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(1)CEA-CESTA, 15 Avenue des Sablières, Le Barp, France, clement.caillaud@cea.fr
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ABSTRACT

Characterizing the boundary layer transition to tur-
bulence around realistic hypersonic vehicles is a chal-
lenging task due to the numerous parameters that af-
fect the process. To address this challenge, the cone-
cylinder-flare (CCF) geometry has been designed to
provide a flow topology that captures various tran-
sition mechanisms observed on reentry objects [6],
such as absolute and convective instabilities, which
are dependent on the free stream conditions. In this
study, a global linear stability analysis is performed
on the CCF model at M∞ = 6.0 to investigate and
map the dominant instabilities at wind tunnel flow
conditions. We examine optimal responses and forc-
ings computed using resolvent analysis, as well as
global modes originating from the recirculation bub-
ble at the cylinder flare junction. The effects of
bluntness are assessed through analyses of both blunt
and sharp configurations. Our results shed light on
the linear flow mechanisms that promote the transi-
tion to turbulence around such hypersonic objects.

1. INTRODUCTION

The current CCF geometry consists in a 5◦ sharp or
blunt cone, followed by a cylindrical section which
terminates to a flare with an angle of θf = 10◦

(CCF10). The geometry is depicted in Fig. 1 and
can be divided into two primary regions: the cone
section, which provides a canonical convectively un-
stable boundary layer that supports first and second
mode waves, and the cylinder-flare section, which in-

cludes a separation bubble generated by the adverse
pressure gradient caused by the shock-wave at the
cylinder-flare junction. This flow topology is similar
to that described in previous works by [11, 5]. In this
second region, the separation bubble has been found
to be globally unstable for flare angles θf ≥ 8◦ and
Reynolds numbers above Re = 11.5 × 106 [9]. At
this critical Reynolds number, convectively unstable
modes such as first-mode and second mode waves can
also exist along the recirculation bubble and/or the
reattachment point. For cases where either the con-
vective, the global instabilities or a combination of
both, lead to transition, the non-linear terms will in-
duce a strong modification of the bubble. Therefore
making the baseflow stability analysis irrelevant and
leading to a mean flow analysis [12, 11]. However,
all the cases treated in this article stay fully lami-
nar in the whole domain and thus base flow stability
analysis is justified.

For these flare angles, the previous experimental
campaigns in quiet and noisy tunnels, associated
with numerical investigations using PSE, revealed
that both first and second-mode waves are amplified
along the sharp cone region. On the cylinder-flare
region, second mode instabilities were not found to
be growing until the bubble reattachment whereas
first-mode waves were seen to be continuously am-
plified along the bubble [1, 14]. Additionally, in-
frared thermography revealed the presence of steady
streaks originating at the reattachment and ampli-
fying along the flare at an azimuthal wavenumber of
m = 36. The origin of these streaks remain poorly
understood but is suggested to be the byproduct of
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Figure 1: Baseflow for the Rn = 0.1mm (top) & Rn = 5mm (bottom) CCF10 geometries. Greyscale : normalised
numerical shadowgraphy with : entropy layer ; : recirculation bubble with separation and reattachment
points (•) ; : line along which the profiles of Fig. 2 are extracted.

non-linear interaction in the bubble [9].
Considering these previous results, we employ a

global linear stability framework to explore the tran-
sition dynamics of the CCF10 object. Our aims are
twofold: first, characterise the base flow and identify
the instabilities present in the separation bubble, and
second, analyse the forced response of the linear dy-
namics through resolvent analysis. To achieve these
goals, we organise this paper as follows: in Section 2
describes the numerical stability tools and the base
flow, along with a validation. In Section 3 are dis-
cussed the global modes found in the bubble, and
the Section 4 investigates the forced response of the
linear dynamics. Finally, Section 5 draw conclusions
and discuss the future directions of this research.

2. LINEAR STABILITY

The analysis is supported by the stability toolbox
BROADCAST [15]. It uses high order finite-volume
schemes and algorithmic differentiation to compute
fixed points of the compressible Navier-Stokes equa-
tions and extract the associated direct and adjoint
global linear operators, along with its derivatives up
to arbitrary order if required. Using this toolbox, the
methodology is introduced in the next paragraphs.
For further details about the framework presented
in this section, the reader is referred to the compre-
hensive review of [18].

Considering a domain in cylindrical coordinates
(x, r, θ) discretised in a structured fashion with Np

points. The flow dynamics around the CCF geome-

try are governed by the following discrete non-linear
dynamical system,

∂qqq

∂t
= R(qqq) + fefefe, (1)

where qqq is the conservative state vector of Nv vari-
ables, RRR is the compressible Navier-Stokes operator
and fefefe is a harmonic exogenous forcing of small am-
plitude. Supposing the existence of a fixed-point qqq0
such that RRR(qqq0) = 0, the non-linear system can be
linearised around this steady state in order to re-
trieve the linear dynamics of small disturbances qqq′,
with qqq = qqq0 + ϵqqq′, ϵ ≪ 1. The linear disturbances
equations reads,

∂qqq′

∂t
= Lqqq′ + fefefe, with L =

∂RRR(qqq)

∂qqq

∣∣∣∣
qqq0

, (2)

with L, the Jacobian of the non linear operator
around qqq0. To analyse the disturbances dynamics,
we make the hypothesis of a zero-angle of attack,
and consider the problem to be 2D axisymmetric.
Hence the disturbances and forcing vectors are ex-
pressed in terms of their frequency ω and azimuthal
Fourier modes m, resulting in the harmonic ansatzs,

qqq′(x, r, θ, t) = q̂qq(x, r)ei(mθ+ωt), (3)

fffe(x, r, θ, t) = f̂ff(x, r)ei(mθ+ωt). (4)

Using these vectors, the linear dynamics of Eq.
2 will be studied in two ways. First, by consider-
ing the autonomous system, i.e fefefe = 0. In Fourier
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space, the global stability of the baseflow at a given
frequency and wavenumber m (with this formalism,
the Jacobian operator becomes dependent on m) can
be studied by solving the eigenvalue problem,

L(m)q̂qq = iωq̂qq, ω ∈ C, (5)

with the growth-rate of an eigenfunction given by
ℜ(ω) and its frequency by ℑ(ω).
Next, the stability of the forced system, i.e fefefe ̸= 0,

can be studied. Due to the non-normality of the
jacobian operator L, the exogenous forcing can trig-
ger the non-modal amplification of responses even if
the system is stable [16]. These non-normal mech-
anisms are given by the resolvent operator defined
as RRR = (iωI − L)−1. For noise-amplifier flows, this
operator yields an input-output relation at a given
frequency and wavenumber between forcings and re-
sponses over the baseflow, such that,

q̂qq =RRR(ω,m)f̂ff , ω ∈ R. (6)

To find the most amplified convective instabilities
at a pair (ω,m), an optimal decomposition of the
resolvent matrix can be computed and provides an
orthogonal basis of optimal forcings and responses
ranked by energy. Starting from Eq. 6, such func-
tions can be found by solving an optimisation prob-
lem. Using the discrete norms ||q̂qq||E = q̂qq∗WEq̂qq and

||f̂ff ||F = f̂ff
∗
P∗WfPf̂ff , where WE is the Chu energy

weight matrix [3] and WF is taken as the identity
along with a restriction matrix P used to impose the
forcing on specific regions or variables, a Rayleigh
quotient can be obtained,

µ2
0 = sup

f̂ff

||q̂qq||E
||f̂ff ||F

= sup
f̂ff

||Rf̂ff ||E
||f̂ff ||F

. (7)

The optimal forcing that satisfies equation 7 may
then be found by solving the eigenvalue problem :

P∗RRR∗WERRRPf̂ff i = µ2
iWf f̂ff i. (8)

Where (•)∗ is the hermitian transpose and the eigen-
values µ2

0 > ... > µ2
i > µ2

i+1 > ... of Eq. 8 are the
optimal gains ranked by energy and their associated

eigenfunctions f̂ff
opt

i . Solving Eq. 8 for various values
of (ω,m) allows to map the system resonance peaks
and characterise the receptivity of the baseflow in-
troduced in the next section.

3. BASEFLOW COMPUTATION

The laminar flow around the CCF geometry com-
prises a detached shock, expansion waves, separa-
tion and reattachment shocks around the bubble.
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Figure 2: Validation of the base-flow by comparison
with a reference solution at the cylinder-flare junc-
tion [14].

Case Re Rn T∞ ρ∞
R-Rn m−1 mm K kg/m3

R01 11.5× 106 0.1 51.4K 4.43× 10−2

R5 11.5× 106 5 51.4K 4.43× 10−2

Table 1: Flow conditions considered

These features poses a challenge to the computation
of fixed-points for different Reynolds numbers. This
section outlines the flow conditions and details the
procedure used to compute fixed points. Finally the
baseflows are described and validated.

The flow around CCF10 is studied at a Mach num-
ber M∞ = 6.0 for a unit Reynolds number of Re =
11.5 × 106. The domain extends from the wall to
the free-stream and from the stagnation point to the
end of the flare. An isothermal wall at Tw = 300K is
considered. These conditions relate to experiments
performed in quiet and noisy wind tunnels [1] and
are summarised in Table 1

The computation of a fixed point uses the follow-
ing steps : first, a preliminary flow is computed on a
coarse structured mesh which is not shock-aligned.
Second, once this coarse solution reaches a suffi-
cient convergence level, the shock boundary is ex-
tracted and a fine shock-aligned grid is generated.
The coarse solution is linearly interpolated on the
fine grid and serves as the initial guess to a pseudo
transient continuation technique [4]. The solution
vector update qqqn+1 = qqqn + δqqqn is given by the com-
putation of the step δq as,

(
I

∆t
+ Lqqqn

)
δqn = −R(qqqn). (9)
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Figure 3: Eigen values growth-rates as a function of m for both nose radius. The left spectrum shows a grid
convergence study. The right spectrum eigenvalues are coloured by their frequencies (Hz)

The residuals R(qqqn) are computed using a 7-th
order FE-MUSCL scheme with a high order dissi-
pation and Jameson-like shock capturing controlled
by a shock sensor, resulting in low dissipation levels
[17]. The jacobian is computed with the same nu-
merical methods through algorithmic differentiation.
Between 5 and 20 pseudo-Newton iterations are re-
quired to converge the fixed-point to a normalised
residual value of ||R(qqq0)||2 ≤ 10−14.

Baseflows qqq0 are shown in Fig. 1 for cases R01 and
R5. Observing the flow features for Rn = 0.1mm &
Rn = 5mm reveals two main differences. First, start-
ing from the nosetip, the R5 case shows a thicker en-
tropy layer up to the cone-cylinder junction induced
by the detached shock. Whereas for the R01 case, the
entropy layer remains thin and is actually following
closely the boundary layer height. The entropy layer
effects are known to affect the growth of instabilities
on hypersonic blunt bodies [19] and will be investi-
gated in the coming sections. The second noticeable
difference between the two cases is the length of the
separation bubble, increasing the bluntness leads to a
bigger separation length induced by the reduced edge
Mach number Me and the thicker boundary layer.

The computed fixed point for Rn = 0.1mm is vali-
dated against the previous study of [14] for the same
conditions but different numerical methods. Fig. 2
shows a perfect agreement between the two solutions
hence validating both computations of the hyper-
sonic laminar baseflow.

For each fixed-points, the jacobian is computed
and is used to probe the linear stability of this two
flows.

4. GLOBAL STABILITY

This section aims at solving the eigenvalue problem
introduced in Eq. 5 for successive discrete azimuthal
wavenumbers m. For case R01 some modes of the
spectrum are compared and validated against the
previous findings of [14]. On the other hand the dis-
cussion on the global stability case R5 constitutes a
new set of results.

Each spectrum is obtained from the jacobian us-
ing an iterative LU+Arnoldi algorithm as depicted in
[15], the computations uses the PETSc/SLEPc rou-
tines along with the MUMPS library. This iterative
solver is set to converge the 5 eigenvalues closest to
a target τ = 1000.0 + 0.0i using a shift-invert strat-
egy. As the unstable modes and spectrum computa-
tion are dependent on the baseflow discretisation, a
spectrum convergence is carried out beforehand. The
Fig. 3a displays this convergence in the wavenumber-
growth-rate frame. A reference computation from
[14] is used to plot the modes branches. Note that
since the domain is axisymmetric, only discrete val-
ues of m can physically be allowed to exist. For the
spectrum convergence, three grids with increasing
number of streamwise and vertical points are consid-
ered. All of them yield consistent results with the ref-
erence, therefore confirming that even a coarse grid
resolution allows to properly converge these global
structures. Although, as it will be required later for
the forced analysis, a grid of Nx ×Ny = 4030× 550
will be used for the subsequent computations.

Aside from the validation analysis, comparing the
Figs. 3a & 3b unveils significant differences be-
tween the global dynamics of the bubble between
Rn = 0.1mm and Rn = 5mm. The spectrum of the
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blunt configuration reveals three branches of unsta-
ble modes. All the eigen values are coloured by their
frequency to distinguish unsteady dynamics. Look-
ing at the spectrum of Fig. 3b reveals two steady
branches for m ∈ [3, 7] and m ∈ [15, 26]. This latter
branch dominates the growth-rates of the spectrum.
A third unsteady branch is visible for m ∈ [8, 14],
these modes have a frequency between f = 60Hz
and f = 90Hz, suggesting quasi-steady dynamics in
comparison to the flow characteristic time scales.

All the unstable modes arising in Fig. 3 appear
to be structures modulating the bubble shape with
wavenumbers m > 0. Therefore, the growth of
these structures leads to a three-dimensionalisation
of the baseflow. Similar mechanisms were found by
[7, 2, 10]. The eigenfunctions of the dominating
modes for each unstable branch of Fig. 3b are plot-
ted in Fig. 4. The mode at (f,m) = (0, 5) is rep-
resentative of bubble breathing mode. Its structure
is similar for Rn = 0.1mm and Rn = 5mm, suggest-
ing that it comes from the same underlying physi-
cal mechanism in both cases. The eigenfunction for
(f,m) = (81, 13) seem to be mainly amplified near
the reattachment point, displaying a strong trans-
verse motion at this position. Finally, the instability
for (f,m) = (0, 19) also seem to be a reattachment
mode and show a transverse motion very similar to
the mode (f,m) = (60, 13). Further analysis have to
be made with the eigenfunctions in order understand
the physical origins of these similarities.

The global dynamics obtained from the linear sta-
bility analysis of Eq. 5 revealed the presence of mul-
tiple steady and unsteady structures susceptible to
alter the laminar base flow and even lead to turbu-
lence. In the non-linear regime, these global mode
will saturate and may interact with the convective in-
stabilities originating from the external disturbances,
hence, the next section aims at characterising these
convective instabilities.

5. OPTIMAL FORCING

The response of the baseflow to external disturbances
is analysed using Eq. 8. Maps of the optimal gain in
(ω,m) are computed for each case and allow to see
the most amplified mechanism at a given frequency
and wavenumber along the object for both nose radii.

In order to quantify the effects of the separation
region, these maps are computed for both the full
geometry and a subdomain restricted to the cone.
Indeed, as the baseflow can be globally unstable on
the cylinder-flare portion, an input-output analysis
on the steady-homogenous fixed point qqq0 computed
through Eq. 9 could be ill-posed as the system bi-
furcated. Hence, solving Eq. 8 for the cone region,

Figure 4: Eigenfunctions of the leading global modes
for Rn = 5mm. Normalised contours of disturbances
transverse momentum ; ( ) boundary layer ; ( )
separated region.

which is globally stable and independent of the bifur-
cated state due to the supersonic regime, allows for
a consistent optimal response computation and gives
a linear estimation of the wave content that might
enter the bubble in a non-linear scenario.

Figure 5 regroups the gain maps for cases R01 and
R5. First, a baseline analysis is made for the R01
case before showing the variations induced by the
blunt nose of case R5. Figure 5a shows the optimal
gains map for both the full geometry and the region
restricted to the cone only. In summary, three main
resonance regions appear : the dominating resonance
peak is found near (f,m) = (75kHz, 20) and seems
to be related to the family of first mode instabilities.
Next, a resonance is visible for (f,m) = (225kHz, 10)
and is experimentally verified to be related to the
family of second-mode instabilities. Finally, a third
resonance peak is found for steady waves at (f,m) =
(0kHz, 70) identified as streamwise streaks.

Looking at the cone-only gain map highlights dif-
ferent dynamics, as the dominating peak is now the
second mode at (f,m) = (250kHz, 10), which is
consistent with previous literature results on canon-
ical sharp cone boundary layers at M∞ = 6.0.
The first mode broadband peak remains present for
(f,m) = ([50, 100]kHz, 20) but shows an amplifica-
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(a) Rn = 0.1mm

(b) Rn = 5mm

Figure 5: Maps of optimal gain for the R01 case for the full geometry (left) and the cone only (right). Dominating
peaks : (•). Light grey dots show the points actually computed for building the maps.

tion at least one order of magnitude smaller that the
second mode. Finally, the main difference with a re-
solvent computation on the full geometry resides in
the absence of a clear streaks amplification peak at
the previously observed (f,m) = (0kHz, 70) region.
This does not necessarily imply the total absence of
streaks as these can still have a marginal amplifi-
cation from non-normality on the cone (µ0 ≈ 102).
Additionally, the maximum value ofm chosen for the
gain map might not be high enough for capturing the
higher wavenumber streaks that might appear close
to the nosetip where the boundary layer height is
smaller.

Comparing the previous results with the gain maps
of the R5 case in Fig. 5b shows that the bluntness in-
duces substantial differences in the baseflow response
to an external forcing. Looking at the full object gain
map, the peaks of the first and second mode insta-
bilities observed for case R01 have vanished. The R5
baseflow displays a weak non-normal amplification

for frequencies above f = 50kHz. The only observed
peak is related to the steady streaks having a max-
imum gain : µ0 = 1.4 × 103 at (f,m) = (0, 50).
The gain map restricted to the blunt cone of case R5
shows the same absence of strongly amplified peaks
for the frequencies and wavenumbers corresponding
to the first and second modes found in Fig. 5a.

As such, these latter frequency-wavenumber
ranges can no-longer be related to first and second
mode waves as no clear resonance peak emerges. In-
stead, the gain map region for f ∈ [25, 300]kHz and
m ∈ [0, 150] is most likely related to weak non-
normal amplification mechanisms. This hypothesis
has to be further investigated in following studies by
looking at the rank of the resolvent operator in this
region. Nonetheless, the behaviour of the waves at
(f,m) = (75kHz, 20) and (f,m) = (225kHz, 10) will
also be studied for case R5 in order to have a com-
parison basis between the sharp and blunt dynamics.

These differences in the optimal gains maps be-
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Figure 6: Integrated energy of optimal responses q̂qq
( ) and forcings f̂ff ( ) for the different peaks ob-
served in Figs. 5a & 5b. • : separation and reat-
tachment points. In the legend from left to right :
streaks, first mode, second mode, frequencies are in
kHz. The object shape is depicted at the bottom for
clarity.

tween the sharp and blunt nosetips can be related to
the transition reversal phenomenon encountered for
hypersonic boundary layers [19]. For the blunt nose,
the entropy layer added to the decrease in edge Mach
number induced by the strong shock might suppress
the support of the unstable waves found for R01.
It should be precised that the gain maps for case R5
contains some unresolved gains value (white regions),
these arise from difficulties in solving Eq. 8 in pres-
ence of the strong detached shock. The discontinuity
also induces a gain peak at (f,m) = (0, 0). This gain
peak can not be directly interpreted as a convective
instability and seem related to be related to an in-
finitesimal shock motion induced by the forcing of
the momentum equations which reproduce the effect
of infinitesimal variations in the Mach number.
Further insights can be gained by looking at the

spatial growth along the object of the structures cor-
responding to the three peaks discussed above. In
supplement to the global information provided by
the gain maps, it helps to understand how the op-

Figure 7: Optimal responses corresponding to the
leading resolvent modes for Rn = 0.1mm. Nor-
malised contours of disturbances momentum, satu-
rated at 10% of the normalised value ; ( ) bound-
ary layer ; ( ) separated region.

timal forcings and responses evolve around the dif-
ferent regions. Considering the mesh to be quasi-
wall normal, up to a small approximation error, the
integrated energy of the modes is computed in the
wall-normal grid direction η as,

Ey =

∫

η

q̂qq∗WEq̂qqdη. (10)

Where, q̂qq and WE represents the resolvent response
mode and its associated energy weighting matrix as
stated in Sec. 2. A similar procedure holds for the
optimal forcings as well.

Figure 6 displays the integrated energy of the opti-
mal responses in thick lines and the associated forc-
ing norm in dotted lines. For case R01 in Fig. 6a, it
can be immediately noticed that the overall energy
of the first and second modes remains two or three
order of magnitude higher than the steady streaks at
m = 70 along the whole geometry. These former two
modes displays similar energy levels on the cone up
to x ≈ 0.28m. From that point, the (100, 20) wave
shows a steady amplification, whereas the (225, 10)
wave exhibits an increased growth that leads to its
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Figure 8: Comparing optimal responses q̂qq and optimal forcings f̂ff at (f,m) = (100kHz, 20) for cases R01 (left)
and (R5). Normalised contours of (ρv)′ ; ( ) entropy layer ; ( ) boundary layer edge (ht/ht∞ = 0.995) ;
( ) detached shock.

dominance at the end of the cone. This increased
growth of the second mode wave is explained by
the dependency of this family of instabilities to the
boundary layer height. For case R5, the same modes
are plotted for unsteady waves as a comparison basis.
These waves undergo a weak amplification consistent
with the low gain observed in Fig. 5b. Further dis-
cussions on the differences of these non-normal mech-
anisms for R01 and R5 will be provided in a subse-
quent section.

A second point of interest is the expansion fan of
the cone-cylinder junction after x = 0.4, it displays
a stabilising effect for the three considered waves in
case R01 and R5, especially for the streaks. Oppo-
sitely, the expansion fan is a favourable region for re-
ceptivity as it can be seen by the sharp and localised
increase in the forcings norm. Next, the instabilities
are convected through the separated flow. For this
region, the curves of Fig. 6a are supplemented by
the corresponding optimal response eigenfunctions of
case R01 shown in Fig. 7. Focusing on Fig. 6a, along
the cylinder, the first-mode and the streaks instabil-
ities remain amplified, especially the streaks which
shows a sudden growth rate increase at the onset
of separation. On the contrary, the second mode
waves get slightly damped, suggesting a stabilising
effect of the separated region on these convective in-
stabilities. Near the reattachment, all modes display
an increase in energy, most probably linked with the
strong re-compression, and keep amplifying along the
flare. Especially, the first mode mode wave has an
energetic content at the end of the flare similar to
the second mode wave. This states that both mode
have to be equally considered when studying a transi-
tion scenario on this geometry at similar conditions.
The response modes shown in Fig. 7 indicate that
the spatial support of the streaks is mainly located
within the boundary layer and after the separation

region. On the other hand both first and second
mode waves show some fluctuations along and under
the shear layer of the bubble around x = 0.52m.

Focusing on the forcings location along the full ob-
ject, some comments can be made on the receptivity
support of these instabilities. For case R01, the first
and second mode forcings shown in Fig. 6a indicate
that the region close to the nosetip is the most sen-
sitive to the receptivity process. After x = 0.1m, the
forcings energy steadily decreases, offering lesser pro-
jection support for external disturbances. A similar
behaviour is observed for the streaks forcing vector,
although, its energy remains quite constant up to
the end of the cone, suggesting that the disturbances
leading to the streaks on the flare are actually grow-
ing all along the geometry, a similar observation is
made for the streaks of case R5.

In relation to the forcing spatial support, addi-
tional information in the difference of optimal gains
between the sharp and blunt case can be gained
by looking at the resolvent optimal eigenfunction
around the nosetip. Figure 8 provides this compari-
son for the wave at (f,m) = (100kHz, 20). This fre-
quency and eigenvalue corresponds to the peak of the
first mode instability for case R01 and to a weak and
broadband non-normal amplification mechanism for
case R5. For both geometries, the entropy layer, the
boundary layer and the detached shock-wave of the
respective baseflows are plotted in order to illustrate
the differences in spatial support of the non-normal
mechanisms. Consistently with previous literature
results, for case R01, the optimal forcings are lo-
cated upstream on the cone, close to the nosetip and
within the boundary layer. The associated response
is amplifying downstream around the boundary layer
edge. For the wave of R5 at the same frequency
and wavenumber, different spatial supports are ob-
served. The forcing is no longer restrained close to
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the nosetip and spread along the cone. Moreover,
its most energetic region is mainly located within
the entropy layer and does not attain the bound-
ary layer. The associated response is located down-
stream on the cone but is also mainly amplifying
along the entropy layer edge and does not seem to
fluctuate within the boundary layer.
Such differences support the hypothesis of a differ-

ent mechanism at the origin of the wave amplification
on the blunt cone. Similar entropy layer modes were
found by previous DNS studies for moderately blunt
cones [8, 13].
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Figure 9: Comparison of the R01 case second-mode
pressure response at the wall with wind tunnel mea-
surements from unsteady pressure sensors for the
same conditions [14].

Finally, an assessment of the resolvent ability to
predict hypersonic instabilities growth around the
CCF10 object is made in Fig. 9 by comparing the
optimal second-mode (f,m) = (225kHz, 10) pressure
at the wall, to experimental results [14]. The com-
putation is shown along with the spectra peak value
at f ≈ 225kHz acquired during a wind tunnel test at
the same free-stream conditions. These spectra were
obtained with wall mounted PCB and Kulite pres-
sure sensors placed at different stations at the end
of the cone and along the flare. Since the computa-
tion is linear, an initial amplitude A0 has to be set
for the resolvent mode to have a physically mean-
ingful amplitude, this value is calibrated to match
the first PCB sensor energy at x = 0.387m, lead-
ing to A0 = 1.2 × 10−20. The computation and
the sensors wall pressure shows a close agreement in
the reattachment region, the resolvent pressure am-
plitude function is matching the experimentally ob-
served trends in pressure fluctuations. Such a result
confirms the ability of the current linear framework
to predict accurate hypersonic instabilities evolution
in presence of complex laminar flow features.

6. CONCLUSION

The present study provides a comprehensive review
of an ongoing numerical investigation aiming at un-
covering the linear instabilities of the hypersonic
laminar flow around the CCF10 geometry. This re-
search works towards providing a deeper understand-
ing of the transition to turbulence under experimen-
tal and flight conditions by mapping the various lin-
ear instabilities at play.

To achieve this objective, the numerical framework
was first validated against previous results, followed
by a mapping and comparison of the linear mecha-
nisms on both sharp and blunt configurations. The
validation procedure demonstrated the accuracy of
the BROADCAST toolbox in providing fixed points
as a starting point for the global stability investi-
gation. Additionally, the obtained global modes for
the sharp case were found to compare well with the
literature’s spectrum for the same conditions.

Further analysis revealed differences in the laminar
bubble dynamics for the sharp and blunt global spec-
tra, with an increased number of unstable branches
and the presence of unsteady bubble modes for the
R5 case. The origin of these different dynamics is
yet to be explained and may be investigated through
the structural sensitivity of the baseflow.

The study also highlighted the differences in am-
plifying mechanisms between the sharp and blunt
configurations. The sharp configuration displayed
clear amplification peaks for the first and second
Mack modes, whereas the blunt configuration only
showed an amplification peak for steady streaks.

Investigating further these entropy layer modes al-
lowed to observe their associated optimal forcings
structures. Such forcing waves were scarcely dis-
cussed in the literature and provide a good start-
ing point for explaining the origin of the observed
entropy layer instabilities observed in the aforemen-
tioned DNS studies.

Finally, a direct comparison with experimental
data obtained from the Purdue BAM6QT quiet wind
tunnel confirmed the framework ability to accurately
estimate convective instabilities evolution along the
object.

Overall, this preliminary study validated the sta-
bility framework and provided insights into the lin-
ear dynamics around the Cone-Cylinder-Flare geom-
etry. Future work will focus on explaining the physi-
cal mechanisms at the origin of the discrepancies ob-
served between the sharp and blunt cone dynamics.
This set of results will then help to better understand
future non-linear simulations and experimental cam-
paigns.
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