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ABSTRACT
The exergy concept originates from the field of static
thermodynamics and expresses the maximum theoreti-
cally recoverable mechanical work from a system while
it evolves towards its dead state (corresponding to the
state in which the system is at a thermodynamic equi-
librium with its environment). It accounts for both me-
chanical and thermal mechanisms, and allows to separate
reversible and irreversible losses of potential for mechan-
ical work recovery in the system’s transformations. The
physical insight provided by this concept motivated the
development of an exergy-based performance evaluation
method in the field of aerodynamics. The resulting for-
mulation has the advantage of being independent of the
feasibility of a drag/thrust breakdown (practical for the
analysis of innovative aircraft architectures) and includes
thermal effects in the performance metrics. It however
relies on an adapted definition of exergy, in particular in-
volving a dead state in motion (i.e. with non-negligible
kinetic energy). This adapted definition is not trivial and
raises theoretical concerns due to fundamental thermo-
dynamic properties of exergy not being always satisfied.
This paper aims at proposing a corrected version of this
definition in order to ensure that the fundamental proper-
ties of exergy are respected. To this purpose, the exergy
concept and the concerns raised by its original adaptation,
which to the best of the authors’ knowledge has been used
in all exergy-based flowfield analyses in the field of ap-
plied aerodynamics, are first presented. At a second step,
an unsteady exergy balance is derived in the geocentric
reference frame (in which there are no ambiguities in the
definition of exergy) and then transformed to one corre-
sponding to a frame of reference in translation. The cor-
rected adaptation of the exergy definition for aerodynam-
ics applications is extracted from this transformation and
the impact on the exergy balance is analysed.

NOMENCLATURE
Formulation

˙AΦ Rate of viscous anergy generation
˙Aw Rate of anergy generation by shockwaves
˙A∇T Rate of anergy generation by thermal mixing

Ẋm Rate of mechanical exergy outflow
Ẋq Rate of heat exergy supplied by conduction
Ẋt f Rate of exergy supplied by the propulsion system
Ẋth Rate of thermal exergy outflow
Φ Dissipation rate per unit volume, = (τ ·∇) ·V

q Heat flux by conduction, = −k∇T
Sb Body surface
So Outer boundary of the control volume
n Unit normal vector

Fluid and Flow Properties
x Mass-specific exergy
x f Mass-specific flow exergy
ρ Density
τ Viscous stress tensor
E Mass-specific total energy, = e+ 1

2V 2

e Mass-specific internal energy, = cvT
h Mass-specific enthalpy, = e+ p

ρ
= cpT

k Thermal conductivity, = cp(
µ

Pr +
µt
Prt

)
p Static pressure
s Mass-specific entropy
T Static temperature
V Fluid velocity vector
W Shockwave velocity vector

Subscripts and superscripts
∞ Quantity at freestream conditions
˜( ) Quantity ( ) expressed in the geocentric reference

frame R̃

1. INTRODUCTION
The precise investigation of aircraft performance through
relevant metrics has been a driving factor of research
since the birth of the aviation sector. While the efficiency
of various aircraft configurations was initially quantified
experimentally, the development of numerical tools has
progressively allowed to perform accurate simulations for
precise performance evaluations. This improved preci-
sion, together with the lower costs associated to numer-
ical computations compared to experiments, led to the
incorporation of Computational Fluid Dynamics (CFD)
to design processes. Consequently, post-processing tools
were developed in parallel to enhance the accuracy of
physical and numerical analyses of the results obtained
from numerical simulations. The possibility to link any
performance degradation to physical aspects of the flow
field, including relevant efficiency metrics, quickly be-
came a major stake of such post-processing tools.

The most mature approach developed and adopted in
the case of aircraft consists in analysing aerodynamic per-
formance with force-based methods. Such a method was
developed with a near-field/far-field balance by van der
Vooren and Destarac [23, 11], which allows to perform
a phenomenological breakdown of drag components. By
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quantifying the components of the generated drag, as well
as providing a clear link to the physical phenomena in
the flow, their formulation gives indications on the de-
sign modifications which could be carried out in order to
achieve a better aircraft performance. Since then, a large
amount of work at ONERA was dedicated to the refine-
ment and extension of this drag decomposition method
[8], such as an extension to rotating frames of reference
[24, 14] or to unsteady flow analyses [18, 19, 20]. These
force-based methods allow to consider the mechanical as-
pects of the performance analysis, yet are less adapted to
configurations involving significant thermal exchanges or
for which a clear thrust/drag separation is not possible.

Another analysis, based on a mechanical energy bal-
ance and referred to as power balance, was more recently
developed by Drela [12]. This approach gives a clear
physical breakdown of the flow of mechanical energy,
and is not dependent on the feasibility of a thrust/drag
separation. Sources of loss can be identified by a sep-
aration between reversible and irreversible losses (the
latter being linked to viscous and shock phenomena).
The power balance physical interpretation was since fur-
ther studied [17] and used to evaluate the performance
benefits from the Boundary Layer Ingestion (BLI) con-
cept [21, 22, 17]. Whereas this method allows to study
concepts involving strong engine-airframe interactions, it
still does not account for thermal effects present in the
flow field, which are non-negligible for a wide range of
cases.

These considerations led to the development of another
approach at ONERA based on the concept of exergy,
which corresponds to the maximum mechanical work
that can theoretically be extracted from a system while it
evolves towards its dead state. The exergy concept is in-
herited from thermodynamics [10], where it is commonly
used in order to perform static analyses. Arntz et al. [6, 4]
proposed an adaptation of the exergy definition for aero-
dynamics applications, and developed an exergy balance
adapted to such configurations. This allows to perform
a separation between reversible and irreversible losses of
exergy, with a link to the physical phenomena involved.
This method has been applied to conventional and disrup-
tive configurations of aircraft [4, 5, 7], as well as studied
from a numerical point of view [15]. In recent years, fur-
ther work was performed to use this exergy balance for
various numerical and experimental applications [1, 2, 3],
extend it to rotating frames of reference [13, 9] and to the
analysis of unsteady flows [16]. These developments are
all based on the exergy definition of Arntz et al., yet the
latter raises questions as it does not guarantee that funda-
mental properties of exergy are always satisfied (such as
the guaranteed positivity of exergy [10]).

The main objective of this paper is to present a clar-
ification on the adaptation of the exergy definition for
flowfield analyses in the context of aerodynamics stud-
ies. Sec. 2 details the exergy concept as defined in ther-
modynamics alongside its adaptation by Arntz et al. and
the concerns it raises. Sec. 3 then presents the derivation
of an unsteady exergy balance for an aircraft configura-
tion in the geocentric reference frame, for which there
is no ambiguity in the exergy definition, as the reference
state used in the exergy definition possesses no kinetic en-
ergy. In Sec. 4, this balance is transformed in a frame of
reference attached to an aircraft-type configuration, from

which the correct exergy definition is extracted and the
impact on the exergy balance (derivation and final form)
is evaluated.

2. ON THE DEFINITION OF EXERGY
IN AERODYNAMICS
APPLICATIONS

2.1 Definition of an exergy balance
Let us consider a volume of fluid surrounded by a thermo-
dynamic reservoir with which it exchanges mechanical
work (noted W ), heat (noted Q) and mass, as illustrated
in Fig. 1. An inertial reference frame R̃ is defined so that
the reservoir is considered to be at rest with no velocity.
The dead state of the system under study (here the fluid)
is defined as the thermodynamic state in which the fluid
is at a thermodynamic equilibrium with its environment,
i.e. there is no potential for work recovery as no thermo-
dynamic exchanges take place between the system and
its environment. In this particular case, the dead state of
the fluid corresponds to the thermodynamic state of the
reservoir surrounding it, since the latter is supposed to be
large enough (in comparison to the system studied) for its
thermodynamic state variables to be considered constant.

Ṽ∞ = 0
T̃∞

p̃∞

ρ̃∞

s̃∞

T̃

p̃
ρ̃

s̃

Ṽ

dV

x̃ỹ

z̃ R̃

Q

W

Figure 1: Volume of fluid exchanging work and heat with a
thermodynamic reservoir at rest.

The goal is to quantify the maximum mechanical work
that could be extracted from the mechanical and thermal
thermodynamic processes that the fluid undergoes while
it evolves towards its dead state. This is equivalent to
quantifying the exergy of the fluid [10], which corre-
sponds to the case where the mechanical work available is
completely recovered and the thermal exchanges are con-
verted into useful work by the use of a Carnot machine.
When considering a perfect gas and neglecting the kinetic
and gravitational potential energy, the specific exergy is
defined as:

x̃ = (ẽ− ẽ∞)+ p̃∞

(
1
ρ̃
− 1

ρ̃∞

)
− T̃∞(s̃− s̃∞) (1)

This quantity is always positive [10]. It means that
physically, there is always a potential for work recovery
as long as the fluid is not completely at a thermodynamic
equilibrium with its environment. If the fluid is consid-
ered to be in motion with respect to its dead state, the
kinetic energy cannot be neglected, but must be included
the above exergy definition to get:

x̃ = (ẽ− ẽ∞)+ p̃∞

(
1
ρ̃
− 1

ρ̃∞

)
− T̃∞(s̃− s̃∞)+

1
2

Ṽ2 (2)
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where Ṽ is defined as the fluid velocity relative to its ve-
locity in its dead state. As kinetic energy is also positive,
specific exergy is mathematically always positive. This
is physically correct as it represents the work that can
be extracted from the thermodynamic transformations of
the fluid between its considered state and its dead state.
It cannot be negative mathematically or physically, as it
would not be possible to extract a negative quantity of
useful work. An exergy balance can be directly estab-
lished from this definition as:

d
dt̃ Ṽ

∫
V

ρ̃ x̃ dV = Ẇ +

(
1− T̃∞

T̃

)
Q̇− Ḋ∗ (3)

where Ẇ is the rate of mechanical work extracted, (1−
T̃∞/T̃ )Q̇ is the rate of mechanical work extracted from
thermal exchanges using a Carnot Machine and Ḋ∗ is the
rate of exergy destruction in the volume. Additionally, Ẇ
can be further decomposed by introducing the boundary
pressure mechanical work Ẇp as Ẇ = Ẇ ′+Ẇp. Thus, Ẇ ′

represents the part of mechanical work exchanged which
is not linked to boundary pressure work. When consider-
ing a steady-flow open system, another quantity referred
to as flow exergy [10] can be introduced. It is defined by
adding the transfer power (corresponding to the pressure
forces driving the flow) to the exergy definition of Eq. (2).
This gives:

x̃ f = δ ẽ+ p̃∞δ

(
1
ρ̃

)
− T̃∞δ s̃+

1
2

Ṽ2
+

δ p̃
ρ̃︸ ︷︷ ︸

Transfer power

(4)

= δ h̃− T̃∞δ s̃+
1
2

Ṽ2 (5)

This quantity represents the exergy of a steady stream
of matter and can be positive or negative. The exergy
balance can then be reexpressed for a volume without the
presence of a discontinuity in the flow field as:

∫
V

∂ ρ̃ x̃
∂ t̃ dV +

∫
∂V ρ̃ x̃ f Ṽ · ñdS = Ẇ ′+

(
1− T̃∞

T̃

)
Q̇− Ḋ∗ (6)

In this form of the exergy balance, the boundary pres-
sure work is included in the exergy flux through surfaces
in order to let the flow exergy appear. The equation es-
tablished above shows that, in the case of a steady-flow
hypothesis, the specific flow exergy is conserved. In non-
steady flows, the conserved quantity is rather the specific
exergy. The link between specific exergy and specific
flow exergy is thus similar to the link between total en-
ergy and total enthalpy.

2.2 Previous work on exergy analysis in the
field of aerodynamics

The use of an exergy balance for flow field analyses in
aerodynamics applications was first introduced by Arntz
et al. [4, 6]. The equations for a steady flow were derived
in a reference frame R attached to a body in translation
and the formulation was applied to several configurations
with different levels of complexity [5, 7]. These deriva-
tions were based on the conservation equations, the en-
tropy equation and a definition of exergy where the at-
mosphere is considered as the fluid’s dead state (which
is not at rest for a translating frame of reference). Due
to the kinetic energy of the atmosphere being non-zero

in the reference frame in translation (attached to an ob-
ject moving with velocity −V∞), the specific exergy was
defined by Arntz et al. as:

x A
f = (e− e∞)+

(
p
ρ
− p∞

ρ∞

)
−T∞(s− s∞)+

1
2

V2 − 1
2

V2
∞ (7)

Note that this definition of exergy rather corresponds to
a flow exergy, the use of which is still valid in those au-
thors’ derivation since it was made for a steady flow (cf.
Eq (6)). Since then, multiple works have been based on
this definition of exergy in order to use the same exergy-
based formulation for experimental and numerical appli-
cations [1, 2, 3, 15] as well as unsteady flow analyses
[16]. Other works have considered a reference state at
rest, but have formulated an unsteady balance of flow ex-
ergy rather than exergy (cf. Sec. 2.1) [13]. Defining the
exergy through Eq. (7) leads to several unclear consider-
ations:

• As explained in Sec. 2.1, an energy balance leads
to the conservation of total energy and not total en-
thalpy, for which a conservation equation can be
written only under a steady flow assumption. Simi-
larly, in the exergy balance, the quantity transported
is exergy and not flow exergy. Hence, for unsteady
(and steady to be fully rigorous) applications, the ex-
ergy definition used as a starting point when deriving
the exergy balance must be Eq. (2).

• Exergy is always positive by definition (cf. Eq. (2)),
with Ṽ considered as the velocity relative to the
dead state. For external aerodynamics applica-
tions, the dead state is commonly taken as the atmo-
sphere’s thermodynamic state. Considering a fixed
frame of reference with no fluid velocity in the at-
mosphere, this means that the flow under study has
no kinetic energy in its dead state. This case is sim-
ilar to the case detailed in Fig. 1, which means that
Eq. (2) defines exergy.
Now let us consider the same dead state with a refer-
ence frame R moving at a velocity −V∞. In this case,
Arntz et al. implicitly adapted the flow exergy defi-
nition by substracting the kinetic energy of the flow
in its dead state to the flow exergy (cf. Eq. (7)). Do-
ing the same for the specific exergy definition would
lead to:

x A = δe+ p∞δ

(
1
ρ

)
−T∞δ s+

1
2
(V2 −V2

∞) (8)

This definition was the one used as a starting point
for the exergy balance extension to rotating refer-
ence frames investigated at ONERA [9]. This how-
ever is not trivial and leads to the loss of a funda-
mental property of exergy, as the specific exergy is
not guaranteed to remain positive regardless of the
reference state considered. As a result, the exactness
of the above definition raises questions and requires
careful investigation.

The following sections aim at clarifying these issues
and at evaluating the potential impact of an error in the
exergy definition used for the derivation of an exergy bal-
ance adapted to aerodynamics applications. To this pur-
pose, the derivation of an unsteady exergy balance is first

3



presented in a reference frame for which the atmosphere,
considered as the dead state of the gas under study, has no
kinetic energy. In this case, it is clear that the exergy of
the fluid is defined by Eq. (2) (where velocity is defined in
the fixed frame of reference), excluding any ambiguity in
the final balance. The final balance equation is then trans-
formed to a reference frame in translation, which corre-
sponds to the classical approach in applied aerodynamics
studies. From this transformation, a new definition of ex-
ergy expressed in a translating frame of reference (thus
different from Eq. (8)) is then introduced.

3. DERIVATION OF AN UNSTEADY
EXERGY BALANCE IN THE
GEOCENTRIC REFERENCE FRAME

3.1 System definition
The analysis is performed in a continuous control volume
V limited by an outer boundary So and the aircraft sur-
face Sb, as shown in Fig. 2. This volume is closed and its
limits can be permeable, with a vector n normal to the sur-
face and pointing outwards of the volume. A shockwave
discontinuity surrounded by a surface Sw with a normal
vector n is also considered in the calculations. This last
normal vector is pointing outwards of the control volume,
i.e. towards the interior of the shockwave volume.

Ṽ∞ = 0

V0
T̃∞

p̃∞

ρ̃∞

s̃∞

Sb

So

dV

x̃ỹ

z̃ R̃

ñ

Sw

ññ

Figure 2: 2D cross section of a 3D control volume surrounding
the aircraft.

The system is thermodynamically open as it exchanges
mass, work and heat with the surrounding fluid across its
boundaries. The atmosphere is considered as a thermal
and mechanical reservoir which also corresponds to the
dead state in the exergy definition. In this case, the anal-
ysis is carried out in a fixed reference frame R̃, assumed
inertial. The control volume is therefore moving with the
aircraft at a velocity V0 = −V0x̃. It is supposed that the
shockwave discontinuity is attached to the aircraft and
moves with a velocity W̃ in R̃, which is equal to V0 in
the case of a steady shockwave. As a consequence of this
choice of reference frame, the atmosphere is considered
to be at rest with Ṽ∞ = 0, and the flow is unsteady in R̃.

The divergence theorem and the definition of the ma-
terial derivative in this case are written as:∫

V ∇ · ( )dV =
∫

Sb
( ) ·ndS+

∫
So
( ) ·ndS−

∫
Sw

J K ·ndS (9)

d
dt V

∫
V ( )dV =

∫
V

∂ ( )
∂ t dV +

∫
∂V ( )V ·ndS−

∫
Sw

J KW ·ndS (10)

where ( ) is a continuous tensor and J K is the jump across
the discontinuous shockwave surface Sw.

3.2 Conservation equations
The Navier-Stokes conservation equations for the mass,
momentum and total energy of the fluid expressed in the
reference frame R̃ are:

∫
V

∂ ρ̃

∂ t̃ dV =−
∫

∂V ρ̃Ṽ · ñdS+
∫

Sw
Jρ̃W̃K · ñdS∫

V
∂ ρ̃Ṽ

∂ t̃ dV =−
∫

∂V (ρ̃Ṽ⊗ Ṽ+(p̃− p̃∞)Ĩ − τ̃) · ñdS

+
∫

Sw
Jρ̃Ṽ⊗W̃K · ñdS∫

V
∂ ρ̃Ẽ
∂ t̃ dV =−

∫
∂V (ρ̃ẼṼ+(p̃Ĩ − τ̃) · Ṽ+ q̃) · ñdS

+
∫

Sw
Jρ̃ẼW̃K · ñdS

(11)

(12)

(13)

With the corresponding compatibility equations for the
jump across the shockwave:

Jρ̃(Ṽ−W̃)Kw ·n = 0

Jρ̃Ṽ⊗ (Ṽ−W̃)+ p̃Ĩ − τ̃Kw ·n = 0

Jρ̃Ẽ(Ṽ−W̃)+(p̃Ĩ − τ̃) · Ṽ+ q̃Kw ·n = 0

(14)

(15)

(16)

Due to Eq. (11), the energy equation can be rewritten
as:∫

V

∂ ρ̃δ Ẽ
∂ t̃

dV =−
∫

∂V
(ρ̃δ ẼṼ+(p̃Ĩ − τ̃) · Ṽ+ q̃) · ñdS

+
∫

Sw

Jρ̃δ ẼW̃K · ñdS (17)

where, under the assumptions made previously,
δ Ẽ = δ ẽ+ 1

2 Ṽ2.

3.3 Entropy equation
In addition to the conservation laws, the equation for the
entropy evolution inside the control volume is needed
to quantify the anergy production in the exergy balance.
This equation is derived from the Gibbs equation applied
to a fluid element during a time variation dt̃:

T̃
ds̃
dt̃

=
dẽ
dt̃

− p̃
ρ̃2

dρ̃

dt̃
(18)

The local forms of the mass, momentum and energy
equations are injected in this expression, and the equation
is integrated over the control volume V to obtain:

∫
V
(

∂ ρ̃ s̃
∂ t̃

+ ∇̃ · (ρ̃ s̃Ṽ))dV =
∫
V
− 1

T̃
∇̃ · q̃dV

+
∫
V

1
T̃
(τ̃ · ∇̃) · ṼdV (19)

The next step is to introduce Fourier’s law q̃ = −k∇̃T̃
where k is the thermal conductivity and Φ̃ = (τ̃ · ∇̃) · Ṽ
as the dissipation rate per unit volume. Then, using the
divergence theorem, Eq. (11) and multiplying Eq. (19)
with T̃∞ leads to:

T̃∞

∫
V

∂ ρ̃δ s̃
∂ t̃

dV =−T∞

∫
∂V

ρ̃δ s̃Ṽ · ñdS−
∫

∂V

T̃∞

T̃
q̃ · ñdS

+
∫
V

T̃∞

T̃ 2 k(∇̃T̃ )2 dV +
∫
V

T̃∞

T̃
Φ̃dV +T̃∞

∫
Sw

J
1
T̃

q̃− ρ̃δ s̃ṼK·ñdS

(20)
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3.4 Exergy balance
The goal of this section is to derive an exergy balance
based on the straightforward definition of exergy for a
reference state at rest. In R̃, the fluid is at rest in its dead
state, meaning that specific exergy is defined as:

x̃ = δ ẽ+ p̃∞δ

(
1
ρ̃

)
− T̃∞δ s̃+

1
2

Ṽ2 (21)

without any ambiguity regarding the kinetic energy at its
reference state.

The exergy balance then takes the form:

∫
V

∂ ρ̃ x̃
∂ t̃

dV +
∫

∂V
ρ̃ x̃ Ṽ · ñdS−

∫
Sw

Jρ̃ x̃ W̃K · ñdS

=
∫
V

∂

∂ t̃

(
ρ̃δ ẽ− ρ̃T̃∞δ s̃+

1
2

ρ̃Ṽ2
)

dV

+
∫

∂V

(
ρ̃δ ẽ− ρ̃T̃∞δ s̃+

1
2

ρ̃Ṽ2
)

Ṽ · ñdS

+
∫
V

∂

∂ t̃

(
ρ̃ p̃∞δ

(
1
ρ̃

))
dV +

∫
∂V

ρ̃ p̃∞δ

(
1
ρ̃

)
Ṽ · ñdS

−
∫

Sw

Jρ̃

(
δ ẽ− T̃∞δ s̃+

1
2

Ṽ2
)

W̃K·ñdS−
∫

Sw

Jρ̃ p̃∞δ

(
1
ρ̃

)
W̃K·ñdS

(22)

Several mathematical manipulations and the injection
of Eqs. (11), (17) and (20) into Eq. (22) lead to:

∫
V

∂ ρ̃ x̃
∂ t̃

dV︸ ︷︷ ︸
(I)

=−
∫

∂V
ρ̃ x̃ Ṽ · ñdS+

∫
Sw

Jρ̃ x̃ W̃K · ñdS︸ ︷︷ ︸
(II)

−
∫

∂V
((p̃Ĩ − τ̃) · Ṽ) · ñdS︸ ︷︷ ︸

(III)

+
∫

∂V
p̃∞Ṽ · ñdS︸ ︷︷ ︸
(IV )

−
∫

∂V

(
1− T̃∞

T̃

)
q̃ · ñdS︸ ︷︷ ︸

(V )

−
∫
V

T̃∞

T̃
Φ̃dV︸ ︷︷ ︸

(V I)

−
∫
V

T̃∞

T̃ 2 k(∇̃T̃ )2 dV︸ ︷︷ ︸
(V II)

− T̃∞

∫
Sw

J
1
T̃

q̃+ ρ̃δ s̃(Ṽ−W̃)K · ñdS︸ ︷︷ ︸
(V III)

(23)

This equation is an exergy balance expressed in a fixed
reference frame in which the atmosphere possesses no ki-
netic energy. (I) is the time rate of specific exergy change
inside the control volume. (II) represents the exergy flux
through the boundaries of the control volume, which can
be an overall exergy inflow or outflow (depending on the
system under study). (III) is the rate of work done by
the pressure and viscous forces on the boundaries of the
control volume. (IV ) is the rate of isobaric work done at
the boundary of the control volume. In the case where
the work is performed in order to compress the gas in its
transformation towards its dead state, this term represents
a usable rate of work done by the atmospheric pressure.
In the case where the gas is expanding against the atmo-
spheric pressure, this term is an additional work that has
to be provided for the transformation towards the dead
state to take place. (V ) is the thermal exergy provided
or retrieved by thermal conduction through ∂V . (V I),
(V II) and (V III) represent the rate of anergy generated

(or equivalently the rate of exergy destroyed irreversibly)
respectively due to viscous effects, thermal mixing and
entropy creation by shockwaves inside the control vol-
ume.

In physical terms, this balance equation expresses that
the change of exergy with respect to time inside the
control volume is due to any inflow/outflow of exergy
through the external surfaces, the rate of work done by
external surface forces and irreversible exergy losses in-
side the control volume.

4. TRANSFORMATION OF THE
EXERGY BALANCE FOR A
REFERENCE FRAME IN
TRANSLATION

4.1 System definition
Let us consider a frame of reference R in translation with
a velocity V0 with respect to the fixed reference frame R̃
defined in Fig. 2 (as shown in Fig. 3):

x

y

z x̃

ỹ

V0

z̃
R R̃

Figure 3: Moving frame R at a velocity V0 with respect to the
fixed frame R̃.

This reference frame is commonly used in aerodynam-
ics studies to simplify analyses. In this frame the aircraft
is motionless, and the flow is steady. However, the fluid is
not at rest in its dead state, but in motion with a velocity
V∞ =−V0.

At t = 0, the two frames are considered to be coinci-
dent with a common origin. Under these conditions, the
variables in the translating frame of reference R can be
expressed as functions of the ones linked to R̃:

t = t̃ x = x̃−V0t̃ y = ỹ z = z̃ (24)

The time derivative must be transformed using:

∂K
∂ t̃

=
∂K
∂ t

∂ t
∂ t̃

+
∂K
∂x

∂x
∂ t̃

+
∂K
∂y

∂y
∂ t̃

+
∂K
∂ z

∂ z
∂ t̃

=
∂K
∂ t

−∇ · (KV0)+K���∇ ·V0 (25)

where K is any continuous scalar quantity and the second
equality is obtained due to V0 being constant in space and
time. When considering an integral expression, this gives
(using the divergence theorem):∫

V
∂K
∂ t̃ dV =

∫
V

∂K
∂ t dV −

∫
∂V KV0 ·ndS+

∫
Sw

JKV0K ·ndS (26)

The system presented in Fig. 2 is then considered with
respect to R, as shown in Fig. 4.

The system is thermodynamically open as it exchanges
mass, work and heat with the surrounding fluid across
its boundaries. The atmosphere is considered as a ther-
mal and mechanical reservoir which also corresponds
to the dead state in the exergy definition. In this case
the analysis is carried out in R, assumed inertial. The
control volume is therefore fixed with the fluid flowing
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V∞

T∞

p∞

ρ∞

s∞

Sb

So

dV

xy

z R

n

Sw

nn

Figure 4: 2D cross section of a 3D control volume surrounding
the aircraft as seen in R.

in and out of it. R is chosen so that the aircraft ve-
locity is null, whereas the atmosphere is considered to
have a velocity V∞ =−V0. In general, the fluid ve-
locity expressed in the reference frame in translation is
V = Ṽ−V0 = Ṽ+V∞, and similarly the shock veloc-
ity is expressed as W = W̃+V∞. In the case where the
shock is steady in R, this gives W = 0.

The nabla operator is not affected when moving from
R̃ to R, nor is any quantity that is not directly dependent
on Ṽ (i.e. ∇̃ = ∇ and b̃ = b where b is any scalar quantity
not dependent on the fluid velocity). As a consequence,
the conservative variables are not affected by this change
of reference frame, with the exception of the total energy
which is expressed in R as:

E = e+
1
2

V2 = Ẽ +V ·V∞ − 1
2

V2
∞ (27)

The above equation highlights that the value of the to-
tal energy changes between R̃ and R (i.e. Ẽ ̸= E). An ad-
ditional component depending on V∞ appears in the def-
inition of E, which is linked to the kinetic energy differ-
ence that is perceived due to the translation of R. The
forms of the conservation equation obtained separately
for Ẽ in R̃ and E in R are however identical, as the terms
depending of V∞ are cancelled due to the mass and mo-
mentum conservation equation being expressed in R.

4.2 Exergy balance
4.2.1 Exergy definition
As discussed in Sec. 2, exergy is a scalar quantity that
represents an amount of recoverable mechanical work
from a system as it evolves towards its dead state through
thermodynamic processes. Thus, it is not dependent on
the reference frame it is expressed in (i.e. x = x̃ ). The
exergy definition must however be written with the fluid
velocity expressed in R:

x = x̃ = δe+ p∞δ

(
1
ρ

)
−T∞δ s+

1
2
(V−V∞)

2 (28)

= x A −V ·V∞ +V2
∞ (29)

In contrast to the definition of total energy in R, which
is expressed as a function of V (cf. Eq. (27)), the above
expression is not further modified. This is because, as
mentioned previously, the specific exergy quantifies the
maximum amount of work that could be recovered as the

system evolves towards its dead state. Thus, the consider-
ation of a relevant dead state for the calculations is essen-
tial, and the dead state must correspond to the atmosphere
thermodynamic state in aerodynamics applications.

To further detail this explanation, let us consider a fluid
system which would only be composed of the atmosphere
at rest. In this case, Eq. (28) guarantees that the exergy of
the system equals zero independently of the choice of ref-
erence frame between R̃ and R. In the case where any ad-
ditional thermodynamic perturbation is considered (such
as a compression or an expansion), the exergy would still
be independent on the choice of reference frame, and its
thermodynamic properties (in particular the guaranteed
positivity of exergy) would be respected.

Another option would have been to adapt the exergy
definition to the reference frame considered, in which
case the kinetic energy component would be expressed
in R as 1

2V 2 (similarly to what is done for the total energy
conservation). In that case, an identical form of the ex-
ergy balance could have been derived for this new defini-
tion of exergy, as the terms depending of V∞ would have
been cancelled using the conservation equations. How-
ever, adapting the definition of the specific exergy to each
reference frame (similarly to what is performed for the to-
tal energy) would lead to a modification of the system’s
exergy depending on the chosen frame of reference. Con-
sidering the case of a system only composed of the atmo-
sphere as above, the exergy would still be equal to zero
in R̃ but would be equal to 1

2V 2
∞ in R, even though this

would not correspond to a physical acceleration of the
fluid. Thus, a fictive non-zero exergy resulting from the
change of reference frame would have been interpreted
as a potential for mechanical work recovery. A different
option would have been to adopt the definition x A. This
remediates the reference frame inconsistency, since the
exergy computed in each reference frame correctly equals
zero as the atmosphere kinetic energy is subtracted. Nev-
ertheless, it leads to the loss of the guarantee that the
specific exergy is always positive when considering more
complex systems.

As a consequence, Eq. (28) constitutes the only defi-
nition of specific exergy that both guarantees the thermo-
dynamic properties of x̃ (and in particular its positivity)
and does not lead to an inconsistency when a change of
reference frame is performed. This reasoning is essential,
as it shows that the exergy definition introduced by Arntz
et al. [4, 6] and used in following aerodynamics studies
is not consistent in that aspect.

4.2.2 Transformed exergy balance

The time derivative in Eq. (23) is then transformed in the
reference frame R in translation, and the fluid velocity
expressed in R is injected to obtain:

∫
V

∂ρx
∂ t

dV +
∫

∂V
ρx V ·ndS−

∫
Sw

Jρx WK ·ndS

=−
∫

∂V
((pI − τ) · (V−V∞)) ·ndS+

∫
∂V

p∞(V−V∞) ·ndS

−
∫

∂V

(
1− T∞

T

)
q ·ndS−

∫
V

T∞

T
ΦdV −

∫
V

T∞

T 2 k(∇T )2 dV

−T∞

∫
Sw

J
1
T

q+ρδ s(V−W)K ·ndS (30)
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Note that since V∞ is constant, τ̃ = τ and Φ̃ = Φ.
The exergy balance of Eq. (30) is obtained by projecting
Eq. (23) in R. It can also be derived by starting from the
conservation equations expressed in R and by deriving an
exergy balance as was done for R̃ in Sec. 3.

4.3 Further decomposition of the exergy
balance

4.3.1 Phenomenological decomposition
Whereas Eq. (30) allows a clear physical interpretation by
itself, the decomposition is carried on in order to further
refine the exergy balance interpretation. The exergy flux
is decomposed using the exergy definition in R as:

x = δe+ p∞δ

(
1
ρ

)
−T∞δ s︸ ︷︷ ︸

xs

+
1
2
(V−V∞)

2︸ ︷︷ ︸
KE

(31)

where xs is referred to as the static exergy and KE is the
flow kinetic energy.

The static exergy is the exergy that would have been
available if the gas had no kinetic energy and no flow-
stream was considered. This corresponds to the useful
work that could be retrieved from a gas compressed by
(or expanding against) a piston in a closed container by
recovering the mechanical work (equal to exergy) and
transforming the thermal transfers into useful work (by
a Carnot machine).

The flow kinetic energy can also be rewritten as
1
2 (V−V∞)

2 = 1
2 Ṽ2. This highlights that the actual flow

kinetic energy, as seen in the fixed reference frame R̃,
is perceived as a perturbation kinetic energy when seen
from the reference frame in translation R. This observa-
tion is useful for the following comparisons between this
derivation and previous work done on the exergy balance.

The kinetic energy is directly expressed using
Ṽ = δV = (u,v,w)T , giving Ṽ2

/2 = (u2 + v2 +w2)/2.
The exergy flux appearing in Eq. (30) can thus be de-
composed to get:

∫
V

∂ρ
(
xs +

1
2 (u

2 + v2 +w2)
)

∂ t
dV =−

∫
∂V

ρxsV ·ndS

+
∫

Sw

JρxsWK ·ndS−
∫

∂V

1
2

ρ(u2 + v2 +w2)V ·ndS

+
∫

Sw

J
1
2

ρ(u2 + v2 +w2)WK ·ndS−
∫

∂V

(
1− T∞

T

)
q ·ndS

−
∫

∂V
(((p− p∞)I − τ) · (V−V∞)) ·ndS−

∫
V

T∞

T
ΦdV

−
∫
V

T∞

T 2 k(∇T )2 dV −T∞

∫
Sw

J
1
T

q+ρδ s(V−W)K ·ndS

(32)

Several notations are introduced from this equation:

• Ẋv(t) :=
∫
V

∂ρxs
∂ t dV +

∫
V

∂
1
2 ρ(u2+v2+w2)

∂ t dV is the
unsteady rate of change of exergy inside the control
volume. It is composed of two terms respectively
representing a static and a kinetic contribution.

• Ẋth := −
∫

∂V ρxsV · ndS+
∫

Sw
JρxsWK · ndS is the

static exergy flux. This term is usually referred to as
thermal or thermocompressible exergy flux.

• Ẋm := −
∫

∂V ρ
1
2 (u

2 + v2 + w2)V · ndS +∫
Sw

J 1
2 ρ(u2 + v2 +w2)WK · ndS −

∫
∂V ((p − p∞)I −

τ) · (V − V∞) · ndS is the mechanical exergy flux,
composed of the flow of kinetic perturbation exergy
and the transfer power linked to these velocity
perturbations. It is purely dependent on the velocity
as perceived in the fixed reference frame R̃, which
is considered to be a perturbation velocity when
analysing the configuration in R.

• Ẋq := −
∫

∂V

(
1− T∞

T

)
q · ndS is the exergy trans-

ferred by thermal conduction through non-adiabatic
surfaces.

• ˙Aφ :=
∫
V

T∞

T ΦdV is the viscous anergy, corre-
sponding to the rate of irreversible exergy destruc-
tion due to viscous effects.

• ˙A∇T :=
∫
V

T∞

T 2 k(∇T )2 dV is the thermal anergy, cor-
responding to the rate of irreversible exergy destruc-
tion due to thermal mixing.

• ˙Aw := T∞

∫
Sw

J 1
T q+ρδ s(V−W)K ·ndS is the wave

anergy, corresponding to the rate of irreversible ex-
ergy destruction due to the presence of shockwaves.

Using these notations, the exergy balance is rewritten
in a compact form as:

Ẋv(t)︸ ︷︷ ︸
Unsteady exergy

variation

= Ẋm +Ẋth +Ẋq︸ ︷︷ ︸
Flow exergy flux

−( ˙Aφ + ˙A∇T + ˙Aw)︸ ︷︷ ︸
Exergy destruction

(33)

The above equation corresponds to a classical balance
of a physical quantity in which any unsteady variation
comes from its fluxes at the domain borders and its vol-
ume production or destruction within the volume. It is a
more detailed equivalent of Eq. (6) in R.
4.3.2 Separation of the contributions on Sb and So

The above analysis can be refined by separating the con-
tributions on Sb (referred to as near field) and So (referred
to as far field) for the exergy flux terms. For example, the
mechanical exergy is decomposed as Ẋm = Ẋmb − Ẋmo
where:

Ẋmb =−
∫

Sb

(
ρ

1
2 (V−V∞)

2V+((p− p∞)I − τ) · (V−V∞)
)
·ndS

(34)

Ẋmo =
∫

So

(
ρ

1
2 (V−V∞)

2V+((p− p∞)I − τ) · (V−V∞)
)
·ndS

−
∫

Sw
J 1

2 ρ(u2 + v2 +w2)WK ·ndS (35)

The sign convention is chosen so that any near-field
contribution is considered as an exergy inflow while any
far-field contribution is considered as an exergy outflow.
The exergy balance then becomes:

Ẋmb +Ẋthb +Ẋqb = Ẋv(t)+Ẋmo +Ẋtho

+Ẋqo + ˙Aφ + ˙A∇T + ˙Aw (36)
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where the far-field terms are placed on the same side as
the unsteady exergy variation. This choice is arbitrary in
the present case, unlike formulations such as the unsteady
drag breakdown developed by Toubin et al. [18, 19, 20],
where this was required to account for delay effects.

4.3.3 Decomposition of the near-field mechanical ex-
ergy

While the exergy balance derived above is complete, the
analysis can be further refined. This is done by decom-
posing the mechanical contribution to the near-field ex-
ergy inflow (defined as Ẋb = Ẋmb +Ẋthb) as:

Ẋb =−
∫

Sb

(
ρ

(
xs +

1
2

V 2
)

V+((p− p∞)I − τ) ·V
)
·ndS

(37)

+
∫

Sb

(ρV∞ ·V)V ·ndS−
∫

Sb

1
2

V 2
∞ρV ·ndS

+V∞ ·
∫

Sb

((p− p∞)I − τ) ·ndS

This decomposition consists in separating the contri-
butions depending on V∞, i.e. related to the change of
reference frame, and the ones depending on V . The sec-
ond and third terms of the above equation are obtained
by expanding the kinetic contribution to specific exergy
as x = xs +V 2/2−V ·V∞ +V 2

∞/2. They represent fluxes
of the terms responsible for the kinetic energy difference
(associated to a reference frame transformation) through
permeable parts of Sb. The second term of Eq. (37) repre-
sents a kinetic energy difference associated to a variation
of momentum, while the third one is representative of a
kinetic energy difference associated to a non-zero mass-
flow variation along Sb (e.g. unbalanced massflow rate
across the propulsion system permeable boundaries). The
last term of Eq. (37) is finally representative of the vari-
ation of work rate of surface forces on Sb associated to
the reference frame transformation. From this decompo-
sition and by separating the contributions on permeable
and non-permeable surfaces of Sb (respectively noted Sbp
and Sbnp), two quantities are introduced:

Ẋt f :=−
∫

Sbp

(
ρ
(
xs +

1
2V 2

)
V+((p− p∞)I − τ) ·V

)
·ndS (38)

Ẋtrb :=−V∞ ·
∫

Sbp
(ρV⊗V+(p− p∞)I − τ) ·ndS

−V∞ ·
∫

Sbnp
((p− p∞)I − τ) ·ndS+

∫
Sbp

1
2V 2

∞ρV ·ndS (39)

Ẋt f is referred to as the throughflow exergy, and rep-
resents the flux of a flow exergy that is computed for a
reference state at rest in R. As this is not the real flow
exergy flux (which is defined with respect to a reference
state at rest in R̃), an exergy difference Ẋtrb composed of
three different terms which are linked to the momentum
and mass conservation in R appears. This difference ap-
pears for the sole reason that the analysis is performed in
a reference frame in translation, in which the atmosphere
is not at rest. The first two terms of Eq. (39) represent the
difference of the rate of work of surface forces on walls
due to the reference frame transformation from R̃ to R.
Note that the first term is representative of the interior of
the propulsion system (limited by permeable surfaces).

In the specific case where R translates at the same veloc-
ity as the body, the sum of these first two terms corre-
sponds to the rate of work of aerodynamic forces applied
to the body as perceived in R̃ (no aerodynamic work is
perceived R as the body is motionless). The rate of work
of aerodynamic forces perceived in R̃ is different from
zero in cases where thrust and drag do not balance each
other, leading to the need for a non-aerodynamic force to
work for the body to be at equilibrium (as mentioned by
Drela [12], Arntz [4], Sanders and Laskaridis [17]). Note
that the third term in Eq. (39) is unchanged with respect to
Eq. (37). Thus in the case where R translates at the same
velocity than the body, the exergy difference associated
to the reference frame transformation can be written as:

Ẋtrb =−V∞ ·Faero −
1
2

V 2
∞ṁb (40)

where Faero is the overall aerodynamic force acting on the
body and ṁb =−

∫
Sbp

ρV ·ndS is the mass flow variation
on Sbp.

Ẋtrb can vanish in different cases, the first being the
trivial case where V∞ = 0, i.e. R̃ = R and thus no ex-
ergy difference arises from the reference frame transfor-
mation. Otherwise, it can vanish if ṁb = 0 and Faero = 0.
The condition Faero = 0 corresponds to the case where
the body is at equilibrium due to aerodynamic forces, i.e.
thrust balances drag. In this case, there is no overall work
exchange between the body and the fluid in R̃ or in R,
as aerodynamic forces are not modified between the two
reference frames. It should however be noted that thrust
and drag applied to the body separately lead to non-zero
rates of work (modified when moving from R̃ to R), but
the two rates of work compensate each other in both ref-
erence frames. It is important to note that Faero = 0 does
not lead to Ẋtrb = 0 if ṁb ̸= 0 (or vice versa), thus both
effects should be considered in the evaluation of the ex-
ergy difference associated to the reference state not being
at rest in R.

The cases where Ẋtrb = 0 and Ẋtrb ̸= 0 should also
be discussed in terms of near-field exergy inflow varia-
tion. If Ẋtrb = 0, we obtain Ẋb = Ẋt f , i.e. the near-field
flow exergy flux is equal between choosing a reference
state which is at rest in R or one which is at rest in R̃ for
the definition of exergy (even though both the exergy and
flow exergy themselves are not the same, cf. Sec. 4.2.1).
If Ẋtrb ̸= 0 and ṁb = 0, the body is not at an aerody-
namic force equilibrium. This force is balanced by a non-
aerodynamic force (e.g. its weight [12]), the work rate of
which is equal in magnitude to the work rate of aerody-
namic forces on the body. When the reference frame is
moved from R̃ to R, the near-field aerodynamic rate of
work is no longer perceived (as the body appears mo-
tionless) but can be estimated using the exergy difference
Ẋtrb. Ẋt f is then representative of the near-field exergy
inflow that would be perceived if the body was at an aero-
dynamic equilibrium. Although the decomposition into
Ẋt f and Ẋtrb is practical because it allows to isolate the
aerodynamic force contribution, it should be noted that
the real near-field exergy inflow corresponds to Ẋb rather
than Ẋt f . Finally, if Ẋtrb ̸= 0, Faero ̸= 0 and ṁb ̸= 0, an
additional fictive (and thus unavailable) kinetic energy as-
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sociated to a massflow variation across Sb is considered
in Ẋtrb. This exergy difference consideration is similar
to the one discussed in Sec. 4.2.1.

Overall, this reasoning highlights a fundamental dif-
ference between the thermodynamic variables in the dead
state and V∞ for aerodynamics applications. Whereas p∞,
ρ∞, T∞ and s∞ have a direct physical link with the thermo-
dynamic dead state of the gas, V∞ will always be equal to
zero in the reference frame in which exergy is correctly
defined (i.e. R̃). The non-zero reference state velocity V∞

is thus representative of the change of reference frame
that is performed to simplify aerodynamics analyses (e.g.
R is usually chosen in order to carry out a steady analy-
sis of the flow). As such, V∞ does not correspond to a
physically different thermodynamic dead state.

The unsteady exergy balance is finally written as:

Ẋt f +Ẋqb = Ẋv(t)+Ẋtrb +Ẋmo +Ẋtho +Ẋqo

+ ˙Aφ + ˙A∇T + ˙Aw (41)

The unsteady exergy variation can also be distributed
between Ẋmo and Ẋtho to get:

Ẋt f +Ẋqb = Ẋtrb +Ẋm(t)+Ẋth(t)+Ẋqo

+ ˙Aφ + ˙A∇T + ˙Aw (42)

where Ẋm(t) :=
∫
V

∂
1
2 ρ(u2+v2+w2)

∂ t dV + Ẋmo and

Ẋth(t) :=
∫
V

∂ρxs
∂ t dV +Ẋtho.

4.3.4 Link with the exergy balance derived by Arntz
et al. for steady flows

Eqs. (41) and (42) are not directly equivalent to the ex-
ergy balance derived by Arntz et al. [6, 4]. This equiv-
alence could however be recovered by adding and sub-
stracting 1

2V 2
∞ to the near-field mechanical exergy of

Eq. (37) and performing a different separation of the con-
tributions as:

Ẋmb =−
∫

Sb

(
1
2

ρ(V 2 −V 2
∞)V+((p− p∞)I − τ) ·V

)
·ndS︸ ︷︷ ︸

Ẋprop

+
∫

Sb

(ρ(V∞ ·V−V2
∞)V+V∞ · ((p− p∞)I − τ) ·ndS︸ ︷︷ ︸

−W Γ̇

(43)

where Ẋprop is referred to as the propulsive exergy by
Arntz et al. [4, 6] and W Γ̇ is another definition of the
exergy difference. This separation is consistent with the
flow exergy definition x A

f introduced by Arntz et al. (cf.
Eq. (7)) in which the reference state kinetic energy is sub-
tracted from the flow exergy expressed in R, a choice that
does not guarantee the positivity of exergy (as discussed
in Section 4.2.1). Consequently, Ẋprop corresponds to
Ẋt f (i.e. the flow exergy flux perceived in R) from which
the reference state kinetic energy is subtracted. W Γ̇ then
corresponds to the associated exergy difference linked to
the reference frame translation, which was introduced as
part of the far-field mechanical exergy outflow by Arntz
et al.

In the case of a steady flow analysis in external aerody-
namics, a hypothesis was made by Arntz et al. on the fact
that the fuel mass flow rate is negligible with respect to
the air mass flow rate, giving ṁb ≈ 0. For studies in which
this hypothesis is respected (as those performed by Arntz
et al.), this gives Ẋt f = Ẋprop and Ẋtrb = W Γ̇. Thus,
a direct equivalence can be retrieved between the results
obtained by Arntz et al. and the exergy balance derived
in this paper from the corrected exergy definition. Ad-
ditionally, in this specific case, the expression of Ẋtrb is
identical to that of the potential energy rate introduced
by Drela in the power balance method [12]. Note how-
ever that the equivalence between Ẋtrb and W Γ̇ is not
respected for cases where ṁb ̸= 0.

Finally, both Eqs. (41) and (42) allow to recover the
exergy balance of Arntz et al. [6, 4] when considering a
steady-state flow. The derivation is however more direct
with the corrected exergy definition of Eq. (28), as the dif-
ferent contributions can be directly decomposed without
the need to add and substract any term to retrieve the Ẋtrb
expression. Additionally, the Ẋtrb contribution appears
naturally with its near-field expression as part of the me-
chanical exergy provided/consumed by the configuration
under study, while W Γ̇ appeared with its far-field expres-
sion in previous works (after specific operations to extract
this term from a total enthalpy flux term). The corrected
definition of exergy also provides a clearer and more gen-
eral physical interpretation of the term Ẋtrb, which is dif-
ferent from the one suggested in previous works.

It should finally be noted that similarly to the work of
Drela and Arntz et al., the mechanical far-field exergy
outflow can be decomposed as:

Ẋmo =
∫

So

ρ
1
2

u2V ·ndS︸ ︷︷ ︸
Ėu

+
∫

So

ρ
1
2
(v2 +w2)V ·ndS︸ ︷︷ ︸

Ėvw

+
∫

So

((p− p∞)I − τ) · (V−V∞) ·ndS︸ ︷︷ ︸
Ėpτ

(44)

where Ėu and Ėvw are respectively the axial and transver-
sal perturbation kinetic energy, while Ėpτ is the associ-
ated surface forces rate of work. Note that, in contrast
to previous works, it has been chosen to define the last
term as an overall surface force rate of work, including
the viscous contribution.

5. CONCLUSION AND PERSPECTIVES
This paper presents a clarification of the notion of exergy
and its difference with the notion of flow exergy, with a
particular focus on aerodynamics applications. The the-
oretical derivation of an unsteady exergy balance is first
carried out in the geocentric reference frame, in which
exergy is defined without an ambiguity. At a second step,
the definition of exergy is transformed in the case of a
translating frame of reference, resulting in a corrected
definition with respect to previous exergy-based flowfield
analyses in aerodynamics (in particular respecting the
positivity of exergy). The corrected definition also high-
lights that the freestream fluid velocity is directly linked
to the choice of a translating reference frame different
from the one in which exergy is defined (in which the at-
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mosphere is always at rest), whereas the rest of the dead
state variables are representative of the thermodynamic
state of the atmosphere. The impact of this modification
is then assessed on the exergy balance expressed in a ref-
erence frame in translation, showing that the derivation,
decomposition and interpretation of the different terms is
more direct compared to previous works. In particular,
the term Ẋtrb is introduced as a part of the near-field me-
chanical exergy, and is interpreted in physical terms as an
exergy difference linked to the analysis being performed
in the reference frame attached to the body in translation.
The relation between the newly derived exergy definition
and previous works is also investigated, showing that the
same form of exergy balance is obtained in the case of
steady flow. For future works, the exergy balance derived
in this paper should be numerically investigated on com-
plex unsteady cases.
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