and rapid LIS margin retreat, 1014 

followed by a slow retreat of the ice margin with intervening stabilizations interrupted 1015 

by a readvance during the Younger Dryas. This deglaciation pattern differs from 1016 

observations made in other troughs of northeastern Baffin Island shelf, where it 1017 

appears to have been more rapid and episodic with wider spaced GZWs. 1018 

• Similarly to other fjords of northeastern Baffin Island, the ice margin retreated into 1019 

Clyde Inlet in a less catastrophic pattern than previously proposed for the early 1020 

Holocene (11.7-8 ka). Our age constraints support earlier works that suggest 1021 

numerous ice margin stabilizations during the early Holocene, which could be linked 1022 
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to cold climate events at ~10.3, ~9.3 and ~8.2 ka. The retreat was, however, rapid 1023 

between successive stabilizations due to greater water depths in the fjord.  1024 

• Climate was the main driver of deglaciation in the Clyde area, as the available 1025 

chronology suggests that most stabilizations coincided with regional-wide cooling 1026 

events. Deglaciation patterns in the Clyde area were strongly influenced by 1027 

topography, as ice margin stabilizations occurred at pinning points in both the trough 1028 

and fjord. Oceanic forcing, such as global sea level fluctuations and ocean 1029 

temperatures, appears to only have a secondary influence on rates of ice sheet retreat 1030 

in the Clyde fjord-cross-shelf trough system.  1031 

These results highlight the variability of ice-sheet retreat patterns and controls 1032 

along a single high Arctic fjord-cross-shelf trough system, and from one system to 1033 

another. However, uncertainties remain concerning the timing of ice margin stabilizations 1034 

on northeastern Baffin Island, especially on the continental shelf. Future work on Baffin 1035 

Island fjord-cross-shelf trough systems should therefore focus on establishing a robust 1036 

deglaciation chronology combining both marine- and terrestrial-based investigations, 1037 

which would improve knowledge on factors controlling glacier behaviour and provide 1038 

key information for testing numerical simulations on climate and predicting future ice 1039 

mass loss in a warming world. 1040 
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