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Abstract

Clustering is used in many applicative fields to organize data into a few
groups. Motivated by behavioral extraction issues from urban data, this paper
proposes a new clustering method to model clusters with dynamic profiles while
considering common regressive effects. As maximum likelihood estimation is
not suitable in this case, the parameters of the proposed model were estimated
using variational approximation. The ability of the model to estimate parame-
ters was evaluated using various simulated data and compared with two other
models. The article also proposes an application of this model to the extraction
of occupant behavior in buildings using a real open source indoor temperature
database. The objective is to classify individual houses according to indoor
temperature while estimating the effect of meteorological variables and class
profiles that can be interpreted as occupancy behaviors.

Keywords:
Clustering, Dynamic latent variable model, Variational inference
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1. Introduction

In many application domains, clustering data into a small set of clusters is
meaningful to highlight common aspects within the clusters. Considering urban
data collected in the energy or mobility domains, clustering gives insight into
typical user behavior patterns [9, 13]. Customers’ habits and preferences can
also be classified to build recommendation systems [23].

Usually, the clustering of user behaviors or customer preferences does not
consider potential changes or evolutions. Especially in the field of energy, au-
thors have worked on clustering energy consumption patterns [24] by considering
time series. However, incentive policies, price changes or innovations can lead
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to changes in these behaviors and habits. Thus, it may be interesting to con-
sider the dynamic and evolving aspect of behavior in the classification task.
This evolution of behaviors in clustering problems is often taken into account
by using segmentation methods to identify periods where behaviors are static
and constant, then performing clustering on these specific periods. The segmen-
tation phase can be performed manually based on solid assumptions or using
stochastic methods such as Hidden Markov Models [20].

This paper presents a model that attempts to group similar observations into
a small set of clusters while estimating class profiles by a dynamic approach using
autoregressive processes. We position ourselves in a framework where a set of
temporal data from independent entities are determined, partially, by latent
processes characterizing clusters. It is assumed that part of these data can be
explained by known and common exogenous factors. The proposed model seeks
to estimate the effect of these common factors and, at the same time, identify
in an unsupervised way the latent clusters and their dynamics from a set of
observations.

The proposed model is compared and evaluated with two other models on
simulated data sets. The simulation is fully controlled, so the coefficients of
the exogenous effects, the class profiles, and the partition are known, making it
possible to calculate performance indicators based on estimation errors.

After the evaluation with simulated data, an application to real data from
the REFIT data base [16] is proposed in this article. Indoor temperature data
from a set of English houses are used. In our case, the objective is to clas-
sify these houses and extract class profiles that provide important information
about the occupancy patterns of the inhabitants. The dataset includes out-
door weather conditions that will be used as exogenous factors. The idea is to
consider that the ambient temperature of a house is influenced by the outdoor
weather conditions as well as by the occupancy and the activity of the inhab-
itants. In fact, in [19], this database and meteorological variables were used
to compute and estimate heating behaviors. The classification of behavior and
estimation of occupancy is a significant topic in the energy field and the lack
of knowledge and the complexity of these behaviors make it difficult to predict
the energy consumption of a building [10]. In the literature, occupancy and ac-
tivity in houses are frequently estimated using models based on Markov Chains
[1, 11]. Occupancy is generally a component of Bottom-up models that are an
essential family in estimating energy consumption [28]. Lastly, according to
[2], another interest in estimating occupancy in dwellings is that it could allow
for better adaptation of the amount of hot water stored in hot water tanks for
dwellings that have this equipment. These studies illustrate the importance of
occupancy in predicting energy consumption. The model proposed here could,
in the future, be used to infer occupancy.

In [19], the authors used outside temperature and ambient temperature of
the REFIT dataset in order to compute and estimate the heating behavior in
a typical English household. In our case, the proposed model classifies these
houses and extracts class profiles that provide important information about the
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occupancy patterns of the inhabitants.

Finally, this paper’s contributions can be summarized in three main points:

• First, this article presents a latent process model to classify temporal
data, estimate the effect of common exogenous factors, and model cluster
profiles as stochastic processes.

• Then, the proposed model is compared to a two-step regression model
based on the k-means algorithm and to a constant class centers model
estimated with the EM algorithm. These models are evaluated according
to three criteria based on the estimation error of the different components
of the model. The parameter estimation on simulated and controlled data
allows us to compute the estimation error made on class centers, on the
effect of exogenous factors, and on the classification of observations.

• Finally, the REFIT open-access database [16] is used to evaluate and com-
pare the models on a real dataset. This comparison is based on approx-
imate log-likelihoods. By classifying the temperature data, classes were
identified whose profiles can be interpreted in terms of occupancy within
dwellings.

The rest of the paper is organized as follows. The second section of this paper
presents a brief review of the literature to explain the methodological positioning
of the model. The third section presents the construction of the model as
well as the inference method and the algorithm used for parameter estimation.
Then, the fourth is devoted to the performance results obtained using simulated
datasets and the comparison with two other methods. Finally, the last section
presents the application of the model on a real ambient temperature dataset.

2. Literature Review

Unsupervised classification is a major topic in statistical modeling and data
analysis. It is used to summarize the information of a set of observations, by a
small number of groups. The most widely used methods are static methods such
as K-means or hierarchical methods (CAH). Mixture models, reviewed in [22],
are also widespread because they are powerful and offer greater flexibility than
k-means models since they contain fewer constraints. The Gaussian mixture
model, for example, estimates a probabilistic classification [7] instead of allocat-
ing data strictly to identified clusters. Several variants of mixture models exist,
among which regression mixture models, which classify data but also estimate
cluster-specific regression coefficients relative to known factors [12, 26].

To deal with the clustering of multivariate temporal data, [3] and [27] pro-
posed regression mixture models applied to three-dimensional data, with a set
of n observations, of d variables, over p time instants or locations. These mod-
els are interesting because they estimate the effect of group-specific factors with
time-dependent variables. However, the observations at each time step are con-
sidered as independent of each other, so the dynamics or links that may exist
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between observations of the same entity are not taken into account. In [3], the
authors proposed an application in the field of genotype classification, where
observations are grouped into similar clusters for each time step or location.
In our case, the temporal data are clustered based on the entire temporal se-
quence observed. However, clustering of multidimensional temporal data is also
an important topic in other domains, such as the energy domain, where cluster-
ing of consumption behaviors allows for better understanding and thus better
prediction of certain behaviors [24]. In the field of temporal data classification,
some authors use time series decomposition methods to classify the extracted
elements [13, 8]. Along the same lines, it is also possible to use segmentation
methods to classify temporal data according to the hidden states identified [20].

The above mentioned methods attempt to classify temporal data without
necessarily modeling the evolution of estimated class profiles over time. How-
ever, as previously mentioned, it could be interesting to estimate clusters from
temporal data while modeling the class centers and their evolution over time.
The Gaussian mixture model [15] or Kalman filter mixture models [6] classify,
at each time step, the temporal data and estimate the centers of the classes by
fixing an a priori on the evolution of the latter. The modeling of class profiles
from autoregressive processes enables the evolution and dynamics of clusters in
time to be taken into account.

The two methods mentioned above classify observations for each time se-
quence because the objective is to model the evolution of clusters over time. In
our case, clusters are constructed in an unsupervised way and each observation
belongs to a cluster only during the observed period. Moreover, the regressive
part corresponding to the observed exogenous effect is considered as common to
all the observations, contrary to regression mixture models which identify differ-
ent effects for the different components of the mixture. The approach adopted
here is that of latent variable models using mixture models. These models allow
some flexibility to build classification models with dynamic class profiles or time
regressive components ([15], [6], [26]).

In order to estimate the parameters of mixture models, the Expectation-
Maximization algorithm (EM) is usually used because the maximum of the
likelihood is intractable [21]. In [18], however, the authors point out that the EM
algorithm is not suitable for some complex generative models involving multiple
and temporal latent variables. In [5] the authors estimated time dependent
effects via Variable Neighborhood Search algorithms. However, this algorithm
does not deal with the autoregressive latent variables. This topic was explored
in [15] using variational inference methods. Indeed, when exact inference is
impossible, as is the case with the model proposed here, the variational inference
method is able to approach the optimum and to estimate the parameters.

These elements and this context led us to build a mixture model with dy-
namic latent variables, which is presented in the next section.
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3. Model definition and parameter estimation

This section first presents the model definitions and notations, then, the
variational inference method used to address the optimization problem is in-
troduced. Finally, a subsection is dedicated to the iterative algorithm built for
parameter estimation.

3.1. Model definition

To formalize the model, we consider the following notations:

• (x1, . . . ,xi, . . . ,xn) a set of n observations, where xi = (xit)t is a sequence
of T observed data, with ∀t, xit ∈ R,

• ut (t ∈ J1, T K) a (p+ 1)-dimensional vector representing p exogenous and
observable factors. We include the constant value 1 in the vector to take
into account a level parameter (bias).

The model proposed in this article assumes that the series (x1, . . . ,xn) can be
grouped into K clusters. It is characterized by a regressive common component
reflecting the effect of known and observed factors, and by cluster-specific pro-
files reflecting the effect of latent dynamic factors. According to this assumption,
we consider that xit can be explained by the following model:

∀i ∈ J1, nK, ∀t ∈ J1, T K; xit = u′
ta+

K∑
k=1

zikbkt + eit, (1)

where zik is a binary variable equal to 1 if the observation i belongs to the class
k and 0 otherwise. We assume that zi, satisfying zi = k if zik = 1, follows a
Multinomial distribution with parameters π = (πk)k=1,...,K . Also, the profile
(bkt)t=1,...,T corresponds to the unobservable group-specific profiles, eit is a cen-
tered and normally distributed noise with variance vk and a = (a0, . . . , ap) ∈
R(p+1) refers to the regression coefficients associated to exogenous factors and
a0 denotes the level coefficient.

The latent profiles (bkt)t=1,..,T are modeled as first-order autoregressive pro-
cesses as follows:

∀t ∈ J1, T K,∀k ∈ J1,KK, bkt = Φkbkt−1 + νkt, (2)

where, νkt is a centered Gaussian noise with variance wk, and bk0 is nor-
mally distributed with µk0 and σk0 as mean and variance parameters. The
coefficient Φk satisfies the stationarity constraint |Φk| < 1. Then, using the
previous elements, the vector of parameters of the model is as follows: Θ =
{(vk, wk, πk,Φk, µk0, σk0)k=1,...K ,a} .

The model defined by Equation (1) is not identifiable. In fact, the coefficient
a0 can be confused with class profiles (bkt)(k,t). In this case, it is necessary to
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add a constraint to the model. In the present case, by setting ã = (a1, . . . , ap),
and noting ũt the corresponding p-dimensional exogenous variables, we have:

u′
ta+

∑
k

zikbkt = a0 + ũ′
tã+

∑
k

zikbkt = (a0 − α) + ũ′
tã+

∑
k

zik(bkt + α).

Thus, depending on the value of α, there is an infinite number of choices for
a0 and bkt. To ensure the identifiability, we add the following constraint to the
model:

∑K
k=1

∑T
t=1 bkt = 0.

The modeling of class profiles characterizes this model as a first-order au-
toregressive process. This choice of modeling latent processes to characterize
classes was already proposed in [6] and [15]. They also chose this a priori on the
class centers in the framework of dynamic classification models. They show that
this modeling has better estimation performances on simulated datasets than
other models such as regression mixtures or simpler Gaussian mixture models.
Moreover, it should be noted that modeling based on autoregressive processes
of order one is parsimonious, limiting the number of parameters to be esti-
mated. Other latent process models can however be considered. For example,
in [25], the authors characterize the classes from time-dependent polynomials in
a context of non-linear regression with other regimes.

After presenting the model parameters and assumptions, the next subsec-
tion is dedicated to the theory related to the variational inference method and
algorithm used for parameter estimation.

3.2. Variational Inference Methodology

After the model construction presented in Subsection 3.1, an estimation
method needs to be found. In the case of a log-likelihood maximization problem,
this function can be written as follows:

L(x;Θ) = log(P (x;Θ))

= log

(∑
z

p(z;Θ)

∫
b

p(b | z;Θ)p(x | b, z;Θ)db

)
. (3)

But in our case, the complex structure of the model and the presence of latent
variables make the log-likelihood intractable and the parameter estimation via a
direct maximization method intractable. It is therefore necessary to get around
this problem by using variational inference methods.

To do so, a function, called “Evidence Lower Bound”, F (q(z,b),Θ) is intro-
duced and defined such that:

F (q,Θ) = Eq(Lc(Θ)) +H(q), (4)

where H(q) is the entropy of the variational distribution q(.), and Lc refers to
the complete log-likelihood of the model. The previous function F (.) is called
“The Evidence Lower Bound” because it respects the following equation:

L(x;Θ) ≥ F (q(z,b),Θ).
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The main goal is to estimate the variational distribution and to estimate the
model parameters by maximizing the Evidence Lower Bound.

In a general case, the distribution q can take any form. There is therefore
an infinite number of possibilities, and the maximization problem is difficult to
solve. To simplify the problem and ensure a solution, it is possible to reduce the
possible form of the variational density to a restricted function family. In [4], the
authors justify the choice of the mean-field family because it greatly simplifies
the optimization problem while offering good performances. The mean-field
family corresponds to a factorization assumption such that the function q(.) has
the following form:

q(z,b) =

n∏
i=1

qz(zi)

T∏
t=0

K∏
k=1

qb(bkt), (5)

where qz is the distribution of the latent variable zi and qb, the distribution
of the processes (bkt). In this model, variables bkt are Gaussian with mean pa-
rameters mkt and standard error λk. The variables zi are distributed according
to a Multinomial distribution with parameters (τik)i=1,...n;k=1,...,K . With the
previous element, the function q(.) can be rewritten as follows:

q(z,b) = q(m, τ ,λ) =

n∏
i=1

K∏
k=1

τzikik

T∏
t=0

K∏
k=1

N (bkt,mkt, λk). (6)

This variational density function leads us to introduce Variational param-
eters that will be estimated by maximizing the Evidence Lower Bound. The
variational parameters of the models are as follows:

• τ = {(τik)k=1,..,K;i=1,..,n},

• m = {(mkt)k=1,..,K;t=0,..,T },

• λ = {(λk)k=1,..,K}.

Using previous elements presented in Section 3.1, the Evidence Lower Bound
can be explicitly written.

F (m, τ ,λ,Θ) =
∑
i,t,k

τik

(
log(πkφ(xit;mkt + u′

ta, vk))−
1

2
λk(v

−1
k )

)
+
∑
k,t

log (φ(mkt; Φkmkt−1, wk))−
1

2
λk((w

−1
k ) + (w−1

k Φ2
k))

+
∑
k

log (φ(mk0, µk0, σk0))−
1

2
λk(σ

−1
k0 )

−
∑
i,k

τik log(τik) +
d(T + 1)

2

∑
k

log(2πe) + log(λk). (7)

The Evidence lower bound is used to construct the iterative algorithm for
parameter estimation that is presented in the next subsection.
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3.3. Iterative Algorithm for parameter estimation

Algorithm 1 is an algorithm with an initialization step and an iterative part
consisting in updating the variational parameters and the parameters of the
model, which ends when a stopping criterion is reached.

input : Observed data (x1, ...,xn), with xi ∈ RT , the number of
clusters K and exogenous factor vectors (u′

t)t=1,...T

output: (m,λ, τ ,Θ)

initialization:
Θ(0), λ(0), m(0) using K-means algorithm and initial setting values;
repeat

for k = 1 to K do
for t = 1 to T do

Compute class profiles
(
m

(q)
kt

)
;

for i = 1 to n do

Compute the probabilities of membership
(
τ
(q)
ik

)
end

end
Compute variational variances (λk);

Compute parameters
(
µ
(q)
k0 , σ

(q)
k0

)
;

Compute Class proportions
(
π
(q)
k

)
;

Compute Variances
(
v
(q)
k

)
and

(
w

(q)
k

)
;

end
Compute regression coefficients a;

until The stop criterion is reached ;
Algorithm 1: Variational inference algorithm for parameter estimation

The initialization consists in setting a starting point for the parameters.

Initial values are chosen for variance parameters (v
(0)
k , w

(0)
k , σ

(0)
0 ), proportion

parameters (π
(0)
k ), and variational variances (λ

(0)
k ). Then, initial values are

computed for (m
(0)
kt ), (τ

(0)
ik ) and coefficients a using the K-means algorithm.

The iterative algorithm consists in updating each variational parameter and
model parameter, one by one, by considering the others as fixed to the previous
updated value. The formulas used for the updating are obtained by the max-
imization of the Evidence Lower bound 4 according to each parameter while
considering the others as fixed. Updating the variational parameters of class

centers (m
(q+1)
kt )(k,t) requires an adapted version of the Kalman filter [15].

It is assumed that the algorithm has converged to a solution when the up-
dated class centers are sufficiently close to those obtained in the previous iter-
ation. In other words, the stopping criterion for this algorithm is, with ε → 0,
1

KT

∑
t,k(m

(q+1)
kt − m

(q)
kt )

2 < ε. Once this condition is reached, the algorithm
stops.
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The algorithm was implemented and tested using simulated data. The fol-
lowing section is devoted to the presentation of the simulated data and the
comparison of the performance of the proposed model with two other reference
models.

4. Evaluation of the model on simulated datasets

In order to evaluate the model performances, it is important to simulate var-
ious datasets. We define three criteria to evaluate the accuracy of the proposed
model. These results were then compared with the performances of two other
models used as references.

4.1. Simulation of various datasets

The simulation of a dataset can be decomposed into four steps. An example
of generated data is presented in figure 4.1.

1. For a given number of clusters K and a length of sequence T , class profiles
are generated as first-order autoregressive processes: these profiles are
drawn more or less distinct depending on the chosen level of difficulty,
and centered (see Figure 4.1(B)).

2. For a given number of observations n, generate cluster labels using the
mixture proportions. Depending on the level of difficulty, the mixture can
be more or less heterogeneous.

3. Define coefficients associated to exogenous factors which can be real or
simulated data (see Figure 4.1(A)).

4. Using formula 1 and the previous simulated elements, each observation is
generated (see Figure 4.1(C).

The model is evaluated by generating various data sets with two and four
classes, and different numbers of observations. For each configuration, the mod-
els were tested on two hundred different datasets. First, we consider the fixed
time window T = 100 and vary the number of observations (n = 20 and
n = 150). Then, we fix the number of observations to n = 100 and set the
time window to T = 80 and T = 300. The following results, presented in Figure
2 and 3 and Table 1, were obtained with four clusters. In order to explore as
many cases as possible, the datasets were generated considering different levels
of difficulty using different mixture proportions and distances between simulated
class profiles.

Using the simulated datasets, the performance evaluation is based on three
criteria presented in the next subsection.

4.2. Criteria for model performance evaluation

As a reminder, the model is assumed to be able to identify the global ex-
ogenous effect, classify observations, and estimate class centers as dynamic pro-
cesses. The objective is to evaluate the model on these three aspects using three
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Figure 1: Simulation of one dataset of 150 observations and 100 time sequences. (A) cor-
responds to the exogenous factors effect. (B) represents the class profiles simulated as au-
toregressive processes. (C) represents the set of n observations simulated using the previous
elements.

criteria. Note that cluster labels have been reorganized to maximize the classi-
fication rate. First, the mean square error is used to evaluate the ability of the
model to estimate class profiles:

crit1 =
1

KT

T∑
t=1

K∑
k=1

(m̂kt − bkt)
2. (8)

Then, the ability of the model to identify and estimate the exogenous effect
is evaluated using the mean square error computed on exogenous factors such
that:

crit2 =
1

T

T∑
t=1

(u′
tâ− u′

ta)
2. (9)

Finally, the correct classification rate is used to evaluate the model:

crit3 =
1

n

n∑
i=1

1{zi=ẑi}. (10)

4.3. Two reference models for performance comparison

The three criteria for performance evaluation were computed for the pro-
posed model and compared with two other models presented in this subsection.
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First, let’s consider the same notations as those presented in Section (3.1).
The first model, used as a reference and called “Constant class centers model”
models observations as the results of a regression part and a mixture of Gaussian
densities such that:

∀i ∈ J1, nK, ∀t ∈ J1, T K; p(xit;θ1) =

K∑
k=1

πkN (xit;µk + u′
ta, σk) , (11)

with θ1 = ((πk, µk, σk)k=1,..K ,a) the model parameters vector. First, the coef-
ficient vector a is estimated using the following formula:

â =

(
n∑

i=1

T∑
t=1

utu
′
t

)−1( n∑
i=1

T∑
t=1

utxit

)
. (12)

Then, the EM algorithm is used on
∼
xit = xit − u′

tâ in order to estimate
mixture parameters (πk)k=1,..,K and Gaussian parameters (µk, σk)k=1,...K to
characterize the clusters. In this model, the observations (xit)i,t are considered
as independent observations and the algorithm classifies observations for each
time sequence t. The final classification is obtained by taking the most frequent
clusters for each observation xi.

The second model, called “Two-step regression model”, is based on a first

part of the regression using formula 12. Then, the residuals, denoted by
∼
xi =

(
∼
xi1, ..,

∼
xiT ),∀i = 1, .., n such that

∼
xit = xit−u′

tâ, are classified using a K-means
algorithm. The observations are grouped into clusters and the centers of these
clusters are T dimensional vectors. The K-means algorithm is chosen because
this method is widely used for clustering time series [24].

The next section presents the results of the performance criteria computed
on various simulated datasets for the proposed model and the two reference
models.

4.4. Results of criteria computed on various simulated datasets

Table 1 presents the mean value of the criteria for the three models in dif-
ferent cases. The “Constant class center model” has higher values for the three
criteria in each of the presented cases.

Figure 2 shows box-plots of the three criteria computed for the proposed
model and the two-step regression model, on one hundred and fifty datasets with
different levels of difficulty with four clusters when the number of observations
is equal to (n = 20, T = 100) and (n = 150, T = 100). The Constant class
center model, which does not provide good performances, is not presented for
readability reasons. Levels of difficulty depend on the similarity between class
profiles and the degree of cluster mixing. For example, similar class profiles or
highly mixed clusters correspond to the highest levels of difficulty.
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CRIT1 CRIT2 CRIT3

T=100 n=20 n=150 n=20 n=150 n=20 n=150
Proposed
Model

1.6 0.97 0.078 0.054 0.92 0.99

Constant
Model

9.05 8.53 0.17 0.1631 0.42 0.46

Two-step
Regression

1.88 1.04 0.17 0.1631 0.91 0.99

n=100 T=80 T=300 T=80 T=300 T=80 T=300
Proposed
Model

1.74 1.58 0.062 0.051 0.99 1

Constant
Model

5.9 5.68 0.078 0.067 0.62 0.81

Two-step
Regression

1.77 1.65 0.078 0.067 0.99 0.98

Table 1: Performance results obtained for the three models. Crit1 corresponds to the mean
square error computed on the class centers, Crit2 corresponds to the mean square error
computed on the exogenous effects and Crit3 corresponds to the classification rate. For the
three criteria, the proposed model provides the best performances. Also, the more observations
there are, the more accurate the model is.

These results show different performances for the two models. In fact, the
proposed model, for the three criteria, seems to be more accurate on the simu-
lated datasets. It can be seen that for the classification rate (Figure 2 (C)), the
two-step regression model has more extreme values than the proposed model
for n=150 as the latter estimates probabilities of membership and a mixture of
clusters whereas the former estimates a strict classification.

In addition, we can note that the more observations the dataset contains,
the more accurate the model is on the basis of the three criteria.

Figure 3 shows box plots of the three criteria computed for two of the models,
on two hundred datasets with different levels of difficulty with four clusters when
the number of observations is equal to (n = 100, T = 80) and (n = 100, T =
300). As before, the third model is not represented, but the results are displayed
in table 1.

First, according to the three criteria, the complete model performs better
than the two-step regression model. The means of the first criterion (Figure
3(A)) are close, as well as the means of the second criterion (Figure 3(B)) but
the proposed model performs better and shows less extreme values. This may
be due to the difficult cases of highly mixed clusters or similar class centers,
since the proposed model estimates the class profiles and the effect of exogenous
factors better. In this case, the longer the sequence T is, the more accurate the
model is.

The results displayed in Figure 2 and Figure 3, show that, as expected, the
values of the first two criteria decrease with the size of the temporal window (T )
and the number of observations (n). This means that the more data there are,
the more accurate the model is. The previous figures and tables also show that,
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Figure 2: Box-plots of three criteria obtained for the proposed complete model (green) and the
Two-step regression model (yellow) with dataset of 100 time sequences and different numbers
of observations (n=20 and n=150) and two clusters. The box plots were obtained using 200
datasets for each sample size considered with different levels of difficulty. These difficulty
levels are managed using the distance between the simulated class profiles and the degree of
cluster mixing.

on all three criteria, the proposed model outperforms the other approaches. The
performances of the proposed model compared to the model with constant class
centers highlight the interest of estimating the class profiles dynamically.

The third model is based on the assumption of constant class centers through
time and classifies the time series using the clustering made for each time stamp.

These results show that this model is not well-adapted to the simulated
data. It is important to note however that the regression step, used for the two
reference models, provides a good estimate of the exogenous effect.

After showing that the proposed model performs well on simulated data, the
next section presents an application on real indoor temperature data of twenty
houses in the UK.
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Figure 3: Three-criteria box plots obtained for the proposed full model (green) and the two-
step regression model (yellow) with a dataset of 100 observations and different numbers of
sequences (T=80 and T=300) and four clusters. The box plots were obtained using 200
datasets for each sample size considered with different levels of difficulty. These difficulty
levels are managed using the distance between the simulated class profiles and the degree of
cluster mixing.

5. Application of the model to real ambient temperature data from
a set of individual houses

The model was then applied on a real dataset in order to classify apartments
according to the occupants’ behavior, based on their energy consumption. We
consider that variables such as indoor ambient temperature could be influenced
by a set of exogenous and known factors (outside temperature for example) and
a non-observable part relating to the occupation and activity of the inhabitants.

The dataset [16] used in this application consists of 20 individual houses
in Loughborough, UK. This dataset contains, among other things, the indoor
temperature of the houses’ living rooms, as well as a set of characteristics con-
cerning the inhabitants of the dwellings, and finally meteorological data such as
the outside temperature or the solar irradiance. Motion detection data are also
available for nineteen of the houses during relatively short periods.
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5.1. Indoor temperature data from 20 homes

Indoor temperature data are available for 20 homes every 30 minutes over a
period from September 2013 to August 2015. However, during this long period,
some data are missing for unknown reasons. To avoid data interpolation and
loss of information, we focus on a smaller period from the 10th of February to
the 18th of June, 2014. No data are missing during this period for the 20 houses.
This period was used to compare the models on real datasets in order to use as
much information as possible. For the second part, however, the application was
made on a dataset between the 24th and the 30th of November, 2014 because
motion detection data are also available for this specific period, enabling a class
profile interpretation.
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Figure 4: Temperature inside living rooms for 20 houses in the UK in (°C) from February 10
to June 18, 2014. Indoor temperature was recorded in the living-room of each house at 15-
minute intervals. The Figure shows aggregated data with 30-minute intervals for each house.

Figure 4 gives the ambient temperature for the houses during almost 5
months. It shows that houses do not have the same heating behavior and show
different temperature patterns.

5.2. The choice of exogenous factors

The proposed model has a regressive component common to all the obser-
vations, composed of common and known exogenous factors. We consider that
the indoor temperature data are impacted by meteorological factors, especially
outside temperature and solar irradiance, as these variables are used in the case
of thermal simulation using physical modeling [14] for example and also in [17]
for modeling and predicting the indoor temperature in a building. Figure 5
shows the two meteorological variables considered in this application.
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Figure 5: Normalized meteorological variables considered as exogenous factors for the models
comparison,from February 10 to June 18, 2014. (A) is the outside Temperature (°C) and
(B) is the total solar irradiance (MJ/m²). Meteorological data recorded by Loughborough
University.

In addition, the hour of the day is taken into account as an exogenous factor
and introduced as a periodic variable. Because data are available with a 30-
minute interval, the two hour variables, called h1 and h2 were built such that:

∀t ∈ {1, 3, 5, ..T − 1}


h1t = sin( 2πt24 )
h2t = cos( 2πt24 )
h1t+1

= sin( 2πt24 )
h2t+1 = cos( 2πt24 ).

(13)

5.3. Criterion used for model comparison

In the case of simulated data, both cluster membership and parameters are
known and the comparison of models is possible using criteria based on the
estimation error of these models. However, the three criteria defined in section
4 for model performance evaluation are not computable for real data since the
true classification, the class profiles and the coefficients of the exogenous factors
are unknown. For this reason, a new criterion is defined in this section to
compare the models.

The variational method is used in the case where the likelihood cannot be
directly maximized and provides an approximation of this quantity. For this
reason, the comparison of criteria based on the likelihood can be interesting.
If, for a fixed number of parameters, a higher likelihood is obtained with the
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proposed model than with the other models, this means that the data set is
better explained by the proposed model.

The proposed evaluation criterion, which can be seen as an approximation
of the log-likelihood, whatever model is adopted, is defined as:

CRIT =
1

nT

∑
k

∑
ẑi=k

∑
t

− log(σ̂2
k)−

1

σ̂2
k

(xit − b̂kt − utâm)2, (14)

where b̂k and â are respectively the estimated class centers and regression coef-
ficients and σ̂k the estimated variance parameters obtained by each model. The
variable ẑi is equal to k if the observation xi belongs to the cluster k. For the
two-step regression model, ∀k = 1, ...K, σ̂k = σ̂. In addition, for the Constant
Class center model, ∀t = 1, ...T, b̂kt = b̂k.

This criterion was computed for the three models and for different real data
sets. The results obtained are presented and compared in the next subsection.

5.4. Results

In order to fully compare the models, one-, two-, three-, and four-week rolling
one-week window data sets were extracted and used. These periods correspond
to data sets with, respectively, T = 336, T = 672, T = 1008 and T = 1344
observations. On these different datasets, the three models were estimated with
different numbers of clusters. Table 2 displays the criteria obtained for the
three models on the collection of data sets. The proposed model gives a higher
approximate log-likelihood for all the considered periods and hyper-parameters
K. This means that for real datasets, with various dimensions, the proposed
model gives a better likelihood than the two baselines.

The objective of this model applied to indoor temperature is to cluster houses
and estimate profiles corresponding to latent variables related to endogenous
factors such as activity or occupancy. The next subsection presents the results
obtained with the complete model on a one-week dataset.

5.5. Estimated class profiles and classification on one-week of real data

The following subsection is dedicated to the model application on a one-
week dataset of ambient temperature within 18 houses. The period chosen
was between November 24th and November 30th 2014 because motion detection
data are also available for this period, but, in return, data for House 2 and
House 17 are not available. These motion detection variables provide additional
information that is useful to confirm the class profile interpretation. Figure 6
represents the model input. Indoor temperature data are normalized and used
as the set of 18 observations with T=336, and the outside temperature, solar
irradiance, and two periodic hour variables, as the exogenous factors for the
model estimation.
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CRIT (approximate log-likelihood)

Sequence T
Number of
clusters

Proposed Model
Two-step

regression model
Constant class
centers model

T = 336

K=2 0.222 0.191 -0.417
K=3 0.541 0.456 -0.590
K=4 0.807 0.674 -0.776
K=6 1.329 1.009 -2.481

T = 672

K=2 0.126 0.103 -0.615
K=3 0.417 0.328 -0.950
K=4 0.690 0.507 -1.248
K=6 1.189 0.830 -3.270

T = 1008

K=2 0.048 0.046 -0.790
K=3 0.368 0.247 -1.015
K=4 0.657 0.416 -1.430
K=6 1.102 0.719 -1.891

T = 1344

K=2 0.022 0.024 -0.809
K=3 0.310 0.210 -1.226
K=4 0.597 0.369 -1.282
K=6 1.142 0.665 -1,444

Table 2: Approximate Log-likelihoods computed for various real datasets using the proposed
model and the two reference models. Criteria are computed for datasets of different sizes.
The table shows that the proposed model allows higher log-likelihood approximations than
the other two on real datasets.

The objective is to estimate the effect of the four exogenous factors on the
indoor temperature, identify clusters of similar houses and estimate class profiles
using the model presented in section 3.

The number of clusters is a hyper-parameter of the model. The BIC crite-
rion is widely used for model selection. Figure 7 represents the BIC criterion
computed for K = 2, ..., 17. The BIC criterion is defined for this model using
the Evidence Lower bound 7 such that:

BIC(k) = −2F (m̂, λ̂, τ̂ ,Θ) +Nk log(nT ), (15)

where n is the number of observations, T the length of the observed sequence,
and Nk the number of free parameters of the model with k clusters.

The BIC criterion decreases until K = 16. However, the goal is to build a
small number of clusters to summarize the behaviors and interpret the clusters.
As, for K ¿ 5, the additional clusters contain only one house, K = 5 was therefore
chosen in order to estimate behaviors for a small number of interpretable clusters
with more than one observation in each cluster.

The following results were obtained from the proposed model estimation on
the data (see Figure 6) with K = 5. The model estimates class centers (b̂),
exogenous effect, (â) and also, for each observation and cluster, the probability
of membership (τ̂ik)i,k). Then, using these elements,the estimated data can be
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Figure 6: Normalized Indoor Temperature (A) used as inputs, Outside Temperature (B)
and Solar Irradiance (C) and periodic hour variables (D) used as exogenous factors for the
estimation.
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Figure 7: BIC criterion computed when the number of clusters K varies between K = 2, ..., 17.

computed as follows:

∀i = 1, .., n and t = 1, ...T x̂it = u′
tâ+

K∑
k=1

τ̂ik b̂kt. (16)

Figure 8 shows input observations and estimated indoor temperature depending
on the class to which each apartment belongs. In fact, the model computes
probabilities of membership, but afterwards, in our case, each house is assigned
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to a cluster. The variable ẑi denotes the class to which the observation i belongs
and is defined using the Maximum a posteriori estimation (MAP).
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Figure 8: Real normalized indoor temperature for eighteen houses. As an overlay, the curves
colored according to the class to which these houses belong represent the data estimated via
the proposed model with K=5. The estimated data are obtained using the estimated effect of
the exogenous factors, the class profiles and the membership class determined using the MAP.

Based on the results shown is Figure 9 and Figure 8, we first observe that
cluster 5 includes only one house. Also, considering the four other clusters’
dynamics, some dissimilarities can be observed. Neither the high nor the low
peaks occur at the same time. There are also dissimilarities in the number and
shape of the peaks. For cluster 2,for instance, we can observe one high peak
at the end of each day and other smaller high peaks at the end of mornings
during working days (Monday to Friday). For cluster 3 the high peaks seem to
be longer than for clusters 1 and 2. In cluster 4, no significant peak variations
can be observed. In addition, the dynamics change during the week-end for all
of the clusters.

This period was chosen because motion detection data are also available.
In fact, the cluster dynamics can be related to occupancy behaviors. Motion
detection data were therefore used to confirm this intuition and interpret the
profiles.

Figure 10 depicts the estimated cluster dynamics and average number of
detections within the houses for each cluster. As can be seen, there is, a priori,
a link between the number of motion detections and the identified class profile.
The duration of the peak observed on the estimated class profiles can be related
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Figure 9: Estimated class profiles (A) and Estimated exogenous effect (B). Plot (A) represents
class profiles estimated using the proposed model. Cluster labels were reorganized according
to the class proportions. Plot (B) represents the estimated effect of exogenous factors. These
results were obtained using the normalized meteorological data and hour variables multiplied
by the estimated regression parameters.

to the period during which the number of observed movements is high. In the
same way, the time of the peaks seems to be related to the times of the peaks
of presence with perhaps a slight shift due to the inertia of the temperature for
example. This link is even more obvious for profile 4 during the weekend, which
decreases. There is also a very low average number of movements during the
weekend for cluster 4.

Table 3 shows the calculated linear correlation coefficients between the class
profiles of each group and the average number of motion detections in these
groups. In addition, since there are temporal data, the correlation coefficient
is also calculated between the class profiles and the average number of motion
detections in the previous temporal sequence. Table 3 shows a higher correla-
tion between the class dynamics and the average number of previous motion
detections. This result may be due to temperature inertia. For example, if
the inhabitants turn on the heat when they get home, there may be a timelag
between that moment and the moment when the temperature increases.
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Figure 10: Class profiles and average reduced number of motion detections for each cluster
during the period from the 24th to the 30th of November, 2014. Motion detections are
recorded each time a movement is detected with a one-minute precision. For each house,
motion detections have been aggregated into 30-minute intervals. The plots display, in gray,
the average number of motion detections for each cluster. In order to adjust class profiles and
motion detection data, the latter have been divided by the standard error.

(bkt,motionkt)
Cluster 1 2 3 4 5

r 0.296 0.075 0.044 0.385 0.213
p.value 3.17e-08 0.167 0.416 2.54e-13 8.09e-05

(bkt,motionkt−1)
Cluster 1 2 3 4 5

r 0.334 0.190 0.109 0.401 0.226
p.value 3.46e-10 4.79e-04 0.0455 2.34e-14 2.93e-05

Table 3: Linear correlation coefficients and p-values resulting from the independence test.
The coefficient r is the linear correlation: r = cov(x, y)/sxsy , with sx and sy , respectively,
the standard error computed on samples x and y. The p-value is the result of a statistical
test with the null hypothesis of the nullity of the correlation.

To confirm this observation, table 3 also provides the p-values resulting from
the independence tests performed. This test consists of a statistical test with
the null hypothesis of the nullity of the correlation. For a small p-value, (<
0.05), this hypothesis is rejected and we can conclude that the correlation is
significantly different from zero. In this case, correlations between class profiles
and lags of average motion detections are below the current threshold of 5%.
This means that we cannot reject the hypothesis of a linear dependency between
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class dynamics and the lag of the average number of motion detections for all
of the 5 clusters.

These results allow us to interpret class profiles as occupancy patterns.

Cluster 1 shows peaks in the late afternoon/early evening and a higher level
and less variation over the weekend. This indicates a more constant and high
presence during the weekend. The periods of presence during the week are
similar to office hours with inhabitants who probably do not work on weekends,
which would explain the lower variations and higher level.

For cluster 2, the peaks of presence are observed during the evening (8pm/9pm)
on weekdays and they are slightly earlier during the weekend. Moreover, dur-
ing the weekend, the variations are lower, which also indicates a more constant
presence on weekends. In addition, the slight peaks during the morning indicate
a pattern of presence in the morning, but lower and shorter than in the evening.
There appears to be a slight lag between the attendance peaks and the high
peaks in the cluster profiles. This may be due to the time it takes for the room
to heat up.

In cluster 3, the high peaks are quite long and start earlier in the week than
for the previous profiles. This indicates that people are present from the end of
the afternoon and during the evening. In addition, there is no peak during the
morning. Both the level and the variations are lower during the weekend.

Profile 4 has fewer periodic peaks, indicating an average presence throughout
the week. In addition, the level during the weekend is lower, which could indicate
the absence of the inhabitants of these houses during the weekend.

Finally, cluster 5 is composed of only one house which can be characterized
as atypical. The indoor temperature of this house presents marked variations
during the beginning of the week and much less during the weekend. In addition,
periods of presence are long and occur mainly during the afternoon of working
days. However, the comparison between class profile and the number of motion
detections for this cluster confirms the observation made previously.

Thus, to conclude this application of the classification model and estima-
tion of the effect of exogenous factors as well as class dynamics, 5 classes were
estimated and identified among 18 individual houses. The class centers were
compared with motion detector data. This step allowed the interpretation of
the clusters and class profiles in terms of house occupancy patterns, showing
that each cluster highlights occupancy dynamics with different occupancy times.

6. Conclusion

This paper has presented a dynamic latent variable model to solve a clas-
sification problem by considering the evolution of class centers over time. The
main objective of the model was to estimate class profiles as autoregressive pro-
cesses. Moreover, the model is able to estimate the effect of known exogenous
factors on the observations.
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The comparison of the proposed model with a two-step regression model
based on the k-means algorithm, and a constant class centers model based on the
EM algorithm confirms the interest of considering dynamic class centers and of
including estimation of the regression coefficients within the iterative algorithm
as the proposed model shows better performances for the three selected criteria
computed on various simulated and controlled datasets.

The open source database REFIT [16] was used to compare the three models
on real data and to estimate class profiles and house clusters. The estimated
class dynamics can be interpreted in terms of occupancy while the correlation
between number of motion detections and class profiles is significantly different
from zero. The identified profiles highlight different occupancy habits in terms
of working days schedule and week-end presence.

7. Discussion

In this article, the number of clusters K is assumed to be known or is de-
termined using the BIC criterion. Further investigations can be conducted in
order to consider this hyper-parameter as a model parameter thanks to Bayesian
methods.

The presented model represents a first step towards a more general model
where exogenous effects are not global but specific to each cluster, which high-
lights structural effects within clusters. This model will be closer to mixture
regression models with time-dependent factors.

One of the advantages of modeling class profiles is to use estimation to pre-
dict future profiles. The predictive aspect of this model has not been addressed
in this paper but could be an interesting perspective. In addition, application
on real indoor temperature data makes it possible to interpret class profiles in
terms of occupancy habits. In future work, the estimated class dynamics could
be used to estimate occupancy within dwellings.

Finally, the choice of modeling the class profiles from a first order auto-
regressive process is an issue for discussion. We can imagine an additional step
in order to select a higher order that would be better adapted to the data. This
requires either selecting this hyper-parameter in a previous step or developing
a method to integrate the order of the processes as parameters of the model.
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