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Flow control efficiency depends on the location of the actuators. Instead of performing a computational costly parametric analysis, we use an adjoint-based optimisation technique to find the linearly optimal actuator for steady open-loop control achieved through base-flow modification. It relies on the sensitivity of the most predominant global modes predicted by the resolvent analysis. The method is applied on a Mach 4.5 boundary layer over an adiabatic flat plate for steady wall-blowing control and on an isothermal flat plate for steady wall-heating control. The resolvent optimal gain decreases when suction is applied upstream of Fedorov's mode S/mode F synchronisation point leading to stabilisation. For the isothermal case, strong heating at the leading edge stabilises both the first and second Mack modes, the former being more sensitive to wall-temperature control.

INTRODUCTION

The performance of all vehicles is significantly reduced when they are submitted to turbulent flows. At low and medium speeds, additional viscous drag is produced by the larger turbulent wall-shear stresses. At hypersonic speed, they also generate high wall temperature requiring thicker thermal protection. Conversely, a turbulent flow may be desired to maintain a given flow topology or to avoid the detachment inherent to laminar flows on convex geometries. Controlling laminar-to-turbulent transition is then a critical factor design. Transition mechanisms depend on the configuration by the geometry, the type and level of environmental disturbances. In the case of a boundary layer, at high altitude, small amplitude disturbances (free-stream turbulence, acoustic waves,...) excite instabilities, through the receptivity, which subsequently undergo a linear growth [START_REF] Morkovin | Transition in open flow systems-a reassessment[END_REF].

Linear stability theories predict the early stages of the amplification before the non-linear interactions play a leading role resulting in the breakdown towards the transition. Hypersonic boundary layer flows can be studied by local stability analysis (LST) [START_REF] Malik | Prediction and control of transition in supersonic and hypersonic boundary layers[END_REF] however nonparallel effects are not handled. Parabolised stability equations (PSE) overcome this difficulty for weakly nonparallel flows [START_REF] Stuckert | Nonparallel effects in hypersonic boundary layer stability[END_REF]. For general configurations, global stability analyses, which also take into account the nonmodal phenomena arising from the non-normality of the Navier-Stokes operator, have become computationally affordable in the recent years.

Stability analysis of supersonic flows displays an infinity of modes, called Mack modes [START_REF] Mack | The inviscid stability of the compressible laminar boundary layer[END_REF] for high Mach numbers. At Mach 4.5, both first Mack modes are predominant among the others [START_REF] Zhong | Receptivity of a supersonic boundary layer over a flat plate. part 1. wave structures and interactions[END_REF][START_REF] Bugeat | 3D global optimal forcing and response of the supersonic boundary layer[END_REF]. The global oblique first Mack mode corresponds with a local unstable mode which consists in an inviscid wave located around the generalised inflection point. The global two-dimensional second Mack mode is a trapped acoustic wave close to the wall resulting from the synchronisation of the phase speed of the local Fedorov's modes F and S [START_REF] Fedorov | High-speed boundarylayer instability: old terminology and a new framework[END_REF], respectively a fast and a slow acoustic wave, that promotes the instability of the latter. [START_REF] Mack | Effect of cooling on boundary-layer stability at mach number 3[END_REF] showed that the growth of these instabilities are sensitive to the wall temperature. A uniformly cooled wall damps the first Mack mode but destabilises the second Mack mode. Therefore, for Mach numbers below 4 [START_REF] Mack | Effect of cooling on boundary-layer stability at mach number 3[END_REF], cooling the wall in order to modify the base-flow represents a control technique to delay the laminar-to-turbulent transition. However, a practical control cannot be applied along the whole surface but should rather be localised, preferably at the wall. The optimal location of the actuators are therefore searched.

Previous studies were based on parametric analysis [START_REF] Fong | Numerical simulation of roughness effect on the stability of a hypersonic layer[END_REF][START_REF] Zhao | Numerical simulation of local wall heating and cooling effect on the stability of a hypersonic boundary layer[END_REF] which cannot span the full range of optimal locations. General approaches using gradient-based optimisation were then offered. They rely on the adjoint-based linear sensitivity of the base-flow, i.e. the indicator of the regions where small modifications of the base-flow have the highest impact on the instabilities growth. An adjoint method to find the optimum suction distribution on a Blasius boundary layer through the minimisation of N-factor was explored by [START_REF] Balakumar | Optimum suction distribution for transition control[END_REF]. Parabolised stability equations and their adjoint equations were later solved to perform sensitivity analysis of compressible flows [START_REF] Pralits | Sensitivity analysis using adjoint parabolized stability equations for compressible flows[END_REF]. Sensitivity was later exploited to damp the T-S waves, streaks and oblique waves [START_REF] Pralits | Adjointbased optimization of steady suction for disturbance control in incompressible flows[END_REF] via steady suction. The extension of the sensitivity analysis of steady blowing to the global analysis framework was later offered by [START_REF] Brandt | Effect of base-flow variation in noise amplifiers: the flatplate boundary layer[END_REF] on an incompressible boundary layer. Sensitivity of the global eigenvalue problem has then been computed for shape optimisation. Iterative methods [START_REF] Martinez-Cava | Sensitivity gradients of surface geometry modifications based on stability analysis of compressible flows[END_REF] have been employed to optimise the geometry in order to gradually damp the growth rate of the most unstable mode. In this work, the sensitivity is computed only once around the base-flow as the aim is not the optimisation of a finite-amplitude control, which is case-dependent, but the physical understanding of the local gradient to boundary control around the base-flow.

The present work aims at finding the optimal location for small amplitude steady wall blowing/suction or heating/cooling actuators to damp the main instabilities in the Mach number 4.5 boundary layer by computing their linear sensitivity in the global stability framework. The workflow for the sensitivity computation is described in Figure 1 for the boundary control of the second Mack mode. It consists in computing a base-flow ( §3.1), performing a global stability analysis ( §3.2), computing the sensitivity to base-flow modifications and projecting it to boundary control ( §3.3 and §3.4).

METHODS

Governing equations

We consider the compressible Navier-Stokes equations written in conservative form

∂ q ∂t + ∇ • F(q) = 0, (1) 
with q = (ρ, ρv, ρE) designating respectively the density, momentum and total energy of the fluid and F(q) the associated fluxes. In developed form, the Navier-Stokes equations read Real part of the streamwise momentum forcing for the optimal forcing f. Real part of the pressure disturbances for the optimal response q. Sensitivity of the optimal gain to streamwise momentum base-flow modifications contours for the sensitivity to base-flow ∇ q µ 2 .

∂ ρ ∂t + ∇ • (ρv) = 0, (2) 
∂ (ρv) ∂t + ∇ • (ρvv + pI -τ τ τ) = 0, (3) 
∂ (ρE) ∂t + ∇ • ((ρE + p)v -τ τ τ • v -λ ∇T ) = 0, ( 4 
) with E = p/(ρ(γ -1)) + 1 2 v • v, τ τ τ = η(∇v + (∇v) T ) - 2 
3 η(∇ • v)I, I the identity matrix, λ = ηc p /Pr, c p the isobaric heat capacity and P r the Prandtl number (P r = 0.72). To close the system, two more equations are required. First, one assumes a homogeneous, thermally and calorically perfect gas. The perfect gas law is

p = ρrT, (5) 
with r = 287.1 J.kg -1 .K -1 the specific gas constant. Then, the Sutherland's law is selected to link the viscosity η to the temperature,

η(T ) = η re f T T re f 3/2 T re f + S T + S , (6) 
with S = 110.4 K the Sutherland's temperature, η re f = 1.716 -5 kg.m -1 .s -1 and T re f = 273.15 K.

After spatial discretisation (see §2.5), the discrete residual is noted R(q) = -∇ • F(q).

Base-flow, Resolvent modes and optimal gains

The boundary layer base-flow q is a steady solution of the governing equations:

R(q) = 0. ( 7 
)
Is is an amplifier flow, for which all small-amplitude perturbations are exponentially stable in time. In such flows, it is more relevant to perform a resolvent analysis to study the linear dynamics of the flow and identify the pseudo-resonances of the flow. For this, we move to frequency-space and consider a small-amplitude forcing field f ′ (t) = e iωt f that is applied to the right-hand-side of equation ( 1) and which may be restricted, thanks to a prolongation matrix P, to specific regions of the flow or specific components of the state. P is a rectangular matrix, containing only zeros and ones, and of size the dimension of the state q times the dimension of the forcing f. The linear response of the flow q ′ (t) = e iωt q is then governed by q = RP f, with R = (iωI -A) -1 denoting the Resolvent operator and I the identity matrix. The resolvent corresponds to a transfer function between the input (forcing) and the response (perturbations). The optimal forcings / responses are then computed by optimising the input-output gain µ 2 between the energy of the response and the energy of the forcing,

µ 2 = sup f ∥ q∥ 2 E ∥ f∥ 2 F , (8) 
with ∥•∥ q and ∥•∥ f the user-selected measures to evaluate the amplitude of the fluctuations and the forcing. These measures are defined with their associated discrete positive Hermitian matrices Q q and Q f ,

∥ q∥ 2 q = q * Q q q , ∥ f∥ 2 f = f * Q f f, (9) 
where only Q f is required to be definite. For compressible flows, a common choice for Q q and Q f consists in Chu's energy [START_REF] Chu | On the energy transfer to small disturbances in fluid flow (part i)[END_REF] in order to take into account the pressure ( p) and entropy ( š) disturbances,

E Chu = 1 2 Ω ρ|v| 2 + 1 γ p p2 + γ(γ -1)M 4 p š2 dΩ.
(10) Chu's energy is the sum of the kinetic energy of the perturbation and a thermodynamic component with appropriate coefficients to exclude the conservative compression work [START_REF] Hanifi | Transient growth in compressible boundary layer flow[END_REF]. Matrix Q q = Q f = Q Chu for Chu's energy norm is block-diagonal and may be written with conservative variables, as detailed for instance in [START_REF] Bugeat | 3D global optimal forcing and response of the supersonic boundary layer[END_REF].

Solving for µ 2 i over a range of frequencies ω provides the most receptive frequency (where µ i (ω) 2 is the largest) and the associated optimal forcing mode fi . It is best to represent the optimal gain in a non-dimensional form, such as ω 2 µ 2 i if ω ̸ = 0 or ν 2 ∞ β 4 µ 2 i (with the freestream kinematic viscosity noted as ν ∞ = µ ∞ /ρ ∞ ) if the perturbation is characterized by a non-zero spatial (transverse) wave-number β .

From an algorithmic point of view, we solve for the optimal gain in eq. ( 8) by rewriting

µ 2 = sup f q * Q q q f * Q f f = sup f f * P * R * Q q RP f f * Q f f . (11) 
The optimisation problem defined by equation ( 11) is the Rayleigh quotient. It is equivalent to the generalised Hermitian eigenvalue problem

P * R * Q q RP fi = µ 2 i Q f fi . ( 12 
)
Its eigenvalues are ranked such that µ 2 i ≥ µ 2 i+1 and the associated eigenvectors are fi , which we normalise to

f * i Q f fi = 1.
The normalized responses ( q * i Q q qi = 1) are then obtained through:

qi = µ -1 i RP fi . ( 13 
)
The bases fi and qi are orthonormal bases of the input and output spaces.

Sensitivity of optimal gains to base-flow variations, steady forcing and parameter variations

Linear sensitivity of eigenvalues to a general flow parameter has been addressed by [START_REF] Martínez-Cava | Direct and adjoint methods for highly detached flows[END_REF]. Here we focus on optimal gains, as in [START_REF] Brandt | Effect of base-flow variation in noise amplifiers: the flatplate boundary layer[END_REF]. Following the discrete framework introduced in [START_REF] Mettot | Computation of eigenvalue sensitivity to base flow modifications in a discrete framework: Application to openloop control[END_REF] for eigenvalues, we extend the work of [START_REF] Martínez-Cava | Direct and adjoint methods for highly detached flows[END_REF] to optimal gains and stress the link with the concepts of linear sensitivity of the optimal gain to base-flow modifications δ q and steady forcing δ f, that were initially described in details in [START_REF] Marquet | Sensitivity analysis and passive control of cylinder flow[END_REF]. We consider the general case of the sensitivity of the optimal gain µ 2 i to any flow parameter written p, such that:

δ µ 2 i = (∇ p µ 2 i ) * Q p δ p, (14) 
where Q p is a given scalar-product. p can be either a scalar number as Re, M, T ∞ ,... or a large-dimensional vector as the prescribed inlet profile or control vectors (wall-normal velocity or wall-temperature profiles). The latter will be considered for application in the next section. The only restriction in the following is that the control parameter p has to be invariant in time and in the z-direction, as the base-flow is assumed to remain steady and two-dimensional when varying the control parameter. We consider that the residual depends on the parameter p, R(q) = R(q, p), and consequently also the Jacobian A(q, p) = ∂ R(q, p)/∂ q.

The objective of the optimisation is the optimal gain µ 2 i and the constraint is given by the eigenvalue problem written in Eq. ( 12) and that the base-flow must remain solution of R(q, p) = 0. Because of the space or component restriction (P may be degenerate), it is necessary to split the generalised eigenvalue problem (12) into three equations so as to handle only matrices without inverses:

P fi = µ i (iωI -A) qi , µ i Q q qi = (-iωI -A * )ǎ, P * ǎ = µ 2 i Q f fi . (15) 
This system involves an additional component ǎ within the eigenproblem. We therefore define the Lagrangian function L as a function of the state (the optimal gain µ 2 i , the optimal forcing fi and response qi , the additional variable ǎ, the base-flow q), the four Lagrangian multipliers λ λ λ 1 , λ λ λ 2 , λ λ λ 3 and λ λ λ 4 , and the control vector p:

L ([µ 2 i , fi , qi , ǎ, q], λ λ λ 1•••4 , p) = µ 2 i +⟨λ λ λ 1 , P fi -µ i (iωI -A(q, p)) qi ⟩ +⟨λ λ λ 2 , µ i Q q (q) qi + (iωI + A(q, p) * )ǎ⟩ +⟨λ λ λ 3 , P * ǎ -µ 2 i Q f (q) fi ⟩ + ⟨λ λ λ 4 , R(q, p)⟩. (16) 
Here ⟨a, b⟩ = a * b is the Hermitian scalar product. By zeroing the variation of L with the state, taking into account that ⟨ fi , Q f fi ⟩ = 1, we obtain that

λ λ λ 1 = ǎ, λ λ λ 2 = µ i qi , λ λ λ 3 = fi , λ λ λ 4 = Q f ∇ f µ 2 i , (17) 
where

∇ f µ 2 i µ 2 i = -Q -1 f A -1 * Q q ∇ q µ 2 i µ 2 i , (18) 
∇ q µ 2 i µ 2 i = Q -1 q 2 Re H ′ * R * Q q qi + ∂ (Q q qi ) ∂ q * qi - ∂ (Q f fi ) ∂ q * fi , (19) 
are two vectors called sensitivity to steady volumic forcing and sensitivity to base-flow variations [START_REF] Marquet | Sensitivity analysis and passive control of cylinder flow[END_REF][START_REF] Brandt | Effect of base-flow variation in noise amplifiers: the flatplate boundary layer[END_REF][START_REF] Mettot | Computation of eigenvalue sensitivity to base flow modifications in a discrete framework: Application to openloop control[END_REF] that verify:

δ µ 2 i = (∇ f µ 2 i ) * Q f δ f = (∇ q µ 2 i ) * Q q δ q. ( 20 
)
Matrix H ′ is defined as H ′ δ q = H( qi , δ q) for all δ q, where H = ∂ A/∂ q = ∂ 2 R/∂ q 2 is the Hessian rank-3 tensor. In expression [START_REF] Martinez-Cava | Sensitivity gradients of surface geometry modifications based on stability analysis of compressible flows[END_REF], the components ∂ Q q, f /∂ q are non-zero in the case of Chu's energy norm. Finally, the variations of L with the control vector p provide the gradient we are looking for:

∇ p µ 2 i µ 2 i = Q -1 p ∂ R ∂ p * Q f ∇ f µ 2 i µ 2 i + 2 Re H′ * R * Q q q , (21) 
with H′ defined as H′ δ p = H( qi , δ p) for all δ p, H = ∂ A/∂ p = ∂ 2 R/∂ q∂ p being a rank-3 tennsor and Q p . Here, the identity (Q p = I) is chosen as the discretisation along x-direction is uniform.

In expression [START_REF] Mettot | Computation of eigenvalue sensitivity to base flow modifications in a discrete framework: Application to openloop control[END_REF], the first term is interpreted as the variation of the optimal gain induced by the modification of the Jacobian due to the change of the base-flow A(q) while the second term is the variation of the Jacobian due to the variation of the control parameter A(p), keeping the base-flow constant.

The gradients have been validated by comparing the results with a finite difference method:

lim ε→0 µ 2 i (p + ε∇ p µ 2 i ) -µ 2 i (p) ε → ∥∇ p µ 2 i ∥ 2 . ( 22 
)

Interpretation as gradients for optimisation problems

We consider the following optimisation problem:

δ p opt = arg max ∥δ p∥ p =1 δ µ 2 i , (23) 
where δ µ 2 i and δ p are related through eq. ( 14). The same result holds if we consider f or q as control variables instead of p (replace ( 14) by ( 20)). It is straightforward to show that:

δ p opt = ∇ p µ 2 i ∥∇ p µ 2 i ∥ p . ( 24 
)
The gradient is therefore the best profile (of given small amplitude measured with ∥ • ∥ p ) that optimally increases the gain and therefore optimally strengthens the instability. Conversely, because of the linearity, -δ p opt is the optimal open-loop control to damp the optimal gain.

Numerical methods

The BROADCAST code introduced in [START_REF] Poulain | Broadcast: A high-order compressible cfd toolbox for stability and sensitivity using algorithmic differentiation[END_REF] is used here. It includes all the tools required to compute the baseflow, the global stability analysis and the linear sensitivity analysis. The two-dimensional space discretisation for the inviscid flux follows the 7th order FE-MUSCL (Flux-Extrapolated-MUSCL) scheme which had been assessed in hypersonic flow simulations by [START_REF] Sciacovelli | Assessment of a high-order shockcapturing central-difference scheme for hypersonic turbulent flow simulations[END_REF] showing excellent results in accuracy and shock capturing features. The Jacobian as well as all the other operators derived to compute the gradients are constructed by Algorithmic Differentiation (AD) through the software TAPE-NADE [START_REF] Hascoet | The tapenade automatic differentiation tool: principles, model, and specification[END_REF]. The matrix operators are built by successive matrix-vector products [START_REF] Mettot | Linear stability, sensitivity, and passive control of turbulent flows using finite differences[END_REF] which are the linearised discrete residuals given by AD and stored in a sparse format. All linear systems involving sparse matrices are then solved using the PETSC software interface which includes the direct sparse LU solver from MUMPS [START_REF] Amestoy | A fully asynchronous multifrontal solver using distributed dynamic scheduling[END_REF]. To solve the generalised eigenvalue problem from resolvent analysis, we use the SLEPc library [START_REF] Roman | Slepc users manual[END_REF] which implements various Krylov-Schur methods whose Arnoldi algorithm executed here. The local stability (LST) numerical method relies on a Chebyshev collocation method for the wall-normal direction and the dispersion relation is solved through LAPACK library. The code has been developed by [START_REF] Chanteux | Construction and application of transition prediction databased method for 2nd mode on sharp cone[END_REF].

STABILITY AND SENSITIVITY OF THE HYPERSONIC BOUNDARY LAYER

Configuration and base-flow

The adiabatic flat plate is studied in the hypersonic regime in a configuration close to [START_REF] Bugeat | 3D global optimal forcing and response of the supersonic boundary layer[END_REF]. Four different boundary conditions are applied around the rectangular domain. First, at the inlet, a Dirichlet boundary condition is applied since the flow is supersonic. The imposed flow profile corresponds to a compressible self-similar solution for u, v, ρ and T . At the outlet, an extrapolation boundary condition is applied (the flow is overall assumed supersonic). Then, an adiabatic no-slip wall is prescribed at the bottom while a non-reflecting condition is employed at the top boundary. The steady base-flow (Figure 2) is computed by a Newton method, the compressible self-similar solution being taken as initial state. The algorithm converges in 7 iterations (high initial CFL as the self-similar solution is close to the base-flow solution) and decreases the residual L 2 norms by 12 orders of magnitude.

Stability

The global stability analysis of the M = 4.5 boundary layer over an adiabatic flat plate has been thoroughly studied by [START_REF] Bugeat | 3D global optimal forcing and response of the supersonic boundary layer[END_REF] and validated with the present tools in [START_REF] Poulain | Broadcast: A high-order compressible cfd toolbox for stability and sensitivity using algorithmic differentiation[END_REF].

The frequency is normalised as Then the eigenvectors distribution is computed through their streamwise energy growth. An energy density is defined as the integral of the local energy in the wallnormal direction. For kinetic energy, it is written d K (x) = y max 0 ρ|v| 2 dy. From Chu's energy definition (eq. ( 10)), a Chu's energy density is defined similarly. Chu's energy densities of the forcing and response for the second Mack mode are plotted in Figure 4. Forcing energy density is maximal around the centre of the domain, at Re x = 0.96 × 10 6 , and the energy density of the advected response is maximal towards the end of the domain, at Re x = 1.63 × 10 6 . 

F = (ωL ref ) /U ∞ with L ref = Re

Sensitivity of the second Mack mode

Sensitivity of the optimal gain of the second Mack mode is first performed. Two types of actuators are considered:

• Small amplitude wall-normal blowing δ v w (x) at the surface of an adiabatic flat plate,

• Small amplitude heating δ T w (x) at the surface of an isothermal flat plate (the wall-temperature prescribed, T w = 4.395 T ∞ , is close to the adiabatic temperature at M = 4.5).

Sensitivity to steady wall blowing

The opposite of the linear sensitivity of the optimal gain of the second Mack mode to steady wall-blowing is plotted in Figure 5. It appears that the gradient ∇ v w µ 2 is mainly produced from the sensitivity term due to the base-flow variation as the term due to the Jacobian variation is of smaller amplitude. The low impact of the Jacobian modifications on the gradient may be explained numerically as the wall-normal velocity prescribed at the wall appears only in the energy equation in the linearised wall boundary condition. The gradient may be split into two main parts: suction in the upstream region to Re x ≈ 1.3 × 10 6 and blowing in the downstream region. In the Figure 5, global and local stability main points are highlighted on the gradient curve. The markers "max. Forc" and "max. Resp" indicate respectively the locations of maximal optimal forcing and response from the resolvent analysis (peak values from Figure 4). The markers "branch I" and "branch II" refer respectively to the beginning and end in the downstream direction of the unstable region of the local mode S. The marker "mode S/F" indicates the synchronisation point which is the streamwise location where the phase velocities of mode S and F are equal.

To adopt a control perspective, we assume that the optimal velocity profile given by -∇ v w µ 2 is applied at the wall surface to damp the second Mack mode. By computing a new controlled steady base-flow, we can repeat the global stability analysis to measure the variation of the optimal gain due to the wall-blowing steady control.

To quantify the wall blowing/suction applied to the base-flow, we must define the blowing momentum coefficient C µ as the ratio of the momentum injected at the wall by the free-stream momentum,

C µ = x ρ ∞ |δ v w | 2 dx ρ ∞ U 2 ∞ (x out -x in ) . ( 25 
)
We plot in Figure 6 the two-dimensional optimal gain around the second Mack mode frequency. The control applied on the base-flow strongly reduces the optimal gain for the frequencies around the second Mack mode without increasing it at lower frequencies. This validates the application of such velocity profile to damp this mode. Furthermore, the first suboptimal gain for the different blowing momentum coefficients are plotted in Figure 6. While the optimal gain is effectively damped with an increased wall-normal velocity control, the suboptimal gain remains of similar amplitude as without control. This results in a low-rankness loss of the system (ratio of approximately 4 between optimal and suboptimal gains which decreases to 2 for C µ = 1.1 × 10 -7 ). Therefore, for larger control intensity, the optimal response alone is not sufficient to describe the dynamics of the boundary layer.

In Figure 6, one can also notice how far the linear gradient remains accurate to predict the optimal gain decrease. The linear optimal gain is computed by writing eq. ( 22) as

µ 2 (p -ε∇ p µ 2 ) = µ 2 (p) -ε∥∇ p µ 2 ∥ 2 with C µ ∝ ε 2 .
At C µ = 1.1 × 10 -9 , the linear gradient remains optimal even in the nonlinear framework while at C µ = 9.9 × 10 -9 , the nonlinearly (-25%) and linearly (-40%) predicted optimal gains deviate from each others. However, increasing further the blowing momentum coeffi-cient C µ enables to reach a decrease by 47% of the optimal gain. This gain seems close to the minimum we can reach by applying the -∇ v w µ 2 velocity profile at the wall as increasing further C µ leads to a large deformation of the base-flow (not shown here) resulting in a shift of the instabilities to lower frequencies. We then consider that this flow configuration has changed such that it cannot be compared to the initial hypersonic boundary layer anymore. To understand the shift in the gradient between suction and blowing in Figure 5, local stability (spatial LST) analysis has been performed. Indeed, [START_REF] Fong | Numerical simulation of roughness effect on the stability of a hypersonic layer[END_REF] showed that the location of a roughness element upstream or downstream the synchronisation point results in opposite stabilisation effects. We find a similar trend as the intersection of the phase velocity of Fedorov's mode F and S is close to the point where the gradient is null. Furthermore, the locations of branch I and branch II of mode S are respectively close to the maxima for suction and for blowing.

Local stability analysis is then performed on the controlled base-flow with the full gradient at C µ = 1.1 × 10 -7 . Phase velocity and amplification rate of modes S and F are compared with and without control in Figures 7 and8. The phase velocity of mode S remains quite similar for both cases while the phase velocity of mode F of the controlled base-flow strongly deviates from the original in the control region. This results in a shorter synchronisation region between mode F and S leading to a shorter unstable region for the amplification rate of mode S. [START_REF] Zhao | Numerical simulation of local wall heating and cooling effect on the stability of a hypersonic boundary layer[END_REF] noticed the same behavior for the phase velocity in the case of heating and cooling strips control.

Sensitivity to steady wall heating

The sensitivity analysis and all the subsequent steps performed for the steady wall-blowing control are repeated for the steady wall-heating control. The opposite of the sensitivity of the optimal gain of the second Mack mode to steady wall-heating is plotted in Figure 9. Unlike the gradient with respect to wall-blowing, the contribution from the Jacobian variation in the gradient ∇ T w µ 2 is not negligible. Indeed, in the linearised wall boundary condition, the prescribed wall-temperature profile affects the density which then appears on the five equations.

The gradient shows three heating and two cooling zones. First, the largest sensitivity is close to the leading edge. This large sensitivity upstream of the forcing was already highlighted by [START_REF] Fedorov | Numerical simulation of the effect of local volume energy supply on high-speed boundary layer stability[END_REF] through the analysis of the effect of a local volume energy source term. Then, local maxima of the gradient in the heating zone seems to correspond with the maximal forcing and response zones. Alternation of heating and cooling at various wavelengths is highlighted by the sensitivity downstream. Eventually, the largest cooling sensitivity region is located in the wavemaker region where forcing and response overlap, more precisely between branch I and branch II of mode S. Previous studies [START_REF] Zhao | Numerical simulation of local wall heating and cooling effect on the stability of a hypersonic boundary layer[END_REF][START_REF] Batista | Local wall temperature effects on the second-mode instability[END_REF] have found that cooling upstream of the synchronisation point and heating downstream damp the second Mack mode. In the present result, the shift between cooling and heating regions of sensitivity is not located at the synchronisation point (but close to branch II of mode S). This discrepancy is explained by the fact that we do not control one unique forcing-response couple (the forcing input was prescribed upstream in the previous studies) but rather damp the most dangerous forcing-response couple existing in the flow (the forcing input of the controlled base-flow also changes, not shown in this paper). Then, we prescribe the temperature profile given by -∇ T w µ 2 at the wall as T = T w -ε∇ T w µ 2 , compute a new base-flow and repeat the global stability analysis. To quantify the wall heating/cooling control applied to the base-flow, similarly to the blowing momentum coefficient C µ , we define an internal energy coefficient C ′ µ :

C ′ µ = x ρ ∞ c v |δ T w | dx ρ ∞ U 2 ∞ (x out -x in ) . (26) 
Notice that the coefficients C µ and C ′ µ can hardly be compared even if they both represent a ratio of the energy provided by the wall-control to the base-flow.

We plot in Figure 10 the two-dimensional optimal gain computed on the controlled base-flow for different values of C ′ µ around the second Mack mode frequency. The control applied on the base-flow reduces the optimal gain for the frequencies around the second Mack mode but also for lower frequencies by a smaller magnitude. This validates the application of such temperature profile to damp this mode. Furthermore, the first suboptimal gain for the different blowing momentum coefficients are plotted in Figure 10. While the optimal gain is effectively damped with an increased wall-temperature control, the suboptimal gain slightly increases. As for blowing/suction control, it appears that the optimal response alone will not be sufficient to describe the dynamics of the boundary layer for a large amplitude wall-temperature control.

By focusing on the linear gradient plotted in Figure 10, we see that at C ′ µ = 3.32 × 10 -3 , the linear gradient remains optimal while nonlinear and linear gradients start departing from each others from C ′ µ = 1.66 × 10 -2 (reduction of 11% for the nonlinear optimal gain and 16% for the linear optimal gain). 

Comparison of the sensitivity of the three instabilities

The sensitivity of the optimal gain of the threedimensional instabilities is performed and compared with the one found for the second Mack mode. To compare the sensitivity of instabilities with different optimal gains, we compute the sensitivity of the optimal gain of each instability divided by their own optimal gain ∇ T w µ 2 /(2µ 2 ). The opposite of this ratio is plotted for blowing/suction control in Figure 11 and for heating/cooling control in Figure 12.

Both wall velocity and temperature control gradients highlight that the streaks are not sensitive to boundary control in comparison with the Mack modes. Furthermore, the gradient for the streaks has a similar behavior for both types of wall-control. In figure 11, the second Mack mode is the most sensitive to wall velocity control. Furthermore, this is the only instability among the three which is stabilised by steady wall-blowing (between Re x = 1.28 × 10 6 and Re x = 1.73 × 10 6 ). Optimal suction actuator locations to stabilise each instability are different: Re x = 0.6 × 10 6 for the first Mack mode, Re x = 1.03 × 10 6 for the first Mack mode and Re x = 1.53 × 10 6 for the streaks. However, a suction actuator located in the region between Re x = 0.8 × 10 6 and Re x = 1.25 × 10 6 would damp all the instabilities together. This validates the local control offered in §3.3.1.

In figure 12, the first Mack mode is the most sensitive to wall-temperature control. The gradient of the optimal gain of the first Mack mode has one heating zone upstream until Re x = 0.38 × 10 6 and one cooling region downstream with the largest gradient towards leading edge. The trend is similar to the second Mack mode one. Therefore, a local heating strip upstream until Re x = 0.38 × 10 6 would optimally damp both Mack modes. It is noticeable that by computing the integral of the gradient -∇ T w µ 2 , we found a positive value for the second Mack mode (general effect of wall-cooling destabilises this mode) and a negative value for the first Mack mode (general effect of wall-cooling stabilises this mode) which recalls the results from [START_REF] Mack | Effect of cooling on boundary-layer stability at mach number 3[END_REF] for uniform wall-temperature control. Moreover, adding a cooling strip downstream (between Re x = 1.06 × 10 6 and Re x = 1.38 × 10 6 ) would damp the three instabilities. 

4.

Optimal steady wall-blowing actuator locations for a Mach 4.5 boundary layer over an adiabatic flat plate have been found. Firstly, resolvent analysis have been performed around a base-flow highlighting the three main in-stabilities: the streaks, first and second Mack modes. An adjoint-based optimisation technique has been performed to find the linearly optimal actuator for steady open-loop control achieved through base-flow modifications. The gradient of the optimal conveys the most sensitive part of the wall to boundary control.

For steady wall-blowing control, several conclusions are drawn. First, the second Mack mode is the most sensitive to blowing/suction control. Suction control is optimal to damp the mode if located upstream of the synchronisation point and conversely for blowing control in agreement with previous results found for roughness control. Secondly, all instabilities can be damped by a local suction device located in the region of branch I of mode S and this is optimal to damp the second Mack mode. A steady blowing can damp the second Mack mode only if it is applied in the region of branch II of mode S.

The stability and sensitivity analyses have been repeated to find the optimal steady wall-heating actuator locations over an isothermal flat plate. The first Mack mode appears as the most sensitive instability to heating/cooling control. A local heating strip located close to the leading edge is optimal to damp both Mack modes. In the downstream region, one cooling region is sufficient to damp the first Mack mode while alternation of heating and cooling strips seems necessary to optimally damp the second Mack mode. A local cooling strip located in the unstable region of the mode S damp all the instabilities but this is suboptimal in comparison with the leading edge region.
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 1 Figure 1: Workflow for sensitivity computation. Application to the second Mack mode in the M = 4.5 boundary layer. Mach number contours for base-flow q.Real part of the streamwise momentum forcing for the optimal forcing f. Real part of the pressure disturbances for the optimal response q. Sensitivity of the optimal gain to streamwise momentum base-flow modifications contours for the sensitivity to base-flow ∇ q µ 2 .

  The Navier-Stokes equations are non-dimensionalised by the triplet (ρ ∞ , U ∞ , T ∞ ). The freestream Mach number is M = 4.5, the freestream temperature is T ∞ = 288 K and the unit Reynolds number is Re unit = 3.4 × 10 6 m -1 with the unit Reynolds number defined as Reunit = ρ ∞ U ∞ /µ ∞ .The flat plate geometry is studied in a rectangular computational domain. The domain starts with a thin boundary layer profile at Re x,in = 8160 and ends at Re x,out = 2 × 10 6 . The height of the domain is high enough in order not to affect the development of the boundary-layer or the stability analysis. In practice, the domain height is about 9 δ * out with δ * out the compressible displacement thickness at the outlet. This gives Re y,top = 119000. The Cartesian mesh has the size (N x , N y ) = (1000, 150) which gives N = 150000 grid points.
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 2 Figure 2: Mach number. Solid line indicates the boundary layer thickness. Dashed line indicates the displacement thickness.

  -1 unit . The wavenumber β is normalised by L ref . The Chu's energy restricted to Re x ≤ 1.75 × 10 6 and Re y ≤ 59500 is chosen for Q q and Q f . Forcing is applied on all five equations. At M = 4.5, the second Mack mode has the largest amplification rate for β = 0 and corresponds to the frequency F = 2.3 × 10 -4 with the highest peak at µ = 1.80 × 10 7 . Optimal gain is also computed with β ̸ = 0. The three-dimensional gains highlight streaks (µ = 4.66 × 10 7 ) around β = 2 × 10 -4 at zero frequency and the first oblique Mack mode is the strongest instability (µ = 1.16 × 10 8 ) for around β = 1.2 × 10 -4 and F = 3 × 10 -5 .
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 3 Figure 3: Optimal gain µ. White circle denotes the first Mack mode, black triangle denotes the streaks and black square denotes the second Mack mode.
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 4 Figure 4: Normalised energy density of the optimal forcing and response of the second Mack mode.
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 5 Figure 5: Optimal wall-velocity profile δ v w to damp the second Mack mode ⇔ Opposite of the normalised sensitivity of the optimal gain of the second Mack mode to wall blowing -∇ v w µ 2 .
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 6 Figure 6: 2D optimal gain of the second Mack mode with blowing/suction control. Crosses indicate the linear optimal gain expected. Dashed lines with dots indicate the suboptimal gain.
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 78 Figure 7: Phase velocity c r /U ∞ with and without control (C µ = 1.1 × 10 -7 ).

Figure 9 :

 9 Figure 9: Optimal wall-temperature profile δ T w to damp the second Mack mode ⇔ Opposite of the normalised sensitivity of the optimal gain of the second Mack mode to wall blowing -∇ T w µ 2 .
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 7 No control Cµ = 3.32 × 10 -3 Cµ = 1.66 × 10 -2

Figure 10 :

 10 Figure 10: 2D optimal gain of the second Mack mode with heating control. Crosses indicate the linear optimal gain expected. Dashed lines with dots indicate the suboptimal gain.

Figure 11 :

 11 Figure 11: Optimal wall-velocity profile δ v w = -∇ v w µ 2 /(2µ 2 ).

Figure 12 :

 12 Figure 12: Optimal wall-temperature profile δ T w = -∇ T µ 2 /(2µ 2
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