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1. Introduction

Developing a good predicidve schedule thar sadsfies temporal, technological and preferencs
constaints is basically a search problem, the soluticn of which requires both powertul search
heuristics and adequate means of representation (e. g. (1], [14], {177, [21], [22]). When
scheduling over longer horizons, considering release dare and due date constraints as
compulsory may lead to reject an efficient schedule even when the violaton is insignificant
with regard to the precision of the realisdc limits of predicability (e. g. in [161). Significant
compuration effort may be acmally saved by avoiding scheduling conflicss that are reaily
insignificant.

On the one hand, temporal conswaints prove often to be more or less relaxable or are subjec:
to preferences (e. g. in [14] or {22]). As outlined in [51,{91,[16], fuzzy sets appear as a suitable
framework for the representaton of such flexible temporal consmaints. A general approach ¢
flexible Constraints Sadsfacdon Problems (CSPs) is described in [6]. On the other hand. some
scheduling parameters like the durations of the tasks may be ill-known, because of the

uncerainty pervading the process and can be represented by possibility diszibudons. This
paper presents a consmaint guided approach based on Zadeh's possibility theory [24](8] whica
can be understood as a fuzzy extension of the one proposed by [10]. This new frammework
allows us to handle flexible temporal constraints over reiease dates, due dates and duratcns. as

well as uncerin duradons.

The next secton presents how fuzzy consmained scheduling problems can be defined. in
order 1o take into account flexible temporal constraints (release and due dates conswaints) or
fuzzy durations depending on their interpretadon (flexible durations, which are under our
control, or uncertain duratons, which can oniy be fuzzily estimated). Secdon 3 then explains
how fuzzy non conjuncdve graphs of linear inequalides can deal with the representadon of sucii
constaints. In Secdons 4, we present our solving scheme, which relies on thres basic
procedures: consistency enforcing, wee search and look-ahead analysis. Secdon 5 compares
these procedures with solving paradigms proposed by the classical Constraint Satisfacdion
Probiems (CSP) framework.

2. The fuzzily constrained scheduiing problem

A scheduling problem can be described as follows: a set J of jobs must be performed by
means of a set of resources. Each job j requires the scheduling of a set of operations according

t0 a procsss plan that specifies a partial ordering among these operadons (precedencs
constraints). Once started. operations cannot be interrupted. In the simplest simaton, each

operation Qi must be performed by a given resource and has a precise duraton di. Each
resource can only process one operation ar a tme: capaciry constaints berwesn two operadons
requiring the same resource express that these two operadons cannot overlap in ime. Denctdng

e’

st the stardng time of Of, rdi its release date and ddi its due date. the different conswaints

translate into linear inequalides of the type:
precedence consmaints Pi->k: stk - sd 2 di (Oi before Ok)

capacity constaints Ci<->k: stk - sd 2 di or sd - sk 2 dk” (Oi and Ok cannot overiap).
release date consmaints Ri: sd 2 rdi
due date conswaints Di: st +di < ddi.



Flexibie iemporal constraints.

Reliease and due dates of jobs are ofien subject to preferences. For instance job j must
absolutely be completed ar the latest completion date ddsup(j) (e. g. the date after which the
customer will refuse delivery). Moreover it should preferably be completed before the due date
naﬁ&v or as soon as possibie after this due date. Similariy, it is bewer 10 begin the job after its
preferred release date rdjsup, because we are sure that the corresponding raw material will be
available, while it is impossible to begin it before the earliest acceptabie release date rding(j)
(rding(}) € rds®P(j) <ddiyj)<ddseP(j)). The knowiedge about the release date (resp. due date)
associated 10 j is no longer crisp but can be modeled by means of a fuzzy number td(j) (resp.
dd(j)). Hence, the temporal window in which the job must take place is the fuzzy interval
[rd(5), dd(j)]. Taking into account the precedence constraints, temporai ConSwAINCs pertaining to
the jobs define a fuzzy temporal window [rd(1), dd(i)] for each operarion Oi [5][9].

Let us first recall some results from possibility theory [8]. Consider a parameter x whose
values are resmicted by a fuzzy set A (mx(u) = LA (u)).The possibility of the event "x £ P"
denoted I1(x = P) is the intersecdon degres of A and P: I1(x € P) = supy min (LA (), upu)).
It sstimates to what =xtent "x = P" is possibly tue, or if we prefer 10 what extent "x € P" is
consistent with the informadon "x € A" modelled by wx(u) = A (u) (we make an extensive use
of the sign "= " since P or A may be fuzzy sets ; it expresses a fuzzy beionging which is a
matter of degres).

The necessity of "x £ P" denoted N(x £ P) measures to what extent A is included in the core
of P,or, in other terms, o what exteat "x £ P" is cermainly mue, i.e. is entailed by "x & A™
N(x & P) = infy max (1- pA(w), LP(w)).

In pardcular, if x is a real variabie, A a fuzzy interval and p a crisp number and we have:

I(x2p) =Tlx = [p, +=<)) =suDu>p Ka(w) = e, AYD)
N(x2p) =N(xe [p, +=<)) =infyqp I-La(W) =W A[(P)
x<p) =Tixe (-=p) =supucpHal) =Hia, ==)(P)
N(x<p) =N(xe (=<p]) =infispl-pal®) = +)(P)

where (-e<, A, (~<, A[, [A, +=<), ]JA, +=<) denote respectvely the set of points possibly
befors A, necessarily before A, possibly after and necessarily after A (see Fig. 1).
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Figure 1: (2)points possibly/necessarily before A; (b) points possibly/necessarily after A

_ When the knowledge about the due date is fuzzy, the constraint ddi>sd +di defined by this
due date is not necessarily violated or sadsfied but its sadsfacdon can be matter of degree.
Indeed, the coetficient: i

[I(ddi>sa +di) =II(ddi = [stu+di.+e<)) 1)
= W dapy)(sd +di)

; . = W< dd(HE dij(sd), ® denoting the subwacton of fuzzy quanddes (e.g. [81)
can be understood as the sarisfacdon degree of the due date consmaint for Oi stardng at st:
[I(ddi>sd +di) indicates to what extent there exists a value for ddi greater than sd+di, given that
ddi is reswicied by dd(i): it is equal to 1 if ddipg(i)2sti=di, that is to say if the operation is

o
(<o)
(2]

completed before the preferred due date. If Oi finishes aiter the latest acceptable compledon
date (ddsyp(i)<sd+di) we have |~ dd(iy)(st+di)=0. Otherwise, the closer sd+di to the preferred

due date, the higher {1« Fd(j)j(sti+di). In other terms, the due date ccnstaint is a flexibie
constraint and the fuzzy set models how the due date can be relaxed from the customer's due

date to the latest acceprable completion date. Note that I1(ddi>sd +di) can also be viewed as the
necessity that a precise st (which is fixed) belongs to the fuzzy set [(dd@) © di,+=<).

Similarly, the release date of Ci being more or less relaxable from preferred release date t©©
earliest possible one, the sarsfacdon degree of the release date consmaint is:
5

TI(rdi < st ) = [(rdi = (- =,5d]) = LL(Fd() o) (ST (2]
Hence, the set of more or less possible values for the startng time Oi according to the two
flexible temporal consmaints is the fuzzy interval ?a@.ma@ ® di] (see fig. 2).
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Figure 2: possible values for sd given the temporal constraints over Oi

A solution to a crisp scheduling problem is typicaily an assignmeant (stl,...,sm) of siargng
times of all the operations that sadsfies precedence consaints, capacity conswaints, reiease and
due date consmaints. While release and due dates are flexible, capaciry and precedence
constaints remain crisp. An assignment satisfying precedencs and capacity conswaints satszies
the fuzzy scheduling problem insofar as it sadsfies the least satsfied temporal consTaint. Tae
giobal sarisfacdon level is defined as:

Sat(stl,...,sm) = 0 i (stl,....sm) violates a precedencs or a capacity consmaint  (3)
= min (i =1 a KRG, <)(ST), DM i=1n K= Jd(DEdi}(5T)) otherwise.

Hence solutions are not equally preferred: satisfacdon degrees inducs a total ordering over
the soludons of the problem defined by capacity and precedencs conswmaints. A fuzzy job shop
scheduling is in fact a constrained optumizaton problem for which the best soludons are those
requesting the least relaxation of release dates or due dates. In any case the assignments
violadng earliest release dates or latest completon dates are not acceptable (sat = 0) whereas the
assignments satisiying preferred release and due dates (if they exist) are the best (sat = 1).
Otherwise, an implicit relaxaton of flexible constaints is performed, achieving a made-off
between antagonistic constraints in the spirit of [3]: our framework allows the meatment of
pardally inconsistent problems. In fact. the satisfacton degree of the best assignment evaluates
to what extent there is an assignment satisfying all the consmaints. We can define the feasibility
degree of the problem by: Cons = max(stl.....sm) Sart(stl,....sm) &)
When the consmaints are partiaily inconsistent, 0< Cons <1, since no assignment can pestecty.

satisfy all the conswaints.

Note that conmarily to scheduling problem approaches like those defined in [14][22], a high
degree of satisfacdon for a consmaint (e. g. total sadsfacdon of due date for a job ) cannot
counterbalance a low degree for another constraint (e. g. almost viclaton of latest accepuable
compledon date for another job). Sarisfacdon degress cannot be interpreted in terms of cosis.
but in terms of safety ranges. Indesd, it can be shown that:

Sat(stl,...,sm) =0  if (sil.....sm) violates a capacity or a precedence consmaint (5)

= min jej (MIN Keag), =)D Heme, &)(e)) otherwise
where sj and ej are respectvely the starmng and the ending dates of job j. This means that
Sart(stl,...,stn) represents the mummal rracaon of the flexibility ranges dds,p(j) - ddingj) (resD-
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tdsyp(j) - 7ding(j)) which are left from the completon times (resp. sarting dmes) of the jobs 1o
thetr latest acceprable compietion dmes (resp. eariiest reiease dates). If all the Dn.ﬁdEQ ranges
are taken equal, the best scheduies are those that minimize the tardiness and earliness of all the
jobs. In other terms, our approach is looking for a temporally safe schedule rather than for a
low-cost schedule. ;

Flexible durarions.

This framework can aiso be extended to problems with ovnnmn.onm 5<o_<Em fuzzy
durations, depending on their interpretadon. First, duradons can be subject 1 preferences,
when they are decision variabies under our conmol. This duraton may Sanna. be determined by
tuning the mackine on which the operation is performed (for instance, muning the speed of a
machine-ool affects the machining ime). For a given operation © be optimaily performed ideal
values of the mning parameters exist, and more generally, possible ranges that conswmain these
parameter values, in which preferences exist, and that can be modelled by fuzzy u:Bcnnm (ses
(4]). Two conflicing requirements for the tuning can be envisaged: the shorter the duradon, the
better {or the sake of meedng scheduling constraints ; however, the optimal tuning parameter
values may lead 1o a longer processing time ensuring a better quality.

When subject to preferences, the possibie duratdons of operation Oi may be described by a
aunimal duraton duing(i) and a preferred duradon dugyp(i): dufi) is a fuzzy number, like rd(i)
and dd(i). The duraton di of each operaton Oi is then a parameter whose allowed values are
reswicted by the flexible conswaint di  du(i) that we have to take into account when compuring
the sadsfacdon degree of an assignment (stl,...,sm.dl,....dn):

Sat(stl,....sm,dl,....dn) = 0 if a capacity or a precedence conswraint is violated. (6)
= min = n (HGui)(dD), K, +=)(SH), K< dd(py)(sd + di)) otherwise

The idea of the solving method is to search for an assignment (stl,....sm) of the staring
tmes which guarantess that there exists some possible values (dl,....dn) such as
Sar(sil.....sm, d1.....dn) is maximal and then to compute the comresponding duradons. The
satisiacdon degres of the best total assignment which can be obtained from (stl,....sm) is
Sat(stl,....sm) = sup(d1. .. dn) Sat(stl,...,sm,dl,....dn). Let us first estabiish a more handy
formuladon of Sar(stl,...,sm).

When the sd are fixed such that the precedence and capaciry consaaints may be sadsiied (i.
2. when we have sd < st for ail Pi->j and sd < st or sg<sd for all Ci<->j ), consider , for each
Oi, the set Qi of operations which must suceede Oi: Qi = (j, Pi->j} U (j, Ci<->j and sd < stj}.
Then the values of di must be chosen such that 7j € Qi sj = s + di. hencz sd+di must belong
10 (o<, minjeq; stj]. The other conswaints over the possible values of di are die du(i) and sd+di
= (-o<, dd(1)]. Hence:

SUD(dl.....dn) Sat(stl.....sm, d1l.....dn)

= min (mini=1,n W), we)(s0),

MiNi=1 n [SUPdi TUN( Ky(p){dD), Hiee Fam(sd + di), e, minje gj stj] (S8+dD) 1)
Now: supgi min { Kau(i)(di), Koo ddgiy)(sT + di), Hoee, minje g st} (ST+d1)

= SUPg; MR (Hu(i) (A K ((==,3d(i)] A (<=, minje Qi stil) (ST+di))
According to fuzzy arithmedc, i. €. supg min ( UN(d), pv(s+d)) = Unie N(s), we get:

= H( (=, dd(D)] N (==, minje Qj stj]) @ duci)) (s8)

= min( Y= dd(i) & du(i)] (5T, Hiwee, minje Qi stj & duci)] (58))
(since ((-<,A] N (=< BN 3@ C=(-=<,A 3 C] N (=<, B& C))

= mun( W 3d6) & dui) (53), Bﬁm Qi Hdu(D), —=) (sg - sd) )

 —

Hence, we have: Sar(stl,....st) (7a)
= min (mini=1a KRG, (54),

MiNi={.a K (<= dd() © dugi)] (58), minje Qi Hiduci), +o<) (57 - 5d))
when precedence and capaciry constraints may be sadsiied
=0 otherwise

In other terms, the satisfacdon degree of the best towl assignment which can be obtained
from (stl. Vism)is:

Sat(sl, fesm) = min'( 2 mim=q, Lrrd(), +o<) (sH) (7b)
miNi=ia K-, dd() & ducp] (5),
minpi->j  Hidu(), +=) (57 - sd),
MiNCic.>j Max ( W{du), +<) (T - $8), Lidup), +o)(sT - 57) ) ).

In formula (7b) the feasibility degres of an assignment (stl.....sm) can actually te
expressed in terms of possibility degrees, considering thar rdi (resp. ddi, di) is fuzzily
resmicted by (i) (resp. dd(i), du(i)):

Sat(stl,....sm)=min (  mini=1g [I(rdi € (- == ,sd]), (8)

MiNj={ 4 I1(ddi - di & [sd, ===<)),
minpi.>; [I(di £ (- =57 - sd]),
MinCi<->j [I(dis (-o,st-sd]ordje (-=sd-s5]))

Hence, we can first search for an assignment of the starting drmes such than Sat(stl,....sm)

is maximal. If needed, the set of possible durations du(i)’ for each task Oi corresponding o 2
prescribed assignment (stl,...,sm) can be then compured. The best total assignment which can

be obeained from (stl,...,sm) assigns to each di the value with the highest degres in dui)':
du()' =du(i) M [ -, ddDE rd@] A [0, minp; (53 - s)]
M [0, mincie.>; max(sy - sd, sd - s§)] 9)

Imprecise durations.

In a second interpretation, fuzzy durations can be ill-known parameters, due to possibie
perturbations and can be represented by possibility distribudons. In particular, if the
knowledge about the duratons is actually imprecise (e. g. "Oi will have a duradon of

approximatively 5 tme units"), the possibiliry distibuton mg4; describing the more or less
possible values for the duradon di of a task Oi corresponds to a trapezoidal fuzzy number du(i)
represented by the 4-ple (du< du* Mac*mal.cv such that [I(x =di) =mg; (x) =4 miwcc. In
this case, we are looking for a schedule as robust as possible given the imprecision over the

duradons and the flexibility of temporal consmaints. The most robust schedules are those suca
thar all the conswmaints are satsfied, whatever the duratons wiil be.

A precedence constraint Pi->j wiil be satisfied if whatever the real value of di, we have s -
st 2 di, i. e. if stj - s is greater than all the possible values of di. In other terms, the
satisfaction degres of the precedence consmaint is the necessiry of the fuzzy event di < st - s

N(di € (~==, s1j - st]) = infg; max (1 - Udu()(di), Pye, stj - sei](d)) = Wi, see) (5T - s30) (10)
where ]du(i),+<) is the set of numbers necessarily after du(i).

Similariy, the sadstfacdon degres of a capacity constraint Ci<->j is N(die (—<, sg - st] or
dje (—=, st - s1]). Since the durations are non-interactive (ag(x.y)=min{1ia(j) () iducj) (v)):
we have this satdsfacton degree defined by:

N(di & (—=<, stj - sd] or dj & (—=, st - 53j])

=max ( N(di € (—=, st - sd]), N(dj = (—=, sd - s55j])) (1

—
(@)
w



Ler us now EEia ;
Vi i %%ﬁ&n.mmumﬂmnng of a due date constmaint. Since we do not know the true
cly, the possibie values of its ending st+di are described by a possibility

distribud sonen i ; e
ST1DUBON UstiSdu(i) (si+di) , © denotng the additon of fuzzy quantrties. What is thus

reguested is th i - e i
e nOmn.MnnSMMa isa nomﬂ&.n value for ddi, whose values are restricted by dd(i), greater
values of sg-+di. The sarsfacdon degres of the due date CcOnStaint is the

SnEz,os awwqaa of the fuzzy set si©du(i) in (-e<,dd(i)] (instead of an intersecton degree in

nmmn,Q .mnw.,&_n. aE.muos&, in other terms the necsssity of the fuzzy event sd + di € A.Rmnw@w
Nist+di € (-,dd()]) = infys max (1 - Uy (di)s K dd(DOs] (€D)) (12)

: 7 = N(di £ (-<, dd()esa])

lnstead of its possibility degres [1(ddi - di = [sd, +o<)) = [I(sd+di & (~<,dd(i)]) (ses eq. (8)).

In summary, ¢ isfacdon d : i
¥, the sadisfacton degree of an assignment (stl....,sm) is defined by:

Sat(stl,....sm) = min (mini=1 5 TI(rdi € (- =,s5d]), 4 (13)
mini=1n  N(di & (-, dd(Desd]) ),
Minp;.»; N(di = (—=,sg-sd]),
MiNCjc.>] N(di g (=<, sy - sd] or di £ (—=, sd - sg])).

oo ) = ¥ - s : : 2
Aémwmmnwm‘ms awqu%wm.ww %mﬁwawnouw represent imprecise knowledge about the duraton of a task
- el kot sn\m. mﬁpﬁmaﬁd. .bnm.mnmmmnaoa degree of due dates, precedencs and
o Rl cessity mwn‘n.nm wiich are motvarted by the attempt to get a robust
di is a controllable %QMMMﬂBmMMMMW nmmv% mmmxamm. .ﬂcwa B nmo:nwm" i g
e L 0 - aple: tsfacdon degrees of due dates, precedence
mmmwﬂ,ﬁ NQ(MMmWE:G are compadbility degress. It is then enough that Snu.oﬁnuc.mﬂ aEmanm
ying the constaints, hence the feasibility is expressed in terms of possibiliry oniy.

3. A common framework to handle flexible as well as imprecise durations.

Shes e S
L s 7 e
oo:m:, en Mﬂnww‘oww are o.o.«wéo:. parameters subject (o flexibie constraints the different types of
Tain s mowmpo.n values of the swarting dmes (see formuia 8) can be expressed by:
precedence consmaints Pi->i: s - st = [du(i), + =) :
0U,ODANA. . 8 t . . T e . rch
; ity constraints Ci<->j: s - st € [du(i), =) or sd - s5j € [du(j), + =)
R» v . .. T e pen 35 .
ease and due dates: sd £ [rd(i), dd(i) @ du(@)]

The scheduli bien 3 j i
eduling probiem defines a non conjuncdve graph whose nodes represent the

mwm.w.wwomm. W&nnﬁnnou and temporal constraints define the conjunctve part of the graph: a
M..Wm «m Mmmﬂwo—,w_m)‘wiao% {rd(@), .aamx. is associated 1o each node. Each conjunctve 8mn Y-vw.
Sl «.?.h.un:nc constraint "Oi must precedes Oj", by means of a fuzzy inequality of the
type s§j - m.u wao::u. Capaciry constraints Ci<->j define non conjunctve 82.& @a.. - sd = du(i)
OR sd - 55 2 du(j)) which represent conflicts of the type "Oi before Oj OR Ow before Ow... v
..ﬁ:u kind of graph can also represent constraints involving iil-known duratons. Indesd, in
this numa,.m precedence constraint Pi->j requires that 53 - st belongs to Jdu(i), +=<) the mn., of
(‘mfnm ,.».En.; are necessarily greater than du(i), or, in other terms, that sy - st _omwozqm, 0
F.m,:. !xv... W.sa set olm values thar are possibly greater than d(i), d(i) being amn:nm by
d(i}inf=du(i) amcnuais (see fig.3). v g \
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Figure 3: from Jdu(i), =) to [d(i), +=<)

A due date constaint requires that stidu(i) is included in the core of (-=<, dd(1)], or
equivalently that sd belongs w (-, dd(i) ©d()]. Hence, the different types of conswaints over
the possibie values of the starting tmes can be expressed by:

precedence CONSwAINLs Pi->j sg - sd e [d(i), + =)

capacity conswaints Ci<->j: st - sd & [d(i), + =) or sd- 57 € [d(), + =)

5 s (s R, SE ~

release and due dates: sd £ [Td(D), dd(i) @ d(@)]

Hence, a scheduling probiem with uncertain duratons can be formally expressed by the
same kind of consmaints as a probiem involving flexible duradons, and thus te described by
means of the same kind of non conjuncdve graph. But the interpreator is quite different: in
case of flexibie durations, the duraton parameters over the graph come from the specificaton
of preferencss and represent the possible values that can be assigned to the di's. In case of
imprecisely known duradons, these parameters comes from the uncsrmainty about the real vaiue
of some durations: each of them represeats the set of values that are necessarily greater than @
duradon of an operadon. In the following, we suppose that fuzzy duradons du(i) represent
flexible duradons, knowing thar imprecise duratons can be handled. replacing du(i) by d(i).

4. Solving paradigms.

Our solving approach consists in searching for a sequencing of operadons (like in
(11[16][14]), from which earliest and latest corresponding schedules can be computed. In cther
termns. we have to mansform disjunctdve constraints "Oi before Gj OR Oj before Qi" into
conjunctve ones by choosing one of the alternagves. It is based on three basic procsdures:

« 3 general search procedure,

« a consistency enforcing procedure which propagates decisions through the network,

« a constraint analysis procedure (or look ahead analysis) that determines whici
decision to make next.

Consistency Enjorcing.

Considering only the conjunctve part of the graph, each precedence consmaint Pi->i implies
that the fuzzy temporal window associated to Oj (resp. Oi) must be such that rdj 2 rdi+ di
(resp. ddi <ddj - dj). Henc, the temporal windows can be updated as follows:

dinf(j):= max(tdini(}), a.ﬁ%v. +duinad))  rdsup(j):= max(rdsup(), rdsyp(i) + dusup(D))
dding(i):= min(dding(i), ddin() - dusup()) ddsup(1):= min(ddeup(i), ddsup(i) - duiniti))

A linear algorithm has been implemented which updates the nodes (i. e. the fuzzy remporal
windows) according to the precedence consmaints. This algorithm is an adaptation of ciassical
shortest or longest path algerithms to fuzzy nerworks (see e. g. [3]) that takes advantage of the
acvcliciry of the graph to produce an efficient ordering for updating the wemporal windows.

It turns out that this method guarantess that the best of the eariiest (resp. latest) schedules
according to the precedence constraints can then be obtained when assigning to each sd te

lowest (resp. greatest) date among its best possible values, 1. e. vaiues with highest

membership degres in the set (rd(i), dd@) - du(].



(i) dd(i)

ddg) 8 ) dui
TI(ddi - rdi - di > 0) = LT L 7

Figure 4: consistency degres of Oi's temporal window.

Hence, the consistency of the conjunctive part of the problem, which is the sadsfaction
degree of the best scheduling according to the precedence and limit date conswaints, 1s given
by:

Cons(conjunctive part) = min (mini=ia H{fdG), ~) (S8, Mifli=1a K=, &) & duci)] (8)
Hgmuﬂbaaa&.ﬂ&.ﬁwwﬁvv (14)

Cons(conjunctive part) considering only the precedence consmaints, without taking into
account the capacity constraints, it only yields an upper bound of the consistency of the global
scheduling problem. However, Cons(conjunctive part) = 0 means that a conmadicuon is
detected: conswaints are totally inconsistent

Search Procedure

The sequencing we are searching for is one of those hayving the best mmu.ummmm.o: degres.The
search procedure 1s in fact a ciassical branch&bound algorithm using a depth-first swategy. The
acdes of the res represent pardal sequencing and its leaves complete sequencing: extending a
node means choosing a disjunction (Oi precedes Oj OR Oj precedes Oi) and one of its
unexplored alternarives. This choice is done by the look ahead procedure. .H..:m graph is then
modified according to this decision (the corresponding linear inequaliry is substruted to the
disjuncton) and the consistency of the conjunctve part is enforced using the previous
propagarion algorithm, propagating dd(j) backwards and rd(i) forwards through the new edge.
Hence we get an estmate of Cons(conjunctve par) and associate it to the node: this degree is
an upper bound of the sarisfacton degres of the best complete sequencing that can be reached
from the node. A bound « represents the satsfacton degres of the best current complete
sequencing (inidalized o value 0): only nodes with sarsfacton degree greater than o should be

extended. Otherwise, the algorithm backmacks to a node whose degree is greater than a. o is
updated each tme a complete sequencing beter than the previous one is reached.

This kind of algorithm cleariy has a worst case behaviour not worse than that of classical
backacking used to solve crisp scheduling problems. If the search dme is limited, the use of a
depth first swategy allows to quickly obrain a sub-optimal solution which will be enhanced
according to the remaining dme. Moreover, the flexibiliry of the consmaints is used to guide the
search and allows the pruning of useless branches. Finally, it is possibie to develop a large
class of search algorithms (e.g. beam search as in [15]) based on the same principies and
integranng different variants (ses [23]). :

Look ahead procedure

The efficiency of the search reiies of course on the search heuristic that determines which
disjuncdon to be instanciated next. It is actually based on the nodon of consmaint analysis
[10][11]. For each disjuncdon(Oi precedes Oj OR Oj precedes Oi), an upper bound of the
possibiliry of each alternadve may be compuied [5]:

[Maup(Oi precedes Of) = I1( (ddj - rdi) - (di +dj) 2 0) (13)
= SuDx>0 H(dd(j) & @) @ dude du(j)) (X)
= W= dd(j)e@ rd(i)] (du(i) + du(j)) in case of crisp duratons
Note that wahﬂmznﬁom precedes Oj), Ew:nﬁou. precedes Oi)) is an upper bound of the
satsracdon degree of the search state. Hence, backmacking can be caused by the look ahead
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analysis as soon as there is a conilict such as max (TTsup(Qi precedes CJ), [sup(Oj precedes
Ofi)) £ a, @ being the sardsfacdon degres of the current best instandadon .

[Tsup(Oi precedes Oj) = 0 means that the decision "Oi precedes Oj" is inconsistent in the
current search stare according to Oi and Oj's temporal windows. Hence, decision "Oj precedes
Oi" must be performed (otherwise, the satsfacdon degres of the sequencing will be 0). In face,
min(Igp(Ci precedes O, [gyp(Oj precedes O1)) esamates the degres to which the sadstacdon
will decrease if the best of the two alternatves is not chosen. The necessity (0 choose the best
alternatve, in other erms, the crnciry of the conflict, is defined by:

C(01,0§)= 1- min(Tlp(0i nﬁ.nnmnm O@.. EEmAO_. E.nnn.a,mm O1)) (10)
The cridciry of a resource is the maximal crifciry or the conrlicts betwesn operatons © which
the resource has been assigned.

Hence, the look ahead procedure first computes the critciry of sach conrlict. Note that 2ot
all of the remaining conrlicts are analyzed at ¢ach search state, but only those involving art least
one operation whose fuzzy temporal window has been medified by consistency enfercing
procedure while crearing the search state (the criticiry of the others remain unchanged). In orcer
to keep the sadsfacdon degres as high as possible, a conilict whose critcity is maximal is then
chosen 1o be instanciated by the most possibie alternanve (alternatves (Ci precedes Oj) such as
ITgyp(Oi precedes Oj) < a will lead 1o 2 soluton worse than the best current one: they do act
have to be extended). If several conilicts correspond o the maximal critciry, one can focus on
the machine having the larger set of critcal conilicts. Since the ser of the crideal consiicts
happening on a machine is a fuzzy set, this cardinaiiry is acmally a fuzzy cardinaliry.

Although our framework is not addidve like the one proposed in [22], our zeurisdc is
similar: the lower the qualiry or the best scheduiing deriving from an alternadve, the higner the
priority of the contlict (and of the opposite decision). It is quite different from the heuristc
chosen in the fuzzy approach descmibed in [16], in which the most possible decisions are
chosen regardless of their degress of necessides. In that work, the prioriry or a conrlict is the
maximum possibiliry of the alternadves: a conrlict involving two equaily possitie alternadves is
paracoxicaily considersd as interesdng as a contlic: involving one imrossible alternadve and
one alternarive as possibie as the previous one.

This kind of procsdure can be coupled with a knowiedge-based decision support moduie
(ses for instance [1][7]): on the one hand, the knowledge-based module can be used to break
tes among otherwise equivalent candidartes. On the other hand, there are simadons where the
most crideal conslicts are not cridcal enough to efficiendy modvate a decision: even the worst
alternadve will not decrease the sadsracton degres of the next node (the highest cridcity is
lower than 1 - Cons(conjuncdve part of the current node)). It is then bewer to use other choice
crireria, especially knowledge-based criteria (which can also use the possibility degress
computed by the consmaint analysis procsdure).

Note that the the calculaton IIgp(Oi precedes Of) according to (15) gives only an upper
bound of I1(Qi precedes Oj). For instance, consider a crisp case involving thres tasks
conrlictng for the same resources: du(i) = du(j) = duck) = 2, rd(j) =0, rd(i ) = rd(k) =1 and
dd(i) = dd(j)=dd(k) = 6. We obrain [1g;p(Ci precades Oj) = IIgp(Oj precedes Oi) = | although
no scheduling placing 1 before j is reasible.

More elaborate analyses of the conilicts can be performed, taking more than two operatons
into account. Constraint analysis rules like those proposed in [11] can be 2asily extended 1o the
fuzzy case. The difficulry of this method is that it generares capacity consmaints involving more
than wo tasks (e. g. "Ci must precedes Oj or Ok"), even in no fuzzy problems. These aew
obtained constaint are not easy to use in a look ahead swategy.

We propose new analysis ruies involving more than two nodes which do not present this
drawback. For instance, an approximation of [1gp{Oi precedes Qj) better than the one

s
(@)
e



computed by (16) can be obained taking thres operations into account, say Oi, Cj and Ok. and
letung Ok vary:
sup(Ci precedes Of) = min ( T1( (ddj - rdi) - (di + dj) 2 0), (17

: minOk (max 1 (ddj - rdi) - (di + ¢j +dk) 20),
T1((ddj - rdk) - (di +¢j +dk)20),
TI((ddk - rdi) - (di + dj +dk)20)))

where the three additional terms pertain to the respectve sequences: OvOk/Oj, Ok/OvOj and

Oi/0j/Ok. Coming back to our example, we obtain [Igyp(Oi precedes Oj) = 0, which enforces

the other precedence consmaint

5. Scheduling problems as Constraint Satisfaction Problems (CSPs).

As outlined in [22], scheduling problems can be understood as partcular Constraint
Satisfacton Problems (CSP)(18][20]. In this secdon, we emphasize this comparison, in order
10 relate each of our solving procedures (reducsd to the crisp case) with exisung CSP solving
procedures.

R. Dechter, I. Meiri and J. Pearl [2] define Temporal Conswaint Satsfacdon Problems
(TCSPs) as binary Constaint Satsfacdon Probiems (CSPs) whose variables take real values.
In TCSP, every constraint Tij relating a pair of variables (xi,x]) is defined by a set of intervais
{Lij1,--Jijp ) meaning that xj - xi must beiong to lij1 .. Ulijp. Similarly, the domain of each
variable xi is a unary conswaint Tii defined by a set of intervals. The Conjuncdve part of a
TCSP (defined by the constraints involving at most one interval) is a Simgle Temporal Problem
(STP). Usual CSP's conswaint propagation algorithms can be applied over a TCSP.

A scheduling problem can be easily represented by a TCSP whose variables are the starting
dmes of the tasks (adding a dummy variable, st0 which stands for the beginning of the
schadule). The consmzints pertaining to the problem can be described as follows :

- release and due date constraints relate each sd to st0 : sd - sto € [rd(1), dd(i) - du(i)]
- precedence constaints Pi->j: s - st = [du(), +e<)
- capaciry constraints Ci<->j: st - sd = [du(i), +o<) U (-<, —du(j)]

Enforcing arc consistency in a TCSP consists of iteratively considering each pair of
variables (xi, xj) reiated by a conswaint Tij (resp. Tji) in order to apply the updating pattern
Tii = T (T§ - lijpu-.UTi - Lijy ) @esp Tid = Ti A(Tjj+ Lijp ... 0T +fjip ). If Tij
represents 1 precedence conswaint, these updarng patterns correspond respecdvely t©
backward and forward propagatdon of the staring tmes. In this context, the consistency
enforcing procedure is nothing but an improved arc-consistency procedure. limited to the
conjuncave part of the TCSP : it ensures that the set of possible staring tdmes of sach operaton
is consistent with the possibie starting dmes of each of its neighbours.

Enforcing path-consistency in a TCSP consists of iteradvely oonma_ml:m each 3-wple of
variables (xi, xj, xk) related by the constraints Tik et Tkj in order to apply the updating partern
Tiji=Tij N (Vap liky + Ikjp)- When Tij = Ci<->1 and xk stands for the starting dme of an
operadon Ok. the updating partern ensures that the consmaint berween Oi and Oj is coherent
with Ok : it corresponds to our second analysis scheme (17). When xk=sto, and Tij = Ci<->i
this updating pattern corresponds to our first consaint analysis scheme (15). Indeed,

[+ dd(@)+ du(i), - rd(®)] + [rd(), dd() - duf)] = (rd(§)- dd(i)+ du(i), dd() - du(j)- rd(i)]
and:
([du(i), +<) U (-s<, —du(@)] ) M [rd(j) - dd(i)+ du(i), ddG) - du)- rd(i)]
= [max(du(i), rd(j)- dd(i)+ du(i}), dd(j) - du(j)- rd(i)] (decision Oi before Oj)
; when du(j) + du(i) € dd(j) - rd(i) and du(j) + du(i) > dd(i) - d(j)
= (rd()- dd(i)+ du(i), min(-du(j), dd(j) - du(j)- rd(i))] (decision Oj before Oi)
when du(j) + du(@) > dd(j) - rd(i) and du(j) + du(i) £ dd(i) - rd(}
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The main difference berwesn TCSP's updating pattern and our analysis schemes is that the
TCSP path consistency algorithm modifies the set of intervals artached to a consTaint even
when no decision can be taken (hence, a capaciry consmaint originally defined by two intervals
can be transformed into a consmaint involving more intervals). This modification is then
propagated to others 3-tuples of tasks. In constraint analysis, we only reduce the number of
intervals artached to a constraint, making nothing when it should be increased.In other terms.
conswaint analysis in scheduling problems is a weak version of path consistency in TCSPs.

Finally, the standard solving method (backmack search) is the same in TCSPs and in
scheduling probiems : it consists in considering the dual probiem in order to choose a decision
for each capacity constaint (i. €. to choose an interval for =ach :emporal consmaint Tij). Once 2
decision has been taken, it is propagated (i. e. consisiency enforcing and constraint analysis
procedures are applied) as it is the case in classical CSP when a look ahead procedure is used.

Hencs, when reduced to the crisp case, scheduling problems are particular TCSPs, which
are themselves pardcular CSPs. Moreover, our solving procedures can be underswood as
speciaiized (and thus improved) versions of some classical CSP algorithms. This remark
suggests to adapt the resuits obtained in the CSP domain in order to improve the resoluton of
scheduling problems - being aware of the specificity of such problems, especially when
designing search heurisdcs : Sacdeh [22] has shown that translating without modificarion CSP
heuristics to the scheduling domain reveals inefficient. A more promising research area for both
domains is the study of flexible problems. For instance,the sudy of scheduling problems
involving costs [22] may define another kind of addidve CSPs than those defined by Freuder
[13]. Moreover, fuzzy scheduling probiems can be viewed as dedicated Fuzzy Conswzaint

Sartistacdon Probiems [6].
6. Conclusion

Possibility theory offers a rich and powerful setting for the representation of scheduiing
constraints pervaded with flexibiliry (e. g. flexible release dares, due dates and duradons) or
uncertainty (e. g. imprecise durzdons). Classical constaint propagation (e. g. consisiency
enforcing in a conjuncdve graph) and consaint analysis schemes can te easily extended to this
new framework.

Experiments were made [19] to commpare fuzzy consaint analysis (based on (16)) inveiving
flexibie release dates and due dates to crisp consmaint analysis in the framework of the Opal
system [1] (the first version of Opal only assumed crisp windows corresponding to the earliest
release date and the latest acceptable completon date). Except for smongly constrained
probiems where a crisp analysis can make most of the decisions without referring to the
knowledge-based module, these experiments show that fuzzy analysis is more producave than
crisp analysis. The integration of fuzzy duratons has also been implemented and its
compurational comparison o crisp duratons over a real size problem will be soon performed.
Moreover, the more elaborate look-ahead scheme (19) is currently under experiments tw©
determine whether it really enhances both the predicdveness of the search procedure and
significantly reduces the search space (improving the esdmaton of the possibility of sach
aiternative, the analysis will lead to more pruning during the search but each step will be more
dme consuming).

In any case, a fuzzy approach reveals suitzble for scheduling problems involving relaxacie
constraints or imprecise limit dates: explicitly taking the flexibility of the problem into account
does not change significantly the computational cost of the search procedure; the compiexiry of
consistency enforcing and analysis procedures may be multiplied by two in the worst case.
Moreover, we avoid empirical relaxatons techniques which often happen to be more
expensive, difficult to formulate, and subopdmal. Moreover, this framework can be easily
extended to caprure priority berween consmaints (e. g. “it is preferable to schedule Oi befors
0j") se= [6]. It should also be nodced that the fuzzy approach may handle pardaily inconsisten
problems. A solurion (the instanciation with the maximal satisfacdon degree) will be provided
as long as the problem is not totally inconsistent. Finally, we must outline that our formalism
suggests a non-monotonic framework for dynamic scheduiing problems as for dynamic fuzzy

== iz i :
Constaint Satdsiacdon Probiems [6].

P



In this paper. we have presented an approach for computing predictve schedules Bﬁ.wm into
account flexibiliies and uncertainty. Clearty, we may also think of taking advantage or fuzzy
conswaints in a real-time monitoring perspectve.
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