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Behavior depends on coordinated activity across multiple brain regions. Within such networks, highly-connected hub regions are assumed to disproportionately influence behavioral output, although this hypothesis has not been systematically evaluated. By mapping brain-wide expression of the activity-regulated gene, c-fos, previously we identified a network of brain regions co-activated by fear memory. To test the hypothesis that hub regions are more important for network function, here we simulated node deletion in silico in this behaviorallydefined functional network. Removal of high degree nodes produced greatest network disruption (e.g., reduction in global efficiency). To test these predictions in vivo, we examined the impact of post-training chemogenetic silencing of different network nodes on fear memory consolidation.

In a series of independent experiments encompassing 25% of network nodes (i.e., 21/84 brain regions), we found that node degree accurately predicted observed deficits in memory consolidation, with silencing of highly-connected hubs producing the largest impairments.

Correspondence between in silico predictions and observed deficits following silencing in vivo demonstrates the utility of this network-based approach in guiding behavioral studies.

INTRODUCTION

A predominant view in the nineteenth century was that specific cognitive functions were localized to discrete brain regions. This view has since evolved to one where specific cognitive functions are thought to be supported by the coordinated activity of a distributed network of brain regions, rather than isolated brain regions alone [START_REF] Mcintosh | Mapping cognition to the brain through neural interactions[END_REF][START_REF] Park | Structural and functional brain networks: from connections to cognition[END_REF][START_REF] Sporns | From simple graphs to the connectome: networks in neuroimaging[END_REF]. Graph theory is a branch of mathematics that has been used to analyse such complex networks. Any network consists of nodes (or vertices) connected through links (or edges), with degree centrality describing the number of links per node. Analysis of many real world networks (including social, ecological, protein interaction, gene, finance and communication networks) reveals that probability distributions for node degree are typically heavy-tailed (e.g., scale-free), with low degree nodes being common and high degree nodes being more scarce [START_REF] Barabasi | Scale-free networks: a decade and beyond[END_REF]. However, despite their scarcity, high degree nodes (or 'hubs') are thought to exert greater influence on network function by virtue of greater connectivity, and targeting hubs disproportionately impacts the function of real-world networks.

For example, in protein interaction networks, experimental deletion of genes coding for highdegree proteins is associated with greater lethality than similar deletion of genes coding for lowdegree proteins [START_REF] Babu | Quantitative genome-wide genetic interaction screens reveal global epistatic relationships of protein complexes in Escherichia coli[END_REF][START_REF] Babu | Interaction landscape of membrane-protein complexes in Saccharomyces cerevisiae[END_REF][START_REF] Jeong | Lethality and centrality in protein networks[END_REF].

Network-based approaches have been used to describe large-scale structural (i.e., anatomical) and functional (i.e., co-activation) connections in the brain [START_REF] Bargmann | From the connectome to brain function[END_REF][START_REF] Bullmore | The economy of brain network organization[END_REF][START_REF] Chiang | Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution[END_REF][START_REF] Jarrell | The connectome of a decision-making neural network[END_REF][START_REF] Markov | A weighted and directed interareal connectivity matrix for macaque cerebral cortex[END_REF][START_REF] Oh | A mesoscale connectome of the mouse brain[END_REF][START_REF] Varshney | Structural properties of the Caenorhabditis elegans neuronal network[END_REF][START_REF] White | The structure of the nervous system of the nematode Caenorhabditis elegans[END_REF]. Similar to other networks, probability distributions for node degree are heavy-tailed [START_REF] Bullmore | Brain graphs: graphical models of the human brain connectome[END_REF][START_REF] Rubinov | Complex network measures of brain connectivity: uses and interpretations[END_REF][START_REF] Van Den Heuvel | Comparative Connectomics[END_REF]. This 'small-world' organization is thought to facilitate rapid brain-wide synchronization and information transfer and, at the same time, this architecture minimizes wiring costs and provides a balance between local processing and global integration [START_REF] Sporns | Network attributes for segregation and integration in the human brain[END_REF]. Although brain diseases, including Alzheimer's disease and schizophrenia, are more likely to impact brain regions identified as hubs in human anatomical connectomic analyses [START_REF] Crossley | The hubs of the human connectome are generally implicated in the anatomy of brain disorders[END_REF], systematic manipulation of nodes within a taskrelevant network has not been possible to date.

By mapping activity-regulated gene expression induced by memory recall, we recently described a network engaged by contextual fear memory in mice (Wheeler et al., 2013). In this study, we quantified expression of the activity-regulated gene, c-fos, in 84 brain regions after fear memory recall in mice. By computing inter-regional correlations, we identified collections of brain regions that were co-activated by memory recall (i.e., a memory network, with nodes representing individual brain regions and edges representing super-threshold functional connections). As expected, the probability distribution for node degree was heavy-tailed, and the network contained several high degree hubs including, for example, the CA1 region of the hippocampus and the reuniens thalamic nucleus (Re). To directly test the hypothesis that higher degree nodes exert greater influence on network function, here simulated the impact of node deletion on network function using a novel disruption propagation model. We found that deletion of high degree nodes caused greatest network disruption. We then tested these in silico predictions in vivo by examining the impact of post-training chemogenetic silencing on consolidation of a fear memory. In a series of experiments, we independently probed 25% of network nodes (i.e., 21/84 brain regions). We found that in silico simulation of node deletion accurately predicted observed in vivo data, with silencing of highly-connected hubs producing the largest consolidation impairments. This systematic interrogation of an identified, taskrelevant network supports the hypothesis that high degree nodes are more crucial for brain function and confirms the predictive value of this network-based approach.

RESULTS

Generation of a fear memory network

Two brain regions are functionally connected when activity in these regions co-varies [START_REF] Park | Structural and functional brain networks: from connections to cognition[END_REF]. To measure activity following recall of a fear memory in mice, we previously quantified expression of the activity-regulated gene c-fos in 84 brain regions, including regions in the cortex, hippocampus, thalamus, midbrain, cerebral and hypothalamic nuclei (Table S1).

To estimate patterns of functional connectivity, we computed a complete set of inter-regional correlations. By considering only the strongest correlations, we identified a network of brain regions that were co-activated by memory recall (Figure 1A). In this fear memory functional network, nodes represent individual brain regions and edges represent super-threshold functional connections (Figure 1B) (Wheeler et al., 2013). This fear memory network displayed several features that were consistent with both theoretical predictions and experimental observations. First, similar to other brain networks [START_REF] Van Den Heuvel | Comparative Connectomics[END_REF], the probability distribution for node degree was heavy-tailed (Figure S1A).

Second, the network was highly-clustered such that a small-world network model approximated the clustering distribution (Figure S1B). Third, several high degree nodes within the network corresponded to regions with established roles in fear memory (e.g., CA1, Re) [START_REF] Tanaka | Cortical representations are reinstated by the hippocampus during memory retrieval[END_REF][START_REF] Xu | A neural circuit for memory specificity and generalization[END_REF] (Figure S1C). Importantly, these features were observed when we used alternate correlation coefficients to generate the network, as well as more or less conservative thresholds for functional connections (Wheeler et al., 2013). Furthermore, equivalent patterns of functional connections were observed when another activity-related gene, zif268, was quantified in the same brains (Wheeler et al., 2013).

We additionally generated two types of comparison network. For the first network, we quantified Fos expression in the same 84 brain regions in a control condition, run in parallel with the fear conditioned mice. In this control condition, mice were treated identically to the fear conditioned group except that they did not receive a shock during training (Wheeler et al., 2013) (Figure 1C-D). Similar to the fear memory network, the probability distribution for node degree was non-Gaussian, with the nucleus accumbens shell (AcbSh), ventromedial thalamic nucleus (VM) and anteroventral thalamic nucleus (AV) having the most connections (Figure S1D). However, compared to the memory network, this control network was less dense, reflecting reduced interactions between brain regions in the absence of fear memory expression.

The second type of network was generated to evaluate corresponding anatomical connections (using structural data from the Allen Brain Atlas connectomic dataset [START_REF] Oh | A mesoscale connectome of the mouse brain[END_REF]).

Because the functional (i.e., fear memory and control) and anatomical networks were generated in fundamentally different ways, we used two methods to generate corresponding anatomical networks: 1) an anatomical network thresholded at the same p-value as the functional network, and, 2) an anatomical network with the same density (i.e., number of edges) as the functional network (see Supplemental Experimental Procedures for details) (Figure S1E-F). As expected, these networks contained a subset of hub-like regions, with the caudate putamen (CPu), claustrum (Cl) and agranular insular cortex, ventral part (AIV) having the most connections (Figure S1G-H).

The fear memory network appeared to differ qualitatively from both the control and anatomical networks. Consistent with this, degree centrality was not correlated between the fear memory network and either the control or anatomical networks, indicating that hubs in the fear memory network differed from hubs in these other networks. Comparing the fear memory and the control networks, this was the case whether we used equivalent thresholds to generate the networks (r = 0.045, p = 0.68) or we matched networks in terms of density (r = -0.072, p = 0.51) (Figure S1I-J). Comparing the fear memory and the anatomical networks, this was the case whether we used equivalent thresholds to generate the networks (r = 0.078, p = 0.52) or we matched networks in terms of density (r = -0.024, p = 0.84) (Figure S1K-L). The lack of correspondence between the fear memory and control networks suggests that interactions between regions vary across conditions (i.e., fear memory vs. control). The lack of correspondence between the fear memory and anatomical networks suggests that patterns of behaviorally-determined functional connections provide important information beyond underlying structural connections (Misic et al., 2016).

In silico node deletion

Within these types of networks, high degree nodes (or 'hubs') are thought to exert greater influence on network function by virtue of their greater connectivity. We first developed an in silico approach to model the effects of node removal on global network properties. The brain is highly interconnected and inactivation of any single node is likely to exert effects beyond its immediate neighborhood [START_REF] Goshen | Dynamics of retrieval strategies for remote memories[END_REF][START_REF] Grayson | The Rhesus Monkey Connectome Predicts Disrupted Functional Networks Resulting from Pharmacogenetic Inactivation of the Amygdala[END_REF][START_REF] Liu | Optogenetic stimulation of a hippocampal engram activates fear memory recall[END_REF][START_REF] Lohani | Unexpected global impact of VTA dopamine neuron activation as measured by opto-fMRI[END_REF][START_REF] Otchy | Acute off-target effects of neural circuit manipulations[END_REF]. Therefore, in contrast to network analyses in which a node is simply removed from a network while global network measures are recalculated, we modeled the effects of inhibiting individual brain regions (nodes) in the fear memory network by propagating the effect of inactivation beyond a given node along the contours of the connectome. This disruption propagation model (DPM) directly exploits the functional connectome associated with a specific behavior. Related approaches have been used to model cascading failures in electric grid networks (Crucitti et al., 2004).

In the DPM, an individual node and its associated edges are deleted from the network. In order to propagate this disruption beyond the deleted node's neighborhood, the weights of all adjacent edges are adjusted (1) proportionally to the weight of the deleted edge, and, (2) inversely proportional to their own neighboring edges. These steps are iterated through the network until edge weights no longer change (Figure S2). The resulting network is then thresholded after propagation to produce the disrupted network. The model has two tunable parameters: (1) the number of times any edge can be updated, and (2) the threshold applied following edge updating to generate the disrupted network. Exploration of these parameters indicated that combining one edge update with a threshold matching that used for initial network generation yielded high information content (i.e., Shannon's Entropy; Figure S3A-D) and therefore we used these parameters in all our subsequent analyses.

We applied our disruption propagation model to each node to simulate the effect of inactivation on overall network function. To measure the impact of inactivating individual nodes, we compared the network before and after disruption and calculated the change in global efficiency (∆GE) (Figure 2A-B, example for Re shown) and giant component size (∆GC) for each node.

For the fear memory network, we found that changes in global efficiency were correlated with node degree (r = 0.92, p < 0.001; Figure 2C), with inactivation of high degree nodes associated with greater reductions in global efficiency than similar inactivation of low degree nodes. An equivalent pattern of results was observed for changes in giant component size (r = 0.65, p < 0.01; Figure S3E-F). As expected, reductions in global efficiency and giant component using the DPM were greater in magnitude than reductions in these measures following simple node deletion (Figure S4A-B). Furthermore, ∆GE and ∆GC were more strongly correlated with degree centrality using the DPM compared to simple node deletion (for simple deletion: ∆GE, r = 0.66, p < 0.001; ∆GC, r = 0.20, p = 0.067; Fig. S4C-D).

In vivo node silencing

We next tested whether the predicted in silico deficits would be observed in vivo. To do this, we chronically silenced brain regions identified in our network analysis and examined the impact on memory consolidation. To chronically suppress neural activity in targeted brain regions we virally expressed the inhibitory DREADD (designer receptor exclusively activated by designer drugs), hM4Di [START_REF] Armbruster | Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand[END_REF], using long-term expressing replication-defective herpes simplex viruses (HSVs). This strategy offers two key advantages. First, HSVs are neurotropic, infecting predominantly excitatory neurons and not glia [START_REF] Cole | MEF2 negatively regulates learning-induced structural plasticity and memory formation[END_REF]Rashid et al., 2016;[START_REF] Yiu | Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training[END_REF]. Second, unlike optogenetic manipulations, DREADDs allow chronic silencing of neuronal activity (i.e., days to weeks [START_REF] Jain | Chronic activation of a designer G(q)-coupled receptor improves beta cell function[END_REF]) by administering the hM4Di ligand clozapine-N-oxide (CNO) in drinking water.

We previously showed that bath application of the hM4Di ligand, CNO, hyperpolarized infected neurons and suppressed spiking in ex vivo whole cell patch clamp recording experiments (Richards et al., 2014). In order to further verify that hM4Di expression decreases neuronal activity in vivo, we microinjected HSV-hM4Di into the anterior cingulate cortex. Three days later (when expression of hM4Di began), mice were given continuous home cage access to CNO (or its vehicle (VEH)) in their drinking water to silence infected neurons. Three days later, we trained mice in contextual fear conditioning at different Zeitgeber (ZT) times, with ZT0 corresponding to lights on and ZT12 corresponding to lights off. Ninety minutes following training, mice were perfused and expression of the activity-dependent immediate early gene, cfos, in neurons expressing hM4Di was examined (Figure 3A). The proportion of hM4Diexpressing neurons expressing Fos was reduced following CNO treatment (main Treatment effect: F1,39 = 20.76, p < 0.0001), indicating that the combination of hM4Di and CNO administered in drinking water reduced neuronal activity in vivo (Figure 3B). Importantly, the degree of Fos reduction was similar at all ZT times (Treatment × ZT interaction: F1,39 = 0.15, p = 0.93), consistent with previous studies showing that a) drinking is reduced, but not absent, during the inactive phase of the light-dark cycle in mice (Gordon et al., 1986), and, b) systemically administered CNO suppresses neuronal firing hM4Di-expressing neurons for up to 9 h [START_REF] Armbruster | Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand[END_REF].

Using the same procedures, we additionally assessed whether similar CNO treatment (i.e., 3 d) decreases neuronal activity in hM4Di-infected neurons in other brain regions (CA1, laterodorsal thalamic nucleus [LD] and medial geniculate nucleus, medial part [MGM]). Ninety minutes following training (at ZT6), the proportion of hM4Di-expressing neurons expressing Fos was reduced in CNO-treated mice in all brain regions (Treatment effect: F1,18 = 17.78, p < 0.0005) (Figure 3C). The magnitude of this reduction was similar in all regions (Treatment × Region interaction: F2,18 = 0.06, p = 0.94), suggesting that there are no obvious regional variations in the efficency of CNO-induced neural suppression. Furthermore, in a separate experiment, Fos expression was similarly reduced in infected neurons in CA1 following extended CNO treatment (i.e., 10 d, matching the time course of the main experiments, below) (t6 = 2.64, p < 0.05) (Figure 3D).

Targeting 21 different regions in independent experiments

To systematically examine the relationship between a region's node degree and necessity in memory consolidation, we targeted 21 different regions from our network in a series of independent experiments (i.e., these experiments encompassed 25% of network nodes) (Figure 4A; Table S2). Targeted regions included low, medium and high degree nodes (node degree range 0-17), and encompassed the anterior-posterior extent of the network (including regions in association and sensory cortices, thalamus, hippocampus, cerebral and hypothalamic nuclei). For each region, mice were bilaterally microinjected with HSV-hM4Di into the target region and trained in contextual fear conditioning 3 d later. Immediately following training, mice were given continuous home cage access to CNO or VEH in their drinking water, and tested 10 d later (for each region, Ns ranged 6-10 for CNO and VEH) (Figure 4B). Across all experiments, a total of 344 mice were tested (VEH, N = 174; CNO, N = 170). Within each region, ~2000 neurons were infected (range 900-3000) (Figure 5A). To assess differences in freezing between CNO-and VEH-treated mice, we conducted permutation tests, and then to control for multiple tests (across 21 experiments) we adjusted p values using false discovery rate (FDR) of 5% [START_REF] Benjamini | Controlling the false discovery rate in behavior genetics research[END_REF]. Using this criterion, chronic suppression of neuronal activity in 4/21 brain regions targeted impaired consolidation (Figure 5B). These regions were the CA1 region of the hippocampus, lateral septal nucleus (LSI), laterodorsal thalamic nucleus (LD) and reuniens thalamic nucleus (Re). Importantly, the combination of hM4Di and CNO administration appears to be necessary for the observed behavioral effects. Compared to VEH, CNO treatment did not impair consolidation in mice infected with control virus in CA1 (t14 = 0.51, p = 0.62) (Figure S5A).

Correspondence between in silico and in vivo node silencing

We next examined the extent to which our in silico predictions of the effects of node silencing corresponded to the observed in vivo consolidation deficits. Reductions in freezing (consolidation deficits) following in vivo chemogenetic silencing correlated with reductions in global efficiency following in silico node deletion (r = 0.61, p < 0.01) (Figure 6A; see also Table S3). Similarly, reductions in freezing following regional in vivo chemogenetic silencing correlated with reductions in giant component following in silico node deletion (r = 0.56, p < 0.01) (Figure S5B). This correspondence between DPM-based predictions and in vivo observations was insensitive to variations in network generation. Applying the DPM to either higher confidence (thresholded at p < 0.005) or lower confidence (thresholded at p < 0.05) networks, produced similar correspondence between in silico reductions in global efficiency and in vivo data (high, r = 0.58, p < 0.01; low, r = 0.46, p < 0.05), indicating that the predictive power of DPM is insensitive to network thresholding. These results suggest that inactivation of higher degree nodes is associated with greater consolidation deficits. Consistent with this conclusion, we found that a region's 'hubness' predicted the observed consolidation deficits following silencing. This was the case for degree centrality (r = 0.57, p < 0.01; Figure S5C), as well as alternate measures of centrality including node strength (r = 0.57, p < 0.01), closeness (r = 0.56, p < 0.01), communicability (r = 0.45, p < 0.05), eigenvector (r = 0.53, p < 0.05) and Katz centrality (r = 0.52, p < 0.05).

We next contrasted our DPM-based predictions to predictions produced by either simple node removal or the cascading failure model, a related approach that has been used to model electrical grid failure (Crucitti et al., 2004). The DPM was superior to both simple node removal (correlation between ΔGE and Δfreezing: r = 0.45, p < 0.05) and the cascading failure model (correlation between ɑcritical and Δfreezing: r = 0.41, p = 0.064) (Figure S5D-E), suggesting that features of DPM more faithfully mimic the impact of localized inactivation on brain network function.

In our experiments we microinjected a fixed volume of HSV-hM4Di into the different regions of interest. As the volume of targeted regions varied across brain regions, it is possible that observed consolidation deficits are related the proportion of the target region infected by our viral vector. However, the volume of targeted regions did not correlate with observed deficits (r = 0.09, p = 0.70) (Figure S5F).

Control and anatomical networks do not predict consolidation deficits

The present results indicate that our fear memory network model successfully predicted the effectiveness of chemogenetic silencing, and are consistent with the idea that inactivation of higher degree nodes is associated with greater consolidation deficits. However, there are alternate possibilities. For example, it is possible that basal network interactions between these same brain regions during other behavioral states predict the observed consolidation deficits.

Alternatively, the underlying anatomical connections between the same brain regions might predict the observed consolidation deficits. A third possibility is that differences in regional activation levels (relative to the control condition) account for the observed in vivo results.

In order to test the first possibility we asked whether the topological organization observed in control network predicted the effectiveness of chemogenetic silencing. As in the fear memory network, we applied the DPM to the control network and calculated changes in global efficiency.

We found that changes in global efficiency did not predict consolidation deficits. This was the case regardless of whether we used an equivalent thresholding criteria compared to the fear memory network (r = 0.21, p = 0.36; Figure 6B), or matched control network density with the fear memory network (r = 0.36, p = 0.11; Figure S6A).

To test the second possibility, we asked whether the topological organization observed in anatomical networks predicted the effectiveness of chemogenetic silencing. As in the fear memory network, we applied the DPM to the anatomical networks and calculated changes in global efficiency. We found that changes in global efficiency did not predict consolidation deficits. This was the case regardless of whether we used an equivalent thresholding criteria compared to the fear memory network (r = 0.25, p = 0.28; Figure 6B), or matched anatomical network density with the fear memory network (r = 0.048, p = 0.84; Figure S6B).

Finally, we found that relative activation levels (i.e., Fos counts normalized to a control group) did not predict consolidation deficits (r = 0.027, p = 0.91; Figure 6D).

DISCUSSION

By quantifying expression of the activity-regulated gene c-fos, we previously identified a network of brain regions that were co-activated by recall of a fear memory in mice (Wheeler et al., 2013).

Graph theoretical analysis identified several highly-connected hub regions within this functional network, and here we tested the hypothesis that these hubs would play more influential roles in memory consolidation compared to non-hub regions. First, we developed the DPM to simulate removal of individual brain regions in silico. As expected, removal of high degree nodes produced greater network disruption (reductions in global efficiency and giant component size) than removal of low degree nodes. Second, we examined the impact of silencing individual brain regions on fear memory consolidation in vivo. We found that inactivation of higher degree nodes was associated with greater consolidation deficits than similar inactivation of low degree nodes. Network-based approaches have previously been used to analyse large-scale structural (i.e., anatomical) and functional (i.e., co-activation) connections in the brain. However, formal interrogation of these networks using invasive interventions has not been conducted. The current study indicates that network-based approaches may provide a predictive framework that may be useful in identifying novel brain-behavior relationships.

In our network generation (Wheeler et al., 2013), two regions were determined to be functionally connected when activity in one region was statistically dependent upon activity in another region [START_REF] Mcintosh | Mapping cognition to the brain through neural interactions[END_REF][START_REF] Park | Structural and functional brain networks: from connections to cognition[END_REF]. In previous studies, hemodynamic (fMRI) or electrophysiological estimates of regional and/or neuronal activity have been used to estimate patterns of functional connectivity, and resulting functional networks, in humans and experimental animals [START_REF] Sporns | Modular Brain Networks[END_REF]. The use of an activity-regulated gene marker, such as Fos, to measure regional patterns of activation in mice necessarily means that the present network generation differs in two important ways. First, Fos expression was measured 90 min following memory testing (in order to match the time-course of elevated Fos protein following sustained neuronal activation). While functional connections may be defined across a range of timescales [START_REF] Mcintosh | Mapping cognition to the brain through neural interactions[END_REF], this timescale is longer than that used in fMRI or electrophysiological studies. Correlations in Fos expression therefore likely incompletely capture the richness of all inter-regional interactions (e.g., although the amygdala is known to be important for fear learning, it was not identified as an important node in our network). They are useful in detecting co-activation of brain regions when it is sustained over minutes, but are insensitive to coupling that may occur over shorter timescales (e.g., inter-regional coupling of oscillations). It is additionally worth noting that relatively small populations of neurons may robustly influence network activity (e.g., [START_REF] Witten | Cholinergic interneurons control local circuit activity and cocaine conditioning[END_REF]), and such contributions may also be underestimated using the current approach. Second, post-mortem assessment of Fos provides a single indication of activation (rather than a time series) per region per mouse, and therefore functional connections are estimated by computing co-variance across, rather than within, mice. While both within and between subject co-variance can be used to estimate functional connections [START_REF] Grady | Age-related differences in the functional connectivity of the hippocampus during memory encoding[END_REF][START_REF] Mcintosh | Mapping cognition to the brain through neural interactions[END_REF], within subject co-variance is more typically used in fMRI or electrophysiological studies. Despite these differences, we were able to use our fear memory network in an unbiased manner to predict which brain regions within this network are important for consolidation of a fear memory. Consistent with the in silico analyses, the most pronounced deficits in fear memory consolidation occurred when activity in higher degree nodes was suppressed posttraining. Importantly, neither the corresponding control nor anatomical networks accurately predicted the observed consolidation deficits. With respect to the control network, this suggests that network interactions among these same brain regions vary according to behavioral state (in this case, fear memory vs. control). With respect to the anatomical network, this emphasizes that analyses of patterns of behaviorally-determined functional connections provide important information beyond underlying structural connections. Indeed, while anatomical networks constrain and influence resulting functional networks, there is often considerable topographical divergence (e.g., (Misic and Sporns, 2016)).

The importance of hubs for network function has previously been assessed in a wide range of biological [START_REF] Babu | Quantitative genome-wide genetic interaction screens reveal global epistatic relationships of protein complexes in Escherichia coli[END_REF][START_REF] Babu | Interaction landscape of membrane-protein complexes in Saccharomyces cerevisiae[END_REF][START_REF] Jeong | Lethality and centrality in protein networks[END_REF] and non-biological complex networks including the internet [START_REF] Albert | Error and attack tolerance of complex networks[END_REF], electricity grid [START_REF] Buldyrev | Catastrophic cascade of failures in interdependent networks[END_REF] and financial networks [START_REF] Haldane | Systemic risk in banking ecosystems[END_REF]. However, systematic, node-by-node interrogation of brain networks has not previously been conducted, even in model organisms with welldefined and tractable connectomes such as c elegans. The current study confirms that hubs play disproportionately important roles, at least in a network engaged by contextual fear memory in mice. Our findings are broadly consistent with a previous meta-analysis finding that highly connected brain regions are more likely to be impacted in a range of brain disorders [START_REF] Crossley | The hubs of the human connectome are generally implicated in the anatomy of brain disorders[END_REF]. In the future, two developments may further refine this general approach in rodents, and allow broader application. First, the development of improved methods for brainwide quantification of activity-regulated gene expression will allow for the generation of more accurate activity maps [START_REF] Renier | Mapping of Brain Activity by Automated Volume Analysis of Immediate Early Genes[END_REF][START_REF] Ye | Wiring and Molecular Features of Prefrontal Ensembles Representing Distinct Experiences[END_REF]. Further refinements will allow phenotyping of cells expressing activity-regulated genes, and therefore segregation of signals by cell type and/or neurotransmitter content [START_REF] Romanov | Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes[END_REF]. Second, the development of imaging approaches that allow neuronal activity to be tracked in real time across large expanses of tissue (e.g., based on voltage, Ca 2+ or hemodynamic signals) will improve temporal resolution [START_REF] Ahrens | Whole-brain functional imaging at cellular resolution using light-sheet microscopy[END_REF][START_REF] Ferenczi | Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior[END_REF][START_REF] Gong | High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor[END_REF][START_REF] Mohajerani | Spontaneous cortical activity alternates between motifs defined by regional axonal projections[END_REF]. This will permit use of time series data for network generation and analysis and, additionally, make it possible to track inter-regional coupling over shorter timescales.

We found that post-training chemogenetic inhibition of four (out of 21) regions impaired memory consolidation. These regions were CA1, Re, LSI and LD. Of these, two were unsurprising.

Previous studies have established roles for both the CA1 region of the hippocampus and the Re in the consolidation and expression of contextual fear memories. For example, fear conditioning activates CA1 neurons [START_REF] Beck | Conditioned fear-induced changes in behavior and in the expression of the immediate early gene c-fos: with and without diazepam pretreatment[END_REF], and inhibition of CA1 neurons during training, following training or during retrieval impairs contextual fear memories [START_REF] Fanselow | Contextual fear, gestalt memories, and the hippocampus[END_REF]. The Re has been shown to influence fear memory expression. Inhibition of prefrontal inputs to Re or Re projections increases generalized freezing in non-trained contexts. Conversely, activation of Re neurons reduced generalized freezing in non-trained contexts [START_REF] Xu | A neural circuit for memory specificity and generalization[END_REF].

Nonetheless, previous studies did not evaluate whether neural activity in the Re is important for fear memory consolidation, as we showed here.

The observations that post-training inhibition of either LSI or LD impaired consolidation of contextual fear conditioning are novel. However, there is anatomical and functional data that plausibly implicate these regions in circuits supporting fear-related behaviors and/or mnemonic processing. The LD has dense reciprocal connectivity with the hippocampus and retrosplenial cortex [START_REF] Aggleton | Thalamic pathology and memory loss in early Alzheimer's disease: moving the focus from the medial temporal lobe to Papez circuit[END_REF]. This region has been implicated in cortical-hippocampal-thalamic circuits involved in recognition memory [START_REF] Aggleton | Thalamic pathology and memory loss in early Alzheimer's disease: moving the focus from the medial temporal lobe to Papez circuit[END_REF], and LD inactivation disrupts hippocampal place representations and spatial learning [START_REF] Mizumori | Reversible inactivation of the lateral dorsal thalamus disrupts hippocampal place representation and impairs spatial learning[END_REF][START_REF] Van Groen | The role of the laterodorsal nucleus of the thalamus in spatial learning and memory in the rat[END_REF]. The LSI receives strong inputs from the hippocampus and amygdala, and sends projections to midbrain and brainstem regions implicated in behavioral and autonomic reactions to threatening stimuli [START_REF] Swanson | The connections of the septal region in the rat[END_REF]. The LSI is activated by threatening stimuli [START_REF] Beck | Conditioned fear-induced changes in behavior and in the expression of the immediate early gene c-fos: with and without diazepam pretreatment[END_REF], and mediates, for example, anxiogenic responses and enhanced fear induced by social defeat [START_REF] Guzman | Fear-enhancing effects of septal oxytocin receptors[END_REF]. Furthermore, inactivation of hippocampal-LSI projections impairs expression of context-reward associations [START_REF] Luo | Linking context with reward: a functional circuit from hippocampal CA3 to ventral tegmental area[END_REF]. Consistent with the present study, this suggests that hippocampal-LSI interactions play a broader role in processing contextual memories.

We developed a new model to simulate the impact of node removal, and generate predictions for the in vivo experiments. Most crucially, in this model, the impact of node deletion (and loss of associated edges) was propagated through the network, beyond the node's immediate neighborhood. This particular feature of the DPM was based on many recent observations that localized brain perturbations alter activity in remote brain regions (e.g., [START_REF] Goshen | Dynamics of retrieval strategies for remote memories[END_REF][START_REF] Grayson | The Rhesus Monkey Connectome Predicts Disrupted Functional Networks Resulting from Pharmacogenetic Inactivation of the Amygdala[END_REF][START_REF] Liu | Optogenetic stimulation of a hippocampal engram activates fear memory recall[END_REF][START_REF] Lohani | Unexpected global impact of VTA dopamine neuron activation as measured by opto-fMRI[END_REF][START_REF] Otchy | Acute off-target effects of neural circuit manipulations[END_REF]). For example, prolonged optogenetic inhibition of the CA1 region of the hippocampus during fear memory recall induces hyper-activation of the anterior cingulate cortex [START_REF] Goshen | Dynamics of retrieval strategies for remote memories[END_REF]. Similarly, optogenetic stimulation of VTA dopaminergic neurons in rats alters brain-wide activation of both non-dopaminergic and dopaminergic circuits, as measured by fMRI [START_REF] Lohani | Unexpected global impact of VTA dopamine neuron activation as measured by opto-fMRI[END_REF].

Finally, and perhaps most relevant to the approach outlined here, chemogenetic inhibition of the amygdala alters cortex-wide patterns of resting state functional connectivity in the monkey [START_REF] Grayson | The Rhesus Monkey Connectome Predicts Disrupted Functional Networks Resulting from Pharmacogenetic Inactivation of the Amygdala[END_REF].

Compared to simple node deletion, the DPM provided better predictions of the observed consolidation deficits following localized regional neuronal suppression. This suggests that features of DPM (e.g., mutual dependence of activity in connected brain regions) more faithfully mimic the impact of localized inactivation on brain network function. The DPM also outperformed a conceptually related cascading failure model that has been used to model failures in electricity grids and the internet (Crucitti et al., 2004). In the cascading failure model, the effects of node deletion extend beyond adjacent edges by redistributing loads network-wide.

Critically, in the cascading failure model there is a tolerance parameter that defines the change in load that any individual node can sustain before adjacent edges are impacted. Since DPM performed better than the cascading failure model, this suggests that the concept of node overload may not be as relevant to brain networks.

EXPERIMENTAL PROCEDURES

Network analysis

Networks were derived from previously published Fos quantifications from 84 brain regions in two conditions: 1) contextual fear conditioned mice, tested 36 days following training (5 × 0.75 mA shocks); 2) control mice, treated identically but not shocked during training (Wheeler et al., 2013). We computed inter-regional Pearson correlations and applied a threshold of p < 0.01 (two-sided) to generate a matrix used for creating an undirected network.

Disruption Propagation model

We developed a model of brain region inactivation that propagates the effects of inhibiting a brain region along the contours of the functional connectome. After propagation, the network was re-thresholded at the same value used for network generation and changes in the global efficiency and size of the largest connected component were calculated.

Mice

Mice were derived from a cross between 129Svev [129] and C57BL/6N [C57] mice (Taconic).

Cages of 8-9 week-old mice were randomly assigned to 21 different experimental groups (corresponding to 21 target brain regions). Each target brain region group was further divided into 2 treatment groups that received CNO or vehicle (VEH) with all mice in the same cage treated with either CNO or VEH.

Surgery

HSV-hM4Di-mCherry was bilaterally microinjected in the target brain region (see Table S2 for corresponding coordinates of targeted regions).

Contextual fear training and test

Seven days following surgery, mice were trained in contextual fear conditioning. During training, mice were placed in the conditioning context, and 2 min later, presented with 3 footshocks (2 s duration, 0.7 mA, 1 min apart). Mice were removed from the conditioning context, injected with CNO (5 mg/kg, i.p.) or VEH (i.p.) and returned to their home cage. In the home cage, mice were continuously treated with CNO or VEH (via drinking water) for 10 days. Contextual fear memory was tested by placing mice back in the conditioning context and assessing the time mice spent freezing. Only mice with robust, bilateral expression of HSV-hM4Di were included in subsequent data analyses.

In vivo assessment of chemogenetic inhibition

To assess the efficiency of chemogenetic suppression of neural activity by CNO delivered in drinking water, we microinjected HSV-hM4Di-mCherry into the anterior cingulate cortex of mice and treated mice with either CNO or VEH (delivered via drinking water in home cage) for 3 days. Mice were fear conditioned at ZT0, 6, 12 or 18. Ninety min after training, mice were perfused and Fos expression in mCherry + neurons was assessed using immunohistochemical methods. Using these same methods, we additionally evaluated the efficiency of chemogenetic suppression in three other brain regions (CA1, LD and MGM) and over more a prolonged time course (CA1, 10 days CNO treatment). Following the completion of CNO treatment, training occurred at ZT6 in these experiments. Resulting network graph with nodes grouped by major brain divisions. Node size is proportional to its degree (i.e., number of connections). Connections correspond to above threshold correlations (Pearson's r > = 0.83, p < 0.01). 

SUPPLEMENTAL FIGURE LEGENDS

Figure S1. Characterization of the fear memory, control, and anatomical networks. A-B. Degree (A) and clustering (B) distributions of fear memory network contrasted with distributions generated using 1000 iterations of the Barabasi-Alberts preferential attachment scale-free model (light blue) or Watts-Strogatz small-world model (light green). C-D. Brain regions sorted by degree value (colors correspond to major brain division) for the fear memory network (C) and the control network built using the same p-value threshold (D). E-F. The anatomical network built using the same p-value threshold (E) or density (F) as the fear memory network. G-H. Brain regions sorted by degree value for the anatomical network built using the same p-value threshold (G) or density (H) as the fear memory network. I-J. Correlations between degree in the fear memory and control networks, with control networks generated using either the same p-value threshold (I) or density (J) as the fear memory network. K-L. Correlations between degree in the fear memory and anatomical networks, with anatomical networks generated using either the same p-value threshold (K) or density (L) as the fear memory network. Related to Figure 1.

Figure S2. The disruption propagation model (DPM).

To illustrate the DPM, we implemented it in an exemplar network. At t = 1, the edges of the target node (green) are removed. Subsequent edge weights are altered according to the update rule described in the methods (t = 2-4). Once all edges have the opportunity to be updated once, all edges falling below a threshold are removed from the network (t = 5). Related to Figure 2. 

SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Network analysis

The fear network was derived from previously published Fos count data from 84 brain regions following recall of contextual fear memory, tested 36 days following training (Wheeler et al., 2013). Inter-regional Pearson correlations were computed and a threshold of p < 0.01 (two-sided) was applied. We also examined lower and higher confidence networks with thresholds of p < 0.05, and p < 0.005, respectively. Positive correlations with p values below the threshold were included as edges in the resulting networks. A control network was also generated from mice that were treated identically, but did not receive shock during training (Wheeler et al., 2013). This control network was thresholded using either the same p-value (p < 0.01, two-sided) or to yield approximately the same number of edges (i.e., equal density) as the fear memory network. Graph theoretical analysis and unweighted centrality measures were calculated using the NetworkX toolbox (version 1.11) in Python 2.7.11 [START_REF] Hagberg | Exploring network structure, dynamics, and function using NetworkX[END_REF].

Disruption propagation model

To examine the effects of network node inactivation we developed a model to simulate the effect of node inactivation in a functional connectome. Typically, the effect of removing a node on the global efficiency or size of the largest connected component (giant component) on network function is performed by removing all edges associated with a node followed by recalculating global efficiency and giant component size. However, brain region inactivation is likely to have effects beyond its immediate neighborhood to other brain regions, so we developed a model to approximate this spreading disruption.

We applied an update rule to edge weights associated with a network that is iterated until the weights in the network no longer change. In the first step, all the edges associated with a specific node are set to zero. The node strength is then calculated for each node, defined as:

𝑛 𝑖 (𝑡) = ∑ 𝑒 𝑖𝑗 (𝑡) 𝑗
Where eij is the edge weight between nodes i and j. Next, the change in node strength is calculated as:

∆𝑛 𝑖 (𝑡) = 𝑛 𝑖 (𝑡 -1) -𝑛 𝑖 (𝑡)

Edge weights are then updated according to the following rule:

𝑒 𝑖𝑗 (𝑡 + 1) = 𝑒 𝑖𝑗 (𝑡) (1 -∆𝑛 𝑖 (𝑡)+∆𝑛 𝑗 (𝑡)

𝑛 𝑖 (𝑡)+𝑛 𝑗 (𝑡)-2𝑒 𝑖𝑗 (𝑡)

)

The adjacency matrix is updated until the edge weights no longer change, with the limitation that edge weights are permitted only one alteration. After the model is implemented, any weights which fall below the threshold that was used to originally generate the network are set to zero and the resulting change in global efficiency (∆GE) and size of the giant component (∆GC) are calculated. We applied the disruption propagation model individually to each node of the fear and control functional connectomes to obtain ∆GE and ∆GC values for each brain region. The model was implemented in R (version 3.2.2) using igraph (version 1.0.1) [START_REF] Csardi | The igraph software package for complex network research[END_REF].

To explore the parameter space of the model, we varied the number of edge weight changes and thresholds for removing edges following propagation in the fear memory network. We used the Shannon's entropy (H) for both ∆GE and ∆GC to determine the information content of the model output. H was calculated using the Entropy package [version 1.2.1] [START_REF] Hausser | Entropy inference and the James-Stein estimator, with application to nonlinear gene association networks[END_REF] by discretizing the data into 50 bins ranging from 0 to the maximum value for each measure.

Anatomical network analysis

The mouse anatomical connectome was obtained from [START_REF] Oh | A mesoscale connectome of the mouse brain[END_REF], which uses the Allen Brain Atlas (ABA) to define brain regions. Our fear memory network was based on the brain atlas from Paxinos and Franklin (2004). To reconcile these two databases we combined regions to yield a common set of 70 nodes. We used two approaches to generate anatomical networks that were equivalent to the fear memory functional connectome.

In the first approach, we generated networks that were thresholded using the same p value (p ≤ 0.01). After thresholding, the ipsilateral and contralateral anatomical networks were combined. Next, nodes in both networks were combined such that the same brain regions were represented resulting in 70 nodes. Edges from combined nodes were averaged to generate the final edge weights.

The above approach to analyze the anatomical networks resulted in very different network densities (functional: 0.08, anatomical: 0.21). Therefore, in the second approach, we generated functional and anatomical networks of approximately equal densities. We generated the anatomical network by first combining ipsilateral and contralateral regions, then thresholded the network by retaining edges with the highest weights such that the network had the same density as the functional network (0.08). In both approaches, unweighted centrality metrics were then calculated as described above.

In order to apply the disruption propagation model to the anatomical network, we set all edge weights in the network to one. Next, we applied the model limiting the edge updates to one and using final cut-off thresholds ranging from 0 to 0.99 at intervals of 0.01. For each threshold, w calculated the Shannon's entropy (H) as described above and chose the threshold value that resulted in maximal entropy for each network. 

Mice

Virus

To silence neurons, we used a replication-defective herpes simplex viral vector (HSV) expressing the inhibitory DREADD receptor, hM4Di (kindly provided by Bryan Roth, UNC), along with a fluorescent marker (mCherry). Expression of hM4Di was driven by an EF1α (Human elongation factor-1 alpha) such that long-term (> 4 weeks) expression of the transgene is achieved. HSV virus was packaged using a replication-defective helper virus, purified on a sucrose gradient, pelleted and resuspended in 10% sucrose, as previously described (Richards et al., 2014, Rashid et al., 2016). The average titer of the virus stocks was 4.0 x 10 7 infectious units/ml. We observed high transgene expression 3 d following microinjection of this virus.

Surgery

Mice were pre-treated with atropine sulfate (0.1 mg/kg, ip), anesthetized (chloral hydrate, 400 mg/kg, ip) and placed in a stereotaxic frame. Viral vectors were bilaterally microinjected (1.5-2.0 μl/side, 0.1 μl/min) into the target region (see Table S2 for region coordinates) via glass micropipettes connected via polyethelene tubing to a microsyringe (Hamilton, Reno, NV). Micropipettes remained in place for 5 min after microinjection to ensure vector diffusion. Mice were treated with analgesia (ketoprofen, 5 mg/kg, sc) following surgery. Behavioral training began 7 d after surgery.

Contextual fear training and testing

Context fear conditioning was conducted in stainless steel chambers (31 cm X 24 cm X 21 cm; Med Associates, St. Albans, VT). The floor consisted of stainless steel bars (diameter 3.2 mm) spaced 7.9 mm apart, through which a mild footshock could be delivered. The front, top and back of the chamber were made of clear acrylic and the two sides made of modular aluminum. Behavior was monitored via overhead cameras. An automated scoring system (Freezeframe software; Actimetrics) digitized the video signal at 4 Hz and compared frame by frame movement to determine the amount of time spent freezing. Mice were handled for 5 min/day for 3 days before training. During training, mice were placed in the conditioning chamber for a total of 5 min. After two min, 3 unsignalled footshocks were presented (2 s duration, 0.6 mA, 1 min apart). Following the last footshock, mice remained in the chamber for an additional min, and then returned to their home cage. Memory was tested 10 days after training by placing mice back in the chamber for 5 min while freezing was assessed.

CNO treatment

Immediately after training, mice were systemically administered CNO (5 mg/kg, i.p., Toronto Research Chemicals) or VEH, depending on treatment group. CNO was first dissolved in 20 μl DMSO (Dimethyl sulfoxide, Sigma), then mixed into 380 μl 1× PBS. Mice assigned to the VEH condition received an injection of 20 μl DMSO mixed with 380 μl 1× PBS. After CNO or VEH injection, mice were returned to their home cage. According to treatment group assignment, CNO (5 mg/kg) or VEH was delivered via drinking water for 10 days. The CNO dose in drinking water was determined based on the amount of water consumed by mice in one day. No other water was available during this time. To assess whether CNO alone impacts fear conditioning, we infused a control virus (HSV-EF1α-GFP) into the CA1 region, administered VEH or CNO, and subjected mice to fear conditioning as described above (N = 8 mice/group).

Verifying location of vector microinjection and extent of viral infection

Following testing in contextual fear conditioning, mice were deeply anesthetized and perfused transcardially with PBS followed by 4% paraformaldehyde (PFA). Brains were removed, fixed overnight in PFA, then transferred to 30% sucrose solution and stored at 4°C. Coronal brain slices (50 μm) were collected across the anterior-posterior extent of the injected region. Mice were included in subsequent data analysis only if robust bilateral mCherry expression in the target region was observed in at least 5 consecutive brain sections (across anterior-posterior axis).

To determine the percent infected (mCherry + ) cells within a given target region, we traced the target region across 15 serial sections in a set of randomly-selected brains (at least N = 2 per region) then counted the number of mCherry + neurons within this specific region of interest (ImageJ software, NIH).

In vivo assessment of chemogenetic inhibition

In the present series of experiments, we delivered CNO to mice via drinking water. Drinking is reduced, but not absent, in the inactive phase of the light-dark cycle in mice (Gordon et al., 1986). To test whether CNO administered in drinking water inhibits the activity of neurons expressing hM4Di at different times throughout the light-dark cycle, we microinjected HSV-hM4Di-mCherry bilaterally into the anterior cingulate cortex of mice. Three days later, mice received CNO or VEH in drinking water for 3 consecutive days. Mice were trained in context fear conditioning (as above, 3 footshocks, 0.6 mA, 2 sec, 1 min apart) at Zeitgeber time 0, 6, 12 or 18 (N = 3-8 mice/group), and were perfused 90 min after training. Brains were collected and processed for Fos immunohistochemistry. We observed that, despite being trained at different points in the light-dark cycle, CNO always reduced neuronal activation in neurons expressing hM4Di.

Using the same protocol, we tested whether 3 days of CNO treatment decreased neuronal activity in neurons infected with HSV-hM4Di in other brain regions (CA1, LD and MGM, N = 3-5 mice/group). For this experiment, mice were trained at ZT 6 and perfused 90 minutes later to assess the levels of Fos in infected neurons. In an additional experiment, we tested the effect of 10 days of CNO administered in drinking water (matching the time course of the main experiments) in CA1 infected neurons (N = 4 mice/group). We observed a similar reduction of neuronal activation in all brain regions analyzed irrespective of the number of days CNO was administered.

Immunohistochemistry

To examine Fos protein levels across brain regions, coronal brain slices were incubated with blocking solution (0.1% BSA, 2% NGS, 0.3% Triton X-100) for 2 h at room temperature, then with anti-c-Fos primary rabbit antibody (1:1000, SC-52; Santa Cruz Biotechnology, Santa Cruz, CA) for 24 h. Sections were washed, incubated with antimouse Alexa 488 secondary antibody (1:500, Invitrogen) for 2 h at room temperature. Sections were washed, mounted on slides and coverslipped using PermaFluor mounting medium. Nuclei were counterstained with DAPI (Vectashield, Vector Labs Burlingame, CA). Images were obtained using a confocal laser scanning microscope (LSM 710; Zeiss).

Permutation testing

We conducted permutation testing to determine the level of significance of the difference in freezing in CNO-versus VEH-treated mice. Permutation testing was performed by resampling the freezing data from all 21 experiments without replacement and shuffling drug (CNO vs. VEH) and brain region 1000 times. After each resampling, ∆freezing was recalculated for each brain region, resulting in a distribution of ∆freezing values that was used to calculate a p value for each of the 21 experiments. To correct for the inclusion of 21 individual experiments, we adjusted the resulting p values using an FDR of 5% using the Benjamani and Hochberg (1995) procedure as implemented in R (version 3.2.2) [START_REF] Benjamini | Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing[END_REF].
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 S3 Figure S3. DPM characterization. A-D. Plots showing how Shannon's entropy (H) varies with two model parameters (edge changes and threshold). A. How entropy for ∆GE changes with number of edge updates (holding the threshold at the value used for generating the network) B. How entropy for ∆GE changes with threshold (holding the number of edge updates at 1). C. How entropy for ∆GC changes with number of edge updates (holding the threshold at the value used for generating the network) D. How entropy for ∆GC changes with threshold (holding the number of edge updates at 1). In each plot, red circles indicate parameters used for modelling (i.e., 1 edge change allowed and using the same threshold as used for network generation). E. Example of change in size of giant component following DPM targeting the Re. F Correlation between DPM-derived ∆GC and degree centrality for each individual node in the fear memory network. Related to Figure 2.
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 S4 Figure S4. Comparing network effects of simple node removal versus DPM. A-B. Change in ∆GE (A) and ∆GC (B) for each brain region (node) calculated using either simple node deletion or DPM. Application of DPM to the network produced greater magnitude changes in global efficiency and giant component than the simple node deletion. Correlations between node degree and (C) ∆GE or (D) ∆GC following simple node deletion. Related to Figure 2.
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 S5 Figure S5. In silico DPM-based predictions provide best estimates of observed in vivo data. A. Contextual fear memory (percent freezing) in mice infected with a control virus in the CA1 and treated with VEH (dark green) or CNO (light green). B-F. Correlation between behavioral data (∆freezing) and DPM derived ∆GC (B), degree from the fear memory network (C), ∆GE from simple node removal (D), the αcritical values from the cascading failure model (E), and volume of individual brain regions (F). Related to Figures 5 and 6.
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 S6 Figure S6. Control and anatomical networks do not predict consolidation deficits. A-B. Correlation between behavioral data (∆freezing) and DPM-derived ∆GE from the control (A) or anatomical (B) networks built to match the density of the fear memory network. Related to Figure 6.

  

  

Table S2 .

 S2 Anatomical coordinates for targeted regions (fromPaxinos and Franklin [2004])

	Region		Coordinates	
		Antero_posterior	Dorso_ventral	Medio_lateral
	LO	2.34	2.9	1.5
	VO	2.1	2.8	0.8
	PrL	2.3	2	0.3
	Cga	0.8	1.75	0.3
	RSG	-2	1	0.2
	Ect	-2	3.4	4
	S1FL	0.38	1.5	2.2
	S2	-0.82	2.8	3.7
	LD	-1.2	3.2	1.2
	MD	-0.82	3	0.25
	Po	-1.7	3.2	1.3
	Re	-0.58	4.2	0.2
	Sub	-1.4	4.1	0.4
	MGM	-2.92	3.2	1.75
	Cpudm	0.85	3.5	1.7
	AcbC	1.2	4.4	1.2
	LSI	0.5	3.6	0.35
	MS	0.6	4	0
	DM	-1.7	5.1	0.5
	LPO	0.15	5.4	0.8
	CA1m	-1.8	1.5	1.5

Table S3 .

 S3 List of brain regions and their associated degree, DPM-derived ∆GE, and behavioral (∆Freezing) values

					∆ Freezing
	Subregion	Acronym	Degree	∆ GE	(CNO-VEH)
	Association cortex	DLO	8	0.048	
	Association cortex	LO	10	0.070	-10.41
	Association cortex	VO	5	0.052	-15.91
	Association cortex	MO	4	0.034	
	Association cortex	FrA	2	0.012	
	Association cortex	RSG	3	0.028	-1.18
	Association cortex	Ect	2	0.027	9.69
	Association cortex	LEnt	1	0.020	
	Association cortex	PRh	2	0.026	
	Association cortex	LPtA	6	0.029	
	Association cortex	MPtA	3	0.027	
	Association cortex	TeA	4	0.062	
	Association cortex	IL	6	0.044	
	Association cortex	PrL	12	0.068	0.48
	Association cortex	Cg -a	13	0.092	-5.74
	Association cortex	Cg -p	11	0.068	
	Association cortex	AID	7	0.029	
	Association cortex	AIP	0	0	
	Association cortex	AIV	0	0	
	Sensory cortex	AuV	3	0.023	
	Sensory cortex	V1	4	0.066	
	Sensory cortex	S1ULp	2	0.015	
	Sensory cortex	S1BF	11	0.053	
	Sensory cortex	S1FL	12	0.052	-5.76
	Sensory cortex	S1J	11	0.053	
	Sensory cortex	S1HL	11	0.061	
	Sensory cortex	S1DZ	17	0.118	
	Sensory cortex	S1Sh	8	0.054	
	Sensory cortex	S1Tr	12	0.078	
	Sensory cortex	S2	14	0.078	-5.60
	Hypothalamus	LH	3	0.048	
	Hypothalamus	AH	0	0	
	Hypothalamus	PH	0	0	
	Hypothalamus	DM	0	0	-5.49
	Hypothalamus	VMH	0	0	
	Hypothalamus	SHy	0	0	
	Hypothalamus	LM	2	0.020	
	Hypothalamus	RM	0	0	
	Hypothalamus	MM	0	0	
	Hypothalamus	MPA	3	0.015	
	Hypothalamus	LPO	7	0.048	-17.34
	Hippocampus	CA1 -a	3	0.025	
	Hippocampus	CA1 -m	14	0.072	-22.02
	Hippocampus	CA1 -d	11	0.063	
	Hippocampus	CA1 -p	6	0.045	
	Hippocampus	CA3	3	0.034	
	Hippocampus	DG -up	0	0	
	Hippocampus	DG -low	0	0	
	Cerebral nuclei	MS	0	0	4.15
	Cerebral nuclei	LSV	0	0	
	Cerebral nuclei	LSD	5	0.034	
	Cerebral nuclei	LSI	15	0.089	-22.34
	Cerebral nuclei	BST	4	0.063	
	Cerebral nuclei	VDB	4	0.037	
	Cerebral nuclei	VP	1	0.017	
	Cerebral nuclei	Cl	0	0	
	Cerebral nuclei	La	0	0	
	Cerebral nuclei	BL	3	0.029	
	Cerebral nuclei	Ce	0	0	
	Cerebral nuclei	AcbC	13	0.082	-15.02
	Cerebral nuclei	AcbSh	6	0.036	
	Cerebral nuclei	Cpu -dl	2	0.015	
	Cerebral nuclei	Cpu -dm	5	0.020	-7.59
	Midbrain	VTA	2	0.011	
	Midbrain	PAG	5	0.044	
	Midbrain	SN	8	0.045	
	Thalamus	C	1	0.008	
	Thalamus	Hb	3	0.028	
	Thalamus	LP	2	0.011	
	Thalamus	Rt	1	0.011	
	Thalamus	MGM	0	0	10.68
	Thalamus	MD	7	0.039	-2.89
	Thalamus	Po	11	0.061	-8.81
	Thalamus	PV	4	0.054	
	Thalamus	Sub	17	0.089	-0.35
	Thalamus	Re	16	0.137	-23.68
	Thalamus	LD	13	0.063	-21.6
	Thalamus	VPM	12	0.067	
	Thalamus	VM	5	0.029	
	Thalamus	VL	1	0.015	
	Thalamus	ZI	4	0.023	
	Thalamus	AM	2	0.013	
	Thalamus	AV	4	0.029	
	Thalamus	AD	0	0	

  All procedures were conducted in accordance with policies of the Hospital for Sick Children Animal Care and Use Committee and conformed to both Canadian Council on Animal Care (CCAC) and National Institutes of Health (NIH) Guidelines on Care and Use of Laboratory. Male (8-9-week old) wild-type mice were used in all experiments. Mice were the F1 generation derived from crossing 129Svev [129] and C57BL/6N [C57] parents. Mice were weaned at 21 d, then housed 4-5 mice per cage. The housing room was maintained on a 12 h-12 h light-dark cycle, with lights on during the day.Cages of mice were randomly assigned to 21 different experimental groups (target brain regions). Each target region group was further divided into 2 treatment groups (6-12 mice per group) that received either CNO or VEH. All mice in one cage were assigned to the same treatment group (as all mice in the same cage consumed drinking water containing either CNO or VEH).

Figure S6. Control and anatomical networks do not predict consolidation deficits. Related to Figure 6.
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Anatomical network analysis

Graph theoretical measures from the mouse anatomical connectome [START_REF] Oh | A mesoscale connectome of the mouse brain[END_REF] were derived for comparison to the behavioral data. Because the anatomical connectome and the memory network were built differently we took two different approaches for generating equivalent networks: 1) an anatomical network thresholded at the same p value as the functional network, and 2) an anatomical network with the same number of nodes and edges as the functional network.

Permutation testing

Permutation testing was performed by resampling the freezing data from all experiments without replacement while shuffling the assignment of both brain region and drug (CNO vs. VEH) 1000 times. Resulting p values were adjusted using an FDR of 5%.

Cascading failure model

The cascading failure model was implemented as described by (Crucitti et al., 2004) and resulting ɑcritical values were calculated for each node.
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Cascading failure model

The cascading failure model described in (Crucitti et al., 2004) was implemented in R (version 3.2.2) using both the igraph (version 1.0.1) and sna (version 2.3.2) packages (Carter T. Butts (2014). sna: Tools for Social Network Analysis. R package version 2.3-2. http://CRAN.R-project.org/package=sna). Critical tolerance values (αcritical) were defined as tolerance values that resulted in the largest increase in global efficiency as the tolerance was increased.