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Life is on the razor's edge as resulting from competitive birth and death random forces. We illustrate this aphorism in the context of three Markov chain population models where systematic random immigration events promoting growth are simultaneously balanced with random emigration ones provoking thinning. The origin of mass removals are either determined by external demands or by aging leading to different conditions of stability.

Introduction

Catastrophic events striking some population can cause major death toll and they hopefully occur rarely at hectic times. At calm times, the population can simply grow safely, maybe at a random pace. Catastrophe models are based on this idea that birth and death are exclusive events. The binomial catastrophe model is when, on a catastrophic event, the individuals of the current population each can die or survive in an independent and even way with some probability, resulting in a drastic depletion of individuals at each catastrophic step. For such systems, there is then a competition between random growth and declining forces, resulting in a subtle balance of the two. They can be handled in the context of discrete-time Markov chains on the non-negative integers, see ( [START_REF] Neuts | An interesting random walk on the non-negative integers[END_REF][8] [START_REF] Ben-Ari | A random walk with catastrophes[END_REF] [START_REF] Fontes | Metastability of a random walk with catastrophes[END_REF]).

In [START_REF] Neuts | An interesting random walk on the non-negative integers[END_REF], a catastrophe random walk model was also introduced in which the origin of the removal of individuals was based on a "truncated geometric" model. In words, if a geometric catastrophic event occurs, given the population is in some state, its size further shrinks by a random (geometrically distributed) amount so long as this amount does not exceed the current state; if it does the population size is set to {0}, a disastrous event, [START_REF] Goncalves | Scaling features of two special Markov chains involving total disasters[END_REF]. So, the random sequential thinning of the population keeps going on but is stopped as soon as the current population size is exhausted. At calm times, the population is incremented by a random amount. The geometric effect corresponds to softer depletion issues than for the binomial model. This random walk may also be viewed as giving the size of some population facing (possibly) accidentally a steady random geometric demand of emigrants from outside or alternatively being revitalized by a steady number of immigrants. This model was recently further analyzed in [START_REF] Huillet | On random population growth punctuated by geometric catastrophic events[END_REF]. More examples and motivations can be found in [START_REF] Artalejo | Evaluating growth measures in an immigration process subject to binomial and geometric catastrophes[END_REF] [START_REF] Cairns | Extinction times for a general birth, death and catastrophe process[END_REF], essentially in continuous-times.

Putting aside the catastrophe idea, one can think of a similar random walk process now giving the size of some population facing systematically a steady random demand of emigrants from outside and simultaneously being revitalized by a steady number of immigrants. Alternatively, this Markov chain is a model for the state of some stock resulting from the competition between successive random supplies systematically balanced by simultaneous truncated geometric random demands. This results in a Markov chain of a new type.

All such Markov chains models have been designed in an attempt to explain the transient and large-time behavior of the populations size. Some results concern the evaluation of the risk of extinction and the distribution of the population size in the case of total disasters where all individuals in the population are removed simultaneously, ( [START_REF] Swift | Transient probabilities for a simple birth-death-immigration process under the influence of total catastrophes[END_REF] [START_REF] Goncalves | Scaling features of two special Markov chains involving total disasters[END_REF]). Such Markov chains are random walks on the non-negative integers (as a semigroup) which differ from standard random walks on the integers (as a group) in that a one-step move down from some positive integer cannot take the walker to a negative state, resulting in transition probabilities being state-dependent.

In Section 2 of this work, we first study the variation of the Neuts' truncated geometric catastrophe model in discrete-time, in which input and output can occur simultaneously. It is also a Markov chain on the non-negative integers.

Using a generating function approach, we first discuss the condition under which this process is recurrent (either positive or null) or transient. The recurrence/transience phase transition is sharp and it easily occurs, due to moderate depletion at shrinkage steps of this model.

To this end, a recurrence relation for the probability generating function of this process is first derived (Proposition 1). It is used to discriminate the phase transition between recurrent and transient regimes.

-In the positive-recurrent (subcritical) regime, we describe the shape and features of the invariant probability measure (Theorem 2). We emphasize that in the nullrecurrent (critical) regime, no non trivial invariant measure exists. We then show how to compute the double (space/time) generating functional of the process (Proposition 3). Using this representation, we derive the generating functions of the first return time to zero (the length of the excursions) and of the first local extinction time (else first hitting time of 0) when the process is started at x 0 > 0. In the recurrent regime, a first local extinction occurs with probability 1. The analyses rely on the existence of a 'key' function which is the inverse of the singularity of the double generating function of the process. The Lagrange inversion formula yields a power-series expansion of the 'key' function (Proposition 4). It is used to prove a decomposition result for the first local extinction time (Theorem 5).

-In the transient (supercritical) regime, after a finite number of visits to {0}, the chain drifts to ∞. We first emphasize that no non trivial invariant measure exists either. Using the expression of the double generating functional of the process, we get access to a precise large deviation result (Proposition 6). The harmonic (or scale) function of a version of the process forced to be absorbed in state {0} is then used to give an expression of the probability that extinction occurs before explosion (Proposition 7).

In Section 3, two related emigration/immigration models are analyzed. One is a model related to the truncated geometric emigration/immigration one of Section 2; it was recently introduced in [START_REF] Barreto-Souza | Modified Galton-Watson processes with immigration under an alternative offspring mechanism[END_REF]. In one of its interpretations, the state variable is now the number of individuals that could potentially be released in the latter truncated geometric model: the chain's state is the system's capacity of release. This 'dual' chain is analyzed along similar lines as before and it is shown to exhibit very different statistical features; in particular it is emphasized that the corresponding Markov chain is always positive-recurrent (subcritical) whatever the law of the input (Proposition 8); a remarkable stability property. Using the expression of its double generating function (Proposition 9), we further show that, in this context, the first hitting time of 0 when starting from x 0 ≥ 1, is independent of x 0 and geometrically distributed (Corollary 10).

For comparison, we also briefly revisit the subcritical Bienaymé-Galton-Watson branching process with immigration for which the origin of the pruning of individuals is rather internal and due to the intrinsic unbalance of birth and death events inside the population. In such models, both emigration and immigration also can occur simultaneously as well and so they have not the catastrophe flavor either. The conditions for the recurrence/transience transition are recalled and detailed; they are weak due to massive depletion of individuals at shrinkage steps. In contrast with the truncated geometric model, the critical regime for the underlying branching process exhibits a non-trivial asymptotic behavior, following Seneta's results, [START_REF] Seneta | The stationary distribution of a Branching Process allowing Immigration: A remark on the critical case[END_REF].

All models involve two stationary stochastic sources, one determining the thinning of the population, the other competing one, additive, its growth. In this sense, they are bi-stochastic. Semi-stochastic growth/collapse or decay/surge Piecewise Deterministic Markov Processes in the same vein, although in the continuum, were recently considered in [START_REF] Goncalves | On population growth with catastrophes[END_REF] [START_REF] Goncalves | On decay-surge population models[END_REF], following the work [START_REF] Eliazar | Growth-collapse and decay-surge evolutions, and geometric Langevin equations[END_REF], where physical applications were developed, such as queueing processes arising in the Physics of dams or stress release issues arising in the Physics of earthquakes. Here, growth was determined by a deterministic differential equation and the collapse effect was random and statedependent.

Truncated geometric models

In [START_REF] Huillet | On random population growth punctuated by geometric catastrophic events[END_REF] the following random walk on the non-negative integers was revisited, following the work of [START_REF] Neuts | An interesting random walk on the non-negative integers[END_REF]. It is a Markov chain modeling the competition between successive random supplies β n balanced by truncated geometric random demands δ n . The random walk process gives the size X n of some population facing accidentally a steady random demand δ n of emigrants from outside or alternatively being revitalized by a steady number β n of immigrants. The birth and death sequences were as follows:

• Birth (growth, immigration):

The sequence (β n ) n≥1 was an independent and identically distributed (i.i.d.) sequence taking values in N := {1, 2, ...} , with common law b x := P (β = x), x ≥ 1, obeying b 0 = 0.

• Death (thinning, emigration):

The sequence (δ n ) n≥1 was an i.i.d. shifted geometric(α) -distributed one1 , with failure parameter α ∈ (0, 1), viz. P (δ = x) = αα x , x ≥ 0 (where α := 1α). Due to the memory-less property of δ, the parameter α is alternatively the (constant) discrete failure rate of δ, namely α = P (δ = x) /P (δ ≥ x), x ≥ 0.

The Markov chain under study was given by, [START_REF] Neuts | An interesting random walk on the non-negative integers[END_REF]:

X n+1 = X n + β n+1 with probability p (X n -δ n+1 ) + with probability q = 1 -p, (1) 
with alternating, so exclusive, immigration and emigration events, respectively. The sequence β n was assumed to be independent of δ n and X n-k for all k ≥ 1. The truncated emigration component in ( 1) is a non-linear random function of the state X n . At each step n, the walker either moves up with probability p, the amplitude of the upward move beings β n+1 or, given the chain is in state x, the number of step-wise removed individuals is δ n+1 ∧ x := min (δ n+1 , x) , with probability q.

Note that if X n = 0, then X n+1 = β n+1 with probability p (reflection at 0) and X n+1 = 0 with probability q (absorption at 0).

Remark: Considerable simplifications are expected when β = 1 with probability 1: in this case, the transition matrix P associated to (1) is of Hessenberg type, that is lower triangular with a non-zero upper diagonal. The corresponding process is a skip-free to the right Markov chain. If in addition, δ = 1 with probability 1 (which is ruled out here because δ was assumed here geometrically distributed), we are left with the standard birth and death chain with tridiagonal transition matrix for which a non-trivial extension would be to have the probabilities p and q to move up and down depend on the current state x, [START_REF] Huillet | On a Markov chain model for population growth subject to rare catastrophic events[END_REF]. Conditions of ergodicity of such chains are well-known and have been studied for long, see [START_REF] Karlin | The classification of birth and death processes[END_REF] for example. The Neuts' random walk is thus a generalized birth and death one with state-dependent probability transitions. Exclusivity of birth and death events suggest that in a typical regime, births are at stake, whereas, possibly exceptionally if q is small, a catastrophic event with death toll occurs, [START_REF] Huillet | On random population growth punctuated by geometric catastrophic events[END_REF], [START_REF] Huillet | On a Markov chain model for population growth subject to rare catastrophic events[END_REF]. In the following version of this model, there is no longer such an interpretation of rare catastrophic events preventing growth. ✄

Simultaneous growth and depletion: a new truncated geometric model

We proceed with a similar study of the following modified version of the Neuts' process, deserving a special study and with specific statistical features. Consider the time-homogeneous Markov chain now with temporal evolution:

X n+1 = (X n -δ n+1 ) + + β n+1 ; X 0 ≥ 0, else (2) 
∆X n = X n+1 -X n = -X n ∧ δ n+1 + β n+1
One of its possible observable is

Y n+1 = -X n ∧ δ n+1 ,
the amount of individuals that currently effectively moves out the system. Based on observed (y n ), de-trending can be used to estimate (x n ) .

In contrast with the previous model (1), competing depletion and growth mechanisms can occur simultaneously; the two are no longer exclusive. As before, X n may represent the amount of some resource available at time n or the state of the fortune of some investor facing recurrent expenses but sustained by recurrent income. Due to the demand δ n+1 on day n + 1, the stock shrinks by the random amount S (X n ) := X n ∧ δ n+1 and, concomitantly, there is a simultaneous production β n+1 of this resource, used to face forthcoming demands. One can also loosely think of X n as a model of the height of a random polymer in a stationary random environment, (see [START_REF] Bhattacharjee | Directed polymer in a random medium -an introduction[END_REF] and References therein). Polymer models as 'classical' space-inhomogeneous birth and death Markov chains on N 0 := {0, 1, 2, ...} (with moves up and down only by one unit) were considered in [START_REF] Alexander | Excursions and Local Limit Theorems for Bessel-like Random Walks[END_REF] for example. They exhibit a pinning/depinning transition.

The birth and death sequences of our model are now chosen as follows:

• Growth [input]: (β n ) n≥1 is an i.i.d. sequence now taking values in N 0 , with common law b x := P (β = x), x ≥ 0. We assume 0 < b 0 < 1. We shall let φ β (z) := E z β be the common probability generating function (p.g.f.) of the β's. There is now a positive probability b 0 that β = 0.

• Depletion [output] (thinning): (δ n ) n≥1 is an i.i.d. shifted geometric(α) -distributed sequence (independent of (β n ) n≥1 ), with failure parameter α ∈ (0, 1). Each δ then takes values in N 0 with common law P (δ = x) =:

d x = αα x , x ≥ 0 and mean µ δ := E (δ) = α/α. State 0 is not absorbing (else reflecting) because P (X 1 = 0 | X 0 = 0) = b 0 < 1 :
after some geometric random number of steps, the walker is bounced back inside the state-space. There is a positive probability d 0 = α that δ = 0.

The sequence β n is assumed to be independent of δ n and X n-k for all k ≥ 1.

The one-step stochastic transition matrix P (obeying P 1 = 1, where 1 is a column vector of ones) of the Markov chain X n is (with

d z = 0 if z < 0 and the convention b z=a = 0 if b < a): P (x, y) = x-1 z=x-y b y-x+z d z + P (δ ≥ x) b y , x, y ≥ 0, (3) 
Note P (0, y) = b y , y ≥ 0 and P (x, 0) = P (δ ≥ x) b 0 . In particular also (if emigration equals immigration)

P (x, x) = x-1 z=0 b z d z + P (δ ≥ x) b
x are its diagonal matrix elements. This Markov chain is time-homogeneous, irreducible and aperiodic if and only if 0 < b 0 < 1, with state {0} reflecting. As a result, all states x = {0, 1, 2, ...} are either recurrent or transient. Note that the likelihood of a path (x 0 , ..., x n )

n m=1 P (x m-1 , x m )
has a very complex structure.

Remark: (2) suggests the continuous-time version of this counting process

dX t = -X t-∧ δ t • dt + dN t where δ t d
∼ δ for all t ≥ 0 is a strongly stationary geometric process and N t a compound-Poisson process with discrete jumps' amplitudes β. We shall not run here into the analysis of this process, postponing it to future work.

A continuous space-time version of this process with state-space [0, ∞) would be when δ t d ∼ δ is a strongly stationary process with δ exponentially distributed and when allowing β now to take values in the half-line or, more generally, when allowing N t to be a general Lévy subordinator. ✄

2.2

The recurrence relation for the p.g.f. of X n For any given X n = x, the shrinkage random variable (r.v.): S (x) := (xδ) + obeys S (x) ≤ x, having support on {0, ..., x}. Hence S (X n ) ≤ X n almost surely (a.s.). With ε x the Dirac mass at x, the law of S (x) is obtained as follows:

S (x) d ∼ α x ε 0 + x-1 y=0 αα y ε x-y E z S(x) = α x + α x-1 y=0 α y z x-y = α x + αα x z 1 -(z/α) x α -z
leading to the local drift and variance terms

f (x) : = E (X n+1 -x | X n = x) = E (S (x)) -x + E (β) = - α α (1 -α x ) + E (β) ∼ - α α + E (β) as x → ∞. σ 2 (x) : = σ 2 ((X n+1 -x) | X n = x) = σ 2 (S (x)) + σ 2 (β) = α α 2 - 2x + 1 α α x+1 - α x+1 α 2 + σ 2 (β) ∼ σ 2 (δ) + σ 2 (β) as x → ∞. If µ β := E (β) < ∞ and x is large, the walker 'feels' the constant drift f (x) ∼ x→∞ -α α + E (β) = µ β -µ δ , positive or negative, depending on µ β ≷ µ δ . Fluctuations are of order σ 2 (δ) + σ 2 (β) for large x. Averaging over X n , we obtain Proposition 1 Φ n+1 (z) := E z Xn+1 = φ β (z) x≥0 P (X n = x) α x + αα x z 1 -(z/α) x α -z (4) = φ β (z) Φ n (α) + αz α -z (Φ n (α) -Φ n (z)) = φ β (z) α (1 -z) α -z Φ n (α) - αz α -z Φ n (z)
With π n := (P x0 (X n = 0) , P x0 (X n = 1) , ...) ′ the column vector2 of the states'

occupation probabilities at time n, π ′ n+1 = π ′ n P , X 0 d ∼ δ x0
, is the master equation of its temporal evolution and (4) is the corresponding temporal evolution of Φ n (z) = x≥0 z x P x0 (X n = x) .

Positive recurrence and the invariant probability measure

(subcritical regime)

If Φ ∞ (z) were to exist, it should solve Φ ∞ (z) = φ β (z) α(1-z) α-z Φ ∞ (α) -αz α-z Φ ∞ (z) which is Φ ∞ (z) = αΦ ∞ (α) φ β (z) (1 -z) 1 -z -α (1 -zφ β (z)) = N (z) D (z) . ( 5 
)
Note that Φ ∞ (0) = b 0 Φ ∞ (α) would be the probability that the chain is asymptotically in state {0} . The solution Φ ∞ (0) = Φ ∞ (α) = 0 (suggesting transience) is incompatible with recurrence and the fact that state {0} is non absorbing. The chain (2) being irreducible and aperiodic, it is sufficient for its positive-recurrence to show that Φ n (0) approaches a positive limit as n → ∞, since Φ n (0) = P (X n = 0) = P n (x 0 , 0) is the n-step transition probability from state x 0 to state {0} of the chain.

Suppose X ∞ d ∼ Cδ 0 + (1 -C) δ ∞ for some C ∈ (0, 1) . Then Φ ∞ (z) = C for all z ∈ [0, 1] and 1 = φ β (z) (1 -z) 1 -z -α (1 -φ β (z)) which cannot be true unless φ β (z) = 1 (β d ∼ δ 0 ), which is ruled out. However, Φ ∞ (z) ≡ 0 for all z ∈ [0, 1] (C = 0 and X ∞ d ∼ δ ∞ ) is a possible solution though, corresponding to a transient chain at ∞. Suppose φ β (z) = 1 -λ (1 -z) θ + o (1 -z) θ with λ, θ ∈ (0, 1), so that µ β := φ ′ β (1) = E (β) = ∞. Then, as z → 1 N (z) ∼ Φ ∞ (α) (1 -z) D (z) ∼ αλ (1 -z) θ Φ ∞ (z) ∼ Φ ∞ (α) αλ (1 -z) 1-θ → 0
The chain asymptotically drifts to ∞ with probability 1. Suppose

µ β := φ ′ β (1) = E (β) < ∞.
In that case, the numerator N and denominator D both tend to 0 as z → 1 while their ratio Φ ∞ (z) tends to some constant C. Indeed, as z → 1,

N (z) ∼ αΦ ∞ (α) (1 -z) (1 -µ β (1 -z)) D (z) ∼ (1 -z) (α -αµ β ) Φ ∞ (z) ∼ C := αΦ ∞ (α) / (α -αµ β ) = Φ ∞ (α) 1 -µ β /µ δ
With ′ denoting derivative with respect to z, L'Hospital rule yields N ′ (z)

D ′ (z) → Φ∞(α)
1-µ β /µ δ as z → 1 and does not allow to fix Φ ∞ (α).

There is however a proper p.g.f. solution to [START_REF] Barreto-Souza | Modified Galton-Watson processes with immigration under an alternative offspring mechanism[END_REF] if and only if µ β < µ δ and Φ ∞ (α) = 1µ β /µ δ . We shall call this regime the subcritical regime. Indeed,

Φ ∞ (0) = π (0) = b 0 Φ ∞ (α) = b 0 (1 -µ β /µ δ ) (6) 
is then the well-behaved probability that the chain is asymptotically in state {0}, so that, with τ 0,0 the first return time to 0, by Kac's theorem, [START_REF] Kac | Random walk and the theory of Brownian motion[END_REF] 

E (τ 0,0 ) = 1/π (0) < ∞.
Plugging this particular value of Φ ∞ (α) into (5), we get

Φ ∞ (z) = Φ ∞ (α) φ β (z) α 1 -α 1-zφ β (z) 1-z =: (1 -µ β /µ δ ) αφ β (z) 1 -αφ β (z) where φ β (z) := 1-zφ β (z) 1-z
is the generating function (g.f.) of the tail probabilities of the β + 1's, the shifted β's by one unit so with φ β (1) = 1 + µ β .

Theorem 2 The chain X n (2) with geometric shrinkage S is ergodic (positive recurrent) if and only if µ

β < µ δ < ∞. With a := αφ β (1) ∈ (0, 1) (a = 1 -a),
independently of X 0 , the p.g.f. Φ ∞ (z) of X ∞ admits the final expression:

Φ ∞ (z) = φ β (z) 1 -αφ β (1) 1 -αφ β (z) = φ β (z) a 1 -aC (z) , (7) 
where a 1-aC(z) is a compound shifted-geometric(a) of the r.v.'s with compounding p.g.f. C (z) = φ β (z) /φ β (1) .

The compounding p.g.f. C (z) is the delay p.g.f. of 7), X ∞ is the sum of two independent components: one is β, the other one is the r.v. with p.g.f. a/ (1 -aC (z)), so X ∞ exceeds β and if the r.v. β is infinitely divisible (compound Poisson), so is the r.v. X ∞ . In this positive recurrent regime, we have:

β + 1. It has mean C ′ (1) = E [β (β + 1)] / [2E (β + 1)] < ∞ if and only if E β 2 < ∞. From (
m := E (X ∞ ) = E (β) + a a C ′ (1) = µ β + µ δ E [β (β + 1)] 2 (1 -µ β /µ δ ) ≤ ∞
Inputs β with infinite variance yield an invariant probability measure with infinite mean. An example of such an input β with infinite variance is the one with p.g.f.

φ β (z) = 1 -µ β (1 -z) + λ θ (1 -z) θ ,
with λ ∈ (0, 1) and θ ∈ (1, 2) . In this case,

φ β (z) = 1 + µ β z -λz θ (1 -z) θ-1 and C (z) = φ β (z) /φ β (1) obeys C ′ (1) = ∞.

No invariant measure in the null-recurrent case (critical regime)

Null-recurrent or transient random walks on a countable state-space may have or not a stationary measure, ( [START_REF] Harris | The existence of stationary measures for certain Markov processes[END_REF], [START_REF] Harris | Transient Markov chains with stationary measures[END_REF]). If it has, it may not be unique.

Let [z x ] Φ ∞ (z) be the z x -coefficient of Φ ∞ (z) in its series expansion. If µ β = µ δ , the critical chain is null-recurrent. Recalling Φ ∞ (z) = αΦ∞(α)φ β (z)(1-z) 1-z-α(1-zφ β (z)) with Φ ∞ (0) = π (0) = b 0 Φ ∞ (α) , π (x) := P x0 (X ∞ = x) = [z x ] Φ ∞ (z) = π (0) α b 0 [z x ] φ β (z) (1 -z) 1 -z -α (1 -zφ β (z)) , x ≥ 1. so that π (0) = b 0 (1 -µ β /µ δ ) = 0 ⇒ π (x) = 0 for all x ≥ 1.
The chain (2) has no non trivial ( = 0) invariant positive measure.

The generating functional of the truncated geometric model

With X 0 = x 0 ≥ 1, fixed, defining the double generating function

Φ x0 (u, z) = n≥0 u n Φ n (z) = n≥0 u n E x0 z Xn , from (4) 
, we get

(α -z) Φ x0 (u, z) = z x0 (α -z) + u [φ β (z) (α (1 -z) Φ x0 (u, α) -αzΦ x0 (u, z))] Φ x0 (u, z) = z x0 (α -z) + αu (1 -z) φ β (z) Φ x0 (u, α) α -z + αuzφ β (z) . ( 8 
)
We have,

Φ x0 (u, 0) = G x0,0 (u) = ub 0 Φ x0 (u, α) , (9) 
Φ x0 (u, α) = Φ x0 (u, 0) / [ub 0 ] .
So far, Φ x0 (u, z) is unknown since it requires the knowledge of Φ x0 (u, α) or of Φ x0 (u, 0). Φ x0 (u, z) has a singularity at

u (z) = (z -α) / [αzφ β (z)] . (10) 
In the recurrent regime (µ β ≤ µ δ ), with u ′ (α) = 1/ (ααφ β (α)) > 1, u (z) is concave and monotone increasing on the interval [α, 1] , with u ′ (1) = µ δµ β ≥ 0 (This can be checked from Proposition 4 stating that its inverse is absolutely monotone as a p.g.f., in particular increasing and convex). The corresponding range of u (z) is [0, 1].

The function u (z) has thus a well-defined inverse z (u) which maps [0, 1] to [α, 1]; this inverse is monotone increasing and convex on this interval. We call it the 'key' function, due to its fundamental interest in the sequel.

When in the recurrent regime, [

u n ] Φ x0 (u, z) → Φ ∞ (z) as n → ∞, Φ x0 (u, z
) should converge as z ց z (u) for all u ∈ [0, 1) . So both the numerator N and the denominator D of Φ x0 (u, z) must tend to 0 as z ց z (u), meaning (by L'Hospital rule) that lim zցz(u)

N (u, z) D (u, z) = lim zցz(u) N ′ (u, z) D ′ (u, z) . Near z = z (u) , N (u, z) = z x0 (α -z) + α (1 -z) uφ β (z) Φ x0 (u, α) =: a (z) + b (z) Φ x0 (u, α) ∼ a (z (u)) + b (z (u)) Φ x0 (u, α) + (z -z (u)) [a ′ (z (u)) + b ′ (z (u)) Φ x0 (u, α)] D (u, z) = : c (z) -d (z) u ∼ (z -z (u)) [c ′ (z (u)) -d ′ (z (u)) u] , imposing a (z (u)) + b (z (u)) Φ x0 (u, α) = 0. Therefore, Φ x0 (u, α) = z (u) x0 (z (u) -α) αu (1 -z (u)) φ β (z (u))
and, from (??),

Φ x0 (u, 0) = b 0 z (u) x0 (z (u) -α) α (1 -z (u)) φ β (z (u)) =: G x0,0 (u) ≥ 0, (11) 
is the Green kernel of this model, for u ∈ [0, 1] ; with x 0 ≥ 1, P x0 (X 0 = 0) = 0 and

G x0,0 (u) = n≥1 u n P x0 (X n = 0) = n≥1 u n P n (x 0 , 0) = (I -uP ) -1 (x 0 , 0) ,
the Green kernel (resolvent) of the chain at the endpoints (x 0 , 0) , [START_REF] Neveu | Chaines de Markov et théorie du potentiel[END_REF]. The matrix element P n (x 0 , 0) is the contact probability at 0 at time n, starting from x 0 ≥ 1. Note from [START_REF] Cramér | Sur un nouveau théorème-limite de la théorie des probabilités[END_REF] that G x0,0 (1) = ∞ in the recurrent regime, translating that X n visits state 0 infinitely often. From ( 11) and ( 8), we thus get a closed form expression of Φ x0 (u, z) when x 0 ≥ 1, as:

Proposition 3 In the recurrent regime (µ β ≤ µ δ ), with z (u) the inverse of u (z) defined in [START_REF] Comtet | Analyse combinatoire[END_REF] and explicit in [START_REF] Goncalves | On population growth with catastrophes[END_REF] below, for u ∈ [0, 1) and z ≥ z (u) ,

Φ x0 (u, z) = z x0 (α -z) (1 -z (u)) φ β (z (u)) -z (u) x0 (α -z (u)) (1 -z) φ β (z) (1 -z (u)) (α -z + αuzφ β (z)) φ β (z (u)) . ( 12 
)
Remark: If z = 1, Φ x0 (u, 1) = 1/ (1u) and Φ x0 (0, z) = z x0 , as required. The generating function Φ x0 (u, z) in ( 12) is well-defined when z > z (u) and possibly when z = z (u) as in the recurrent case. ⊲ 2.5 First return time to 0 (recurrent regime)

When x 0 = 0, observing P 0 (X 0 = 0) = 1, G 0,0 (u) = 1 + Φ 0 (u, 0) = 1 + b 0 (z (u) -α) α (1 -z (u)) φ β (z (u))
, with G 0,0 (1) = ∞ (z (1) = 1).

(13) This function is the Green kernel at the endpoints (0, 0) . If n ≥ 1, from the recurrence P 0 (X n = 0) =: P n (0, 0) = n m=1 P (τ 0,0 = m) P n-m (0, 0) , we see, from taking the generating function of both sides and observing the right hand-side is a convolution, that the p.g.f. φ 0,0 (u) = E (u τ0,0 ) of the first return time to 0, τ 0,0 and G 0,0 (u) are related by the Feller relation (see [START_REF] Feller | An introduction to probability theory and its applications[END_REF] and [START_REF] Bingham | Stochastic Processes: Theory and Methods[END_REF] pp 3 -4 for example): G 0,0 (u) = 1+ G 0,0 (u) φ 0,0 (u). Hence, with φ 0,0 (0) = 0 and φ 0,0 (1) = 1,

φ 0,0 (u) = E (u τ0,0 ) = G 0,0 (u) -1 G 0,0 (u) = b 0 (z (u) -α) b 0 (z (u) -α) + α (1 -z (u)) φ β (z (u))
. ( 14)

In particular, observing z ′ (1) = 1/u ′ (1) = 1 µ δ -µ β , we get

E (τ 0,0 ) = αz ′ (1) / (b 0 α) = µ δ b 0 (µ δ -µ β ) if µ β < µ δ (positive recurrence), = ∞ if µ δ = µ β (null recurrence).
As required from Kac's theorem: E (τ 0,0 ) = 1/π (0) = 1/ [b 0 (1µ β /µ δ )] , consistently with (6).

Contact probability at 0 and first local time to extinction (recurrent regime)

With x 0 ≥ 1 (φ x0,0 (0) = 0), using [START_REF] Cramér | Sur un nouveau théorème-limite de la théorie des probabilités[END_REF] and ( 13),

E (u τx 0 ,0 ) = φ x0,0 (u) = G x0,0 (u) G 0,0 (u) (15) = b 0 z (u) x0 (z (u) -α) b 0 (z (u) -α) + α (1 -z (u)) φ β (z (u)) = φ 0,0 (u) z (u) x0 ,
gives the p.g.f. of the first hitting time of 0, starting from x 0 ≥ 1 (the first local extinction time of the chain). We also get

E (τ x0,0 ) = E (τ 0,0 ) + x 0 z ′ (1) = b 0 x 0 + µ δ b 0 (µ δ -µ β ) if µ β < µ δ (positive recurrence), = ∞ if µ β = µ δ (null recurrence). If z ′′ (1) < ∞ (σ 2 (β) < ∞ or σ 2 (τ 0,0 ) < ∞), the variance of τ x0,0 in the positive- recurrent regime is finite whereas if σ 2 (β) = ∞, σ 2 (τ x0,0 ) = ∞.
We observe from ( 10) and ( 14)

φ 0,0 (u) = E (u τ0,0 ) = αb 0 uz (u) αb 0 uz (u) + α (1 -z (u)) , (16) 
so that the laws of τ x0,0 and τ 0,0 are entirely determined by the key function z (u) .

The function u (z) is explicitly defined in [START_REF] Comtet | Analyse combinatoire[END_REF] and z (u) can be obtained from the Lagrange inversion formula as follows: u (z) has a power series expansion in the scaled variable z := (zα) /α and

u ( z) = z (α + α z) φ β (α + α z) =: z φ β ( z) maps [0, 1] to [0, 1]
, with u ( z = 0) = 0. By Lagrange inversion formula ([10], p. 159), we can get z (u) satisfying u ( z (u)) = u as

z (u) = n≥1 u n [u n ] z (u) with [u n ] z (u) = 1 n z n-1 φ β ( z) n .
Finally, with z (0) = 0 and z (1) = 1, z (u) = α + α z (u) and we obtain:

Proposition 4 It holds that z (u) = α + α n≥1 u n n z n-1 φ β ( z) n ( 17 
)
is the series expansion representation of the 'key' function z (u). It holds that [u n ] z (u) > 0 translating that z (u) is a p.g.f..

Remark:

One can be more precise. As such indeed, z (u) can be interpreted as the p.g.f. of the total progeny of a Bienaymé-Galton-Watson (BGW) process with branching mechanism p.g.f. φ β ( z) = (α + α z) φ β (α + α z), ( [START_REF] Harris | The theory of branching processes[END_REF], p. 32); φ β ( z) is thus the p.g.f. of an offspring r.v. 

(α), b ≥ 0) are i.i.d. Bernoulli(α), independent of β. Note E (ν) = φ ′ β (1) < 1 (the sub-critical BGW case) if and only if µ β < µ δ in which case z ′ (1) = 1/ (1 -E (ν)) < ∞.
Finally, z (u) is a zero-inflated p.g.f. version of z (u). Note also that z (u) is always a p.g.f., regardless of whether the chain (2) is recurrent or transient. When the chain is recurrent, the inverse u (z) of z (u) is increasing and concave on its full definition domain [α, 1] reaching 1 for the first time at u = 1, whereas, as sketched below, in the transient regime, u (z) is increasing and concave only on the sub-interval [α, z * ] ⊂ [α, 1] with u ′ (z * ) = 0 and u (z * ) > 1. On the sub-interval [z * , 1], u (z) is decreasing and concave, with u ′ (1) = µ δµ β < 0. In that case, z (u) is the inverse of the left branch expansion of u (z) near α. ✄

The function φ 0,0 (u) in ( 16) is thus a p.g.f., entirely determined by the p.g.f. z (u). And z (u) x0 is the p.g.f. of the r.v.

τ x0 = x0 k=1 τ k , ( 18 
)
where τ k is an i.i.d. sequence with τ k d ∼ τ . Note E (τ ) = α α E (τ 0,0 ) = E (τ 0,0 ) /µ δ . We have thus proven Theorem 5 In the recurrent regime, the function z (u) is the p.g.f. of some random variable τ ≥ 0. With τ x0 defined in [START_REF] Goncalves | On decay-surge population models[END_REF], the first local time to extinction random variable τ x0,0 is decomposable as

τ x0,0 d = τ x0 + τ 0,0 , ( 19 
)
where τ x0 ≥ 0 and τ 0,0 ≥ 1 are independent. With φ 0,0 (u) given by ( 16), the p.g.f. of τ x0,0 is given in [START_REF] Fontes | Metastability of a random walk with catastrophes[END_REF] with z (u) the inverse (probability generating) function of

u (z) = (z -α) / [αzφ β (z)]. In particular, if σ 2 (β) < ∞, with σ 2 (τ ) = α α σ 2 (τ 0,0 ) + α α 2 E (τ 0,0 ) 2 < ∞, σ 2 (τ x0,0 ) = x 0 σ 2 (τ ) + σ 2 (τ 0,0 )
Remark: In the recurrent regime, τ x0,0 only is the first local time to extinction (the first hitting time of 0); the chain (2) being bounced back in the bulk of its definition domain when it hits 0, there are infinitely many subsequent local times to extinction (separating consecutive excursions). Would the chain be forced to have state 0 absorbing, this first local time to extinction would become the ultimate time to extinction. ✄

The transient (supercritical) regime

In the transient regime (µ β > µ δ ), the denominator of Φ x0 (u (z) , z) tends to 0 as u → u (z) and u (z) does not cancel the numerator: u (z) is a true pole of Φ x0 (u, z). When z ∈ [α, 1], u (z) is concave but it has a maximum u (z * ) strictly larger than 1, attained at some z * inside (α, 1), owing to u (α) = 0, u (1) = 1 and u ′ (1) < 0. We anticipate that for some constant C > 0,

P x0 (X n = 0) ∼ C • u (z * ) -n as n → ∞,
stating that {X n } only visits 0 a finite number of times before drifting to ∞.

No invariant measure in the transient regime

Before turning to this question, let us observe the following: suppose µ β > µ δ , so that the super-critical geometric chain is transient. Would an invariant measure exist, it should satisfy π (0) = b 0 (1µ β /µ δ ) < 0. The chain has no non trivial ( = 0) invariant positive measure either. It is not Harris-transient, [START_REF] Harris | Transient Markov chains with stationary measures[END_REF].

Large deviations

Consider v (z) := 1/u (z) where u (z), as a pole, cancels the denominator of Φ x0 (u, z) without cancelling its numerator, so

v (z) = αzφ β (z) z -α . Over the domain α < z ≤ 1, v (z) is convex with v ′ (z) = α φ ′ β (z) z (z -α) -αφ β (z) (z -α) 2 and v ′′ (z) > 0,
because z (u) being a p.g.f., its inverse u (z) is concave. We have

v (1) = 1 and v ′ (1) = µ β -µ δ ,
and v ′ (1) > 0 if and only if the chain is transient. In this transient regime,

Φ n (z) 1/n → v (z) as n → ∞.
whose positive solution is

z * = α (1 + 1/µ β ).
We have α < z * < 1 if and only if µ β > µ δ (the supercritical regime). On the range α < z < 1, we have

u ′ (z) = α (1 + µ β ) -µ β z 2 αz 2 u ′′ (z) = - 2α (1 + µ β ) αz 3 < 0,
showing that u (z) has the announced properties. ⋄

The scale function and the extinction probability (transient case)

In the transient regime, the chain {X n } started at x > 0 can drift to ∞ before it first hits 0. There is thus only a probability smaller than 1 that {X n } gets extinct for the first time.

In the transient regime, let then P → P abs with the modification P abs (0, y) = δ 0,y , forcing state {0} in P to be absorbing, corresponding to: X n → Y n := X n∧τx,0 . The matrix P abs is stochastic but non irreducible, having state {0} as an absorbing class. The harmonic (or scale) sequence h solves:

P abs h = h, (23) 
where h = (h (0) , h (1) , ...) ′ is a column vector. With y ≫ 1 and x ∈ {1, ..., y -1} , let

τ x,y = inf (n ≥ 0 : X n ≥ y| X 0 = x) if such an n exists, = +∞ if not.
By induction, with h (0) = 1 and with τ (y)

x := τ x,0 ∧ τ x,y ∀x ∈ {1, ..., y -1} , ∀n ≥ 0:

h (x) = Eh Y n∧τx,y = Eh X n∧τ (y)
x .

The harmonic function on {1, ..., y}, makes h X n∧τ (y)

x a martingale, [START_REF] Norris | Markov chains[END_REF]. As n → ∞, ∀x ∈ {1, ..., y -1}:

h (x) = Eh (X τx ) = h (0) P (τ x,0 < τ x,y ) + Eh X τx,y P (τ x,y < τ x,0 ) . (24) 
As y → ∞, both τ x,y and the overshoot X τx,y → ∞. Assuming there is a solution h (x) > 0 such that h (x) → 0 as x → ∞, yields

P (τ x,0 < τ x,∞ ) = h (x) , (25) 
indeed consistent with the guess: h (x) > 0 and vanishing at ∞ when x → ∞. This expression also shows that h (x) must be decreasing with x. Note P (τ x,0 < τ x,∞ ) = P (X τx = 0) where τ x := τ x,0 ∧ τ x,∞ . We obtained:

Proposition 7 In the transient regime, with h defined in [START_REF] Huillet | On a Markov chain model for population growth subject to rare catastrophic events[END_REF] obeying

h (0) = 1, h (x) = P (τ x,0 < τ x,∞ ) ,
is the probability of extinction starting from state x.

Remark:

The function h := 1h clearly also is a (increasing) harmonic function and so is any convex combination of h and h with weights summing to 1, [START_REF] Neveu | Chaines de Markov et théorie du potentiel[END_REF]. Clearly, h (x) = P (τ x,∞ < τ x,0 ) = P (X τx = ∞) . ⊲

Related random walks

We introduce and analyze two related random walks on the non-negative integers.

Life annuities policy

Consider now the Markov chain with state-space N 0 and with temporal evolution:

X n+1 = X n ∧ δ n+1 + β n+1 ; X 0 > 0, else (26) 
∆X n = X n+1 -X n = -(X n -δ n+1 ) + + β n+1 .
One of its notable observable is

Y n+1 = -(X n -δ n+1 ) + ,
the amount of individuals that potentially could leave the system. As before indeed, X n may represent the size of some population facing steady demands (emigration) and supplies (immigration). But here, if the demand exceeds X n , there is no update of the population size whereas if not, the population size is instantaneously switched to the lower size of the demand. As a result, X n now represents the potential capacity of response of a population (as the amount of individuals it would potentially be able to release) when facing the demands and in the presence of additive supplies. In this sense, ( 26) is 'dual' to [START_REF] Aly | Explicit stationary distributions for some Galton-Watson processes with immigration[END_REF].

Alternatively, X n may represent life annuities indexed and ceilinged on the stock price δ n+1 of some commodity balanced with an additive automatic penalization itself indexed on the stock price β n+1 of some other commodity, in a stable and stationary environment. As before, competing depletion and growth mechanisms can occur simultaneously.

In [START_REF] Karlin | The classification of birth and death processes[END_REF], the i.i.d. sequence β n is again assumed to be independent of δ n (i.i.d.) and X n-k for all k ≥ 1. The Markov chain [START_REF] Karlin | The classification of birth and death processes[END_REF] was recently introduced in [START_REF] Barreto-Souza | Modified Galton-Watson processes with immigration under an alternative offspring mechanism[END_REF], but without the interpretations we give here of this model.

Remark: (26) suggests the continuous-time version of this process

dX t = -X t--δ t + • dt + dN t
where δ t d = δ for all t ≥ 0 is a stationary process and N t a compound-Poisson process with jumps' amplitudes β ≥ 0. ⊲

The one-step stochastic transition matrix P (obeying P 1 = 1, where 1 is a column vector of ones) of the Markov chain {X n } in ( 26) is:

P (x, y) = α x-1 z=0 α z b y-z + α x b y-x , x ≥ 1 and y ≥ x P (x, y) = α y z=0 α z b y-z , x ≥ 1 and y < x. P (x, y) = x z=0 d z b y-z , x, y ≥ 0. ( 27 
)
In particular P (x, 0) = d 0 b 0 and P

(x, x) = α x-1 z=0 α z b x-z + α x b 0 .
For any given X n = x, S (x) := x ∧ δ ≤ x [with again: S (X n ) ≤ X n a.s.] has law now obtained as follows:

S (x) ∼ α x ε x + x-1 y=0 αα y ε y E z S(x) = α x z x + α x-1 y=0 α y z y = α x z x + α 1 -(αz)
x 1αz leading to the local drift and variance terms

f (x) : = E (X n+1 -x | X n = x) = E (S (x)) -x + E (β) = -x + α α (1 -α x ) + E (β) σ 2 (x) : = σ 2 ((X n+1 -x) | X n = x) = α α (1 -α x ) 1 + α α (1 + α x ) -2 α α xα x + σ 2 (β) .
As x is large, the walker 'feels' a negative stabilizing linear drift f (x) ∼ -x whereas the variance σ 2 (x) ∼ α α 2 + σ 2 (β) = σ 2 (δ) + σ 2 (β) goes to a constant as x → ∞. Averaging over X n , we get

Φ n+1 (z) := E z Xn+1 = φ β (z) x≥0 P (X n = x) α x z x + α 1 -(αz) x 1 -αz (28) = φ β (z) Φ n (αz) + α 1 -αz (1 -Φ n (αz)) = φ β (z) α + α (1 -z) Φ n (αz) 1 -αz Note Φ n+1 (0) = b 0 (α + αΦ n (0)) entails Φ n (0) = P (X n = 0) = b 0 α 1 -(b 0 α) n 1 -b 0 α + (b 0 α) n Φ 0 (0) → n→∞ P (X ∞ = 0) = a := b 0 α 1 -b 0 α ,
a well-defined limit. The chain [START_REF] Karlin | The classification of birth and death processes[END_REF] being irreducible and aperiodic, it is sufficient for its positive-recurrence to show that Φ n (0) approaches a positive limit as n → ∞.

As a result, we get:

Proposition 8 The chain [START_REF] Karlin | The classification of birth and death processes[END_REF] is positive recurrent (ergodic) with Φ ∞ (1) = P (X ∞ < ∞) = 1, whatever the law of β.

The chain ( 26) is so strongly and rapidly attracted to {0} that there is no heavytailed r.v.'s capable to make it switch to a transient regime, a remarkable stability property of this process. This property may be viewed as a consequence of Proposition 4 in [START_REF] Barreto-Souza | Modified Galton-Watson processes with immigration under an alternative offspring mechanism[END_REF], stating that, with δ m i.i.d. geometric(α) -distributed, the iterate of the shrinking operator obeys

∧ n m=1 (δ m+1 ∧ X m ) = D n+1 ∧ n m=1 X m
where D n+1 is a r.v. with geometric distribution having failure probability 1α n tending to 1 geometrically fast. The limiting p.g.f. Φ ∞ (z) solves

Φ ∞ (z) = φ β (z) α + α (1 -z) Φ ∞ (αz) 1 -αz (29) If µ β < ∞, then m := E (X ∞ ) < ∞ with m = µ β + α α (1 -Φ ∞ (α))
In one case and for a specific value of b 0 , the p.g.f. Φ ∞ (z) is geometric(a) with the limiting failure probability a = b0α 1-b0α ∈ (0, 1). This occurs when

φ β (z) = b 0 + b 0 αz 1 -αz ,
the p.g.f. of a zero-inflated geometric distribution, provided b 0 = 1/ (1 + α) ∈ (0, 1) in which case a = α. Indeed,

φ β (z) = 1 1 + α 1 -α 2 z 1 -αz with mean µ β = α/ [α (1 + α)] = α/ 1 -α 2 and Φ ∞ (z) = α
1-αz solves [START_REF] Norris | Markov chains[END_REF]. Φ ∞ (z) is a one-parameter geometric solution with failure parameter α and mean α/α. We note that both φ β (z) and Φ ∞ (z) share the same algebraic singularity at z b = 1/α. Except for this exceptional case, the functional equation ( 29) has no known explicit solution. However, using singularity analysis, it is possible to extract a large x expression of P (X ∞ = x) in the case of algebraico-logarithmic singularity of φ β (z) .

A short reminder on singularity analysis, [START_REF] Flajolet | Singularity analysis of generating functions[END_REF]. Let φ (z) be any analytic function in the indented domain defined by

D = {z : |z| ≤ z 0 , |Arg (z -z c )| > π/2 -η}
where z c , z 0 > z c , and η are positive real numbers. Assume that, with σ (x) = x a (log x)

b where a and b any real numbers (the singular exponents), we have

φ (z) ∼ C 1 + C 2 σ 1 1 -z/z c as z → z c in D, (30) 
for some real constants C 1 and C 2 . Then: -if a / ∈ {0, -1, -2, ...} the z x -coefficients in the power-series expansion of φ (z) satisfy

[z x ] φ (z) ∼ C 2 z -x c • σ (x) x 1 Γ (a) as x → ∞, (31) 
where Γ (a) is the Euler function. φ (z) presents an algebraic-logarithmic singularity at z = z c .

-if a ∈ {0, -1, -2, ...} and b = 0, the singularity z = z c is purely logarithmic and

[z x ] φ (z) ∼ C 2 bz -x c • σ (x) x log x 1 Γ ′ (a) as x → ∞, (32) 
involving the derivative of the reciprocal of the Euler gamma function at a. Thus, for algebraic-logarithmic singularities, the asymptotic of the z x -coefficients can be read from the singular behavior of the function φ (z) under study.

Coming back to (29), we observe that if the p.g.f. φ β (z) has a singularity at some z b ≥ 1, it is also a singularity for Φ ∞ (z). Indeed, the term α+α(1-z)Φ∞(αz) 1-αz | z=1/α = 1 so that 1/α is not a singularity of Φ ∞ (z) in [START_REF] Norris | Markov chains[END_REF]. The singularity analysis of φ β (z) can essentially be transfered to Φ ∞ (z).

Examples:

-Suppose a > 0, σ (x) = x a and

φ β (z) ∼ C 1 + C 2 (1 -z/z c ) -a as z → z c > 1. Then, as z → z c , Φ ∞ (z) ∼ C 1 + C 2 (1 -z/z c ) -a α + α (1 -z c ) Φ ∞ (αz c ) α + α (1 -z c ) ∼ C 1 + C ′ 2 (1 -z/z c ) -a [z x ] Φ ∞ (z) = P (X ∞ = x) ∼ C ′ 2 z -x c • x a-1 1 Γ (a) ,
and Φ ∞ (z) behaves similarly as φ β (z). The singularity of Φ ∞ (z) is also the one

z c > 1 of φ β (z) because Φ ∞ (αz c ) < 1.
As a result, P (X ∞ = x) and P (β = x) have similar behaviors for large x.

-If, with σ (

x) = x -a , φ β (z) = 1 -λ (1 -z) a , a, λ ∈ (0, 1), where z c = 1. Then, as z → z c = 1, Φ ∞ (z) ∼ 1 -λ (1 -z) a with m = ∞. This is because α+α(1-z)Φ∞(αz) α+α(1-z) → 1 as z → 1. Here, [z x ] Φ ∞ (z) = P (X ∞ = x) ∼ -λx -(a+1) 1 Γ (-a) , as x → ∞,
with a power-law tail.

-Supposing, with σ

(x) = (log x) -b , b > 0, φ β (z) ∼ z→zc C 1 + C 2 (-log (1 -z/z c )) b , then Φ ∞ (z) behaves similarly as φ β (z) and [z x ] Φ ∞ (z) = P (X ∞ = x) ∼ C ′ 2 bz -x c • 1 x(log x) b+1 1 Γ ′ ( 0 
); when z c = 1, both β, X ∞ logarithmic moments of order smaller than b but no moments of any arbitrary positive order. ✷ With X 0 = x 0 ≥ 1, defining the double generating function

Φ x0 (u, z) = n≥0 u n Φ n (z) = n≥0 u n E x0 z Xn , from (28), we get Proposition 9 Φ x0 (u, z) = z x0 + uφ β (z) 1 -αz α 1 -u + α (1 -z) Φ x0 (u, αz) .
Consequently,

Φ x0 (u, 0) = G x0,0 (u) = b 0 αu (1 -u) (1 -b 0 αu) = b 0 αu 1 -b 0 α 1 1 -u - b 0 α 1 -b 0 αu
is the Green kernel of this model and it is independent of x 0 . Indeed, whatever x 0 , the only way to move to 0 in one step has probability b 0 α. The contact probability at 0 is given by

[u n ] Φ x0 (u, 0) = P x0 (X n = 0) = b 0 α 1 -b 0 α (1 -(b 0 α) n ) → n→∞ b 0 α 1 -b 0 α ,
so the generic term of a non-summable series as required, translating that state 0 is visited infinitely often. The one-step probability of reaching 0 being independent of the current state gives

Corollary 10

The first hitting time τ x0,0 of 0 when starting from x 0 ≥ 1, is independent of x 0 and geometrically distributed with failure probability b 0 α.

Sub-critical BGW processes with immigration: massive depletion

For comparison, we revisit these related bi-stochastic processes where a similar competition between birth and death events holds. In such processes, the shrinkage part of the population size is not due to the facing of external demands of emigrants, rather by internal unbalance when on average the branching number per capita is less than 1 (sub-criticality). This depletion mechanism is much stronger than the one in ( 2) and so the conditions on β under which ( 33) is ergodic are much weaker than the ones of the Section 2 model. Bienyamé-Galton-Watson (BGW) processes with random branching number ν obeying P (ν = 0) > 0 are very unstable, going either extinct or drifting to ∞, [START_REF] Harris | The theory of branching processes[END_REF]. Almost sure extinction of a (sub-)critical BGW process can be avoided while allowing immigration. Let (β n ; n ≥ 1) be an i.i.d. random sequence of r.v.'s taking values in N 0 (the immigrants) and let φ β (z) = E z β be their common p.g.f.. With X 0 = 0, consider the Markov branching process with immigration (BGWI) X n , recursively defined by

X n+1 = Xn i=1 ν i + β n+1 , n ≥ 0. ( 33 
)
Here the ν i 's are the i.i.d. branching numbers of the underlying BGW process. We let φ ν (z) := E (z ν ). With z y ′ φ ν (z) the z y ′ -coefficient of φ β (z), {X n } has one-step transition matrix (x, y ∈ N 0 ):

P (x, y) = y y ′ =0
z y ′ φ ν (z)

x b y-y ′ .

Remark: Associated to [START_REF] Steutel | Infinite divisibility of probability distributions on the real line[END_REF] is the continuous-time version of this Markov process

dX t = Xt - i=1 (ν i -1) • dt + dN t ,
where N t a compound-Poisson process with jumps' amplitudes β. ⊲ We assume the underlying BGW is subcritical viz. µ ν := φ ′ ν (1) = E (ν) < 1. With S (x) := x i=1 ν i the shrinking part of the dynamics [START_REF] Steutel | Infinite divisibility of probability distributions on the real line[END_REF], given X n = x, we now have the local drift and variance terms

f (x) : = E (X n+1 -x | X n = x) = E (S (x)) -x + E (β) = -x (1 -µ ν ) + E (β) σ 2 (x) : = σ 2 ((X n+1 -x) | X n = x) = σ 2 (S (x)) + σ 2 (β) = xσ 2 (ν) + σ 2 (β) ∼ xσ 2 (ν) as x → ∞ if σ 2 (ν) < ∞.
As x is large, the walker 'feels' the negative drift f (x) ∼ x→∞ -x (1µ ν ) . Fluctuations are very large for large x, of order x, so of diffusive type.

If the underlying BGW is subcritical, the adjunction of immigrants will prevent its extinction in that the BGWI will in general stabilize to a well-defined random limit. The condition is that [START_REF] Heathcote | A branching process allowing immigration[END_REF] where φ •m (z) is the m-th iterate of φ ν and Φ ∞ (z) obeys the functional equation Φ ∞ (z) = φ β (z) Φ ∞ (φ ν (z)) . Hence, under the above condition, Φ ∞ (z) = ∞ m=0 φ β (φ •m ν (z)) is the well-defined (convergent) p.g.f. of X ∞ , translating that X ∞ is an infinite sum of independent r.v.'s with p.g.f.'s φ β (φ •m ν (z)), m ≥ 0, with mean E (X ∞ ) = φ ′ β (1) / (1φ ′ ν (1)) ≤ ∞. Note X ∞ d = β + E where E is an excess r.v. independent of β. Equivalently, X ∞ is characterized by (X ′ ∞ denoting a statistical copy of X ∞ )

X ∞ d = X ′ ∞ i=1 ν i + β, with β independent of X ′ ∞
i=1 ν i , translating its generalized self-decomposability property induced by the semi-group generated by φ ν (see [START_REF] Aly | Explicit stationary distributions for some Galton-Watson processes with immigration[END_REF] and [START_REF] Steutel | Infinite divisibility of probability distributions on the real line[END_REF], Section V.8).

Some famous examples are:

-The pure-death case: this is when ν d ∼Bernoulli(c) , equivalently φ ν (z) = 1c + cz, with c ∈ (0, 1) the survival probability. In that case (alluded to in the Introduction), S (x) d ∼bin(x, c). This binomial shrinkage effect is appropriate when the individuals of the current population each die or survive in an independent way with some survival probability c. There is thus a resulting drastic depletion of individuals at each step. The BGW process with this branching mechanism is necessarily subcritical. In that case

φ •m ν (z) = 1 -c m + c m z
is itself Bernoulli with survival probability c m . Assuming a discrete-stable(α, θ) distribution for β, α ∈ (0, 1], θ > 0, [with scale parameter θ and power-law tails of index α] it holds that Φ ∞ (z) = e -θ/(1-c α )(1-z) α , so X ∞ is itself α-discretestable(α, θ/ (1c α )), but with scale parameter θ/ (1c α ) . We have E (X ∞ ) = ∞ if α ∈ (0, 1) and α = 1 is the Poisson(θ) special case with E (X ∞ ) = θ/ (1c) < ∞.

-The simple birth and death case (binary fission) is when φ ν (z) = π 0 +π 1 z +π 2 z 2 , π 0 + π 1 + π 2 = 1 (subcritical when π 2 < π 0 ).

-The linear-fractional case is when φ ν (z) = π 0 + π 0 πz 1-πz , (π 0 , π) ∈ (0, 1), π 0 = 1π 0 , π = 1π (subcritical when π 0 /π < 1).

In contrast with the truncated geometric model of Section 2, the ergodicity property of BGWI processes can be extended to an underlying critical BGW (with µ ν = 1) if [START_REF] Seneta | The stationary distribution of a Branching Process allowing Immigration: A remark on the critical case[END_REF] E (β) < ∞ and o (1z) α+1 , with both λ, α ∈ (0, 1). In that case, the limit probability law of X ∞

ν

  := ber (α) + β b=0 ber b (α) , where ber(α) is a Bernoulli(α) r.v. independent of β b=0 ber b (α) and (ber b

1 0 1 - 1 Φ

 111 φ β (z) φ ν (z)z dz < ∞, which is met if E (ν) < 1 and E log (1 + β) < ∞ (avery weak existence condition of the log-moments of β invalidated only would β have extremely heavy logarithmic tails). Letting Φ n (z) = E z Xn , Φ n+1 (z) = φ β (z) Φ n (φ ν (z)) , Φ 0 (z) =

1 0 1

 11 z φ ν (z)z dz < ∞,translating that ν has an infinite variance, viz. φ ν (z)∼ z→1 z + λ α+1 (1z) α+1 +

A geometric(α) rv with success probability α takes values in N. A shifted geometric(α) rv with success probability α takes values in N 0 . It is obtained while shifting the former one by one unit.

In the sequel, a boldface variable, say x, will represent a column-vector so that its transpose, say x ′ , will be a row-vector.
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Define the logarithmic generating function F (λ) :=log v e -λ = log u e -λ .

The function F (λ) is concave on its definition domain λ ∈ [0,log α). Starting from F (0) = 0, it is first increasing, attains a maximum and then decreases to -∞ while crossing zero in between. Therefore, there exists λ * ∈ (0,log α) such that

the Legendre conjugate of F (λ). The variable x is Legendre conjugate to λ with

On its definition domain, f (x) ≤ 0 is increasing and concave, starting from f (-∞) = -∞ and ending with f (F ′ (0)) = 0 where f ′ (F ′ (0)) = 0. From [START_REF] Cramér | Sur un nouveau théorème-limite de la théorie des probabilités[END_REF][35], we get:

Proposition 6 For those x in the range [x * = 0, F ′ (0)] and for any x 0 > 0,

In particular, at

giving the rate r at which X n drifts to ∞. To keep x = F ′ (λ) in the non-negative range [x * = 0, F ′ (0)], the range of λ should then equivalently be restricted to [0, λ * ].

We clearly have f (x * ) = -F (λ * ) < 0 and, from (21),

This shows the rate at which P x0 (X n = 0) decays exponentially with n. Equivalently, with z * = e -λ * ,

as initially guessed. When µ β > µ δ , the number z * inside (α, 1) exists and it is characterized by

When

) is summable for all x 0 ≥ 0 (translating that X n visits 0 only a finite number of times). In the transient regime, from [START_REF] Fontes | Metastability of a random walk with catastrophes[END_REF],

Then z * is characterized by the quadratic equation

exists and it is heavy-tailed with index α (so in particular with E (X ∞ ) = ∞). If the infinite variance property of the underlying BGW process is not satisfied, the BGWI process is transient and drifts to ∞. Still, a non-finite invariant measure is known to exist in this case, [START_REF] Seneta | On invariant measures for simple Branching Processes[END_REF].

In the supercritical regime (µ ν > 1) and if µ β < ∞, the BGWI process is transient at ∞ and it can be checked that, as n → ∞,

where the law of Z is characterized by its Laplace-Stieltjes transform in the main Theorem of [START_REF] Seneta | A note on the supercritical Galton-Watson Process with Immigration[END_REF]. Invariant measures are known to exist in the supercritical as well but they are non-unique, [START_REF] Seneta | On invariant measures for simple Branching Processes[END_REF]. The idea is to come down to the non-supercritical case while allowing defective immigration laws.

Concluding remarks

We first analyzed the recurrence/transience conditions of a Markov chain on the nonnegative integers where systematic random immigration events promoting growth were simultaneously balanced with random emigration based on a truncated geometric rule, favoring shrinkage. Two related random walks in the same spirit, but with different collapse rules, were introduced. One is a 'dual' version of the latter process, shown to be always stable (recurrent), the other the classical BGW process with immigration where the origin of the pruning is internal, rather due to sub-criticality of the population. Their intrinsic statistical properties were shown to be of a completely different nature: the first truncated geometric model turns out to exhibit a large range of transience (the supercritical regime µ β > µ δ ), the second dual one is never transient while a sub-critical BGW process with immigration fails to be recurrent only when the immigrants' law has infinite logarithmic moments, a situation which can be considered as exceptional in concrete population model applications.
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