
HAL Id: hal-04065774
https://hal.science/hal-04065774

Submitted on 17 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Sound runtime assertion checking for memory properties
via program transformation

Dara Ly, Nikolai Kosmatov, Frédéric Loulergue, Julien Signoles

To cite this version:
Dara Ly, Nikolai Kosmatov, Frédéric Loulergue, Julien Signoles. Sound runtime assertion checking
for memory properties via program transformation. Formal Aspects of Computing, 2024, 36 (1),
pp.4:1-46. �10.1145/3605951�. �hal-04065774�

https://hal.science/hal-04065774
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Sound Runtime Assertion Checking for Memory Properties
via Program Transformation

DARA LY, Université Paris-Saclay, CEA, List, France
NIKOLAI KOSMATOV, Université Paris-Saclay, CEA, List & Thales Research and Technology, France

FRÉDÉRIC LOULERGUE, Université d’Orléans, INSA Centre Val de Loire, LIFO EA 4022, France

JULIEN SIGNOLES, Université Paris-Saclay, CEA, List, France

Runtime Assertion Checking (RAC) for expressive specification languages is a non-trivial verification task, that

becomes even more complex for memory-related properties of imperative languages with dynamic memory

allocation. It is important to ensure the soundness of RAC verdicts, in particular when RAC reports the absence

of failures for execution traces. This paper presents a formalization of a program transformation technique for

RAC of memory properties for a representative language with pointers and memory operations, including

dynamic allocation and deallocation. The generated program instrumentation relies on an axiomatized

observation memory model, which is essential to record and monitor memory-related properties. We prove

the soundness of RAC verdicts with regard to the semantics of this language.

ACM Reference Format:
Dara Ly, Nikolai Kosmatov, Frédéric Loulergue, and Julien Signoles. 2023. Sound Runtime Assertion Checking

for Memory Properties via Program Transformation. 1, 1 (June 2023), 46 pages. https://doi.org/10.1145/

nnnnnnn.nnnnnnn

1 INTRODUCTION
Runtime assertion checking (RAC) [13] is a well-established verification technique whose goal is to

evaluate specified program properties (assertions, ormore generally, annotations) during a particular

program run and to report any detected failures. It is particularly challenging for languages like C,
where memory-related properties (such as pointer validity or variable initialization) cannot be

directly expressed in terms of the language, while their evaluation is crucial to ensure the soundness

of the program and to avoid numerous cases of errors, typically undefined behavior in C [21]. Indeed,

such languages, C in particular, are still widely used, e.g. in embedded software, while memory-

related errors, such as invalid pointers, out-of-bounds memory accesses, uninitialized variables and

memory leaks, are among the most frequent software errors [48].

Recent tools addressing memory safety of C programs at runtime, such as Valgrind andMem-
Check [36, 42], DrMemory [10] or AddressSanitizer [41], have become very popular and successful

in detecting bugs when the program is running. However, their soundness is usually not formally

established, and often does not hold, since most of them rely on very efficient but possibly unsound

heuristics [49], such as redzoning [41]. While for a reported bug, it can be possible—at least, in

Authors’ addresses: Dara Ly, Université Paris-Saclay, CEA, List, Palaiseau, France, contact@libellules.eu; Nikolai Kosmatov,

Université Paris-Saclay, CEA, List & Thales Research and Technology, Palaiseau, France, nikolaikosmatov@gmail.com;

Frédéric Loulergue, Université d’Orléans, INSA Centre Val de Loire, LIFO EA 4022, Orléans, France, frederic.loulergue@univ-

orleans.fr; Julien Signoles, Université Paris-Saclay, CEA, List, Palaiseau, France, julien.signoles@cea.fr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

XXXX-XXXX/2023/6-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: June 2023.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Dara Ly, Nikolai Kosmatov, Frédéric Loulergue, and Julien Signoles

theory—to carefully analyze the execution and check whether an error is correctly reported, the

soundness of the “no-bug” verdict cannot be checked.

For runtime assertion checking, soundness becomes a major concern. Often applied in comple-

ment to sound static verification techniques, RAC is used to check the absence of failures on parts

of annotated code which were not (yet) proved [33]. Hence, ensuring the soundness of RAC tools is

crucial. E-ACSL1 is one of these tools [46], as part of the Frama-C verification platform [3] for static

and dynamic analyses of C programs. A formal proof of soundness for E-ACSL is highly desirable

with regard to the complexity of verification of memory-related properties, that requires numerous

instrumentation steps to record memory related operations—often in a complex, highly optimized

observation memory model [22, 26, 50]—and to evaluate them thanks to this record. In this context,

the proof of soundness is highly non-trivial: it requires one to formalize not only the semantics of

the considered programming and specification languages, but also the program transformation

and the observation memory model. Following Flanagan and Saxe [17], the soundness of the

instrumentation for RAC can be intuitively stated as follows: the instrumentation is sound if an

assertion in the original program fails (or "goes wrong" in the terminology of Flanagan and Saxe) if

and only if that assertion evaluated in the instrumented program also fails.

The purpose of the present work is to formalize and prove the soundness of a runtime assertion

checker for memory-related properties. We consider a simple but representative imperative pro-

gramming language with pointers and dynamic memory allocation supplemented by a specification

language with a complete set of memory-related predicates, including pointer validity, variable

initialization, as well as memory-related functions for pointer offset, base address and size of

memory blocks. Such memory properties are referred to as block-level memory properties [50]

since they allow the user to express memory properties related to memory block boundaries. We

define their semantics and formalize a runtime assertion checker for these languages, including the

underlying program transformation and observation memory model. To allow more freedom for

an implementation, we define the execution and the observation memory models axiomatically.

In order to exclude any risk of inconsistency in the axioms, we formalize them and prove their

consistency with respect to a simple implementation using the Coq proof assistant [7]. The Coq
development also includes key notions (isomorphisms of contexts, subcontexts, representation of

an execution memory by an observation memory) and the proof of their key properties used in

the paper. Finally, we state and prove the soundness result ensuring that the resulting verdicts are

correct with respect to the semantics. This paper is an extended version of an initial conference

paper [31], which was deeply reworked in this version, in particular, enriched with a rigorous

formalization of the execution and observation memory models and their properties in order to

provide a more complete proof of the required results.

The contributions of the paper include:

• a formalization of all major steps of a runtime assertion checker for a representative imperative

language with assertions;

• a definition of an observationmemorymodel, suitable for amodular definition and verification

of program transformations injecting non-interfering code for observing and monitoring

block-level memory properties;

• a formalization
2
and proof of consistency of the proposed axiomatic definitions of the execu-

tion and the observation memory models and their key properties in Coq;
• a proof of soundness of a runtime verifier for block-level memory properties.

1
available as open-source software at https://frama-c.com/eacsl.html

2
available at https://frederic.loulergue.eu/ftp/tap_si_fac2022.zip

, Vol. 1, No. 1, Article . Publication date: June 2023.

https://frama-c.com/eacsl.html
https://frederic.loulergue.eu/ftp/tap_si_fac2022.zip

Sound Runtime Assertion Checking for Memory Properties via Program Transformation 3

Outline. Section 2 gives an overview of the work and a motivating example. Section 3 defines the

source language, including an assertion statement and a language of predicates, and its semantics.

The target language and the transformation generating the runtime assertion checking code is

formalized in Section 4, while Section 5 states and proves the soundness result. Finally, Sections 6

and 7 give some related work and conclusion.

2 OVERVIEW ANDMOTIVATING EXAMPLE
At a first glance, runtime assertion checking might be considered as an easy task: just directly

translate each logic term and predicate from the source specification language to the corresponding

expression of the target programming language and that’s it. In that spirit, Barnett et al. [2] explain

how they enforce Spec# contracts, but only a short paragraph is dedicated to their runtime checker

(all the others being dedicated to static verification). Here it is in extenso:

The run-time checker is straightforward: each contract indicates some particular pro-

gram points at which it must hold. A run-time assertion is generated for each, and any

failure causes an exception to be thrown.

However, this statement is not true for complex properties such as memory properties. Consider

for instance the C function implementing binary search in Fig. 1. It contains an assertion on line 5,

written in the E-ACSL specification language [14, 43], stating that t+mid of type int* refers to a

“valid memory location”, ensuring that it is safe to dereference it on lines 6 and 7. For this program,

the assertion is satisfied and runtime assertion checking of this program with the E-ACSL tool will

not detect any failure.

To illustrate a failure, let us assume that search is called on line 15 with an erroneous length

argument, say, 10 instead of 5. Then during the first iteration of the loop, mid would take the value

5 (on line 4) and the assertion on line 5 would fail because t + 5 is out of t’s bounds (as t has only

5 elements as defined on line 14). In this case, runtime assertion checking of this program with the

E-ACSL tool would halt the program execution and report the failure.

1 int search(int *t, int len, int x) { // search x in array t
2 int lo = 0, hi = len - 1; // initial interval bounds
3 while (lo <= hi) { // while interval non empty
4 int mid = lo + (hi - lo) / 2; // take the middle value
5 /*@ assert \valid(t + mid); */
6 if (t[mid] == x) return mid; // element found
7 else if (t[mid] < x) lo = mid + 1;
8 else hi = mid - 1; // reduce the search interval
9 }
10 return -1; // element not found
11 }
12

13 int main(void) {
14 int t[5] = { -3, 2, 4, 7, 10 };
15 return search(t, 5, 7);
16 }

Fig. 1. An example C program with ACSL annotations.

, Vol. 1, No. 1, Article . Publication date: June 2023.

4 Dara Ly, Nikolai Kosmatov, Frédéric Loulergue, and Julien Signoles

Checking such a property at runtime is not trivial: in particular, it requires us to know at the

program point of the annotation (line 5) whether the sizeof(int) bytes starting from the

address t+mid have been properly allocated by the program earlier in the execution, in the same

memory block, without being freed in the meantime. For that purpose, runtime memory checkers

(also called memory debuggers) need to store at runtime pieces of information about program

memory in a disjoint memory space, named observation memory in this paper. For instance, the

instrumented version of Fig. 1 created by the E-ACSL runtime assertion checker [46] is 111-lines

long (when deactivating its static optimization described in [32]) for tracking the program memory

manipulation. In particular, for the block t created and initialized on line 14, E-ACSL adds the

following lines of code (assuming that sizeof(int)= 4, so t is 20-byte long):

1 __e_acsl_store_block((void *)(t),(size_t)20); //record new block
2 __e_acsl_full_init((void *)(& t)); //mark it as initialized

Each of the cells of the array is then marked as initialized as well.

Optimized implementations of such functions are also pretty complex, as explained by Vorobyov

et al. [50]. In this work, assuming their correct implementation, we formalize the whole instrumen-

tation performed by an RAC tool, and prove its soundness. For that purpose, we provide a model for

such functions.

Moreover, RAC often has to manipulate additional variables, e.g. to evaluate annotations. We

also prove that the instrumentation has no effect on the functional behavior of the input program

as long as no annotation is violated (theorem 5.7, semantic preservation).

3 SOURCE LANGUAGE
This section presents the source language: its syntax and semantics, including the formal model of

memory we consider.

3.1 Motivation and Overview of the Main Components
From a program written in C, associated with a formal specification given as ACSL annotations

(which are C comments), the code generator of the E-ACSL plugin inserts instructions that imple-

ment a monitor, whose role is to verify, at runtime, the validity of the annotations. It can be seen as

a transformation from a C program to another program written in the same language.

The features of this monitor are prescribed by the ACSL annotations of the source program. From

this perspective, the E-ACSL tool can also be seen as translating a source language into a distinct

target language. From this point of view, the source language is the C language extended with

ACSL annotations. A programmer using this language can for instance write a program such as the

code of Fig. 1 that includes a formal E-ACSL annotation to check the validity of the access to an

array cell. These programs are then translated into “pure” C where the annotations are removed. C
without annotations is the target language of the translation mechanism. It should include an assert

instruction to check properties. The translation of the program of Fig. 1 gives a C program where

the annotation assert is replaced by C instructions that control the validity of the memory access

(using the assert instruction). The assert annotation is left in the code but only for documentation.

In the target code, it is a simple comment without any meaning for the program execution.

Such an approach has two advantages. First, considering annotations as part of the source

language makes the semantic analysis of the transformation easier.

Second, it allows us to abstract away some aspects of the instrumentation. Indeed, in the E-ACSL
plugin, the generated online monitors call an auxiliary library, also written in C. This library
provides data structures and functions that are necessary to implement the checks corresponding

, Vol. 1, No. 1, Article . Publication date: June 2023.

Sound Runtime Assertion Checking for Memory Properties via Program Transformation 5

to the source annotations. Modeling the problem with a unique language would make the formal

reasoning on the implementation of this library mandatory. A distinct target language can be

enriched with this library API without considering its implementation but only its semantics and

its properties.

In terms of programming languages, we therefore have to model three parts: a common core

language representing the C language, a source language obtained by adding a logical specification

language to this core language, and a target language obtained by adding instructions coming from

the E-ACSL runtime library to the core language.

The focus of this work is the verification of assertions about properties related to memory states

(also called memory properties). The core language should therefore be representative of the C
language in terms of memory manipulation. The specification language should also be able to

express interesting memory properties.

3.2 Core Imperative Language
We denote by X the set of (names of) variables possibly used in our programs. The essence of an

imperative language such as C is captured by a handful of constructions, often referred to asWhile
language [37]. In such a language, expressions and statements (or instructions) are two distinct

syntactic categories. An expression can be an integer constant, a variable, the application of a

unary operation to an expression, or the application of a binary operation to two expressions: these

are the first four cases for expressions in Fig. 2. It is worth noting that expressions are side-effect

free. Indeed, side effects are only allowed in statements, which include the instruction without any

effect (skip), the assignment, the sequence, the conditional instruction, and the while loop. These

statements are the first five cases for statements in Fig. 2.

To this core language, we add memory related operations found in C: obtaining the address of an
object and deferencing a pointer. To be able to use pointer arithmetic, the set of binary operators

of the language must include operators + and − that, resp., adds/subtracts an integer to/from a

pointer. This completes the grammar of expressions given in Fig. 2.

One key mechanism for managing memory is dynamic allocation and deallocation. The function

malloc allocates a block with the number of memory cells given as argument, and if it succeeds

it returns a pointer to this memory block. The deallocation function free takes as argument a

dynamically allocated pointer and deallocates the considered memory block. Our language does not

offer functions,
3
therefore we model these two specific functions as two new instructions, where

the specific integrated notation used for malloc also stores the resulting pointer in a given memory

location.

In addition to explicit memory allocation in the heap, C provides a simple form of automatic

memory management: declaration of local variables inside blocks. We also provide a similar feature

(but without blocks) in the form of a let instruction. The instruction let x : τ in s end allocates
a memory block for variable x of type τ without initializing it, executes instruction s and finally

deallocates the memory block that was allocated for x . The same instruction let—put at the outer
level and containing other program instructions inside it—can be used to model global variables, so

we do not introduce other means to declare global variables. We assume without loss of generality

that variables are never overloaded, that is, a let instruction never introduces a variable x if x is

already visible in the scope (as a variable previously introduced by an external let instruction).
This requirement can be easily satisfied by renaming of variables (also known as α-conversion). We

3
Notice that the fact to exclude function calls in this work is a simplification assumption of the formalization and not an

essential limitation inherent to the transformation approach. Indeed, the E-ACSL tool perfectly supports functions calls.

, Vol. 1, No. 1, Article . Publication date: June 2023.

6 Dara Ly, Nikolai Kosmatov, Frédéric Loulergue, and Julien Signoles

expr e F n integer constant

| x variable

| † e unary operator

| e ‡ e binary operator

| ∗e dereferencing

| &e address

term t F e expression

| ∗̄t dereferencing

| ¯† t unary operator

| t ¯‡ t binary operator

| \base_address(t) base address

| \offset(t) offset of a pointer

| \block_length(t) length of a memory block

pred p F \true | \false true, false

| t ▷̄◁ t comparison

| p ∧ p conjunction

| ¬p negation

| \valid(t) pointer validity

| \initialized(t) initialisation

stmt s F skip; no effect

| e = e; assignment

| s s sequence

| if(e) then s else s conditionnal

| while(e) s loop

| e = malloc(e); allocation

| free(e); deallocation

| let x : τ in s end local variable

| logical_assert(p); logical assertion

ctyp τ F intk, k ∈ {8, 16, 32, 64} integer type

| τ∗ pointer type

Fig. 2. Syntax of the source language. The type associated to each syntatic category is in bold.

also assume that special variables res(n) (for all n ⩾ 0) are never introduced in our source programs:

these variable names are reserved for auxiliary variables introduced by the translation.

The possible types in our language are basically integers of various sizes and a pointer type. The

size of integers varies from 8-bit to 64-bit integers to make things easier while reasoning, without

loss of generality: in E-ACSL in particular, the machine-dependent parameters such as the size of

integers can easily be set by the users. For the sake of conciseness, we choose to avoid defining a

static type system. Instead, we assume that each expression is labeled with a type and we define

program evaluation in such a way that it takes into account type information. We write e : τ to

denote that expression e is annotated with type τ . The set of types is denoted by type. We often

omit to indicate types in the paper when they are clear from the context.

, Vol. 1, No. 1, Article . Publication date: June 2023.

Sound Runtime Assertion Checking for Memory Properties via Program Transformation 7

1 let t: int64* in
2 let len: int64 in
3 let x: int64 in
4 t = malloc (len * sizeof(int64));
5 *t = -3; *(t+1) = 2; *(t+2) = 4; *(t+3) = 7; *(t+4) = 10;
6 len = 5;
7 x = 7;
8

9 let lo: int64 in
10 let hi: int64 in
11 let idx: int64 in
12 idx = -1;
13 lo = 0;
14 hi = len - 1;
15 while (lo <= hi)
16 let mid: int64 in
17 mid = lo + (hi - lo) / 2;
18 logical_assert(\valid(t + mid));
19 if (*(t + mid) == x) then
20 idx = mid;
21 lo = hi + 1;
22 else if (*(t + mid) < x) then
23 lo = mid + 1;
24 else
25 hi = mid - 1;
26 end
27 end
28 end
29 end
30 end
31 end
32 end

Fig. 3. The example of Fig. 1 written in our source language.

3.3 Specification Language
An assertion is formalized as a statement including a predicate in a dedicated logic, which expresses

a property of the program execution. If such a predicate is false, the execution stops. If it is true,

the assertion has no effect and the execution continues.

The variety of properties the specification language can express depends on the language of pred-

icates. In this work we focus on memory properties and more specifically on spatial properties [35],

i.e. properties related to the memory state at a given time, for example, validity of a memory access

to a memory location. We do not consider temporal properties [13], which characterize errors

related to sequences of events such as some cases of use-after-free, when a pointer is used while

the memory it points to was deallocated and possibly another block was allocated at the same

location. Our memory model assumptions described below (in particular, the freshness condition

of block allocation) will not allow modeling such situations.

, Vol. 1, No. 1, Article . Publication date: June 2023.

8 Dara Ly, Nikolai Kosmatov, Frédéric Loulergue, and Julien Signoles

Our langage of predicates is a propositional logic. For the sake of conciseness we consider

only negation, conjunction and constants \true and \false. The conjunction operator is a short-

circuit operator that evaluates its right-hand operand only if its left-hand operand is true. The

other propositional logic operators, such as disjunction and implication, can be encoded within

this minimal subset. Predicates are defined on terms, which represent objects related to program

execution, in particular memory. We assume the usual relational predicates for comparing terms.

Two specific predicates \valid() and \initialized() express properties on pointers. Their

meaning is similar to the same predicates in ACSL. If t is a term representing a pointer, \valid(t)
expresses the validity of the pointer, i.e. the ability to deference the pointer and access the pointed

location without error. \initialized(t) means that the memory location referred to by pointer t
has been initialized, i.e. a compatible value was written with the same type at the same location.

We adopt a strict version of initialization: a pointed location is seen as initialized only if a defined

value can be read from this location.

.

t\base_address(t)

\offset(t)

\block_length(t)

Fig. 4. Block properties.

Terms are a generalization of the source language expressions with a few additional cases

needed for the predicates. We add three logic functions, similar to those existing in ACSL, which
describe the memory state as depicted in Fig. 4: \block_length(), \base_address() and \offset().
\block_length(t) is the size (in bytes) of thememory block containing pointer t , \base_address(t)
is the pointer to (the beginning of) the memory block containing pointer t , and \offset(t) is the
offset (in bytes) of pointer t with respect to the beginning of the block. These logic functions are

powerful enough to specify byte-level memory operations which typically occur in real C programs.

The unary and binary operators of expressions are extended to terms and written
¯† and

¯‡ , so

that it is possible to write terms such as \block_length(p) + 1 for some pointer p.
Figure 3 shows the example of Fig. 1 written in our source language.

3.4 Execution Memory Model
Several important statements and expressions are related to (execution) memory. The semantics

of our language depends on how the interaction of these instructions with memory is described.

Memory should therefore be formalized too: this is the purpose of the (execution) memory model.

Execution memory states will be denoted byM ,M ′
,M1,M2,. . .

Basically, memory can be seen as a data structure which can be used to store data at some

locations using a write instruction (store). The data can later be retrieved by a read instruction

(load). Memory space is a resource: a memory block should be requested before being used. This is

the role of the allocation operation (alloc). A memory block can be released using a deallocation

operation (free). To remain generic, instead of providing a concrete implementation of such a data

, Vol. 1, No. 1, Article . Publication date: June 2023.

Sound Runtime Assertion Checking for Memory Properties via Program Transformation 9

value v F Int(n)
| Ptr(b,δ)
| Undef

mtyp κ F i 8

| i 16

| i 32

| i 64

Fig. 5. Values and memory types.

M∅ ∈ mem
alloc : mem × N→ block ×mem
free : mem × block → option mem
store : mtyp ×mem × block × Z × value → option mem
load : mtyp ×mem × block × Z→ option value

· ⊨ · : mem × block → bool
length : mem × block → N

Fig. 6. Operations of the execution memory model.

structure, we formalize it as an algebraic specification. It makes our results applicable to various

implementations, as soon as they satisfy this specification.

Thememorymodel of our source language is an adaptation of the first version of CompCert’s [29]
memory model [30]. The block structure of this model fits the concept of block in E-ACSL speci-

fications. Moreover, the CompCert model was designed in the context of a C compiler, and our

language can be seen as a subset of C.
In this model, at every moment of program execution, the program memory (state) consists of

a set of memory blocks. Each block has a size and a unique identifier. A byte in the memory is

identified by the block it belongs to and an offset being the index of this byte in the block. The set

of memory states is denoted bymem, and block denotes the set of block identifiers. The predicate

⊨ defines the validity of a block in a given memory, while the function length gives its size. The

signatures of all memory operations are given in Fig. 6. We assume we always have sufficient

memory, so allocation cannot fail, while all other operations may fail. That is why they return a

value of type option t, which adds a specific value for a failing operation. The returned value is ε
in case of a failure, and ⌊v⌋ where v has type t in case of success.

The initial memory of CompCert was not specified for many cases that cannot occur within

the operational semantics of CompCert languages. This is not the case here: we want to express a

relationship between the execution memory and the observation memory. The observation memory

stores information that is more detailed that what is needed in CompCert. Therefore our execution

memory is less abstract and its behaviour is specified in more cases than the CompCert memory

model. This is independent of the operational semantics of our languages. Notice that many of

these additional cases (such as badly typed accesses or badly aligned overlapping accesses) cannot

occur for our programs due to the type and alignment constraints in our languages and semantics

(further discussed below). We make nevertheless the choice to define memory models in a more

general way, suitable for future extensions of the considered languages.

Data is stored as values. A value can be an integer, a pointer (block identifier and offset), or the

meaningless value Undef, which is a default value for an uninitialized memory cell. Each of these

types has a size expressed in multiples of one byte. Accessing these values is thus parametrized by

a (physical) memory type, which basically gives only the number of bytes to read or write (contrary

to the types of our source language, which distinguish integers and pointers, cf. Fig. 2). The set

of memory types, denoted bymtyp, is defined in Fig. 5. We denote by sizeof(κ) the byte size of a
memory type κ.

, Vol. 1, No. 1, Article . Publication date: June 2023.

10 Dara Ly, Nikolai Kosmatov, Frédéric Loulergue, and Julien Signoles

For the sake of clarity in the operational semantics, we define kind, a function from value∪ type
to the set {Num, Ptr, Undef}, as follows:

kind(intk) ≜ Num for k ∈ {8, 16, 32, 64}

kind(τ∗) ≜ Ptr for τ ∈ type
kind(Int(n)) ≜ Num
kind(Ptr(b,δ)) ≜ Ptr
kind(Int(Undef)) ≜ Undef

The memory type of an expression type is obtained by an application of the function mtype
defined as follows:

mtype(intk) ≜ ik for k ∈ {8, 16, 32, 64},
mtype(τ∗) ≜ iw, wherew is the size of a memory word.

Definition 3.1 (Valid access). We say that an access to location (b,δ) with memory type κ in

memory stateM is valid, denoted byM ⊨ κ @b,δ , if

M ⊨ b ∧ δ ⩾ 0 ∧ δ + sizeof(κ) ⩽ length(M,b).

There exists an empty execution memoryM∅ (that will be used as an initial execution memory

state for evaluation of our programs) that contains no valid blocks. When a new block b is allocated

in a memory M , it should respect a freshness property. This has two aspects. First, we should

obviously exclude possible reuse of the identifier of an already allocated valid block. Second, we

should also exclude possible reuse of the identifier of a block that is currently not valid, but was

previously allocated and then deallocated while some location in this block is still referred to by

an existing pointer (called a dangling pointer in this case). For this purpose, it will be practical to

define the support of a memory.

Definition 3.2 (Support). The support supp(M) of a memoryM is the set of (identifiers of) blocks

that are valid inM or referred to by a pointer value inM . In other words,

supp(M) = {b ∈ block |M ⊨ b}∪{b ∈ block | load(κ,M,b ′,δ ′) = ⌊Ptr(b,δ)⌋ for some b,b ′,δ ,δ ′,κ}.

The freshness condition on a new block b allocated in memory M (that will be required in

Axiom (16) below) can be stated as b < supp(M). This condition—depending on the contents of the

memory—can appear surprising at first glance. An alternative approach is to maintain the set of

all previously allocated blocks and to require that a previously allocated block identifier is never

reused again for a new allocated block. It will also exclude the risk for a dangling pointer to become

valid again after such an allocation, but is stronger than necessary. Our approach is more generic: it

requires a weaker but sufficient condition that does not forbid a concrete implementation to reuse

a block identifier for an allocated block when there is no risk.

The equational theory of memory operations is given as the following set of axioms. For the

sake of conciseness, we consider that all free variables in these axioms are universally quantified.

Definition 3.3 (Execution memory model). The execution memory model is defined by the axioms

presented in Fig 7.

The axioms belong to four categories. Axioms (1), (2), (3), (4), (5) formalize the validity of blocks.

A valid block is introduced by its allocation and removed by its deallocation, while other operations

do not change valid blocks. Axioms (6), (7), (8), (9), (10), (11) describe the contents of the memory,

basically the effect of other operations on read operations. An undefined value is read at a valid

access in a newly allocated block (Axiom (6)), while an allocation and a deallocation do not change

the contents of other blocks (Axiom (7), (8)). When reading a value after writing a value, the read

, Vol. 1, No. 1, Article . Publication date: June 2023.

Sound Runtime Assertion Checking for Memory Properties via Program Transformation 11

alloc(M1,n) = (b,M2) =⇒ M2 ⊨ b (1)

b , b ′ ∧ alloc(M1,n) = (b,M2) =⇒ (M2 ⊨ b
′ ⇐⇒ M1 ⊨ b

′) (2)

free(M1,b) = ⌊M2⌋ =⇒ M2 ⊭ b (3)

b , b ′ ∧ free(M1,b) = ⌊M2⌋ =⇒ (M2 ⊨ b
′ ⇐⇒ M1 ⊨ b

′) (4)

store(κ,M1,b,δ ,v) = ⌊M2⌋ =⇒ (M2 ⊨ b
′ ⇐⇒ M1 ⊨ b

′) (5)

alloc(M1,n) = (b,M2) ∧

δ ⩾ 0 ∧ δ + sizeof(κ) ⩽ n

}
=⇒ load(κ,M2,b,δ) = ⌊Undef⌋ (6)

b , b ′ ∧ alloc(M1,n) = (b,M2) =⇒ load(κ,M2,b
′,δ) = load(κ,M1,b

′,δ) (7)

b , b ′ ∧ free(M1,b) = ⌊M2⌋ =⇒ load(κ,M2,b
′,δ) = load(κ,M1,b

′,δ) (8)

store(κ,M1,b,δ ,v) = ⌊M2⌋ ∧

δ ⩾ 0 ∧ δ + sizeof(κ ′) ⩽ length(M2,b)

}
=⇒ load(κ ′,M2,b,δ) = ⌊convert(v,κ,κ ′)⌋ (9)

store(κ,M1,b,δ ,v) = ⌊M2⌋ ∧ δ ′ , δ ∧

δ + sizeof(κ) > δ ′ ∧ δ ′ + sizeof(κ ′) > δ ∧

δ ′ ⩾ 0 ∧ δ ′ + sizeof(κ ′) ⩽ length(M2,b)

 =⇒ load(κ ′,M2,b,δ
′) = ⌊Undef⌋ (10)

store(κ,M1,b,δ ,v) = ⌊M2⌋ ∧
(
b ′ , b ∨

δ + sizeof(κ) ⩽ δ ′ ∨ δ ′ + sizeof(κ ′) ⩽ δ
) }
=⇒ load(κ ′,M2,b

′,δ ′) = load(κ ′,M1,b
′,δ ′) (11)

alloc(M1,n) = (b,M2) =⇒ length(M2,b) = n (12)

b , b ′ ∧ alloc(M1,n) = (b,M2) =⇒ length(M2,b
′) = length(M1,b

′) (13)

store(κ,M1,b,δ ,v) = ⌊M2⌋ =⇒ length(M2,b
′) = length(M1,b

′) (14)

b , b ′ ∧ free(M1,b) = ⌊M2⌋ =⇒ length(M2,b
′) = length(M1,b

′) (15)

alloc(M1,n) = (b,M2) =⇒ b < supp(M1) (16)

M1 ⊨ κ @b,δ ⇐⇒ ∃M2, store(κ,M1,b,δ ,v) = ⌊M2⌋ (17)

M ⊨ κ @b,δ ⇐⇒ ∃v, load(κ,M,b,δ) = ⌊v⌋ (18)

M1 ⊨ b ⇐⇒ ∃M2, free(M1,b) = ⌊M2⌋ (19)

M∅ ⊭ b (20)

Fig. 7. Axioms of execution memory model.

value remains unchanged if reading is performed at a non-overlapping location (Axiom (11));

becomes undefined if reading is performed at an overlapping valid access (Axiom (10)) or with

incompatible type (Axiom (9)); and is equal to the written value if reading is at the same location

with the same type (Axiom (9)). The convert operation and Axiom (9) are further detailed below.

The third set of axioms, with Axioms (12), (13), (14), (15), describes the length of blocks. It is

determined by the size requested during allocation, and remains unchanged by other operations.

Notice that the length is not specified for a block that has not been allocated (an implementation

can choose, for instance, an arbitrary default value for it). Next, Axioms (16), (17), (18), (19) specify

the freshness condition and conditions of a successful read, write and free operations. In particular,

reading and writing operations succeed (i.e. return a defined value or Undef) if and only if they

are performed at a valid access, while a deallocation succeeds if and only if it is performed on a

, Vol. 1, No. 1, Article . Publication date: June 2023.

12 Dara Ly, Nikolai Kosmatov, Frédéric Loulergue, and Julien Signoles

valid block. Finally, Axiom 20 states that empty execution memoryM∅ contains no valid blocks. In

particular, in memoryM∅, all deallocation, writing and reading operations fail (that is, return ε).
When writing a value to a memory, in general, the value v and the memory type κw used for

writing may not correspond. Further, when a value is read at this location, the memory type used

for reading κr may not correspond again. Axiom (9) deals with this situation using a function

convert : value ×mtyp ×mtyp → value.

convert(v, κw, κr) ≜

{
Undef if κw , κr or v is not κw-storable,
v if κw = κr and v is κw-storable.

For example Int(n) is i8-storable if −128 ≤ n ≤ 127.

To sum up, the only way to read a defined value from memory is when this value was previously

written into the same valid memory location, and not (fully or partially) overwritten since, the

block was not deallocated, and the type of the written value corresponds to the memory type of

the write and read operations. For simplicity, in this paper we do not consider more complex cases

(of casts between integer types for which the read value in the C standard may be implementation-

dependent). These extensions are left for future work.

Notice that Undef and ε should not be confused. A load operation returns ε when the given

access is invalid, and some value ⌊v⌋ when the access is valid. In the last case, the value v can be

Undef (e.g. unintialized), so in some of the evaluation rules below, an additional check of the form

v , Undef will be used to eliminate this case.

In order to exclude any risk of inconsistency in the axioms of the execution memory model, we

formalize them and prove their consistency with respect to a simple implementation using the Coq
proof assistant [7]. We implement the signatures of Fig. 6 and the axioms of Fig. 7 in a module type

(see file ExecutionMemoryModel.v in our Coq formalization). To check the consistency we

implement a module that respects this module type by giving definitions for the functions and

proving the axioms as lemmas (see file ExecutionMemoryImplementation.v).
As mentioned above, Axiom (10) and the case returning Undef in Axiom (9) do not actually

occur during the execution of our programs with the considered operational semantics because of

well-typedness and well-alignedness of memory accesses.

3.5 Operational Semantics
The semantics of our source language is a big-step semantics adapted from CompCert’s seman-

tics [9]. We use an error-free blocking semantics: the evaluation cannot proceed in case of an error.

We have five evaluation relations, all captured by the following schema:

context ⊨mode syntactic object ⇓ result.

In the source language, an (evaluation) context C = (E,M) is a pair consisting of an environement

E and a memory stateM . When there is no risk of ambiguity, parentheses in (E,M) will be omitted.

An axiomatic definition of memory states and operations was given in Section 3.4. An environement

E is a partial injective mapping E : V → block which maps variable names to block identifiers.

It is used to identify in which memory block the value of a given variable x can be found. More

precisely, for a variable name x , if there exists a block b containing x , then E is defined for x and

we write E(x) = ⌊b⌋. Otherwise, we write E(x) = ϵ . The subset of variables that are mapped by

environment E to a block is its domain dom(E) = {x ∈ X | E(x) = ⌊b⌋ for some b ∈ block}. We

also define the image im(E) of E: im(E) = {b ∈ block | E(x) = ⌊b⌋ for some x ∈ X }. Environements

will be denoted by E, E ′
, E1, E2,. . .We denote by E∅ the empty environment that maps no variable,

in other words, dom(E∅) = ∅. The empty context (E∅,M∅) will be used as an initial evaluation

, Vol. 1, No. 1, Article . Publication date: June 2023.

Sound Runtime Assertion Checking for Memory Properties via Program Transformation 13

mode type of the evaluated object result type

expression expr value
left-value expr block × Z
term term value
predicate pred bool
instruction stmt mem

Fig. 8. Evaluation modes of the source language semantics.

context for the evaluation of our programs. Dynamically allocated blocks are not associated with a

variable name in the environment and can be addressed only through a pointer to the block.

A contextC = (E,M) iswell-formed if for any blockb associated with a variable x by environment

E, the block b is valid inM , in other words, ∀x ,b,E(x) = ⌊b⌋ =⇒ M ⊨ b .We always assume that

all contexts we manipulate are well-formed. It is obvious for the empty context (E∅,M∅). It can be

easily checked that all our rules—in particular, adding a variable or removing a block—will preserve

this property.

The syntactic objects and the result type depend on the evaluation mode as specified in Fig. 8

where expr, term, pred and stmt denote respectively the types of expressions, terms, predicates

and instructions.

The evaluation of an expression e to a value v in a context E,M is written E,M ⊨e e ⇓ v . Its
evaluation in the same context but as a left-value yields a memory location (b,δ) and is written

E,M ⊨lv e ⇓ b,δ . Like in C, left-values are expressions that describe a concrete memory location

and can therefore appear on the left side of an assignment. Both relations are defined in Fig. 9.

Rule E-lval shows how the memory model is used. For an expression e evaluated as a left-value

to a location (b,δ), we perform a memory read. If the read operation successfully returns a value v
of the expected kind (a pointer if e has a pointer type or a number if e has a number type) and this

value is not undefined, then e is correctly evaluated to v . In other cases, it cannot be evaluated. This

illustrates an error-free blocking semantics: the evaluation cannot proceed in case of an error. Rule

E-parith specifically considers pointer arithmetic and preserves well-aligned pointers.

Figure 10 shows the evaluation rules for terms. Terms are a generalization of expressions.

Therefore terms which are indeed expressions are evaluated in the exact same way (rule T-expr).

Since terms are side-effect free, there is no rule for evaluating a term as a left-value. Therefore, the

rule for dereferencing a term is different from its expression counterpart. Rule T-deref combines

the evaluation of a term directly as a pointer and reading the memory at the location referred to by

this pointer.

Evaluating the base address of a pointer (rule T-baseaddr) is only replacing the offset component

by zero, while evaluating the offset is only forgetting the bloc identifier part (rule T-ofs). The size

of a block (rule T-blocklen) is obtained by calling the corresponding operation of the memory

model.

The evaluation of a predicate returns a value ⊤ (true) or ⊥ (false). This is made possible because

E-ACSL specifications are executable and because of our design choices concerning execution

errors in annotations. Indeed, in our operational semantics errors are not explicitly represented and

manipulated. An error means that it is not possible to construct a derivation tree for the execution.

Figure 11 gives the rules to evaluate builtin predicates. The validity of a pointer (rules P-valid

and P-invalid) rely on the corresponding operation in the memory model. Initialization (rules

P-initialized and P-uninitialized) is defined depending on the fact a read operation is possible

and the returned value is different from Undef (which characterizes uninitialized data). The other

, Vol. 1, No. 1, Article . Publication date: June 2023.

14 Dara Ly, Nikolai Kosmatov, Frédéric Loulergue, and Julien Signoles

E-int

E,M ⊨e n ⇓ Int(n)

LV-var

E(x) = ⌊b⌋

E,M ⊨lv x ⇓ b, 0

LV-deref

E,M ⊨e e ⇓ Ptr(b,δ)

E,M ⊨lv ∗e ⇓ b,δ

E-addr

E,M ⊨lv e ⇓ b,δ

E,M ⊨e &e ⇓ Ptr(b,δ)

E-lval

E,M ⊨lv e : τ ⇓ b,δ load(mtype(τ),M,b,δ) = ⌊v⌋ v , Undef kind(τ) = kind(v)

E,M ⊨e e ⇓ v

E-unop

E,M ⊨e e ⇓ v1 sem_unop(† ,v1) = ⌊v2⌋

E,M ⊨e † e ⇓ v2

E-binop

E,M ⊨e e1 ⇓ v1 E,M ⊨e e2 ⇓ v2 sem_binop(‡ ,v1,v2) = ⌊v3⌋

E,M ⊨e e1 ‡ e2 ⇓ v3

E-parith

E,M ⊨e e1 : τ∗ ⇓ Ptr(b,δ)
E,M ⊨e e2 ⇓ n sz = sizeof(mtyp(τ)) δ mod sz = 0 ⊕ ∈ {+,−}

E,M ⊨e e1 ⊕ e2 ⇓ Ptr(b,δ ⊕ n × sz)

Fig. 9. Evaluation of expressions

predicates are comparisons of terms. We see again that the semantics is error-free. For instance,

if term t in \valid(t) cannot be evaluated (e.g. if its evaluation requires accessing a location in

a block that was deallocated or a location that is out-of-bounds), there is no way to deduce any

validity value for \valid(t).
The evaluation of logic connectors is presented in Fig. 12. The evaluation is lazy: the second

argument is evaluated only if needed. Lazy evaluation of logic connectors is not mandatory for our

formalization but this choice is consistent with what happens in the E-ACSL plugin.

After the evaluation of an instruction, the environment remains the same after each rule so only

the resulting memory is given as the result of evaluation. Figure 13 shows the rules for simple

instructions. In our language, allocation (rule S-malloc) is the combination of two operations in the

memory: a new blockb ′ of the requested size is first allocated, the memory is then in an intermediate

stateM2 ; second, a pointer to the first cell of this new block is written at the location defined by

the left expression of the allocation. free takes as argument a pointer (to the first cell of a block)

and deallocates it using the free operation of the memory model (rule S-free). To allow dynamic

deallocation only for blocks that were allocated dynamically (with malloc) and to prevent it for a

block allocated automatically (that is, for a block associated to a variable), we add the constraint

b < im(E) (see rule S-free). This ensures that if the original context (E,M1) was well-formed, this

property also holds for the new context (E,M2) (that will be used for evaluation of the following

instruction, see rule S-seq in Fig. 14). The verification of an assertion (rule S-logical-assert)

simply evaluates its predicate argument. If the value is ⊤ the evaluation continues, otherwise the

program has no semantics.

Figure 14 gives the rules for composite instructions. Most are unsurprising. The slightly unusual

instruction let that introduces a local variable, first allocates space in memory, then binds the

, Vol. 1, No. 1, Article . Publication date: June 2023.

Sound Runtime Assertion Checking for Memory Properties via Program Transformation 15

T-baseaddr

E,M ⊨t t ⇓ Ptr(b,δ)

E,M ⊨t \base_address(t) ⇓ Ptr(b, 0)

T-ofs

E,M ⊨t t ⇓ Ptr(b,δ)

E,M ⊨t \offset(t) ⇓ Int(δ)

T-blocklen

E,M ⊨t t ⇓ Ptr(b,δ) length(M,b) = n

E,M ⊨t \block_length(t) ⇓ Int(n)

T-expr

E,M ⊨e e ⇓ v

E,M ⊨t e ⇓ v

T-deref

E,M ⊨t t : τ∗ ⇓ Ptr(b,δ)
load(mtype(τ),M,b,δ) = ⌊v⌋ v , Undef kind(τ) = kind(v)

E,M ⊨t ∗̄t ⇓ v

T-unop

E,M ⊨t t ⇓ v1 sem_unop(¯† ,v1) = ⌊v2⌋

E,M ⊨t ¯† t ⇓ v2

T-binop

E,M ⊨t t1 ⇓ v1 E,M ⊨t t2 ⇓ v2 sem_binop(¯‡ ,v1,v2) = ⌊v3⌋

E,M ⊨t t1 ¯‡ t1 ⇓ v3

Fig. 10. Evaluation of terms.

P-true

E,M ⊨p \true ⇓ ⊤

P-false

E,M ⊨p \false ⇓ ⊥

P-valid

E,M ⊨t t : τ∗ ⇓ Ptr(b,δ)
M ⊨ mtype(τ)@b,δ

E,M ⊨p \valid(t) ⇓ ⊤

P-invalid

E,M ⊨t t : τ∗ ⇓ Ptr(b,δ)
M ⊭ mtype(τ)@b,δ

E,M ⊨p \valid(t) ⇓ ⊥

P-initialized

E,M ⊨t t : τ∗ ⇓ Ptr(b,δ)
load(mtype(τ),M,b,δ) = ⌊v⌋ v , Undef

E,M ⊨p \initialized(t) ⇓ ⊤

P-uninitialized

E,M ⊨t t : τ∗ ⇓ Ptr(b,δ)
load(mtype(τ),M,b,δ) ∈ {⌊Undef⌋, ε}

E,M ⊨p \initialized(t) ⇓ ⊥

P-cmp

E,M ⊨t t1 ⇓ v1 E,M ⊨t t2 ⇓ v2 sem_cmp(▷̄◁ ,v1,v2) = V

E,M ⊨p t1 ▷̄◁ t2 ⇓ V

Fig. 11. Evaluation of predicates: basic predicates.

variable name and the obtained block. This gives a new context. The statement s is evaluated in

this new context. Assumption x < dom(E1) states the aforementioned assumption that variables

, Vol. 1, No. 1, Article . Publication date: June 2023.

16 Dara Ly, Nikolai Kosmatov, Frédéric Loulergue, and Julien Signoles

P-conj-left

E,M ⊨p p1 ⇓ ⊥

E,M ⊨p p1 ∧ p2 ⇓ ⊥

P-conj-right

E,M ⊨p p1 ⇓ ⊤ E,M ⊨p p2 ⇓ V

E,M ⊨p p1 ∧ p2 ⇓ V

P-neg-false

E,M ⊨p p ⇓ ⊤

E,M ⊨p ¬p ⇓ ⊥

P-neg-true

E,M ⊨p p ⇓ ⊥

E,M ⊨p ¬p ⇓ ⊤

Fig. 12. Evaluation of predicates: logical connectors.

S-skip

E,M ⊨s skip; ⇓ M

S-assign

E,M1 ⊨e e2 : τ ⇓ v E,M1 ⊨lv e1 : τ ⇓ b,δ
store(mtype(τ),M1,b,δ ,v) = ⌊M2⌋

E,M1 ⊨s e1 = e2; ⇓ M2

S-malloc

E,M1 ⊨e e2 ⇓ Int(n) alloc(M1,n) = (b ′,M2)

E,M1 ⊨lv e1 : τ∗ ⇓ b,δ store(mtype(τ∗),M2,b,δ ,Ptr(b ′, 0)) = ⌊M3⌋

E,M1 ⊨s e1 = malloc(e2); ⇓ M3

S-free

E,M1 ⊨e e ⇓ Ptr(b, 0) free(M1,b) = ⌊M2⌋ b < im(E)

E,M1 ⊨s free(e); ⇓ M2

S-logical-assert

E,M ⊨p p ⇓ ⊤

E,M ⊨s logical_assert(p); ⇓ M

Fig. 13. Evaluation of simple instructions.

are never overloaded. Finally the block corresponding to the variable is deallocated yielding the

final memory state. This rule calls auxiliary functions alloc_var and dealloc_var defined below:

alloc_var(E1,M1,x ,τ) ≜ (E2,M2),

where E2(x
′) ≜

{
⌊b⌋ if x ′ = x ,
E1(x

′) otherwise,

and (b,M2) ≜ alloc(M1, sizeof(mtype(τ)));

dealloc_var(E1,M1,x) ≜


⌊M2⌋ if E1(x) = ⌊b⌋,

and free(M1,b) = ⌊M2⌋,
ε otherwise.

We also denote by E1 ⊔ (x ,b) the environment E2 (defined above) constructed from E1 by adding

an association (x ,b).
In rule S-let, function alloc_var creates a new variable x together with a valid block b such that

E2(x) = ⌊b⌋, so the resulting intermediate context (E2,M2) (used for evaluation of instruction s) is
well-formed. Next, function dealloc_var removes the allocated block b associated with variable x ,
so we also have to justify that the well-formedness of the new context is preserved. Notice that

the evaluation of the following instructions after the let instruction, if any, will continue in the

resulting context (E1,M4) (according to the rule S-seq) with the original environment E1 where

, Vol. 1, No. 1, Article . Publication date: June 2023.

Sound Runtime Assertion Checking for Memory Properties via Program Transformation 17

S-seq

E,M1 ⊨s s1 ⇓ M2 E,M2 ⊨s s2 ⇓ M3

E,M1 ⊨s s1 s2 ⇓ M3

S-if-false

E,M1 ⊨e e ⇓ Int(0) E,M1 ⊨s s2 ⇓ M2

E,M1 ⊨s if (e) then s1 else s2 ⇓ M2

S-if-true

E,M1 ⊨e e ⇓ Int(n) n , 0 E,M1 ⊨s s1 ⇓ M2

E,M1 ⊨s if (e) then s1 else s2 ⇓ M2

S-while-false

E,M ⊨e e ⇓ Int(0)

E,M ⊨s while (e) s ⇓ M

S-while-true

E,M1 ⊨e e ⇓ Int(n) n , 0

E,M1 ⊨s s ⇓ M2 E,M2 ⊨s while (e) s ⇓ M3

E,M1 ⊨s while (e) s ⇓ M3

S-let

(E2,M2) = alloc_var(E1,M1,x ,τ)
x < dom(E1) E2,M2 ⊨s s ⇓ M3 ⌊M4⌋ = dealloc_var(E2,M3,x)

E1,M1 ⊨s let x : τ in s end ⇓ M4

Fig. 14. Evaluation of composite instructions.

variable x was not yet present, so the well-formedness of the new context is preserved as well.

Hence, the well-formedness of the resulting evaluation context is preserved in all cases possibly

adding a variable or removing a block (rules S-free and S-let).

From the semantics of our language and the fact that it does not contain pointer casts, it is easily

seen that a badly aligned or badly typed access cannot be created. The type of the element(s) in a

block is determined according to the type of the destination pointer at the moment of dynamic

allocation with malloc (or the type of the created variable at the moment of automatic allocation

with let), and all accesses to the block element(s) are performed with this type. Pointer arithmetic

(see rule E-parith in Fig. 9) preserves the alignment. It explains that all memory accesses in our

programs are well-typed and aligned. For instance, consider the attempt to create aliases between

pointers p16 and p8 and overwrite the first byte of *p16 (on lines 5–6) in the following program:

1 let p16: int16* in
2 let p8 : int8* in
3 p16 = malloc(4); // array of two 16-bit integers (4 bytes)
4 *p16 = Int(420); // writing an element (1st and 2nd bytes)
5 p8 = p16; // attempt to cast to a byte pointer
6 *p8 = Int(42); // attempt to write to 1st byte
7 p16 = p8 + 1; // attempt to create a badly aligned pointer
8 *p16 = Int(420); // attempt to write to 2nd and 3rd bytes
9 end;

With the considered semantics, the assignment of line 5 cannot be evaluated since the types do not

correspond (see rule S-assign in Fig. 13), and the evaluation will not proceed further. For the same

reason, an attempt to perform a badly aligned access (through a combination of pointer casts and

pointer arithmetic) on lines 5,7,8 does not succeed either.

, Vol. 1, No. 1, Article . Publication date: June 2023.

18 Dara Ly, Nikolai Kosmatov, Frédéric Loulergue, and Julien Signoles

. . .

logical_assert(p);

. . .

s

. . .

. . .

JpKΠ

. . .

strack

s

. . .

Fig. 15. Instrumentation scheme translating predicates into chunks of code (illustrated by the lower transla-
tion, shown in light blue) and adding statements for observing the memory operations (illustrated by the
upper translation, shown in dark red).

Despite those restrictions, our langage remains representative of various validity issues and

runtime assertion checking of memory properties of a real-life language: invalid accesses can still be

created due to a dangling pointer or an out-of-bound access in a block. For example, if malloc(2)
is replaced by malloc(1) on line 3 in the previous example, then accessing *p16 on line 4 would

become invalid (the allocated block contains only one byte while two bytes are needed). In that

case, the evaluation of line 3 will be blocked in our semantics since the store operation in rule

S-assign (see Fig. 13) cannot succeed for an invalid access (cf. Axiom (17)).

4 PROGRAM TRANSFORMATION
This section formally defines a program transformation that generates the instrumentation required

for monitoring logical assertions at runtime. The purpose of the instrumentation is twofold as

sketched in Fig. 15: first, it translates each logical assertion a into a chunk of executable code

inserted at the very same program point as a and, second, it inserts additional statements into

the original code in order to track the state of the execution memory and record it in a so-called

observation memory.

Consider for instance the example of Fig 1, which contains on line 5 the logical assertion

/*@ assert \valid(t+mid); */. The program transformation inserts two lines of code

on line 14 in order to keep track in the observation memory that array t has been created and

initialized as already explained in Section 2. Then, checking the logical assertion comes down to

verifying the validity of the array access by querying the observation memory through a dedicated

function call. As shown in Section 5, the whole program transformation is sound as soon as our

implementation of the observation memory is correct with respect to its specification.

Before formalizing in Section 4.3 the program transformation itself, Sections 4.1 and 4.2 introduce

respectively a model for the observation memory and the target language in which the code is

generated.

4.1 Observation Memory Model
The observation memory is basically a data structure for the runtime monitor to store metadata

about the execution memory of the program under monitoring. Observation memory states will

be denoted byM ,M ′
,M1,M2,. . .Notice that the bar symbol is part of the notation (so thatM is

not necessarily the observation memory ofM). As for the execution memory type, we define the

observation memory with an abstract type, named obs, and a set of operators, introduced in Fig. 16.

There exists an empty observation memoryM∅ (that will be used as an initial observation memory

, Vol. 1, No. 1, Article . Publication date: June 2023.

Sound Runtime Assertion Checking for Memory Properties via Program Transformation 19

M∅ : obs is_valid_access : mtyp × obs × block × Z→ bool
store_block : obs × block × N→ obs is_initialized : mtyp × obs × block × Z→ bool
delete_block : obs × block → obs initialize : mtyp × obs × block × Z→ obs

is_valid : obs × block → bool length : obs × block → N

Fig. 16. Operations of the observation memory model.

state for evaluation of our target programs) that does not record any valid blocks or initialized

locations.

The function is_valid_access is actually a shortcut defined as follows:

is_valid_access(κ,M,b,δ) = is_valid(M,b)
∧ δ ⩾ 0

∧ δ + sizeof(κ) ⩽ length(M,b).

It means that according toM , memory block b can be accessed on sizeof(κ) bytes starting from a

non-negative offset δ .
The meaning of other functions is defined by a set of axioms introduced below. Here again, we

consider that all free variables in these axioms are universally quantified.

Definition 4.1 (Observation memory model). The observation memory model is defined by the

axioms of Fig. 17.

The axioms are organized similarly to those of Fig. 7. Axioms (21) and (22) (resp. (23) and (24))

state that storing (resp. deleting) a block b in the observation memory means that b is now assumed

to be valid (resp. invalid), and this operation has no impact on the validity of other blocks. Axiom (25)

states that marking a block as being initialized has no impact on the validity of any block.

Axiom (26) states that storing a new block marks it as being currently uninitialized. Axioms (27)

and (28) state that storing or deleting a block has no impact on the initialization status of any other

block. Axioms (29) and (31) state that marking a block b as initialized on sizeof(κ) bytes from offset

δ means that the observation memory now considers it as being initialized. It has an impact neither

on the rest of the block b, nor on the other memory blocks. Like for the execution memory, we

do consider possible overlapping or badly typed accesses (grouped in Axiom (30)). Even if such

situations cannot occur for our programs (as we explained in Section 3.5), this choice will be useful

to define a notion of representation of an execution memory by an observation memory below

(Definition 5.5), independently of the operational semantics, in order to make our models suitable

for future extensions of our languages.

Axiom (32) states that the length of a block b is defined when storing it. It is not lost as long as

the block is not deleted. Axioms (33), (34) and (35) state that storing or deleting another block, or

initializing a location, have no impact on the length of a block.

Finally, Axioms (36), (37) state that all blocks are invalid and all locations are non-initialized in

M∅.

As for the execution memory model, in order to exclude any risk of inconsistency in the axioms

of the observation memory model, we formalize them and prove their consistency with respect to

a simple implementation in our Coq development in the same way as for the execution memory

model. We define a module type for signatures and axioms and provide another module satisfying

this module type to implement the functions and to demonstrate that they satisfy the axioms.

, Vol. 1, No. 1, Article . Publication date: June 2023.

20 Dara Ly, Nikolai Kosmatov, Frédéric Loulergue, and Julien Signoles

store_block(M1,b,n) = M2 =⇒ is_valid(M2,b) = ⊤ (21)

b , b ′ ∧ store_block(M1,b,n) = M2 =⇒ is_valid(M2,b
′) = is_valid(M1,b

′) (22)

delete_block(M1,b) = M2 =⇒ is_valid(M2,b) = ⊥ (23)

b , b ′ ∧ delete_block(M1,b) = M2 =⇒ is_valid(M2,b
′) = is_valid(M1,b

′) (24)

initialize(κ,M1,b,δ) = M2 =⇒ is_valid(M2,b
′) = is_valid(M1,b

′) (25)

store_block(M1,b,n) = M2 =⇒ is_initialized(κ,M2,b,δ) = ⊥ (26)

b , b ′ ∧ store_block(M1,b,n) = M2 =⇒

{
is_initialized(κ,M2,b

′,δ ′)

= is_initialized(κ,M1,b
′,δ ′)

(27)

b , b ′ ∧ delete_block(M1,b) = M2 =⇒

{
is_initialized(κ,M2,b

′,δ ′) =

= is_initialized(κ,M1,b
′,δ ′)

(28)

initialize(κ,M1,b,δ) = M2 =⇒ is_initialized(κ,M2,b,δ) = ⊤ (29)

initialize(κ,M1,b,δ ,v) = M2 ∧

(δ ′ = δ ∧ κ ′ , κ ∨ δ ′ , δ) ∧
δ + sizeof(κ) > δ ′ ∧ δ ′ + sizeof(κ ′) > δ ∧

δ ′ ⩾ 0 ∧ δ ′ + sizeof(κ ′) ⩽ length(M2,b)

 =⇒ is_initialized(κ ′,M2,b,δ
′) = ⊥ (30)

initialize(κ,M1,b,δ) = M2 ∧ (b , b ′ ∨
δ + sizeof(κ) ⩽ δ ′ ∨ δ ′ + sizeof(κ ′) ⩽ δ)

}
=⇒

{
is_initialized(κ ′,M2,b

′,δ ′)

= is_initialized(κ ′,M1,b
′,δ ′)

(31)

store_block(M1,b,n) = M2 =⇒ length(M2,b) = n (32)

b , b ′ ∧ store_block(M1,b,n) = M2 =⇒ length(M2,b
′) = length(M1,b

′) (33)

initialize(κ,M1,b,δ) = M2 =⇒ length(M2,b
′) = length(M1,b

′) (34)

b , b ′ ∧ delete_block(M1,b) = M2 =⇒ length(M2,b
′) = length(M1,b

′) (35)

is_valid(M∅,b) = ⊥ (36)

is_initialized(κ,M∅,b,δ) = ⊥ (37)

Fig. 17. Axioms of observation memory model.

4.2 Target Language
The target language is quite close to the source language with a few differences, as shown in Fig. 18.

First, the logical assertion disappears, being replaced by a program assertion assert similar to

the C macro of the same name and taking an (executable) expression as argument. Second, the

generated code relies on specific statements in order to query the observation model. In particular,

they allow:

• testing pointer validity, thanks to is_valid;
• testing initialization of the location referred to by a given pointer, thanks to is_initialized;
• getting the base address of a given pointer, thanks to base_address;
• getting the offset (in bytes) of a given pointer from its base address, thanks to offset;
• getting the length of a block containing a given pointer thanks to block_length.

, Vol. 1, No. 1, Article . Publication date: June 2023.

Sound Runtime Assertion Checking for Memory Properties via Program Transformation 21

s ::= . . . source lang. stmts

| logical_assert(p); no assert. over pred.

| assert(e); assert. over exp.

| store_block(e, e); record new block

| delete_block(e); remove recrorded bl.

| e = is_valid(e); is e valid

| e = is_initialized(e); is ∗e initialized

| initialize(e); mark ∗e as initialized

| e = base_address(e); e ’s block base address

| e = offset(e); get pointer offset

| e = block_length(e); e ’s block length

Fig. 18. Additional statements of the target language.

Tracking memory operations requires us to update the observation model in order to store or delete

a memory block thanks to store_block and delete_block respectively, or mark some memory

locations as being initialized thanks to initialize. Recall that a valid memory location of some

memory type κ is considered initialized if and only if a defined value can be read from it with

memory type κ (cf. rules for initialization of Fig. 11). In this paper, we make the choice not to

consider as initialized a memory location if it was overwritten with an incompatible type or by

a partially overlapping writing operation (even if such situations cannot occur in our programs)

because we cannot safely read such a value.

In order to give these primitives a semantics, we extend the evaluation relation of the source

language with the state of the observation memory. Consequently, the evaluation relations for the

target language take the following shapes:

• E,M ⊨e e ⇓ v , evaluation of an expression (unchanged);

• E,M ⊨lv e ⇓ b,δ , evaluation of an expression as a left-value (unchanged);

• E,M1,M1 ⊨s′ s ⇓ M2,M2, evaluation of a statement; in addition to the final execution memory

M2, it also returns a final observation memoryM2.

Notice that the observation memory is not added into the evaluation context for expressions

because their evaluation does not have any impact on the observation memory. The rules cor-

responding to statements that are already present in the input languages are almost unchanged:

they are only updated by adding an observation memory that they propagate with no change, by

replacing the prefix “S-” in the name of the rule by “S’-” and the derivation symbol “⊨s ” by “⊨s ′”.
Hence, these rules are omitted here. The rules corresponding to the new statements for assert
and memory observation are presented in Fig. 19. Most of them rely on the observation memory

functions introduced in Section 4.1.

The semantics of statements store_block(p, e);, delete_block(p);, and initialize(e); is di-
rectly mapped to their respective observation model’s counterparts after having evaluated their

arguments. When marking an expression as initialized (rule S’-initialize), its size is inferred from

its type.

For a pointer e2, rules S’-baseaddr, S’-offset, and S’-block-length respectively compute the

base address of the memory block containing e2, the length of this memory block, and the offset

from the base address of e2 to e2. The first two rules do not rely on the observation memory: they

only rely on how pointers are modeled in the execution memory through their base and offset.

Since there is no direct way to know the length of a memory block in the execution memory, the

third rule relies on the observation memory to get it. In these three cases, the resulting value is

written in the execution memory, at the memory location corresponding to e1.

Finally, the rule S’-is-valid (resp. S’-is-initialized) queries the observation memory to get the

validity (resp. initialization) status of a pointer and stores the resulting Boolean, as an integer 0 or

1, in the execution memory.

, Vol. 1, No. 1, Article . Publication date: June 2023.

22 Dara Ly, Nikolai Kosmatov, Frédéric Loulergue, and Julien Signoles

S’-assert

E,M ⊨e e ⇓ Int(n) n , 0

E,M,M ⊨s′ assert(e); ⇓ M,M

S’-storeblock

E,M1 ⊨e p ⇓ Ptr(b, 0) E,M1 ⊨e e ⇓ Int(n) store_block(M1,b,n) = ⌊M2⌋

E,M1,M1 ⊨s′ store_block(p, e); ⇓ M1,M2

S’-deleteblock

E,M1 ⊨e p ⇓ Ptr(b, 0) delete_block(M1,b) = ⌊M2⌋

E,M1,M1 ⊨s′ delete_block(p); ⇓ M1,M2

S’-initialize

E,M1 ⊨e e : τ∗ ⇓ Ptr(b,δ)
initialize(mtype(τ),M1,b,δ) = ⌊M2⌋

E,M1,M1 ⊨s′ initialize(e); ⇓ M1,M2

S’-baseaddr

E,M1 ⊨lv e1 : τ∗ ⇓ b1,δ1 E,M1 ⊨e e2 ⇓ Ptr(b2,δ2)

store(mtype(τ∗),M1,b1,δ1,Ptr(b2, 0)) = ⌊M2⌋

E,M1,M1 ⊨s′ e1 = base_address(e2); ⇓ M2,M1

S’-offset

E,M1 ⊨lv e1 ⇓ b1,δ1 E,M1 ⊨e e2 ⇓ Ptr(b2,δ2)

store(i64,M1,b1,δ1, Int(δ2)) = ⌊M2⌋

E,M1,M1 ⊨s′ e1 = offset(e2); ⇓ M2,M1

S’-block-length

E,M1 ⊨lv e1 ⇓ b1,δ1

E,M1 ⊨e e2 ⇓ Ptr(b2,δ2) length(M1,b2) = ⌊n⌋ store(i64,M1,b1,δ1, Int(n)) = ⌊M2⌋

E,M1,M1 ⊨s′ e1 = block_length(e2); ⇓ M2,M1

S’-is-valid

E,M1 ⊨lv e1 ⇓ b1,δ1 is_valid_access(mtype(τ),M1,b2,δ2) = β
E,M1 ⊨e e2 : τ∗ ⇓ Ptr(b2,δ2) store(i8,M1,b1,δ1, Int(β)) = ⌊M2⌋

E,M1,M1 ⊨s′ e1 = is_valid(e2); ⇓ M2,M1

S’-is-initialized

E,M1 ⊨lv e1 ⇓ b1,δ1 is_initialized(mtype(τ),M1,b2,δ2) = β
E,M1 ⊨e e2 : τ∗ ⇓ Ptr(b2,δ2) store(i8,M1,b1,δ1, Int(β)) = ⌊M2⌋

E,M1,M1 ⊨s′ e1 = is_initialized(e2); ⇓ M2,M1

Fig. 19. Semantic Rules for Observation Memory Statements.

4.3 Formal Program Transformation
The program transformation consists of three functions: for statements, predicates and terms. Each

of them returns a chunk of code in the target language, which consists of statements possibly using

variables that are bounded outside of the current chunk.

Figure 20 introduces JsKΣ, which converts a statement to a chunk of code. It contains the orig-

inal statement and new statements that monitor the memory operations. The first four cases,

corresponding to the control-flow statements, have no such additional monitoring statements.

, Vol. 1, No. 1, Article . Publication date: June 2023.

Sound Runtime Assertion Checking for Memory Properties via Program Transformation 23

Jskip;KΣ ≜ skip;

Js1 s2KΣ ≜ Js1KΣ Js2KΣ
Jif (e) then s1 else s2KΣ ≜ if (e) then Js1KΣ else Js2KΣ

Jwhile (e) sKΣ ≜ while (e) JsKΣ
Je1 = e2;KΣ ≜ e1 = e2;

initialize(&e1);

Jp = malloc(e); KΣ ≜ p = malloc(e);
store_block(p, e);
initialize(&p);

Jfree(p); KΣ ≜ free(p);
delete_block(p);

Jlet x : τ in s endKΣ ≜ let x : τ in
store_block(&x , sizeof(τ));
JsKΣ
delete_block(&x);

end

Jlogical_assert(p); KΣ ≜ let res(0) : int8 in

JpK0

Π

assert(res(0));
end

Fig. 20. Statement translation.

Translating an assignment requires us to mark the left-value e1 as being initialized. It is the same

for a memory allocation, which also requires us to mark the allocated memory block as being valid,

while translating a memory de-allocation must delete the block from the observation memory.

Translating a local-binder needs first to mark the corresponding memory block as being allocated,

and to delete it from the observation memory before leaving its scope. Translating a logical assertion

requires us to translate the corresponding predicate and to generate a program assertion. Variable

res(0) stores the result of the evaluation of the predicate at runtime, as explained below. Here, res
is an injective function that takes an integer n ⩾ 0 as input and provides a variable name based

on a generic prefix (say, res_) and the given integer suffix, so that res(0) gives the variable name

res_0. Recall that we assumed that source program variables cannot be named res(n) (for n ⩾ 0).

JpKnΠ is the translation function for predicates: it translates the predicate p to a truth value,

encoded as an integer 0 (meaning false) or 1 (meaning true), and stores this result into the variable

res(n), which is introduced right before translating the predicate. For instance, the variable res(0)
is introduced right before translating the head predicate p of a logical assertion. The result for a

subpredicate would be stored in res(1), which in turn can require res(n) with larger n) to store

their results. To sum up, the translation scheme of a predicate p containing a sub-predicate p ′ is as

, Vol. 1, No. 1, Article . Publication date: June 2023.

24 Dara Ly, Nikolai Kosmatov, Frédéric Loulergue, and Julien Signoles

J\trueKnΠ ≜ res(n) = 1;

J\falseKnΠ ≜ res(n) = 0;

J¬p1KnΠ ≜ let res(n + 1) : int8 in

Jp1Kn+1

Π

res(n) = ! res(n + 1);

end

Jp1 ∧ p2KnΠ ≜ let res(n + 1) : int8 in

Jp1Kn+1

Π

if (res(n + 1))

then let res(n + 2) : int8 in

Jp2Kn+2

Π

res(n) = res(n + 2);

end else
res(n) = 0;

end

Fig. 21. Basic predicate translation.

J\valid(t1)KnΠ ≜ let res(n + 1) : τt1
in

Jt1Kn+1

T

res(n) = is_valid(res(n + 1));

end

J\initialized(t1)KnΠ ≜ let res(n + 1) : τt1
in

Jt1Kn+1

T

res(n) = is_initialized(res(n + 1));

end

Jt1 ▷̄◁ t2KnΠ ≜ let res(n + 1) : τt1
in

let res(n + 2) : τt2
in

Jt1Kn+1

T

Jt2Kn+2

T

res(n) = res(n + 1) ▷◁ res(n + 2);

end
end

Fig. 22. Term-based predicate translation.

follows.

JpKnΠ ≜ let res(n + 1) : int8 in will store the result of p ′

Jp ′Kn+1

Π translate p ′ and store its result to res(n + 1)

... res(n + 1) ... use the result of p ′

res(n) = ... compute and store the result for p
end

Figure 21 defines JpKnΠ for the basic predicates. Translating the truth value is trivial. For the

logical connectors, we introduce a fresh local variable for each sub-predicate before translating

them. Translating a conjunction relies on a classical encoding through a conditional.

Figure 22 translates predicates based on terms. Translating \valid(t1) and \initialized(t1)
relies on the corresponding functions of the observation memory, while translating relational

operators directly uses the corresponding operators of the target language. We denote by τt1
and

τt2
the types of t1 and t2.

, Vol. 1, No. 1, Article . Publication date: June 2023.

Sound Runtime Assertion Checking for Memory Properties via Program Transformation 25

JeKn
T
≜ res(n) = e;

J∗̄t1KnT ≜ let res(n + 1) : τt1
in

Jt1Kn+1

T

res(n) = ∗res(n + 1);

end
q

¯† t1
yn

T
≜ let res(n + 1) : τt1

in

Jt1Kn+1

T

res(n) = † res(n + 1);

end

q
t1 ¯‡ t2

yn
T
≜ let res(n + 1) : τt1

in
let res(n + 2) : τt2

in

Jt1Kn+1

T

Jt2Kn+2

T

res(n) = res(n + 1) ‡ res(n + 2);

end
end

J\base_address(t1)KnT ≜ let res(n + 1) : τt1
in

Jt1Kn+1

T

res(n) = base_address(res(n + 1));

end

J\offset(t1)KnT ≜ let res(n + 1) : τt1
in

Jt1Kn+1

T

res(n) = offset(res(n + 1));

end

J\block_length(t1)KnT ≜ let res(n + 1) : τt1
in

Jt1Kn+1

T

res(n) = block_length(res(n + 1));

end

Fig. 23. Term translation.

Figure 23 translates terms by relying on the same translation scheme as predicates, where the

resulting type depends on the term. For each case, the translation also uses the corresponding

operators of the target language or the corresponding function of the observation memory.

Figure 24 shows the result of this transformation applied on the program of Fig. 3 (slightly

simplified by merging initialize statements for each array element assignment into one statement for

thewhole array, see lines 7–8). The inserted statements arewrittenmostly on the right side for clarity.

Lines 21–31 are the translation of logical assertion logical_assert(\valid(t + mid));,
which is the only line removed from the source program.

5 SOUNDNESS OF THE TRANSFORMATION
The transformation soundness theorem is illustrated by Fig. 25. Given some program s , on the one

hand, the evaluation of s in the initial source context (Ê1, M̂1) results in the final source context

(Ê2, M̂2). On the other hand, the transformed program JsKΣ evaluated in the initial target context

(E1,M1,M1) results in the final target context (E2,M2,M2). In order to distinguish between source-

related elements (environments, memory states, values. . .) and target-related ones, the former are

hereafter denoted with a hat symbol. Notice that the hat symbol ̂ is part of the notation (so that,

for instance, M̂ is not necessarily the source memory state related to the target memory stateM).

, Vol. 1, No. 1, Article . Publication date: June 2023.

26 Dara Ly, Nikolai Kosmatov, Frédéric Loulergue, and Julien Signoles

1 let t: int64* in store_block(&t, sizeof(int64*));
2 let len: int64 in store_block(&len, sizeof(int64));
3 let x: int64 in store_block(&x, sizeof(int64));
4 t = malloc (len * sizeof(int64));
5 store_block(t, len*sizeof(int64));
6 initialize(&t);
7 *t = -3; *(t+1) = 2; *(t+2) = 4; *(t+3) = 7; *(t+4) = 10;
8 initialize(&*t);
9 len = 5; initialize(&len);
10 x = 7; initialize(&x);
11

12 let lo: int64 in store_block(&lo, sizeof(int64));
13 let hi: int64 in store_block(&hi, sizeof(int64));
14 let idx: int64 in store_block(&idx, sizeof(int64));
15 idx = -1; initialize(&idx);
16 lo = 0; initialize(&lo);
17 hi = len - 1; initialize(&hi);
18 while (lo <= hi)
19 let mid: int64 in store_block(&mid, sizeof(int64));
20 mid = lo + (hi - lo) / 2; initialize(&mid);
21 let res(0): int8 in
22 let res(1): int8 in
23 let res(2): int8 in
24 let res(3): int8 in
25 res(2) = t; res(3) = mid;
26 res(1) = res(2) + res(3);
27 end
28 end
29 res(0) = is_valid(res(1));
30 assert(res(0));
31 end
32 if (*(t + mid) == x) then
33 idx = mid; initialize(&idx);
34 lo = hi + 1; initialize(&lo);
35 else if (*(t + mid) < x) then
36 lo = mid + 1; initialize(&lo);
37 else
38 hi = mid - 1; initialize(&hi);
39 delete_block(&mid); end
40 delete_block(&idx); end
41 delete_block(&hi); end
42 delete_block(&lo); end
43 delete_block(&x); end
44 delete_block(&len); end
45 delete_block(&t); end

Fig. 24. The transformation applied on the program of Fig. 3.

, Vol. 1, No. 1, Article . Publication date: June 2023.

Sound Runtime Assertion Checking for Memory Properties via Program Transformation 27

The soundness theorem states that, for a certain relation R, if the initial source and target

contexts are related by R, then the target program may indeed evaluate in the initial target context,

and the resulting final target context is also related to the final source context by R. A keystone

of the theorem is thus the invariant relation R, which involves a number of auxiliary relations,

formally defined in the following subsections.

Ê1, M̂1 Ê2, M̂2

E1,M1,M1 E2,M2,M2

R

⊨s s ⇓

⊨s′ JsKΣ ⇓

R

Fig. 25. Commutation diagram of the soundness theorem.

First, we introduce context isomorphisms as a way to reason about execution contexts up to a

block permutation. This relation enables us to match source and target contexts with essentially

the same structure and contents without requiring them to have the same block identifiers.

However, source and target memory states do not always have the same structure and contents,

as can be guessed by reading, for instance, the predicate translation defined by Fig. 21. As the

translation introduces additional variables, target memory states may become “bigger” than their

source counterpart. Therefore, we need a notion of subcontext to express inclusion of a context

into another one.

We also define representation of an execution memory by an observation memory, expressing that

metadata on validity and initialization of memory locations in the observation memory accurately

represents the execution memory contents.

Finally, we introduce equivalence as a stronger case of isomorphism, allowing systematic equa-

tional reasoning on memory states.

5.1 Isomorphisms between Execution Contexts
This section introduces the notion of an isomorphism that will be useful to compare execution

contexts in programs before and after the transformation and to ensure that the source context

and (a subcontext of) the target context have essentially the same structure and contents. Two

contexts are isomorphic if they have the same contents, up to a permutation of blocks (or, more

precisely, of block identifiers). A permutation (of blocks) is a bijective function σ : block → block.
Let us denote by id the identity function, by σ−1

the inverse of permutation σ , and by (x ↔ y) the
transposition of x and y, that is, the permutation that exchanges x and y and leaves untouched all

other blocks. A permutation of blocks induces a function on values which exchanges the blocks

inside pointers accordingly to the permutation, and leaves untouched all other values.

Definition 5.1 (Induced function). Let σ be a permutation of blocks. The function induced by σ is

a mapping of values Ûσ : value → value defined as follows:

Ûσ (Int(n)) ≜ Int(n),
Ûσ (Undef) ≜ Undef,

Ûσ (Ptr(b,δ)) ≜ Ptr(σ (b),δ).

We can now define isomorphic contexts.

Definition 5.2 (Isomorphic contexts). Let C1 = (E1,M1) and C2 = (E2,M2) be two contexts, and

σ : block → block a permutation of blocks. We say that context C1 is isomorphic to context C2

, Vol. 1, No. 1, Article . Publication date: June 2023.

28 Dara Ly, Nikolai Kosmatov, Frédéric Loulergue, and Julien Signoles

(with an isomorphism induced by permutation σ), and write C1 ∼ C2 (or C1 ∼σ C2 when σ is

relevant), if

(1) environments E1 and E2 are defined on the same variables and map them to the corresponding

blocks, that is, ∀x ,b,E1(x) = ⌊b⌋ ⇐⇒ E2(x) = ⌊σ (b)⌋;
(2) a block b in M1 and the corresponding block σ (b) in M2 are valid at the same time and in

this case have the same length, that is, ∀b, M1 ⊨ b ⇐⇒ M2 ⊨ σ (b) and ∀b,M1 ⊨ b =⇒
length(M1,b) = length(M2,σ (b));

(3) a value can be read from a location in M1 if and only if the corresponding value can be

read from the corresponding location inM2, that is, ∀κ,b,δ ,v, load(κ,M1,b,δ) = ⌊v⌋ ⇐⇒

load(κ,M2,σ (b),δ) = ⌊ Ûσ (v)⌋.

IfC1 ∼σ C2, it follows from the last condition of Def. 5.2 and Axiom (18) that an access in memory

M1 is valid if and only if the same access in the corresponding block inM2 is valid:

Property 1. If C1 = (E1,M1) and C2 = (E2,M2) are two contexts such that C1 ∼σ C2, then

∀κ,b,δ , M1 ⊨ κ @b,δ ⇐⇒ M2 ⊨ κ @σ (b),δ .

In addition to a simultaneous validity of accesses, the last condition of Def. 5.2 can be applied to

pointer values to deduce that a block b ′ is referred to by an existing pointer in M1 if and only if

the corresponding block σ (b ′) is referred to by the corresponding pointer in M2. More formally,

∀κ,b,b ′,δ ,δ ′, load(κ,M1,b,δ) = ⌊Ptr(b ′,δ ′)⌋ ⇐⇒ load(κ,M2,σ (b),δ) = ⌊Ptr(σ (b ′),δ ′)⌋. To-

gether with a simultaneous validity of the corresponding blocks stated in the second condition of

Def. 5.2, it allows us to deduce an interesting property for the supports of isomorphic contexts.

Property 2. Let C1 = (E1,M1) and C2 = (E2,M2) be two contexts such that C1 ∼σ C2. Then we

have b ∈ supp(M1) if and only if σ (b) ∈ supp(M2). Moreover, permutation σ inducing the isomorphism

C1 ∼σ C2 is not unique: it matters only on supp(M1), on which it defines a bijection with supp(M2),

and it can arbitrarily associate the elements of block \ supp(M1) to the elements of block \ supp(M2).

Proof. The proof of both statements is similar and follows from Def. 5.2 and the definition

of support. Let us show here the second statement. Indeed, the only blocks that are involved in

the conditions of the definition are blocks b ∈ supp(M1) for context C1 and their counterparts

σ (b) ∈ supp(M2) forC2. By definition of support, if we take a block b < supp(M1), then it is neither

a valid block inM1 nor a block referred to by an existing pointer value inM1. Since our contexts are

well-formed, the non-validity condition also implies that block b is not associated with a variable

by E1. Similarly, if we consider a block σ (b) < supp(M2), then σ (b) is neither a valid block in M2

nor a block referred to by an existing pointer value inM2. Since our contexts are well-formed, the

non-validity condition also implies that block σ (b) is not associated with a variable by E2. Therefore,

the definition of permutation σ inducing an isomorphism of contexts C1 ∼σ C2 matters only on

supp(M1), on which it creates a bijection with supp(M2). It can arbitrarily associate the elements

of block \ supp(M1) to the elements of block \ supp(M2). □

This property will be useful in the proof of the next property, which expresses that the isomor-

phism of contexts is preserved by block allocation.

Property 3. An isomorphism of contexts is preserved after allocation of a block of the same size in

both contexts. More precisely,

∀E1,E2,M1,M2,M
′
1
,M ′

2
,b1,b2,σ ,n

(E1,M1) ∼σ (E2,M2)

alloc(M1,n) = (b1,M
′
1
)

alloc(M2,n) = (b2,M
′
2
)

 =⇒ (E1,M
′
1
) ∼σ ′ (E2,M

′
2
)

, Vol. 1, No. 1, Article . Publication date: June 2023.

Sound Runtime Assertion Checking for Memory Properties via Program Transformation 29

where σ ′ ≜ σ ◦ (b1 ↔ σ−1(b2)).

Proof. By Axiom (16) for the newly allocated blocks we know that b1 < supp(M1) and b2 <
supp(M2). By Property 2, we can deduce that σ−1(b2) < supp(M1) and σ (b1) < supp(M2). Permu-

tation σ ′
defined in the statement differs from σ only on b1 and σ−1(b2) that do not belong to

supp(M1): their images are swapped to become, resp., b2 and σ (b1) after σ
′
, instead of, resp., σ (b1)

and b2 after σ . Its definition can be rewritten as follows:

σ ′(b) =


b2 if b = b1,
σ (b1) if b = σ−1(b2),
σ (b) otherwise.

By Property 2 again, permutation σ ′
induces the same isomorphism as σ between contexts

(E1,M1) and (E2,M2), and in addition σ ′
associates the newly associated blocks together: it maps

b1 to b2. It is easily seen by verifying the conditions of Def. 5.2 that permutation σ ′
induces an

isomorphism of contexts (E1,M
′
1
) ∼σ ′ (E2,M

′
2
). The detailed verification is straightforward and left

to the reader. □

Property 4. An isomorphism of contexts is preserved after deallocation of corresponding blocks in

both contexts. More precisely,

∀E1,E2,M1,M2,b,σ ,
(E1,M1) ∼σ (E2,M2)

M1 ⊨ b
b < im(E1)

 =⇒


∃M ′
1
, free(M1,b) = ⌊M ′

1
⌋

∃M ′
2
, free(M2,σ (b)) = ⌊M ′

2
⌋

(E1,M
′
1
) ∼σ (E2,M

′
2
)

Proof. The proof follows from Def. 5.2 and the axioms of the memory model (Def. 3.3). The

verification of the required conditions is straightforward and left to the reader. □

Property 5. An isomorphism of contexts preserves the possibility to store corresponding values

into corresponding locations in both contexts, and when the storing succeeds, the resulting contexts are

isomorphic again. More precisely,

∀E1,E2,M1,M2,κ,b,δ ,v,σ , such that (E1,M1) ∼σ (E2,M2), then we have:
if ∃M ′

1
, store(κ,M1,b,δ ,v) = ⌊M ′

1
⌋, then

∃M ′
2
, store(κ,M2,σ (b),δ , Ûσ (v)) = ⌊M ′

2
⌋ ∧ (E1,M

′
1
) ∼σ (E2,M

′
2
);

if store(κ,M1,b,δ ,v) = ε , then store(κ,M2,σ (b),δ , Ûσ (v)) = ε .

Proof. The proof follows from Property 1, Def. 5.2 and the axioms of thememorymodel (Def. 3.3).

The verification of the required conditions is straightforward and left to the reader. □

Along with context isomorphisms, we also need the notion of subcontext.

Definition 5.3 (Subcontext). Let C1 = (E1,M1) and C2 = (E2,M2) be two contexts. We say that C1

is a subcontext of C2, and write C1 ⊆ C2, if

(1) E2 extends E1, that is, dom(E1) ⊆ dom(E2), and ∀x ,b,E1(x) = ⌊b⌋ =⇒ E2(x) = ⌊b⌋;
(2) any valid block of M1 is also a valid block of M2 and has the same length, that is, ∀b,M1 ⊨

b =⇒ M2 ⊨ b ∧ length(M1,b) = length(M2,b);
(3) whenever a value can be read from a location inM1, the same value is read from the same

location inM2, that is, ∀κ,b,δ ,v, load(κ,M1,b,δ) = ⌊v⌋ =⇒ load(κ,M2,b,δ) = ⌊v⌋.

If (E1,M1) ⊆ (E2,M2), it follows from the last condition and Axiom (18) that a valid access of

memoryM1 is also a valid access inM2:

, Vol. 1, No. 1, Article . Publication date: June 2023.

30 Dara Ly, Nikolai Kosmatov, Frédéric Loulergue, and Julien Signoles

Property 6. If C1 = (E1,M1) and C2 = (E2,M2) are two contexts such that C1 ⊆ C2, then

∀κ,b,δ , M1 ⊨ κ @b,δ =⇒ M2 ⊨ κ @b,δ .

5.2 Observational Equivalence for Execution Memory States
Observational equivalence (or simply equivalence) between two memory states means that no

difference can be observed regarding validity, length and contents of blocks via the available access

functions. As our definition of memory model is axiomatic and abstracts away all implementation

details (such as order of blocks, spacing between blocks, etc.), we cannot (and do not need to) know

that two memory states are physically equal: observational equivalence is sufficient for our results.

This approach allows more flexibility for an actual implementation.

Definition 5.4 (Observational equivalence). LetM1 andM2 be two execution memory states. We

say that they are (observationally) equivalent, and writeM1 ≡ M2, if

(1) a block b is valid inM1 and inM2 at the same time, and in this case it has the same length in

both, that is, ∀b, M1 ⊨ b ⇐⇒ M2 ⊨ b and ∀b,M1 ⊨ b =⇒ length(M1,b) = length(M2,b);
(2) a value can be read from a location inM1 if and only if the same value can be read from the

same location inM2, that is, ∀κ,b,δ ,v, load(κ,M1,b,δ) = ⌊v⌋ ⇐⇒ load(κ,M2,b,δ) = ⌊v⌋.

5.3 Representation of an Execution Memory by an Observation Memory
The purpose of the observation memory is to store metadata on validity and initialization of memory

locations in the execution memory. To ensure that this metadata correctly represents the state of

the execution memory, we introduce the notion of representation.

Definition 5.5 (Representation). LetM be an execution memory andM an observation memory.

We say that observation memoryM represents execution memoryM , and writeM ▷ M , if

(1) a block b is valid inM if and only if it is recorded as valid inM , and in this case it has the same

length in both, that is, ∀b, M ⊨ b ⇐⇒ is_valid(M,b) and ∀b,M ⊨ b =⇒ length(M,b) =
length(M,b);

(2) for a valid access in M , a defined value (different from Undef) can be read from it in M if

and only if the corresponding location is recorded as initialized inM , that is, ∀κ,b,δ , M ⊨
κ @b,δ =⇒ ((∃v,v , Undef ∧ load(κ,M1,b,δ) = ⌊v⌋) ⇐⇒ is_initialized(κ,M,b,δ) =
⊤).

Property 7 (representation of access validity). IfM ▷ M , then any memory access is valid

inM if and only if it is marked as valid inM . In other words,

∀κ,b,δ , M ⊨ κ @b,δ ⇐⇒ is_valid_access(κ,M,b,δ) = ⊤.

Proof. This property is a direct consequence of the first condition of the definition. □

Property 8 (preservation of representation across allocation). LetM1 be an execution

memory and M1 an observation memory such that M1 ▷ M1. Let n be an integer, and (b,M2) =

alloc(M1,n) the result of allocating n bytes inM1. ThenM2 ▷ store_block(M1,b,n).

Proof. In order to prove both conditions of Def. 5.5, consider some block b ′. If b ′ = b, then the

representation conditions are satisfied, by virtue of execution and observation memory axioms

expressing properties of newly allocated (or stored) blocks. If b ′ , b, then after applying allocation

(or block registration) related axioms, the case comes down to the hypothesisM1 ▷M1. □

Property 9. LetM1 be an executionmemory andM1 an observationmemory such thatM1▷M1. Letb

be a block, and ⌊M2⌋ = free(M1,b) the result of deallocating b fromM1. ThenM2 ▷delete_block(M1,b).

, Vol. 1, No. 1, Article . Publication date: June 2023.

Sound Runtime Assertion Checking for Memory Properties via Program Transformation 31

Proof. The proof structure is the same as for the previous property: consider some block b ′, and
distinguish between cases b ′ = b and b ′ , b. In the former, the conditions of Def. 5.5 follow from

deallocation (resp. block deletion) related axioms, specifying invalidity of deallocated block b. For

other blocks b ′ , b, the representation conditions are preserved from hypothesisM1 ▷M1. □

Property 10 (preservation of representation across store). LetM1 be an execution memory

andM1 an observation memory such thatM1 ▷M1. Let (b,δ) be a memory location, κ a memory type,

v , Undef a defined κ-storable value, and ⌊M2⌋ = store(κ,M1,b,δ ,v) the result of storing v intoM1

at location (b,δ) with type κ. ThenM2 ▷ initialize(κ,M1,b,δ).

Proof. The proof is similar to that of the two previous properties. The first condition of

Def. 5.5 follows from Axioms (5), (14), (25), (34). For the second condition, consider a valid

memory access M2 ⊨ κ ′
@b ′,δ ′

and let us show that (∃v,v , Undef ∧ load(κ ′,M1,b
′,δ ′) =

⌊v⌋) ⇐⇒ is_initialized(κ ′,M,b ′,δ ′) = ⊤. The case b ′ , b and the case b ′ = b ∧ (δ + sizeof(κ) ⩽
δ ′∨δ ′+ sizeof(κ ′) ⩽ δ

)
, where the writing and reading operations are disjoint, are straightforward

from Axioms (11), (31). The remaining non-disjoint cases follow from Axioms (9), (10), (29), (30). □

To ensure that the execution and observation memory models are consistent with one another,

the aforementioned notions and properties of Section 5 were formalized and proved in our Coq
development.

5.4 Intermediate Lemma
The following lemma will be helpful to prove our main results.

Lemma 5.6. Let σ be a block permutation andC = (E,M) andC ′ = (E ′,M ′) two isomorphic contexts

with an isomorphism induced by σ . If an expression e is evaluated in context C to value v , then e is
evaluated in context C ′

to value Ûσ (v). In other words, ∀e,v, C ⊨e e ⇓ v =⇒ C ′ ⊨e e ⇓ Ûσ (v). If a left
value l is evaluated in contextC to memory location (b,δ), then l is evaluated in contextC ′

to memory

location (σ (b),δ). In other words, ∀l ,v, C ⊨lv l ⇓ b,δ =⇒ C ′ ⊨lv l ⇓ σ (b),δ .

Proof. Assume we have contextsC = (E,M) andC ′ = (E ′,M ′)withC ∼σ C . Since the definition
of evaluation for expressions and left values is mutually recursive (cf. Fig. 9), both statements of

the lemma are proved simultaneously by structural induction.

If e is an integer constantn, it is evaluated to Int(n) independently of the context, and by definition
Ûσ does not modify integer values.

For a variable x evaluated as a left value, the result follows from the definition of C ∼σ C ′
(see

Def. 5.2) for environments: if E(x) = ⌊b⌋ then E ′(x) = ⌊σ (b)⌋.
For evaluation of an expression e that is a left value, the rule is as follows:

E-lval

E,M ⊨lv e : τ ⇓ b,δ
load(mtype(τ),M,b,δ) = ⌊v⌋ v , Undef kind(τ) = kind(v)

E,M ⊨e e ⇓ v

By induction hypothesis and the definitions of C ∼σ C ′
(see Def. 5.2) and Ûσ , we have the

assumptions of the following derivation which provides the required evaluation:

E-lval

E ′,M ′ ⊨lv e : τ ⇓ σ (b),δ
load(mtype(τ),M ′,σ (b),δ) = ⌊ Ûσ (v)⌋ Ûσ (v) , Undef kind(τ) = kind(Ûσ (v))

E ′,M ′ ⊨e e ⇓ Ûσ (v)

The remaining cases are treated similarly. □

, Vol. 1, No. 1, Article . Publication date: June 2023.

32 Dara Ly, Nikolai Kosmatov, Frédéric Loulergue, and Julien Signoles

5.5 Main Theorems
The first theorem characterizes the transformation of instructions by preservation of two invariants:

an isomorphism of source and target contexts and a representation of execution memory by the

observation memory.

Theorem 5.7 (semantic preservation). Let s be a source program evaluated in source initial

context (Êi, M̂i) to final memory state M̂f . Let (Ei,Mi,Mi) be a target initial context such that (Êi, M̂i)

is isomorphic to (Ei,Mi) andMi representsMi . More formally,
Êi, M̂i ⊨s s ⇓ M̂f,

(Êi, M̂i) ∼ (Ei,Mi),

Mi ▷ Mi .

We assume that res(n) < dom(Êi) = dom(Ei) for all n ⩾ 0. Then there exist memory states Mf and

Mf such that the evaluation of JsKΣ in the target initial context leads to (Mf,Mf), such that (Êi, M̂f) is

isomorphic to (Ei,Mf) andMf representsMf . More formally,
Ei,Mi,Mi ⊨s′ JsKΣ ⇓ Mf,Mf,

(Êi, M̂f) ∼ (Ei,Mf),

Mf ▷ Mf .

As explained in the beginning of Section 5, this theorem can be illustrated by Fig. 25, where the

relation R is defined by the isomorphism and representation conditions. The proof of this theorem

proceeds by structural induction on the derivation of the evaluation of the source program instruc-

tion. In most cases, it examines the source program operations and constructs their counterpart

for its transformation in the target program and establishes the required invariants. An important

exception is the evaluation of assertions with predicates, for which the transformation introduces

extra instructions. We state a special theorem for predicates. We encode boolean values by integers

in the usual way: Int(⊤) = Int(1) and Int(⊥) = Int(0).

Theorem 5.8 (soundness of predicate translation). Let p be a predicate evaluated in source

initial context (Ê, M̂) to a Boolean value β and n ⩾ 0. Let (E,M,M) be a target starting context such

that res(n) < dom(E), and let (Ep ,Mp) be a subcontext of (E,M) such that (Ê, M̂) is isomorphic to

(Ep ,Mp) andM representsMp
. More formally,

Ê, M̂ ⊨p p ⇓ β ,
(Ep ,Mp) ⊆ (E,M),

(Ê, M̂) ∼ (Ep ,Mp),

Mp ▷ M .

Assume in addition that res(n′) < dom(Ê) for all n′ ⩾ 0, and res(n′) < dom(E) for all n′ ⩾ n.
Let us define (Ei,Mi) ≜ alloc_var(E,M, res(n), int8) such that Ei(res(n)) = ⌊bres(n)⌋, and ⌊M ′

i
⌋ ≜

store(i8,Mi,bres(n), 0, Int(β)). Then there exists a target memory stateMf such that:

• the translation of p at level n in target initial context (Ei,Mi,M) is evaluated to (Mf,M);

• the result variable res(n) in target final context (Ei,Mf) is evaluated to the integer encoding of β ;
• final memoryMf is equivalent toM

′
i
.

, Vol. 1, No. 1, Article . Publication date: June 2023.

Sound Runtime Assertion Checking for Memory Properties via Program Transformation 33

In other words: 
Ei,Mi,M ⊨s′ JpKnΠ ⇓ Mf,M,
Ei,Mf ⊨e res(n) ⇓ Int(β),
Mf ≡ M ′

i
.

Compared to Theorem 5.7 (that can be, as we explained in the beginning of Section 5, illustrated

by the diagram of Fig. 25), we observe several important differences in the last statement. First,

for the source program, we do not evaluate any statement but only a predicate, while for the

target program the predicate is translated into a program that is evaluated. Second, as we already

mentioned, during the evaluation of the predicate translation, the target context can be richer

than the source context: it can contain extra variables and memory blocks (introduced by the

translation), hence we have a weaker condition: an isomorphism between the source initial context

and a subcontext (Ep ,Mp) of the target starting context. Third, final memoryMf is defined up to

an equivalence and indicates the expected value for the resulting variable. Overall, this theorem

is clearly tuned for the translation scheme of a non-trivial predicate, which starts by introducing

a new variable, as illustrated for instance by the translation of logical_assert(p) in Fig. 20 and

rule S-let of Fig. 13: from a target starting context (E,M,M), variable res(n) is allocated to obtain

a new target context (Ei,Mi,M), then the predicate translation is evaluated and the memory of the

target final context (with the resulting value of the predicate computed in res(n)) is characterized
up to an equivalence. To distinguish target contexts before and after the allocation of res(n), that is,
(E,M,M) and (Ei,Mi,M), they are referred to, resp., as the target starting context and the target

initial context.

Since predicates also involve terms, we will need a similar theorem for terms.

Theorem 5.9 (soundness of term translation). Let t be a term of type τ evaluated in source

initial context (Ê, M̂) to a value v̂ and n ⩾ 0. Let (E,M,M) be a target starting context such that

res(n) < dom(E), and let (Ep ,Mp) be a subcontext of (E,M) such that (Ê, M̂) is isomorphic to (E,Mp)

with an isomorphism induced by a permutation σ , andM representsMp
. In other words,

Ê, M̂ ⊨t t ⇓ v̂,
(Ep ,Mp) ⊆ (E,M),

(Ê, M̂) ∼σ (Ep ,Mp),

Mp ▷ M .

Assume in addition that res(n′) < dom(Ê) for all n′ ⩾ 0, and res(n′) < dom(E) for all n′ ⩾ n.
Let us define (Ei,Mi) ≜ alloc_var(E,M, res(n),τ) such that Ei(res(n)) = ⌊bres(n)⌋, and ⌊M ′

i
⌋ ≜

store(mtype(τ),Mi,bres(n), 0,v), wherev ≜ Ûσ (v̂). Then there exists a target memory stateMf such that:

• the translation of t at level n in target initial context (Ei,Mi,M) is evaluated to (Mf,M);

• the result variable res(n) in target final context (Ei,Mf) is evaluated to v ;
• final memoryMf is equivalent toM

′
i
.

In other words: 
Ei,Mi,M ⊨s′ JtKn

T
⇓ Mf,M,

Ei,Mf ⊨e res(n) ⇓ v,
Mf ≡ M ′

i
.

We state the three theorems and present their (partial) proofs in the order that makes it easier

for the reader to see why we need them. Logically, the proof of the three theorems proceeds in

the inverse order: Theorem 5.9 is proved first (without relying on Theorems 5.7 and 5.8), then

, Vol. 1, No. 1, Article . Publication date: June 2023.

34 Dara Ly, Nikolai Kosmatov, Frédéric Loulergue, and Julien Signoles

Theorem 5.8 is proved using Theorem 5.9 (without relying on Theorem 5.7), and finally Theorem 5.7

is proved using Theorem 5.8. A machine-checked Coq proof of these results is left as future work.

5.6 Proof of Theorem 5.7
To prove Theorem 5.7, we proceed by structural induction on the evaluation of the source program

s and consider various cases of the final rule in the evaluation of s . Assuming that the result holds

for the previous steps of evaluation, we construct the evaluation of the transformed program JsKΣ
and prove that it satisfies the required properties.

We detail two representative cases, for rules S-malloc and S-logical-assert. The proof of other

cases is similar and is omitted. As explained above, we assume here that Theorem 5.8 holds (its

proof will be presented below and will not rely on Theorem 5.7).

Case S-malloc. Assume that the final rule in the source program evaluation is S-malloc, that

is, the source program s has the form l = malloc(e); and the source program evaluation has the

following form (cf. rule S-malloc in Fig. 13):

S’-malloc

Êi, M̂i ⊨e e ⇓ Int(n) alloc(M̂i,n) = (b̂ ′, M̂ ′
i
)

Êi, M̂i ⊨lv l : τ∗ ⇓ (b̂,δ) store(mtype(τ∗), M̂ ′
i
, b̂,δ ,Ptr(b̂ ′, 0)) = ⌊M̂f⌋

Êi, M̂i ⊨s l = malloc(e); ⇓ M̂f

The translation Jl = malloc(e); KΣ has the form (cf. Fig. 20):

1 l = malloc(e);
2 store_block(l,e);
3 initialize(&l);

To save room in derivations (here and below), we will use the following notation. The target

context after line k of the translation will be denoted by Ck = (Ek ,Mk ,Mk). Accordingly, C0 =

(E0,M0,M0) will denote the context before the first line.

Let us construct an evaluation of the translation Jl = malloc(e); KΣ as the following derivation

(by applying suitable rules of Fig. 13 and 19, and for suitable values of contexts that we describe

below):

(E0, M0) ⊨e e ⇓ Int(n)
alloc(M0, n) = (b′, M ′

0
)

(E0, M0) ⊨lv l : τ ∗ ⇓ (b, δ)
store(mtype(τ ∗), M ′

0
, b, δ, Ptr(b′, 0)) = ⌊M1 ⌋

C0 ⊨s l = malloc(e); ⇓ C1

. . .

C1 ⊨s store_block(l, e); ⇓ C2

. . .

C2 ⊨s initialize(&l); ⇓ C3

C1 ⊨s store_block(l, e); initialize(&l); ⇓ C3

C0 ⊨s Jl = malloc(e); KΣ ⇓ M3, M3

We define the contexts Ck and block b ′ as follows:

E0 ≜ Ei M0 ≜ Mi M0 ≜ Mi
(b ′,M ′

0
) ≜ alloc(M0,n)

E1 ≜ E0 ⌊M1⌋ ≜ store(mtype(τ∗),M ′
0
,b,δ ,Ptr(b ′, 0)) M1 ≜ M0

E2 ≜ E1 M2 ≜ M1 M2 ≜ store_block(M1,b
′, 0,n)

E3 ≜ E2 M3 ≜ M2 M3 ≜ initialize(τ∗,M2,b,δ)

By assumption, (Êi, M̂i) ∼σ (E0,M0). By Lemma 5.6 and the definition of Ûσ (Def. 5.1), we see

indeed that expression e is evaluated to Int(n), and that left-value l is evaluated to (b,δ), where

b ≜ σ (b̂). It follows from the rules of Fig. 9 that b̂ ∈ supp(M̂i) because since this block is the result of
evaluation of a left-value, it is either associated to a variable (hence a valid block, since our contexts

, Vol. 1, No. 1, Article . Publication date: June 2023.

Sound Runtime Assertion Checking for Memory Properties via Program Transformation 35

are well-formed) or referred to by an existing pointer. Similarly, we also have b ∈ supp(M0). By

Axiom (16), b̂ ′ < supp(M̂i) and b ′ < supp(M0), therefore we necessarily have b̂ , b̂ ′ and b , b ′. By

Property 2, since b ′ < supp(M0), we also have σ
−1(b ′) < supp(M̂i), therefore we necessarily have

b̂ , σ−1(b ′).
Further, by Property 3, the isomorphism of contexts is preserved after the allocation, hence we

have (Êi, M̂
′
i
) ∼σ ′ (E0,M

′
0
) with permutation σ ′ = σ ◦ (b̂ ′ ↔ σ−1(b ′)). In particular, by definition

of σ ′
we have σ ′(b̂ ′) = b ′ and σ ′(b̂) = b (since b̂ , b̂ ′, b̂ , σ−1(b ′) and σ (b̂) = b). The two store

operations store(mtype(τ∗), M̂ ′
i
, b̂,δ ,Ptr(b̂ ′, 0)) and store(mtype(τ∗),M ′

0
,b,δ ,Ptr(b ′, 0)) write two

corresponding values (since Ûσ ′(Ptr(b̂ ′, 0)) = Ptr(b ′, 0)) into two corresponding locations (since

σ ′(b̂) = b), hence by Property 5 we deduce that (Êi, M̂f) ∼σ ′ (E1,M1) = (E3,M3).

The remaining steps update the observation memory without changing the execution memory.

SinceM0 ▷ M0 by assumption, we can deduce by Property 8 thatM ′
0
▷ M2, and further by Property 10

thatM3 = M1 ▷ M3, which finishes the proof of the required statement in this case.

Cas S-logical-assert. This case relies on the evaluation rule for logical_assert(p), the trans-
lation of logical_assert(p) and Theorem 5.8 (applied for level n = 0).

The source program evaluation has the following form (cf. S-logical-assert in Fig. 13):

S-logical-assert

Êi, M̂i ⊨p p ⇓ ⊤

Êi, M̂i ⊨s logical_assert(p); ⇓ M̂f

where M̂f = M̂i .
The translation Jlogical_assert(p)KΣ has the form (cf. Fig. 20):

1 let res(0) : int8 in
2 JpK0

Π

3 assert(res(0));
4 end

Recall that we maintain the same notation convention Ck = (Ek ,Mk ,Mk) for target con-

text before line k as in the previous case. Let us construct an evaluation of the translation

Jlogical_assert(p)KΣ as the following derivation (by applying suitable rules of Fig. 13 and 19,

and for suitable values of contexts that we describe below):

S’-let

S’-seq

C1 ⊨s′ JpK0

Π ⇓ M2,M2

S’-assert

E2,M2 ⊨e res(0) ⇓ Int(1) 1 , 0

C2 ⊨s′ assert(res(0)); ⇓ M3,M3

C1 ⊨s′ JpK0

Π assert(res(0)); ⇓ M3,M3

(E1,M1) = alloc_var(E0,M0, res(0), int8) x < dom(E1) ⌊M4⌋ = dealloc_var(E3,M3, res(0))

C0 ⊨s′ let res(0) : int8 in JpK0

Π assert(res(0)); end ⇓ M4,M4

We define the contexts Ck and block bres(0) as follows:

E0 ≜ Ei M0 ≜ Mi M0 ≜ Mi
E1 ≜ E0 ⊔ (res(0),bres(0)) (bres(0),M1) ≜ alloc(M0, sizeof(int8)) M1 ≜ M0

E2 ≜ E1 M2 such that C1 ⊨s′ JpK0

Π ⇓ M2,M2 M2 ≜ M1

E3 ≜ E2 M3 ≜ M2 M3 ≜ M2

E4 ≜ E0 ⌊M4⌋ ≜ free(M3,bres(0)) M4 ≜ M3

Let us show the existence of M2 and M4. Theorem 5.8 can be applied for level n = 0, β = ⊤,

source initial context (Êi, M̂i), target starting context C0 = (E0,M0,M0) and a trivial subcontext

, Vol. 1, No. 1, Article . Publication date: June 2023.

36 Dara Ly, Nikolai Kosmatov, Frédéric Loulergue, and Julien Signoles

(Ep ,Mp) = (E0,M0), which verify the assumptions of the theorem. We deduce from Theorem 5.8

for target initial context (E1,M1,M1) andM2 ≜ M1 that there existsM2 such that
E1,M1,M1 ⊨s′ JpK0

Π ⇓ M2,M2,
E1,M2 ⊨e res(0) ⇓ Int(1),
M2 ≡ M ′

1
,

where M ′
1
is defined by ⌊M ′

1
⌋ ≜ store(i 8,M1,bres(0), 0, Int(1)). The first of these properties is also

used as an assumption in the application of rule S’-seq in the derivation above.

Further, we haveM1 ⊨ bres(0) byAxiom (1),M3 = M2 ≡ M ′
1
and ⌊M ′

1
⌋ ≜ store(i8,M1,bres(0), 0, Int(1)),

hence it follows from Axiom (5) that M ′
1
⊨ bres(0) and by Def. 5.4 that M3 ⊨ bres(0). Therefore, by

Axiom (19)M4 is also well-defined.

To deduce the required statement of Theorem 5.7, it remains to show that M4 and M4 satisfy

the properties (Êi, M̂f) ∼ (E4,M4) andM4 ▷ M4. Since M̂f = M̂i and E4 = E0, the first property can

be rewritten as (Êi, M̂i) ∼ (E0,M4). The required properties can be deduced from the assumptions

of Theorem 5.7 (Êi, M̂i) ∼ (Ei,Mi) = (E0,M0) and M0 ▷ Mi = M0. Intuivively, memory M4 is

constructed from M0 (up to equivalence at step M2) by allocating a bloc b1 for variable res(0),
writing its value and deallocating block b1. These operations keep untouched other existing valid

blocks and their contents, which allows us to deduce (Êi, M̂i) ∼ (E0,M4). They have no impact on

representation byM0 = M4, which allows us to deduceM4 ▷ M4. The detailed verification of these

properties is straightforward using the definitions and is left to the reader. □

5.7 Proof of Theorem 5.8
To prove Theorem 5.8, we proceed by structural induction on the evaluation of the source program

predicate p and consider various cases of the final rule in its evaluation. Assuming that the result

holds for the previous steps of evaluation, we construct the evaluation of the translation JpKnΠ
and prove that it satisfies the required properties. As previously, to save room in derivations,

the target context after line k of the translation will be denoted by Ck = (Ek ,Mk ,M). From

target starting context (E,M,M), the target initial context (Ei,Mi,M) = (E0,M0,M) is defined by

(E0,M0) ≜ alloc_var(E,M, res(n), int8) according to the statement, such that Ei(res(n)) = ⌊bres(n)⌋,
andM ′

i
= M ′

0
is defined by ⌊M ′

i
⌋ = ⌊M ′

0
⌋ ≜ store(i8,Mi,bres(n), 0, Int(β)).

The induction will proceed from predicate p to its subpredicate(s) (if any) with the same source

initial context (Ê, M̂), the same subcontext (Ep ,Mp) of the target starting context and the same

observation memoryM inside the target starting context. Indeed, in the source program, the envi-

ronment and execution memory are not modified during a predicate evaluation. In the translated

program—where the predicate is translated into additional instructions—the environment and exe-

cution memory are modified for variables and blocks added by the translation, but the observation

memory is only read and is not modified.

We detail three representative cases, for rules P-true, P-conj-left and S-valid. The proof of

other cases is similar and is omitted. As explained earlier, we assume here that Theorem 5.9 holds

(its proof does not rely on Theorem 5.8).

Case P-true. Assume that the final rule in the source program evaluation is P-true, that is, the

source program evaluation has the following form (cf. rule P-true in Fig. 11):

P-true

Ê, M̂ ⊨p \true ⇓ ⊤

The translation J\trueKnΠ has the form (cf. Fig. 21):

, Vol. 1, No. 1, Article . Publication date: June 2023.

Sound Runtime Assertion Checking for Memory Properties via Program Transformation 37

1 res(n) = 1;

Let us construct an evaluation of the translation J\trueKnΠ as the following derivation (by applying

suitable rules of Fig. 9 and 13 and for suitable values of contexts that we describe below):

S’-assign

E0,M0 ⊨e 1 : int8 ⇓ Int(1)
LV-var

E0(res(n)) = ⌊bres(n)⌋

E0,M0 ⊨lv res(n) : int8 ⇓ bres(n), 0
store(i8,M0,bres(n), 0, Int(1)) = ⌊M1⌋

E0,M0,M ⊨s′ res(n) = 1; ⇓ M1,M

We define the contexts Ck = (Ek ,Mk ,M) as follows (recall that the observation memory remains

unchanged):

E0 ≜ Ei M0 ≜ Mi
E1 ≜ E0 ⌊M1⌋ ≜ store(i8,Mi,bres(n), 0, Int(1))

By construction,Mi ⊨ i8 @bres(n), 0, so memory stateM1 is well-defined by Axiom (17).

Let show that the required properties of Theorem 5.8 forMf ≜ M1:
E0,M0,M ⊨s′ J\trueKnΠ ⇓ M1,M,
E0,M1 ⊨e res(n) ⇓ Int(β),
M1 ≡ M ′

0
.

The derivation above gives the required evaluation for the translation J\trueKnΠ . The second

property is shown by the following derivation, directly based on definitions:

E-lval

Ei,M1 ⊨lv res(n) : int8 ⇓ bres(n), 0
load(i8,M1,bres(n), 0) = ⌊Int(1)⌋ Int(1) , Undef kind(int8) = kind(Int(1))

Ei,M1 ⊨e res(n) ⇓ Int(1)

Finally,Mf ≡ M ′
i
since ⌊Mf⌋ = store(i8,Mi,bres(n), 0, Int(1)) = ⌊M ′

i
⌋.

Cas P-conj-left. Assume that the final rule in the source program evaluation is P-conj-left,

that is, the source program evaluation has the following form (cf. rule P-conj-left in Fig. 12):

P-conj-left

Ê, M̂ ⊨p p1 ⇓ ⊥

Ê, M̂ ⊨p p1 ∧ p2 ⇓ ⊥

The translation Jp1 ∧ p2KnΠ has the form (cf. Fig. 21):

1 let res(n + 1) : int8 in
2 Jp1Kn+1

Π

3 if (res(n + 1))
4 then let res(n + 2) : int8 in
5 Jp2Kn+2

Π

6 res(n) = res(n + 2);
7 end else
8 res(n) = 0;
9 end

, Vol. 1, No. 1, Article . Publication date: June 2023.

38 Dara Ly, Nikolai Kosmatov, Frédéric Loulergue, and Julien Signoles

Let us construct an evaluation of the translation Jp1 ∧ p2KnΠ as the following derivation (by

applying suitable rules of Fig. 9, 13 and 14 and for suitable values of contexts that we describe

below):

S’-let

S’-seq

S’-if-false

S’-assign

E2, M2 ⊨e 0 ⇓ Int(0)
LV-var

E2(res(n)) = ⌊bres(n) ⌋
E2, M2 ⊨lv res(n) ⇓ bres(n), 0

store(i8, M2, bres(n), 0, Int(0)) = ⌊M8 ⌋

E2, M2, M ⊨s′ res(n) = 0; ⇓ M8, M
E2, M2 ⊨e res(n + 1) ⇓ Int(0)

E2, M2, M ⊨s′ if (res(n + 1)) . . . else res(n) = 0; ⇓ M8, M
E1, M1, M ⊨s′ Jp1Kn+1

Π ⇓ M2, M

E1, M1, M ⊨s′ Jp1Kn+1

Π if(res(n + 1)) . . . ⇓ M8, M
alloc_var(E0, M0, res(n + 1), int8) = E1, M1 res(n + 1) < dom(E0) dealloc_var(E8, M8, res(n + 1)) = ⌊M9 ⌋

E0, M0, M ⊨s′ let res(n + 1) : int8 in . . . end ⇓ M9, M

We define the contexts Ck = (Ek ,Mk ,M) and block bres(n+1) as follows (notice that the then

branch of the conditional in the translation is not executed so only C0,C1,C2,C8,C9 are relevant,

and that the observation memory remains unchanged):

E0 ≜ Ei M0 ≜ Mi
E1 ≜ E0 ⊔ (res(n + 1),bres(n+1)) (bres(n+1),M1) ≜ alloc(M0, sizeof(int8))
E2 ≜ E1 M2 such that E1,M1,M ⊨s′ Jp1Kn+1

Π ⇓ M2,M
E8 ≜ E2 ⌊M8⌋ ≜ store(i8,M2,bres(n), 0, Int(0))
E9 ≜ E0 ⌊M9⌋ ≜ free(M8,bres(n+1))

Let us show that all these elements are well-defined. To show the existence ofM2, we use the

induction hypothesis by applying the statement of Theorem 5.8 for predicate p1, level n + 1, target

starting context (E0,M0,M), target initial context (E1,M1,M), the same source initial context (Ê, M̂)

and the same subcontext (Ep ,Mp). The hypotheses for this application of the theorem are satisfied,

in particular, we have: 
Ê, M̂ ⊨p p1 ⇓ ⊥,
(Ep ,Mp) ⊆ (E0,M0),

(Ê, M̂) ∼ (Ep ,Mp),

Mp ▷ M .

where the property (Ep ,Mp) ⊆ (E0,M0) can be easily deduced from the assumption (Ep ,Mp) ⊆

(E,M) by construction of (E0,M0) and by definitions. Hence, we deduce from this application of

the theorem the existence ofM2 such that:
E1,M1,M ⊨s′ Jp1Kn+1

Π ⇓ M2,M,
E2,M2 ⊨e res(n + 1) ⇓ Int(0),
M2 ≡ M ′

1
,

where ⌊M ′
1
⌋ ≜ store(i8,M1,bres(n+1), 0, Int(0)). The first and second of these properties are also used

as assumptions in the application of rules S’-seq and S’-if-false above.

Let us show thatM8 andM9 are well-defined. By construction,M0 ⊨ i8 @bres(n), 0, and after the

following steps—namely, allocation of block bres(n+1) to obtainM1 and storing a value for bres(n+1) to

obtain (up to equivalence)M2—we also haveM2 ⊨ i8 @bres(n), 0, so memory stateM8 is well-defined

by Axiom (17). By construction, M1 ⊨ bres(n+1), and the following steps—namely, storing a value

for bres(n+1) to obtain (up to equivalence)M2, then storing a value for bres(n) to obtainM8—do not

impact this validity, soM8 ⊨ bres(n+1), hence memory stateM9 is well-defined by Axiom (19). The

verification of details is straightforward by definitions.

, Vol. 1, No. 1, Article . Publication date: June 2023.

Sound Runtime Assertion Checking for Memory Properties via Program Transformation 39

We define the required final memory asMf ≜ M9. To finish the proof, we have to show:
E0,M0,M ⊨s′ Jp1 ∧ p2KnΠ ⇓ M9,M,
E0,M9 ⊨e res(n) ⇓ Int(0),
M9 ≡ M ′

0
,

where ⌊M ′
0
⌋ ≜ store(i8,M0,bres(n), 0, Int(0)). The first property is shown by the derivation above.

The last two properties are justified by the fact that M9 is constructed from M0 by allocation of

block bres(n+1) to obtainM1, storing a value for bres(n+1) to obtain (up to equivalence)M2, storing

a value 0 for res(n) to obtainM8, and finally removing block bres(n+1). The detailed verification of

these properties is straightforward using the definitions and is left to the reader.

Remark. Notice that our axioms do not allow us to deduce that M9 = M ′
0
but only their obser-

vational equivalenceM9 ≡ M ′
0
(which preserves the set of valid blocks, their sizes and contents),

and only this observational equivalence is required in the theorem. We admit that in a real-life

implementation, memory datastructures can be different for M9 whose construction from M0

goes through additional steps (e.g. allocation and deallocation of block bres(n+1)) compared to the

construction ofM ′
0
. This approach leaves more freedom for an actual implementation to choose,

for instance, the next block identifier to be allocated, the way to maintain (an overapproximation

of) the support of the execution memory, the moment to call a garbage collector (to recompute

this overapproximation more precisely), etc. This choice leaves more freedom for a real-life tool in

implementing the underlying memory model.

Case P-valid. Assume that the final rule in the source program evaluation is P-valid, that is, the

source program evaluation has the following form (cf. rule P-valid in Fig. 11, where t must be of a

pointer type, say, τt = τ∗):

P-valid

Ê, M̂ ⊨t t : τ∗ ⇓ Ptr(b̂, δ̂)
M̂ ⊨ mtype(τ)@ b̂, δ̂

Ê, M̂ ⊨p \valid(t) ⇓ ⊤

The translation J\valid(t)KnΠ has the form (cf. Fig. 22):

1 let res(n + 1) : τ∗ in
2 JtKn+1

T

3 res(n) = is_valid(res(n + 1));
4 end

Let us construct an evaluation of the translation J\valid(t)KnΠ as the following derivation (by

applying suitable rules of Fig. 9, 14 and 19 and for suitable values of contexts that we describe

below):

S’-let

S’-seq

S’-is-valid

LV-var

E2(res(n)) = ⌊bres(n)⌋

E2,M2 ⊨lv res(n) ⇓ bres(n), 0 E2,M2 ⊨e res(n + 1) ⇓ Ptr(b,δ)
is_valid_access(mtype(τ),M,b,δ) = ⊤

store(i8,M2,bres(n), 0, Int(1)) = ⌊M3⌋

E2,M2,M ⊨s′ res(n) = is_valid(res(n + 1)); ⇓ M3,M

E1,M1,M ⊨s′ JtKn+1

T
⇓ M2,M

E1,M1,M ⊨s′ JtKn+1

T
res(n) = is_valid(res(n + 1)); ⇓ M3,M

alloc_var(E0,M0, res(n + 1),τ∗) = (E1,M1) dealloc_var(E3,M3, res(n + 1)) = ⌊M4⌋

E0,M0,M ⊨s′ let res(n + 1) : τ ∗ in . . . end ⇓ M4,M

, Vol. 1, No. 1, Article . Publication date: June 2023.

40 Dara Ly, Nikolai Kosmatov, Frédéric Loulergue, and Julien Signoles

We define the contexts Ck = (Ek ,Mk ,M) and block bres(n+1) as follows:

E0 ≜ Ei M0 ≜ Mi
E1 ≜ E0 ⊔ (res(n + 1),bres(n+1)) (bres(n+1),M1) ≜ alloc(M0, sizeof(τ∗))
E2 ≜ E1 M2 such that E1,M1,M ⊨s′ JtKn+1

T
⇓ M2,M

E3 ≜ E2 ⌊M3⌋ ≜ store(i8,M2,bres(n), 0, Int(1))
E4 ≜ E0 ⌊M4⌋ ≜ free(M3,bres(n+1))

Let us show that all these elements are well-defined. To show the existence ofM2, we use Theo-

rem 5.9 for term t , level n + 1, target starting context (E0,M0,M), target initial context (E1,M1,M),

the same source initial context (Ê, M̂) and the same subcontext (Ep ,Mp). The hypotheses for this

application of Theorem 5.9 are satisfied, in particular, we have for some permutation σ :
Ê, M̂ ⊨t t ⇓ Ptr(b̂, δ̂),
(Ep ,Mp) ⊆ (E0,M0),

(Ê, M̂) ∼σ (Ep ,Mp),

Mp ▷ M,

where the property (Ep ,Mp) ⊆ (E0,M0) can be easily deduced from the assumption (Ep ,Mp) ⊆

(E,M) by construction of (E0,M0) and by definitions. Hence, we deduce from this application of

the theorem the existence ofM2 such that:
E1,M1,M ⊨s′ JtKn+1

T
⇓ M2,M,

E2,M2 ⊨e res(n + 1) ⇓ Ptr(b,δ),
M2 ≡ M ′

1
,

where ⌊M ′
1
⌋ ≜ store(mtype(τ∗),M1,bres(n+1), 0,Ptr(b,δ)), where Ptr(b,δ) = Ûσ (Ptr(b̂, δ̂)), that is,

b = σ (b̂) and δ = δ̂ . The first and second of these properties are also used as assumptions in the

application of rules S’-seq and S’-is-valid above.

Let us show thatM3 andM4 are well-defined. By construction,M0 ⊨ i8 @bres(n), 0, and after the

following steps—namely, allocation of block bres(n+1) to obtainM1 and storing a value for bres(n+1) to

obtain (up to equivalence)M2—we also haveM2 ⊨ i8 @bres(n), 0, so memory stateM3 is well-defined

by Axiom (17). By construction, M1 ⊨ bres(n+1), and the following steps—namely, storing a value

for bres(n+1) to obtain (up to equivalence)M2, then storing a value for bres(n) to obtainM8—do not

impact this validity, soM3 ⊨ bres(n+1), hence memory stateM4 is well-defined by Axiom (19). The

verification of details is straightforward by definitions.

By Property 1 we deduce from the assumption for the source language M̂ ⊨ mtype(τ)@ b̂, δ̂

and (Ê, M̂) ∼σ (Ep ,Mp) that Mp ⊨ mtype(τ)@b,δ . Since Mp ▷ M , it follows by Property 7 that

is_valid_access(mtype(τ),M,b,δ) = ⊤, which is used as an assumption in the application of rule

S’-is-valid above.

We define the required final memory asMf ≜ M4. To finish the proof, we have to show:
E0,M0,M ⊨s′ J\valid(t)KnΠ ⇓ M4,M,
E0,M4 ⊨e res(n) ⇓ Int(1),
M4 ≡ M ′

0
,

where ⌊M ′
0
⌋ ≜ store(i8,M0,bres(n), 0, Int(0)). The first property is shown by the derivation above.

The last two properties are justified by the fact that M4 is constructed from M0 by allocation of

block bres(n+1) to obtainM1, storing a value for bres(n+1) to obtain (up to equivalence)M2, storing

a value 0 for res(n) to obtainM3, and finally removing block bres(n+1). The detailed verification of

these properties is straightforward using the definitions and is left to the reader. □

, Vol. 1, No. 1, Article . Publication date: June 2023.

Sound Runtime Assertion Checking for Memory Properties via Program Transformation 41

5.8 Proof of Theorem 5.9
The proof of Theorem 5.9 proceeds similarly to that of Theorem 5.8 and does not rely on Theorem 5.7

and Theorem 5.8. It is left to the reader and is omitted here. □

5.9 Soundness of a Runtime Assertion Checker
Assume we have a runtime assertion checker implementing the translation presented in Sec. 4.

The evaluation of (the first instruction of) a given program starts with an empty context, and the

runtime assertion checker starts the evaluation of (the first instruction of) the translated program

with an empty observation memory. Let us show how Theorem 5.7 can be applied to show its

soundness.

Let (Ê∅, M̂∅) be the trivial source initial context composed of an empty environment (with no

variables) and an empty execution memory (with no valid blocks). Let (E∅,M∅,M∅) be the trivial

target initial context composed of an empty environment, an empty execution memory and an

empty observation memoryM∅. We trivially have{
(Ê∅, M̂∅) ∼ (E∅,M∅),

M∅ ▷ M∅ .

So the following corollary follows from Theorem 5.7.

Corollary 5.10 (soundness of a runtime assertion checker). Let s be a source program

evaluated in the trivial source initial context to final memory state M̂f , in other words, Ê∅, M̂∅ ⊨s s ⇓ M̂f .

Then there exist memory statesMf andMf such that the evaluation of JsKΣ in the trivial target initial

context leads to (Mf,Mf), such that (Ê∅, M̂f) is isomorphic to (E∅,Mf) andMf representsMf . In other

words, 
E∅,M∅,M∅ ⊨s′ JsKΣ ⇓ Mf,Mf,

(Ê∅, M̂f) ∼ (E∅,Mf),

Mf ▷ Mf .

6 DISCUSSION AND RELATEDWORK
Discussion. This paper formally presents and proves the soundness of a runtime assertion checker

for memory-related properties. It is inspired by the program transformation implemented in the E-
ACSL plug-in [46] of Frama-C [3] for tracking memory-related properties of its formal specification

language. However, compared to its current implementation, we made a number of significant

changes and simplifications.

First, we simplify both the programming and the specification languages. Such a reduction is quite

standard when presenting a formalization work in a paper. In practice, the program transformation

of the E-ACSL tool operates on basically the same source and target programming language, which

is C, with the source language being additionally extended with ACSL annotations
4
. This language

is arguably a much larger language than ours. However, the observation memory model introduced

in this paper is representative of spatial memory errors occurring in C (without inline assembly

code): we only need to know the memory effects done by each C statement or expression in order

to decide how to instrument the code. Our programming language also includes a dedicated let
construct to model global and local variables, and this choice simplifies our formalization. Support

for local blocks and global and local variables instead of this construct is easy to implement in

4
In a few cases outside the scope of this paper, E-ACSL may generate some new ACSL annotations in addition to the

generated C code.

, Vol. 1, No. 1, Article . Publication date: June 2023.

42 Dara Ly, Nikolai Kosmatov, Frédéric Loulergue, and Julien Signoles

practice. Additionally, we also rely on a memory model broadly inspired by CompCert [30] to
model the execution memory of our C-like language. Our memory models support badly typed

and badly aligned accesses, even if our current source and target languages do not include them.

An extension of the languages for such features is future work.

The specification language is also much simpler than the E-ACSL specification language [43].

However, the most important block-level memory properties are already considered in this paper

and modeled thanks to our observation memory. In practice, the observation memory is based

on a former work [50] and implemented as a C library. Extending the present formalization to

make it fully consistent with the real-life library is future work. It is challenging because of its

low-level bitwise implementation, even if recent efforts on verification of complex C libraries [8, 40]

give us hope it would be possible. Supporting additional memory-related properties (e.g. the

\separated predicate stating that a given set of pointers refer to pairwise disjoint memory

locations) should not require modifying the observation memory implementation: it only requires

adding the corresponding operation in the observation memory model and associated axioms.

The most important simplification made in the paper with respect to the specification language’s

semantics is related to undefined terms and predicates, such as \valid(*p)when p is not a valid

pointer. Handling such undefined constructs is often referred to as the undefinedness problem [12].

Executing the resulting C code would result in an undefined behavior, which should never happen.

Therefore, generating such a code would be a bug in the code generator. To prevent this issue,

E-ACSL generates additional guards (typically, checking the validity of p before dereferencing it)

while, in our formalization, we do not take care of them and just consider they have no meaning

(i.e., there is no derivation tree in our operational semantics). Formalizing RAC in presence of

undefinedness is future work.

The above-mentioned simplifications and changes with respect to C, the E-ACSL specification

language and the E-ACSL plug-in of Frama-C allow us to focus on a particularly difficult part

of the program transformation made by E-ACSL, namely memory properties, while keeping the

study tractable in a research paper. It is part of a larger ongoing effort about formalizing E-ACSL,
step by step [5, 6, 25]. Therefore, this paper focuses on the theoretical properties of the program

transformation rather than its practical usages. In particular, the source and target languages have

been designed to simplify the theoretical study and highlight the salient part of the transformation,

and not for being used in practice. However, the interested readers may refer to previous papers

for concrete applications [38] and experimental evaluations [49, 50] of E-ACSL regarding checking

memory properties at runtime. They should also refer to the E-ACSL user manual [45] for using it

in practice.

This paper also assumes we have an implementation of the observation memory respecting the

axioms in Section 4.1. Such an implementation has been proposed by Vorobyov et al. [50] and is

provided within E-ACSL. However, it has not been proved correct with respect to our set of axioms.

That is left for future work. For being used in untrusted security-sensitive contexts, additional

security properties, such as control-flow integrity [1], are often desirable in order to ensure (for

instance) that the executed program does not bypass the memory check at runtime. Adding such

security mechanisms is complementary to our work.

Related Work. More and more languages include a notion of contract. Design-by-contract is

one of the main features of Eiffel [34], contracts have been introduced in Java through JML [27]

in 1999, in C# through Spec# in 2011 [2], in Ada 2012 [18], and in OCaml through GOSPEL in

2019 [11]. The C++ standardization committee considered contracts for C++ 20, although this new

feature has been finally deferred to a later standard. In Eiffel, assertions are Boolean expressions

written in the programming language. In Ada 2012, it is also the case, but the language has been

, Vol. 1, No. 1, Article . Publication date: June 2023.

Sound Runtime Assertion Checking for Memory Properties via Program Transformation 43

extended with quantified expressions to allow bounded universal and existential quantification.

These new expressions have been inspired by Spark, a well-defined subset of Ada, extended to

express contracts for static and dynamic verification.

Zhang et al. [51] study verified runtime checking in the context of Spark: the checks to be

performed are however not explicitly stated as assertions in the source language, but are implicit (e.g.

division by zero). The authors provide a formalization and proof using the Coq proof assistant [7].

Findler et al. [15, 16] study runtime checking in the context of object-oriented language such as

Java, focusing in evaluating contracts’ pre- and post-conditions in presence of method calls and

inheritance. They prove the soundness of their approach. Cheon [12] formalizes RAC of JML, but
provides no proof of soundness, while Lehner [28] formalizes the semantics of a large subset of

JML and proves in Coq an algorithm that checks assignable clauses at runtime. Such clauses

are memory properties that do not require memory observation. As our work focuses on memory

observation, it is related but complementary to these works. Indeed, in the context of Java and
Ada, even runtime checks for out-of-bounds accesses are related to arithmetic inequalities. In the

case of C, however, as the bounds of an array are not attached to the array itself, out-of-bound

accesses correspond to invalid accesses to the memory, and are therefore handled in ACSL by the

predicate \valid. Such memory properties have been formerly referred to as block-level memory

properties [50]. More generally, the formal verification efforts on languages such as Eiffel, Java,
Ada and Spark do not consider such properties because the design of the language prevents most

memory problems that can arise in the context of C.
As runtime checking is costly, most approaches rely on an optimization phase, based on static

analysis. Zhang et al. [51] propose and verify such a phase. It is also the case for our approach,

which can be combined with a sound dataflow analysis [32]. Such optimizations are thus related

to the verification of static analysis [23] and are not directly related to verification of runtime

checkers.

Our contribution targets the C language [21], the Frama-C framework [3], the ACSL specification
language [4] and the E-ACSL plug-in [46]. In particular we focus on memory properties. In Frama-C,
the plug-in RTE [20] generates ACSL assertions for runtime errors, and the E-ACSL plug-in can

translate these assertions into C code. As C++ includes C, in the long term, the work presented in this

paper could contribute to the verified compilation of a future standard of C++ including contracts. It

is interesting to note that a recent language, Rust, that aims at combining the high-efficiency of

C with strong guarantees, does not include contracts. There is an interest in formally verifying

that the type system of Rust indeed provides strong guarantees [24], that the Rust language also
provides unsafe pointers, and there exist Rust libraries to provide rudimentary support to express

contracts, so our contribution may be interesting in the context of future iterations of Rust.
We aim at extending the proposed approach to consider a larger subset of E-ACSL, such as

support of mathematical integers and their translation using a library such as GMP. Several works
have been done in that direction, including a formalization of a type system used as a pre-analysis

before generating the code [25], a formalization of a GMP-based runtime assertion checker for

mathematical properties [5, 6], or developing a sound GMP-equivalent library [40]. Grouping

together all these formalization efforts is future work.

Regarding formal RAC of block-level memory properties, this work is an extension of a former

work [31]. In particular, this version carefully reworks and details the axiomatization of the ob-

servation memory, presents a clearer design of the program transformation, and provides more

proof details. The input language is also slightly larger. In particular, it now includes local variable

declarations. Earlier, Petiot et al [39] also presented a formalization of a program transformer for

E-ACSL-like properties. However, they simplify the transformation of memory properties by not

, Vol. 1, No. 1, Article . Publication date: June 2023.

44 Dara Ly, Nikolai Kosmatov, Frédéric Loulergue, and Julien Signoles

taking into account the observation memory. In particular, they do not explain how to instrument

the input program for recording necessary pieces of information in the observation memory.

One strength of Frama-C is the use of the common ACSL language by all plug-ins. For the

verification of RAC, it means reusing existing formalizations of ACSL designed in the context of

the verification of deductive verification [19] for our extended source language. Finally, the E-ACSL
plug-in currently does not support several interesting features of the specification language [44],

such as axiomatized predicates. For them, a possible verified extension of E-ACSL could be based

on the work of Tollitte et al. [47].

7 CONCLUSION
Runtime assertion checking of memory-related properties for a mainstream language like C relies

on a complex program transformation that needs to record memory block metadata in a non-trivial,

often highly optimized observation memory model. This work makes a significant step toward a

formally proved runtime assertion checker for such memory properties.

We have presented a formalization of this program transformation for a representative pro-

gramming language with pointers and dynamic memory allocation and proved the soundness of

the resulting verification verdicts. We have proposed necessary machinery and proved that the

generated monitor does not interfere with the original code. Our formalization and proofs are

based on an observation memory model, which is particularly suitable for a modular definition and

verification of the program transformation. The consistency of memory models and some of their

key properties were proved in the Coq proof assistant [7].

Future work includes an extension of the present proof to real-life programming and specification

languages, like C and ACSL respectively. It also includes a complete formalization and a mechanized

proof of the runtime assertion checker in Coq.

REFERENCES
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005. Control-Flow Integrity. In Conference on Computer

and Communications Security (CCS). https://doi.org/10.1145/1102120.1102165

[2] Mike Barnett, Manuel Fähndrich, K. Rustan M. Leino, Peter Müller, Wolfram Schulte, and Herman Venter. 2011.

Specification and Verification: The Spec# Experience. Commun. ACM 54, 6 (June 2011), 81–91. https://doi.org/10.1145/

1953122.1953145

[3] Patrick Baudin, François Bobot, David Bühler, Loïc Correnson, Florent Kirchner, Nikolai Kosmatov, André Maroneze,

Valentin Perrelle, Virgile Prevosto, Julien Signoles, and Nicky Williams. 2021. The dogged pursuit of bug-free C

programs: the Frama-C software analysis platform. Commun. ACM 64, 8 (2021), 56–68. https://doi.org/10.1145/3470569

[4] Patrick Baudin, Jean-Christophe Filliâtre, Claude Marché, Benjamin Monate, Yannick Moy, and Virgile Prevosto. 2022.

ACSL: ANSI/ISO C Specification Language. http://frama-c.com/download/acsl.pdf.

[5] Thibaut Benjamin, Félix Ridoux, and Julien Signoles. 2022. Formalisation d’un vérificateur efficace d’assertions

arithmétiques à l’exécution. In Journées Francophones des Langages Applicatifs (JFLA’22). In French.

[6] Thibaud Benjamin and Julien Signoles. 2023. Formalizing an Efficient Runtime Assertion Checker for an Arithmetic

Language with Functions and Predicates. (2023). To appear in International Symposium on Applied Computing (2023).

[7] Yves Bertot and Pierre Castéran. 2004. Interactive Theorem Proving and Program Development - Coq’Art: The Calculus of

Inductive Constructions. Springer. https://doi.org/10.1007/978-3-662-07964-5

[8] Allan Blanchard, Nikolai Kosmatov, and Frédéric Loulergue. 2018. Ghosts for Lists: A Critical Module of Contiki Verified

in Frama-C. InNASA FormalMethods - 10th International Symposium, NFM 2018, Newport News, VA, USA, April 17-19, 2018,

Proceedings (Lecture Notes in Computer Science, Vol. 10811). Springer, 37–53. https://doi.org/10.1007/978-3-319-77935-5_3

[9] Sandrine Blazy and Xavier Leroy. 2009. Mechanized Semantics for the Clight Subset of the C Language. J. Autom.

Reasoning 43, 3 (2009), 263–288. https://doi.org/10.1007/s10817-009-9148-3

[10] Derek Bruening and Qin Zhao. 2011. Practical Memory Checking with Dr. Memory. In Proceedings of the CGO 2011, The

9th International Symposium on Code Generation and Optimization, Chamonix, France, April 2-6, 2011. IEEE Computer

Society, 213–223. https://doi.org/10.1109/CGO.2011.5764689

[11] Arthur Charguéraud, Jean-Christophe Filliâtre, Cláudio Lourenço, and Mário Pereira. 2019. GOSPEL - Providing

OCaml with a Formal Specification Language. In Formal Methods - The Next 30 Years - Third World Congress, FM

, Vol. 1, No. 1, Article . Publication date: June 2023.

https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/1953122.1953145
https://doi.org/10.1145/1953122.1953145
https://doi.org/10.1145/3470569
http://frama-c.com/download/acsl.pdf
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-319-77935-5_3
https://doi.org/10.1007/s10817-009-9148-3
https://doi.org/10.1109/CGO.2011.5764689

Sound Runtime Assertion Checking for Memory Properties via Program Transformation 45

2019, Porto, Portugal, October 7-11, 2019, Proceedings (Lecture Notes in Computer Science, Vol. 11800). Springer, 484–501.

https://doi.org/10.1007/978-3-030-30942-8_29

[12] Yoonsik Cheon. 2003. A runtime assertion checker for the Java Modeling Language. Ph. D. Dissertation. Iowa State

University.

[13] Lori A. Clarke and David S. Rosenblum. 2006. A historical perspective on runtime assertion checking in software

development. ACM SIGSOFT Software Engineering Notes 31, 3 (2006), 25–37. https://doi.org/10.1145/1127878.1127900

[14] Mickaël Delahaye, Nikolai Kosmatov, and Julien Signoles. 2013. Common specification language for static and dynamic

analysis of C programs. In Proceedings of the 28th Annual ACM Symposium on Applied Computing, SAC ’13, Coimbra,

Portugal, March 18-22, 2013. 1230–1235. https://doi.org/10.1145/2480362.2480593

[15] Robert Bruce Findler and Matthias Felleisen. 2001. Contract Soundness for Object-Oriented Languages. https:

//doi.org/10.1145/504282.504283

[16] Robert Bruce Findler, Mario Latendresse, and Matthias Felleisen. 2001. Behavioral Contracts and Behavioral Subtyping.

https://doi.org/10.1145/503209.503240

[17] Cormac Flanagan and James B. Saxe. 2001. Avoiding exponential explosion: generating compact verification conditions.

In Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2001).

ACM, 193–205. https://doi.org/10.1145/360204.360220

[18] ISO/IEC JTC 1/SC 22/WG 9 Ada Rapporteur Group. 2012. ADA Reference Manual. http://www.ada-auth.org/standards/

ada12.html

[19] Paolo Herms. 2013. Certification of a Tool Chain for Deductive Program Verification. (Certification d’une chaine de

vérification déductive de programmes). Ph. D. Dissertation. University of Paris-Sud, Orsay, France. https://tel.archives-

ouvertes.fr/tel-00789543

[20] Philippe Herrmann and Julien Signoles. 2022. Annotation generation: Frama-C’s RTE plug-in. http://frama-c.com/

download/frama-c-rte-manual.pdf.

[21] ISO/IEC 9899:1999 1999. Programming languages – C. ISO/IEC 9899:1999.

[22] Arvid Jakobsson, Nikolai Kosmatov, and Julien Signoles. 2016. Fast as a shadow, expressive as a tree: Optimized

memory monitoring for C. Sci. Comput. Program. 132 (2016), 226–246. https://doi.org/10.1016/j.scico.2016.09.003

[23] Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and David Pichardie. 2015. A Formally-Verified

C Static Analyzer. SIGPLAN Not. 50, 1 (2015), 247–259. https://doi.org/10.1145/2775051.2676966

[24] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2017. RustBelt: Securing the Foundations of

the Rust Programming Language. Proc. ACM Program. Lang. 2, POPL (2017). https://doi.org/10.1145/3158154

[25] Nikolai Kosmatov, Fonenantsoa Maurica, and Julien Signoles. 2020. Efficient Runtime Assertion Checking for Properties

over Mathematical Numbers. In Runtime Verification - 20th International Conference, RV 2020, Los Angeles, CA, USA,

October 6-9, 2020, Proceedings (Lecture Notes in Computer Science, Vol. 12399). Springer, 310–322. https://doi.org/10.

1007/978-3-030-60508-7_17

[26] Nikolai Kosmatov, Guillaume Petiot, and Julien Signoles. 2013. An Optimized Memory Monitoring for Runtime

Assertion Checking of C Programs. In Runtime Verification - 4th International Conference, RV 2013, Rennes, France,

September 24-27, 2013. Proceedings. 167–182. https://doi.org/10.1007/978-3-642-40787-1_10

[27] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. 2006. Preliminary design of JML: a behavioral interface specification

language for java. ACM SIGSOFT Software Engineering Notes 31, 3 (2006), 1–38. https://doi.org/10.1145/1127878.1127884

[28] Hermann Lehner. 2011. A Formal Definition of JML in Coq and its Application to Runtime Assertion Checking. Ph. D.

Dissertation. ETH Zurich.

[29] Xavier Leroy. 2009. A Formally Verified Compiler Back-end. J. Autom. Reason. 43, 4 (2009), 363–446. https:

//doi.org/10.1007/s10817-009-9155-4

[30] Xavier Leroy and Sandrine Blazy. 2008. Formal Verification of a C-like Memory Model and Its Uses for Verifying

Program Transformations. J. Autom. Reasoning 41, 1 (2008), 1–31. https://doi.org/10.1007/s10817-008-9099-0

[31] Dara Ly, Nikolai Kosmatov, Frédéric Loulergue, and Julien Signoles. 2020. Verified Runtime Assertion Checking for

Memory Properties. In Tests and Proofs - 14th International Conference, TAP@STAF 2020, Bergen, Norway, June 22-23, 2020,

Proceedings [postponed] (Lecture Notes in Computer Science, Vol. 12165). Springer, 100–121. https://doi.org/10.1007/978-

3-030-50995-8_6

[32] Dara Ly, Nikolai Kosmatov, Julien Signoles, and Frédéric Loulergue. 2019. Soundness of a Dataflow Analysis for

Memory Monitoring. Ada Lett. 38, 2 (dec 2019), 97–108. https://doi.org/10.1145/3375408.3375416

[33] Fonenantsoa Maurica, David R. Cok, and Julien Signoles. 2018. Runtime Assertion Checking and Static Verification:

Collaborative Partners. In 8th International Symposium On Leveraging Applications of Formal Methods, Verification and

Validation. Verification (ISoLA 2018) (LNCS, Vol. 11245). Springer, 75–91. https://doi.org/10.1007/978-3-030-03421-4_6

[34] Bertrand Meyer. 1991. Eiffel: The Language. Prentice-Hall. http://www.eiffel.com/doc/#etl

[35] Santosh Nagarakatte, Jianzhou Zhao, Milo M. K. Martin, and Steve Zdancewic. 2009. SoftBound: highly compatible

and complete spatial memory safety for C. In Proceedings of the 2009 ACM SIGPLAN Conference on Programming

, Vol. 1, No. 1, Article . Publication date: June 2023.

https://doi.org/10.1007/978-3-030-30942-8_29
https://doi.org/10.1145/1127878.1127900
https://doi.org/10.1145/2480362.2480593
https://doi.org/10.1145/504282.504283
https://doi.org/10.1145/504282.504283
https://doi.org/10.1145/503209.503240
https://doi.org/10.1145/360204.360220
http://www.ada-auth.org/standards/ada12.html
http://www.ada-auth.org/standards/ada12.html
https://tel.archives-ouvertes.fr/tel-00789543
https://tel.archives-ouvertes.fr/tel-00789543
http://frama-c.com/download/frama-c-rte-manual.pdf
http://frama-c.com/download/frama-c-rte-manual.pdf
https://doi.org/10.1016/j.scico.2016.09.003
https://doi.org/10.1145/2775051.2676966
https://doi.org/10.1145/3158154
https://doi.org/10.1007/978-3-030-60508-7_17
https://doi.org/10.1007/978-3-030-60508-7_17
https://doi.org/10.1007/978-3-642-40787-1_10
https://doi.org/10.1145/1127878.1127884
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1007/s10817-008-9099-0
https://doi.org/10.1007/978-3-030-50995-8_6
https://doi.org/10.1007/978-3-030-50995-8_6
https://doi.org/10.1145/3375408.3375416
https://doi.org/10.1007/978-3-030-03421-4_6
http://www.eiffel.com/doc/#etl

46 Dara Ly, Nikolai Kosmatov, Frédéric Loulergue, and Julien Signoles

Language Design and Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009. ACM, 245–258. https://doi.org/10.

1145/1542476.1542504

[36] Nicholas Nethercote and Julian Seward. 2007. How to shadow every byte of memory used by a program. In Proceedings

of the 3rd International Conference on Virtual Execution Environments, VEE 2007, San Diego, California, USA, June 13-15,

2007. 65–74. https://doi.org/10.1145/1254810.1254820

[37] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. 1999. Principles of program analysis. Springer. https:

//doi.org/10.1007/978-3-662-03811-6

[38] Dillon Pariente and Julien Signoles. 2017. Static Analysis and Runtime Assertion Checking: Contribution to Security

Counter-Measures. In Symposium sur la Sécurité des Technologies de l’Information et des Communications (SSTIC).

[39] Guillaume Petiot, Bernard Botella, Jacques Julliand, Nikolai Kosmatov, and Julien Signoles. 2014. Instrumentation of

Annotated C Programs for Test Generation. In 14th IEEE International Working Conference on Source Code Analysis

and Manipulation, SCAM 2014, Victoria, BC, Canada, September 28-29, 2014. IEEE Computer Society, 105–114. https:

//doi.org/10.1109/SCAM.2014.19

[40] Raphaël Rieu-Helft. 2019. A Why3 proof of GMP algorithms. J. Formaliz. Reason. 12, 1 (2019), 53–97. https:

//doi.org/10.6092/issn.1972-5787/9730

[41] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov. 2012. AddressSanitizer: A Fast

Address Sanity Checker. In 2012 USENIX Annual Technical Conference, Boston, MA, USA, June 13-15, 2012. USENIX

Association, 309–318.

[42] Julian Seward and Nicholas Nethercote. 2005. Using Valgrind to Detect Undefined Value Errors with Bit-Precision. In

Proceedings of the 2005 USENIX Annual Technical Conference, April 10-15, 2005, Anaheim, CA, USA. USENIX, 17–30.

http://www.usenix.org/events/usenix05/tech/general/seward.html

[43] Julien Signoles. 2022. E-ACSL: Executable ANSI/ISO C Specification Language. http://frama-c.com/download/e-acsl/e-

acsl.pdf.

[44] Julien Signoles. 2022. E-ACSL Version 1.18. Implementation in Frama-C Plug-in E-ACSL 26.0. http://frama-c.com/

download/e-acsl/e-acsl-implementation.pdf.

[45] Julien Signoles, Basile Desloges, and Kostyantyn Vorobyov. 2022. E-ACSL User Manual. https://www.frama-c.com/

download/e-acsl/e-acsl-manual.pdf.

[46] Julien Signoles, Nikolai Kosmatov, and Kostyantyn Vorobyov. 2017. E-ACSL, a Runtime Verification Tool for Safety

and Security of C Programs (tool paper). In RV-CuBES 2017. An International Workshop on Competitions, Usability,

Benchmarks, Evaluation, and Standardisation for Runtime Verification Tools, September 15, 2017, Seattle, WA, USA.

164–173. http://www.easychair.org/publications/paper/t6tV

[47] Pierre-Nicolas Tollitte, David Delahaye, and Catherine Dubois. 2012. Producing Certified Functional Code from

Inductive Specifications. In Certified Programs and Proofs (CPP) (LNCS). Springer, Berlin, Heidelberg, 76–91. https:

//doi.org/10.1007/978-3-642-35308-6_9

[48] Victor van der Veen, Nitish dutt-Sharma, Lorenzo Cavallaro, and Herbert Bos. 2012. Memory Errors: The Past, the

Present, and the Future. In Research in Attacks, Intrusions, and Defenses - 15th International Symposium, RAID 2012,

Amsterdam, The Netherlands, September 12-14, 2012. Proceedings (Lecture Notes in Computer Science, Vol. 7462). Springer,

86–106. https://doi.org/10.1007/978-3-642-33338-5_5

[49] Kostyantyn Vorobyov, Nikolai Kosmatov, and Julien Signoles. 2018. Detection of Security Vulnerabilities in C Code

Using Runtime Verification: An Experience Report. In Tests and Proofs - 12th International Conference, TAP 2018, Held as

Part of STAF 2018, Toulouse, France, June 27-29, 2018, Proceedings. 139–156. https://doi.org/10.1007/978-3-319-92994-1_8

[50] Kostyantyn Vorobyov, Julien Signoles, and Nikolai Kosmatov. 2017. Shadow state encoding for efficient monitoring of

block-level properties. In Proceedings of the 2017 ACM SIGPLAN International Symposium on Memory Management,

ISMM 2017, Barcelona, Spain, June 18, 2017. 47–58. https://doi.org/10.1145/3092255.3092269

[51] Zhi Zhang, Robby, John Hatcliff, Yannick Moy, and Pierre Courtieu. 2017. Focused Certification of an Industrial

Compilation and Static Verification Toolchain. In Software Engineering and Formal Methods (SEFM) (LNCS, Vol. 10469).

Springer, 17–34. https://doi.org/10.1007/978-3-319-66197-1_2

, Vol. 1, No. 1, Article . Publication date: June 2023.

https://doi.org/10.1145/1542476.1542504
https://doi.org/10.1145/1542476.1542504
https://doi.org/10.1145/1254810.1254820
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1109/SCAM.2014.19
https://doi.org/10.1109/SCAM.2014.19
https://doi.org/10.6092/issn.1972-5787/9730
https://doi.org/10.6092/issn.1972-5787/9730
http://www.usenix.org/events/usenix05/tech/general/seward.html
http://frama-c.com/download/e-acsl/e-acsl.pdf
http://frama-c.com/download/e-acsl/e-acsl.pdf
http://frama-c.com/download/e-acsl/e-acsl-implementation.pdf
http://frama-c.com/download/e-acsl/e-acsl-implementation.pdf
https://www.frama-c.com/download/e-acsl/e-acsl-manual.pdf
https://www.frama-c.com/download/e-acsl/e-acsl-manual.pdf
http://www.easychair.org/publications/paper/t6tV
https://doi.org/10.1007/978-3-642-35308-6_9
https://doi.org/10.1007/978-3-642-35308-6_9
https://doi.org/10.1007/978-3-642-33338-5_5
https://doi.org/10.1007/978-3-319-92994-1_8
https://doi.org/10.1145/3092255.3092269
https://doi.org/10.1007/978-3-319-66197-1_2

	Abstract
	1 Introduction
	2 Overview and motivating example
	3 Source Language
	3.1 Motivation and Overview of the Main Components
	3.2 Core Imperative Language
	3.3 Specification Language
	3.4 Execution Memory Model
	3.5 Operational Semantics

	4 Program Transformation
	4.1 Observation Memory Model
	4.2 Target Language
	4.3 Formal Program Transformation

	5 Soundness of the Transformation
	5.1 Isomorphisms between Execution Contexts
	5.2 Observational Equivalence for Execution Memory States
	5.3 Representation of an Execution Memory by an Observation Memory
	5.4 Intermediate Lemma
	5.5 Main Theorems
	5.6 Proof of Theorem 5.7
	5.7 Proof of Theorem 5.8
	5.8 Proof of Theorem 5.9
	5.9 Soundness of a Runtime Assertion Checker

	6 Discussion and Related Work
	7 Conclusion
	References

