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Abstract

In this paper we introduce a one-fluid numerical method for the simulation of dense particle-fluid flows. The method
uses a front tracking algorithm coupled to a viscous penalty method to enforce the rigidity constraint. A modified
version of the collision model of Mohaghegh and Udaykumar (2019) is used to model both collisions and lubrication
forces. This approach allows us to greatly reduce the amount of ad hoc numerical parameters required to perform
the simulations. For validation purpose, we successfully reproduce several experimental and numerical benchmarks
including the settling case of a sphere in an enclosed box performed by ten Cate et al. (2002), the bouncing motion
against a planar surface performed by Gondret et al. (2002), the study of the fluid-solid fluidized bed performed by
Aguilar-Corona (2008), and the particle-resolved simulations of the same case performed by Ozel et al. (2017). The
method is shown to realistically reproduce the motion of a settling and a bouncing sphere in a quiescent fluid. The
statistical study of the fluidized bed showed excellent agreement with the experimental data and the fluidization law:
the solid volume fraction, the solid velocity variance and the anisotropy coefficient are accurately reproduced by our
simulations.

Keywords: Particulate flows, Fluidized bed, Front-Traking, One-fluid method, Discrete Element Method, Soft
Sphere Model.

1. Introduction

Fluid-particles systems are of considerable scientific
and technological interest in a wide range of disciplines.
They can be encountered in environmental flows as
for example in sandstorms, river sediment transport or
dispersal of volcanic ashes to cite just a few. In engi-
neering, one can find them for example in pneumatic
transport, pollution control or fluidized beds. The latter
are ubiquitous in the chemical and energy fields because
of their excellent mixing properties. Since 2010, an
original concept of high temperature solar receivers
using solid-gas fluidized bed as heat transfer fluid is
being actively developed at the CNRS (France) Flamant
and Hemati (2010); Flamant et al. (2013); Benoit et al.
(2015); Zhang et al. (2017); Gueguen et al. (2021).
Indeed, the heat transfer fluids currently used in tower
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power plants (i.e. molten salts) limit the temperature
at the receiver outlet below 560°C. In the framework
of the third generation of receivers development, the
trend is to increase the receiver outlet temperature in
order to use high efficiency thermodynamic cycles
downstream (super-critical cycle). For this purpose,
the target temperature at the receiver outlet is 800°C.
Fluidized bed appears to be an excellent heat transfer
fluid candidate.

The literature on the experimental studies of fluidiza-
tion phenomena is extensive. Often, flat, pseudo-two-
dimensional fluidized beds are used to investigate the
fluidization behavior with the aid of video techniques
or probe measurements because three-dimensional flu-
idized beds are not optically accessible (Müller et al.
(2008)). The main limitation of such experimental tech-
niques is that the probes locally disturb the fluidiza-
tion behavior and thereby affect the measurement it-
self. To address these restrictions, detailed computa-
tional models have received substantial attention over
the last thirty years. With the use of computer models,
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one can realize non-intrusive numerical experiments to
examine the flow-field. Furthermore, the use of appro-
priate models enables the simultaneous ‘measurement’
of several properties, such as the gas and particle ve-
locities, and the porosity, which is difficult if not im-
possible to achieve by direct experimentation. Despite
these advantages, the construction of reliable models
for large-scale gas–solid systems is seriously hindered
by the lack of understanding of the fundamentals of
dense gas–particle flows. The prime difficulty here re-
lies on the large separation of scales(Ge et al. (2017)):
the largest flow structures can be of the order of me-
ters; yet these structures are directly influenced by the
details of particles–particles and fluid-particles interac-
tions, which take place on the scale of millimeters, or
even micrometers
In this context various frameworks have been devel-
oped, i.e Two-Fluide Model (TFM), Discrete element
method (DEM), Direct numerical simulations (DNS),
each one of them targeting a particular level of preci-
sion or scale (see Sundaresan et al. (2018) for a com-
parative review of these methods). One can then use
the smaller scale models to develop closure laws for the
larger scale models. Recently, thanks to the continuous
increase in computing power, studying large particle-
laden flows with finite-size particles using particle-
resolved direct numerical simulations (DNS) has be-
come possible. In the past few decades, many re-
searchers have used particle-resolved simulations to
gain a deeper understanding of the intricate physics be-
hind flow-particle and particle-particle interactions in a
variety of configurations. These simulations have been
applied in a range of fields, including fluidized beds
Pan et al. (2002); Ozel et al. (2017); Esteghamatian
et al. (2017); Yao et al. (2021), sedimentation Uhlmann
(2005); Uhlmann and Doychev (2014); Willen and Pros-
peretti (2019), particles induced/interaction with turbu-
lence Uhlmann (2008); Lucci et al. (2010); Wang et al.
(2014); Picano et al. (2015); Fornari et al. (2016); Costa
et al. (2016), and sediment patterns in channel flow Ki-
danemariam and Uhlmann (2017) among others.

Generally speaking, in the DNS approach, the gov-
erning equations for the fluid phase and the particles
are implicitly coupled with each other through the no-
slip condition at the particles’ surfaces (2-way coupling)
without the need for parametrizing the drag force be-
tween the phases. Also, long-range hydrodynamic inter-
actions between particles are naturally captured. How-
ever, when dense flows are considered (flows with par-
ticles close enough to directly interact), additional mod-
els are required to account for short-range solid-fluid in-
teractions (lubrication forces) and solid-solid contacts

(collisions forces). The common approach to model a
wet collision is to use a spring-damper system for the
solid dissipation, and the lubrication theory for the vis-
cous dissipation.

The goal of this paper is to present an extension of
the Front-Tracking method of the simulation software
TrioCFD (Calvin, Christophe et al. (2002)) to include
solid–solid contact forces by means of a soft-sphere
model, and to assess its capability for simulating
particle-fluid flow. The resulting algorithm allows for
the reduction of the number of numerical parameters
required for the simulations. The Front-tracking aspect
allows for a precise description of solid-fluid interfaces,
which will be extremely useful when studying colli-
sions between non-spherical particles in a future study.
More specifically, we developed a method that uses
Lagrangian markers to describe the solid-fluid interface.
The method is developed for flows with particles of any
shape. Obviously, in the tested configurations where
only spherical particles are considered this method
is not optimal. Indeed, we use several hundreds of
Lagrangian markers to describe the surface of one
sphere whereas only two parameters - the gravity center
and the radius - are required. However, in the case
of particles of arbitrary shape, a Lagrangian surface
mesh of the solid-fluid interface become a significant
asset to accurately describe the interface. To the best
of the authors’ knowledge, there is no combination of
front-tracking approach and viscous penalty method in
the literature.

We first start by presenting in section 2 the Front-
Tracking method along with the soft-sphere model
used for the solid–solid contact forces. This coupled
DNS–DEM technique is then validated in Section 3
through simulations of various validation cases from
the literature. In section 4, we perform simulations of
fluidized bed, and present a comparison of the simula-
tion results against numerical and experimental data ob-
tained by Ozel et al. (2017) and Aguilar-Corona (2008).
This test serves to validate the coupled DNS–DEM ap-
proach in a case with many particles simultaneously in-
teracting. Finally, in section 5 we draw some conclud-
ing remarks concerning this study and prospects for fu-
ture work.

2. Governing equations and numerical method

The algorithm used in this work to perform direct nu-
merical simulations of fluid-particles flow is based on
the “one-fluid” formalism. In this approach, a single
set of equations is used to describe the behavior of all
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phases present in the computational domain. The dif-
ferent phases are treated as a single fluid with spatially
varying material properties, depending on the phase in-
dicator function. The governing equations are given by:

∇ · u = 0
∂ρu
∂t

+ ∇ · (ρuu) = −∇p + ∇ ·
(
µ
(
∇u + ∇T u

))
+ ρg + Fc

(1)

Where u is the velocity field, ρ the density field, p the
pressure field. µ the dynamic viscosity field, g the grav-
itational acceleration, and Fc the collisional force. Both
phases are considered incompressible. ρ and µ are con-
sidered constant within each phase but show an abrupt
transition across the interface. The equations are iden-
tical to the equations of a single-phase flow. There-
fore, the techniques developed to solve the equations
for single-phase flows can readily be used. The only
difference is that the solver must be adapted to handle
spatially varying material properties. Here we will use
a staggered grid to solve the previous equations (Fig. 1
– Right). When solving numerically equations (1), it is
necessary to identify which phase is present at a given
location. To do this, a phase indicator function I is intro-
duced. It is set to 1 in the solid phase, 0 in the fluid phase
and is equal to the solid volume fraction α = Vsolid/Vcell

in all the cells crossed by an interface (Fig 1). In two-
phase cells, the density is defined as a mean of the fluid
and the solid densities weighted by the phase indicator.
Such arithmetic averaging allows to be consistent with
the mass conservation principle:

ρ = Iρsolid + (1 − I)ρ f luid (2)

The same averaging procedure cannot be used for the
viscosity field, as it needs to satisfy a different kind of
condition (Ritz and Caltagirone (1999)). The following
subsection provides more information about this aspect.

As the particles move, the interface between the two
phases is displaced. Being able to precisely locate the
position of the interface is of paramount importance in
the one-fluid formalism. The advection of the marker
function is governed by:

∂I
∂t

+ u · ∇I = 0 (3)

Despite the apparent simplicity of the Eq. (3), the nu-
merical integration of a discontinuous color function is
one of the difficult problems in computational fluid dy-
namics. Over the years several methods such as the
volume-of-fluid (VOF) method, The level-set method
have emerged to address this problem (see Tryggvason

et al. (2011) for a review on the subject). In this work
we will focus on one method in particular, i.e. the Front
Tracking method (Bunner and Tryggvason (2003)).

2.1. General description of the Front-Traking method

According to this method, the boundary between the
two phases is tracked by a moving surface mesh com-
posed of connected Lagrangian marker points that are
advected relatively to a fixed Eulerian mesh (Fig. 1 –
Left ). The flow equations are solved on the Eulerian
fixed mesh. The interface velocity is calculated by first
doing a tri-linear interpolation of the background ve-
locities at each marker location (Fig. 1 – Right). The
barycentric velocity of the interface ům is then numeri-
cally calculated from:

ům =
1∑
Ai

∑
Aiůi (4)

where Ai and ůi are respectively the area, and the veloc-
ity vector associated to the ith marker of the Lagrangian
mesh. The markers are then translated with the barycen-
tric velocity:

x̊n+1
i = x̊n

i + ∆tůn+1
m (5)

Once the new positions of the markers x̊n+1
i are known,

the front is used to reconstruct the indicator function and
to update the local physical properties accordingly. The
difficulties usually raised by the front tracking method,
related to mass conservation and the management of
fragmentation and coalescence of inclusions, are absent
in our situation. Indeed, as we simulate only solid-fluid
flows with perfectly rigid interfaces, there is no need
to utilize the expensive remeshing procedures intended
to correct the degradation of the interface as it deforms
over time. The special treatment intended to enforce the
rigidity constraint within the solid phase is described be-
low.

2.2. Imposing the rigid body motion

In classical Lagrangian mechanics, an object without
any internal degrees of freedom is referred to as a “rigid
body”. Within such entity, the distance between two ar-
bitrary points is always constant. Mathematically, for
this condition to be fulfilled, it is necessary and suffi-
cient for the velocity field inside the solid region to sat-
isfy:

U(X) = Uc + ω × (X − Xc) (6)

where Xc is the position of the center of mass, Uc is the
velocity of the center of mass and ω is the angular ve-
locity of the rigid body motion. From an Eulerian point
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Figure 1: (Left) Schematic illustration of the phase Indicator function and the front-tracking approach. (Right) In-
terpolation of the y-component of the velocity at a marker position on a 2D staggered grid: the black crosses, pink
squares and green triangles indicate respectively the pressure, x-component and y-component velocity calculation
points, the black dots materialize the Lagrangian marker.

of view, this condition can be expressed as equating the
strain rate to 0 (Temam and Miranville (2005)):

1
2

(
∇u + ∇T u

)
= 0 (7)

This formulation is of great convenience with regard to
the "one-fluid" equations discussed previously. It de-
scribes a localized constraint for the rigid domain that
could be directly imposed over the momentum conser-
vation equation without the need to know the veloci-
ties of the solid beforehand. Practically, it is possible
to nullify the deformation tensor by imposing a high
value for µ inside the solid region relative to the fluid
domain. The rigid body behavior will be in that case
asymptotically enforced. Such an approach is called a
viscous penalty method (Ritz and Caltagirone (1999);
Caltagirone and Vincent (2001)). This strategy has the
advantages to greatly simplify the coupling between the
solid-fluid phases since the coupling is done implicitly
and the inertia of the solid region is fully carried by the
fluid solver. The velocity field inside the solid being a
divergence-free field, the continuity equation is also au-
tomatically satisfied.

To impose solid body motion, a large value of the fic-
titious viscosity must be imposed in the solid region.
This led to the existence of large viscosity ratios in the
vicinity of the interface and especially in cells where
the phase indicator function I ∈]0, 1[, hereafter called
diphasic flow cells. The calculation of the average vis-
cosity in those cells is of great importance to properly

reproduced the friction force applied by the fluid flow
on the particle. A possible way to compute the latter is
to apply an arithmetic average, as it is done for the av-
erage density. Doing so will result in a negligible con-
tribution of the fluid viscosity to the average regardless
of the solid volume fraction. If µsolid � µ f luid then:

µ = Iµsolid + (1 − I)µ f luid ≈ Iµsolid (8)

This will have the negative effect of making the solid
appear larger than it actually is. By propagating the
penalty effects to the flow near the interface, the drag
forces affecting the motion of the solid is therefore over-
estimated. As signaled by Ritz and Caltagirone (1999),
using a harmonic average would better satisfy the condi-
tion of stress continuity at the interface. However, even
with this strategy, the viscosity ratio can occasionally
be so high that additional treatments are required. For
example, some authors proposed to reduce the radius of
the particles to compensate for this effect (Vincent et al.
(2014); Thiam (2018)). For the numerical investigations
conducted in this paper, it was shown that utilizing a
step function to apply the fluid viscosity to both the fluid
cells and the two-phase cells produced the best results.
It should be noted that fine-tuning the viscosity ratio is
necessary before starting the simulations, as imposing
low viscosity inside the particle will lead to a poorly en-
forced rigidity constraint. In this study a viscosity ratio
between 103 and 104 is taken.
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2.3. Short-range interaction modeling

In general, Non-Boundary-Fitted-Particle-Resolved
(NBF-PR) methods, such as the one discussed in the
previous section, are ideally suited to capture the long-
range hydrodynamic interactions between the fluid and
solid phases. However, they are not the best suited
methods to capture the short-range interactions. The
lubrication effects are under resolved, and the colli-
sions are not taken into account intrinsically by NBF-
PR methods. Additional modeling is required to take
those interactions into account.

2.3.1. Lubrication modeling.
As two solids are brought very close to one another,

the fluid between the two surfaces is drained out of its
location, generating viscous constraints. The NBF-PR
methods performs a decent job of capturing the fric-
tional forces as long as the distance between the two
solids is greater than two simulation cells. In the case
where the spacing becomes smaller than one cell, the
viscous stress is in fact under resolved. A more realistic
alternative would be to rely on a closure model based
on the lubrication theory to make up for the grid’s lack
of spatial resolution (Cox and Brenner (1967); Cooley
and O’Neill (1969)). In Breugem (2010), the author im-
plemented this approach by adding an amplified Stokes
drag force on the solid when the space between the solid
surfaces dropped below a predetermined user-defined
distance. This distance corresponds to the threshold un-
der which the simulation method fails to solve the fluid
dynamics accurately. To avoid the divergences of the
analytical expression of the lubrication force, Breugem
capped it starting from another user specified distance.
Physically, it was justified as a means to simulate the
saturation of the hydrodynamic force caused by rough-
ness effects. As the force constantly opposes the parti-
cle’s motion, it is a dissipative force by nature.
Several authors have successfully used this kind of clo-
sure procedure to model the viscous lubrication effects
(Kempe and Fröhlich (2012); ten Cate et al. (2002);
Costa et al. (2015); Ardekani et al. (2016); Biegert et al.
(2017); Izard et al. (2014); Brändle de Motta et al.
(2013)). However, this approach can be problematic in
a number of ways: the lubrication model’s implementa-
tion might result in a large number of ad hoc numerical
parameters that must be calibrated. For instance, three
separate parameters were required in Brändle de Motta
et al. (2013). Additionally, the provided amplification
coefficients for the lubrication force are grid dependent.
Moreover, in Biegert et al. (2017) the authors showed
that the dissipation may depend on the gap thickness,

and more investigation is needed in that regard. Finally,
for this procedure to be valid, the Stokes flow assump-
tion must be fulfilled within the fluid film separating the
two solids. This is only verified if the distance between
the two interfaces is significantly smaller than the char-
acteristic length scale of the particles (Cox and Brenner
(1967)). To correctly solve for viscous dissipation in the
fluid film, the mesh would need to be further refined, at
the expense of computation time.

2.3.2. Collision modeling
As the surfaces of the particles come into direct con-

tact, a collision occurs and affect the momentum of both
particles. Most of the time, the trajectories are abruptly
altered. According to Legendre et al. (2006), regardless
of whether the collision happens in air (dry collision) or
in a more viscous fluid (wet collision), the typical colli-
sion period is often several orders of magnitude shorter
than the particle’s viscous relaxation time. As a result,
the particles perceive the collision as a discontinuity in
their motions. Fully capturing the motion of the parti-
cles as they undergo collisions will require incredibly
short integration time steps that would make simulat-
ing a particulate flow over an extended period of time
impossible. For that reason, many authors preferred
to model the collisions using a variation of the soft-
sphere collision model of Cundall and Strack (1979).
In the latter, the contact force applied to colliding solids
is proportional to the distance separating their contact
points. Glowinski et al. (1999) used a repulsive force
proportional to the square of the distance separating the
particles. The force that models lubrication in liquid-
fluidized bed is applied from a distance beyond the par-
ticle surface to prevent any overlapping. Wan and Turek
(2006) used a similar approach but the particles were
allowed to overlap. Although straightforward to imple-
ment, using such force results in poor physical fidelity.
Since the collision is viewed as elastic, the energy dis-
sipation during the collision is not taken into considera-
tion.
Based on the Hertz theory of contacts (Hertz (1882);
Johnson (1985)), other authors suggested computing
a nonlinear contact force using a mass-spring-damper
system Kempe and Fröhlich (2012).

The coefficients of the model are derived from geo-
metrical properties and from the particle elastic charac-
teristics. The solid dissipation can be addressed thanks
to the dash-pot coefficient. This approach is well con-
cordant with the dry collisions experiments in Stevens
and Hrenya (2005). The order of the time step of the
Navier-Stokes solver is larger than the collisions dura-
tion predicted by the Hertz contact theory. Due to this
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separation of time scales, extremely small numerical in-
tegration time steps are needed to solve the particle mo-
tion. Fortunately, it is possible to artificially stretch the
collision duration to be larger than the fluid solver time
step and still maintain the perceived separation of time
scales (or the discontinuity) in the motion of the parti-
cles. Based on this principle, Feng et al. (2010) man-
ually reduced the value of the spring stiffness value to
obtain a satisfactory collision time. Kempe and Fröh-
lich (2012) suggested in their adaptive collision model
(ACM) to stretch the collisions time to ten times the
flow solver time step. Similarly, to the Hertz theory, a
non-linear force-displacement relationship was used to
model the contact force. The spring and dash-pot coef-
ficients were computed by solving a second-order ordi-
nary differential equation using an iterative solver. Ray
et al. (2015) improved on the work of Kempe and Fröh-
lich by proposing an explicit formulation for the coef-
ficients, alleviating the need for an iterative solver. In
a similar fashion, Breugem (2010); Brändle de Motta
et al. (2013); Izard et al. (2014); Costa et al. (2015)
used the work of van der Hoef et al. (2006) to model
the collision force with a damped harmonic oscillator.
Which can be seen as a linearized version of the work
of Kempe and Fröhlich. The spring stiffness and the
damping coefficient are computed from the prescribed
collision time and coefficient of restitution in a more
straightforward way. A common factor among the stud-
ies mentioned above is that they were paired with a lu-
brication model to account for the dissipative effect of
the viscous drainage. Besides that, the rebound veloc-
ity is unknown beforehand, as it can only be determined
after the collision has ended.

2.3.3. Combined modeling
With the Simplified Spring Collision Method

(SSCM), Mohaghegh and Udaykumar (2019) devel-
oped a different strategy that simultaneously accounts
for both the dissipative effect in the solid and in the
fluid gap. The collision force is modeled based on a
mass spring system with no dash-pot. Such methodol-
ogy allows to reduce the number of numerical parame-
ters introduced. The spring stiffness is chosen to satisfy
the specified maximum distance of collision. This dis-
tance is the only numerical parameter of the model. No
damping coefficient or lubrication model is employed
in the SSCM. Instead, the spring stiffness is adjusted
using the coefficient of restitution to obtain the appro-
priate rebound velocity. The adjustment is made dur-
ing the bouncing phase, which occurs after the particle
has stopped moving at the "maximum distance of colli-
sion" and has begun to rebound in the opposite direction

of the impact. The SSCM differs from other models in
that the rebound velocity of the particles is known be-
fore the impact even occurs. This is so because, the
coefficient of restitution used to correct the spring stiff-
ness is calculated from a well-established experimen-
tal relationship between the restitution coefficient and
the Stokes number Ruiz-Angulo and Hunt (2010). The
SSCM addresses many of the drawbacks of the prece-
dent collision models. It allows the collision time to be
stretched, enabling granular flow simulations to be run
for extended times. The model’s coefficients are pro-
vided explicitly, eliminating the requirement for an it-
erative solution. The number of numerical parameters
is reduced to one (the maximum distance of collision),
since no separate lubrication model is used.

In this paper we use a slightly modified version of
Mohaghegh and Udaykumar (2019), as there is a quite
obvious equivalence between the maximum distance of
collision and the collision duration, the latter was pre-
ferred to compute the spring stiffness coefficient. We
discuss the details of our modifications in the following.
Consider a collision occurring between two spherical
particles p and q or between the particle p and a wall.
The contact force Fc acting on a particle during a colli-
sion is modeled by a harmonic oscillator as:

Fc = −kδnn (9)

with k is the spring stiffness and δn the normal distance
separating the colliding sphere surfaces given by:

δn = ‖xp − xq‖ −
(
Rp + Rq

)
(10)

where xp and xq are the positions of the center of mass
of the particles p and q, Rp and Rq are the radius of the
particles. n is the normal vector to the plan of collision
defined by:

n =
xp − xq

‖xp − xq‖
(11)

The differential equation describing the motion of the
system is given by:

meδ̈n + kδn = 0 (12)

The spring stiffness k was derived by Breugem (2010)
in the special case of an elastic collision:

k = me

(
π

τ0

)2

(13)

where me is the effective mass and τ0 is the prescribed
collision time. For particle-particle interactions, me =

mpmq/
(
mp + mq

)
with mp and mq being the mass of
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particles p and q respectively. If the collision occurs
between a particle p and a wall, then me = mp. The
stretched collision time is taken as a multiple N of the
Navier-Stokes solver time step ∆t:

τ0 = N∆t (14)

Physically, collisions are inelastic, which means that
some kinetic energy is dissipated during the contact.
Even, in the scenario where the viscous stress is neg-
ligible, some energy is still dissipated as vibrations in
the solid. The dry coefficient of restitution ed accounts
for this energy dissipation:

ed =
∆ureb,d

∆uimp,d
(15)

where ∆ureb,d and ∆uimp,d are, respectively, the rebound
and impact relative velocities of the two solid surfaces
colliding in the absence of fluid viscous dissipation (dry
regime). The solid’s dry coefficient of restitution is a
physical property directly related to the material’s elas-
tic properties. The default value used in this work is
ed = 0.97.
In the wet regime, the energy dissipation is notably
higher due to the fluid viscous dissipation. Joseph et al.
(2001); Yang and Hunt (2006) have shown experimen-
tally that the apparent or effective coefficient of restitu-
tion is strongly correlated with the Stokes number St:

St =
2
9

Re f f ∆uimpρs

µ f
(16)

where Re f f is the effective radius – defined by Re f f =

RpRq/
(
Rp + Rq

)
in the case of two particles, and Re f f =

Rp in the case of a wall-particle collision –, ∆uimp is the
relative velocity at the moment of impact, ρs the den-
sity of the particles and µ f the dynamic viscosity of the
fluid.
The relationship between the effective coefficient of
restitution e and the Stokes number St can be written
as the product of the constant dry coefficient of restitu-
tion and a "wet" coefficient of restitution, ew depending
on the St number. Typically ew varies from 0 to 1:

e(St) = ed ew (St) =
∆ureb

∆uimp
(17)

From Fig 2, we can see the effective coefficient of
restitution e is pretty much equal to the dry coefficient of
restitution for St > 1000. This is in accordance with the
fact that in this range of Stokes numbers, viscous effects
are negligible. However, for lower values of St, from 10
to 1000, significant variation of e is observed. The co-
efficient of restitution decrease with St and the related
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Figure 2: Adapted from Legendre et al. (2006). Wet co-
efficient of restitution, as a function of the Stokes num-
ber St. The solid line is the best fit of the data points
of Joseph et al. (2001); Gondret et al. (2002); Legendre
et al. (2005); Foerster et al. (1994)

viscous stress rise. Below the critical value St 10, no
rebound is observed. Using the analogy with a dissipa-
tive mass-spring system Legendre et al. (2005) showed
that the evolution of the wet coefficient of restitution as
a function of the St numbers followed the expression:

ew = exp
(
−

35
St

)
(18)

Similarly to Mohaghegh and Udaykumar (2019), the re-
quired rebound velocity at the end of a collision is ob-
tained by using the ew (St) relationship (Eq. 18) as an
entry parameter of the model. The collision’s effective
coefficient of restitution is calculated based on the col-
lision St number before impact and is used to adjust the
spring stiffness in Eq. 9. Such procedure eliminates the
requirement for a lubrication model or a dash-pot coef-
ficient by intrinsically accounting for both energy dissi-
pation. It is worth noticing that the pre-collision Stokes
number is calculated at the time when the particles start
to collide. This means that the lubrication effect has
been already under-resolved, since the gap between the
particles is less than a grid-cell. Hence, the Stokes num-
ber could be over-estimated. Practically speaking, the
kinetic energy of the particle before and after the col-
lision are prescribed using the effective coefficient of
restitution. The difference between the two energies
correspond to the dissipative effects. After translating
this difference into potential energy, it can easily be
shown that, to obtain the desired rebound velocity, the
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spring stiffness needs to be reduced by a factor of e2

in the rebound phase (see Mohaghegh and Udaykumar
(2019) for more detail about the derivation). The ad-
justment is made after the maximum overlap of the in-
terfaces allowed by the spring stiffness is reached, and
the particles start to go in opposite ways. The spring
stiffness is treated as piece-wise function of the scalar
product ∆u · n (Eq. 19). The change of sign of the latter
is used to pinpoint the exact moment when the reduction
of stiffness is done (see Fig 3):

ki =


kimp = me

(
π

τ0

)2

if ∆u · n 6 0

kreb = kimpe2 if ∆u · n > 0

(19)

The collision force Fc = −kiδnn is then applied to the
purely solid cells in the simulation domain (correspond-
ing to Indicator function strictly equal to 0). This is done
at each time step until there is no overlapping between
the two solids.

2.4. Numerical implementation

The Navier–Stokes equations are solved by a predic-
tion/correction method on a staggered Cartesian grid
with a Marker-And-Cell finite volume discretization
(MAC) Puckett et al. (1997). The velocity increment
u̇ in the prediction step (Eq. 20) is calculated by sum-
ming the contributions of the convection term An, the
diffusion term Dn+1, the collisional source term Cn+1,
and the gravitational source term g. The pressure is not
taken into account in this step:

u̇ =
u∗ − un

∆t
= −An +

1
ρn

(
Dn+1 + Cn+1

)
+ g (20)

To alleviate the numerical constraints caused by the
high viscosity ratios Rµ required by the viscous penalty
method. The evaluation of the diffusive source term is
implicited and computed with an Uzawa algorithm.
Regarding the calculation of the collision term Cn+1, the
distance δn (Eq. 10) between the surfaces of each pair
of particles p and q is calculated. If (δn < 0) then a
collision is detected and the force to be applied to each
of these particles is calculated. According to the third
Newton law of motion, the reaction force to be applied
to the particle q is of equal intensity and opposite direc-
tion to the force applied to the particle p:

Fc,p→q = −Fc,q→p (21)

The forces acting on the particle p are summed up and
divided by the volume Vp of the particle p. The result is

then applied to the appropriate solid cells thanks to the
phase indicator function:

cn+1 = In
∑

q

Fn+1
c,q→p

Vp
(22)

The forces are calculated at each time step until no over-
lapping is observed (δn ≥ 0). The time integration of
the collision force is done by a Semi Implicit Euler time
scheme (SIE) to prevent numerical divergences caused
by the Forward Euler scheme:

Fn+1
c,q→p = −kiδ

n+1
n n (23)

where n is given by Eq. 11 and δn+1
n is the distance sep-

arating the surface of the two colliding particles evalu-
ated at the time n + 1:

δn+1
n =

∥∥∥∥(xn
p − xn

q

)
+ ∆t

(
un

p − un
q

)∥∥∥∥ − (
Rp + Rq

)
(24)

As the coefficient N (Eq. 14) is the only numerical
parameter of our model, we discuss its influence in more
detail in the following. The spring stiffness during the
negative phase (∆u · n < 0) is obtained by setting the
collision duration τ0 = N∆t. However, when the spring
stiffness is reduced in the positive phase (∆u ·n > 0), the
collision period is stretched due to the oscillation period
being inversely proportional to the spring stiffness. By
noting that Treb = Timp/e and:

τ =
1
2

(
Timp

2
+

Treb

2

)
(25)

where Timp and Treb are the oscillation periods corre-
sponding to the spring stiffness kimp and kreb, we can
show that the stretching factor is equal to:

τ

τ0
=

1
2

(
1 +

1
e

)
(26)

Fig. 4 (a) illustrates the evolution of the stretching fac-
tor as a function of N for various coefficients of resti-
tution e. We can see that the initial collision duration
τ0 is retrieved in the dry regime (high Stokes numbers
corresponding to e = 1). In the asymptocitc case where
e→ 0, the collision duration tends to infinity, and no re-
bound is observed as the particles remain in permanent
contact.

Considering the relationship between N and the colli-
sion duration τ, it is important to keep N as small as pos-
sible to maintain physical realism at high Stokes num-
bers. However, N must be high enough for the colli-
sion force to be accurately integrated, as integration er-
rors increase when N decreases. In order to demonstrate
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Figure 3: Explanatory diagram of the collision model.

this concept, we have numerically solved Eq. 12 using
a semi-implicit Euler scheme. The spring stiffness of
the system is defined by Eq. 19. Fig. 4 (b) illustrates
the evolution of the integration error, which is defined
as |eerr | = |e − e(N)| /e, where e(N) represents the coef-
ficient of restitution obtained after numerically solving
Eq. 12 with an Euler Semi-Implicit method.

In our work, we have set N = 8 similarly to Breugem
(2010); Brändle de Motta et al. (2013); Costa et al.
(2015). For this value, the integration error in the dry
regime is less than 1 percent. However, due to our
model’s nonlinear nature, the integration error increases
as the coefficient of restitution decreases. For e equal
to 0.65, 0.45, and 0.15, the integration error is equal
to 0.038, 0.085, and 0.71, respectively. To reduce the
integration error at lower Stokes numbers, N can be in-
creased (see Fig. 4 (b)). However, this comes at the cost
of losing physical realism at higher Stokes numbers.
Alternatively, higher-order integration schemes can be
used, but they come at the expense of computing time
and memory consumption. In the collision validation
section, we compared our simulation results to experi-
mental data. We found that the overestimation of the re-
bound velocity introduced by the numerical integration
scheme was negligible compared to the additional vis-
cous damping effect exerted by the surrounding fluid.
Therefore, we selected a value of N = 8 and the ESI
scheme for the following simulations, as this choice was
seen a good balance between computation time, accu-
racy, and physical realism.

In the case of a wall-particle collision, a virtual par-
ticle identical to the particle p is generated behind the
wall as proposed in Glowinski et al. (1999). This strat-

egy allows the calculation of the collisions force in the
wall-particle collisions situation to be treated in an iden-
tical manner to the particle-particle scenario. The vir-
tual particle’s center of mass is positioned so that the
contact point is displaced from the wall by a distance
εwp. Due to numerical restrictions unique to our simula-
tion code, which prohibit Lagrangian points from leav-
ing the simulation domain, the use of this offset is neces-
sary. It was observed that this numerical limitation may
be overcome with hardly any impact on the accuracy of
the simulations provided in the next section by taking
εwp equal to one fourth of the simulation grid cell.

Once the contributions corresponding to each source
term in Eq. 20 is known, the predicted velocity field u∗
is then obtained by using an Euler Explicit (EE) time
scheme:

u∗ = un + u̇∆t (27)

Then, an elliptic pressure equation is solved by a SSOR-
preconditioned GCP solver to impose a divergence-free
velocity field:

∇ ·

(
1
ρn∇Pn+1

)
=

1
∆t
∇ · u∗ (28)

From the resulting pressure field, we can compute the
projected velocity field un+1 by:

un+1 = u∗ −
1
∆t
∇Pn+1 (29)

The freshly obtained Eulerian velocity field is used to
compute the velocity ůi at the position of Lagrangian
nodes thanks to a tri-interpolation procedure F ():

ůn+1
i = F

(
x̊n

i ,u
n+1

)
(30)
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Figure 4: (a) Evolution of the collision duration stretching factor as a function of N for different coefficients of
restitution e. (b) Evolution of the integration error as a function of N for different coefficients of restitution e.

The velocities of the Lagrangian nodes are used to com-
pute a mean velocity of the interface ům:

ůn+1
m =

1∑
S i

∑
S iůn+1

i (31)

The Lagrangian nodes are then translated with the mean
interfacial velocity:

x̊n+1
i = x̊n

i + ∆tůn+1
m (32)

The phase indicator is integrated using the new front
position by a geometrical procedure G ():

In+1 = G
(
x̊n+1

)
(33)

And finally the physical properties are updated:

ρn+1 = In+1ρsolid + (1 − In+1)ρ f luid (34)

µn+1 =

µsolid if In+1 = 1

µ f luid if In+1 < 1
(35)

The algorithm is implemented in the TrioCFD code
developed by CEA relying on the TRUST platform
(formerly known as Trio_U). The code is fully paral-
lel, written in C++ and has been widely used to sim-
ulate both single-phase and multi-phases (liquid/gas)
flows (Toutant and Bataille (2013); Aulery et al. (2015);
Dupuy et al. (2018, 2019); du Cluzeau et al. (2019,
2020, 2022)).

3. Canonical validation cases

In this section, the validity of the present method is
demonstrated by comparing its performances to repro-
duce the experimental data of ten Cate et al. (2002) and
Gondret et al. (2002).

Case ρs/ρ f
ρ f µ f Vin f Re

[kg.m−3] [Pa.s] [m.s−1]
1.1 1.115 970 0.373 0.038 1.5
1.2 1.161 965 0.212 0.060 4.1
1.3 1.164 963 0.113 0.091 11.6
1.4 1.167 960 0.058 0.128 31.9

Table 1: Physical parameters for a spherical particle set-
tling in viscous fluid

3.1. Free-falling sphere

The first validation case considered to be the settling
of spherical a particle in a three-dimensional box at dif-
ferent Reynolds numbers. The test case is based on
the experimental configuration of ten Cate et al. (2002)
where a single sphere, of diameter dp = 15 mm, is
released at rest in an open quiescent container. This
numerical benchmark was also done by Vincent et al.
(2014); Zhou et al. (2017); Chen and Müller (2020).
Reynolds numbers, Ret = ρ f VtRp/µ f with Vt the termi-
nal velocity, of 1.5, 4.1, 11.6 and 32.2 are considered by
adjusting the fluid viscosity inside the box as shown in
Tab. 1. The container dimensions are 0.1×0.16×0.1 m3

in the x, y and z-direction respectively. The gravity
g = 9.81 m.s−1 acts in the negative y-direction. The
release position of the particle gravity center is posi-
tioned 12.75 cm above the bottom of the tank, and cen-
tered on the x and z directions. The density of the solid
particle is ρp = 1120 kg.m−3. Our numerical domain
corresponds to the experimental container size. No-slip
boundary conditions are imposed on the walls of the do-
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main, while outflow boundary conditions (with a null
reference pressure) is applied on the upper boundary.
Initially, the fluid is at rest in the domain. The latter is
divided into 100×160×100 mesh cells, which leads to a
mesh resolution of Nd = 15 grid cells per diameter. The
viscosity ratio is set to Rµ = 1000 for all the four cases.
Finally, an integration time step equal to ∆t = 10−4 s is
used for the pressure solver. Fig. 5 compares the evo-
lution of the simulated particle vertical velocity and po-
sition to the experimental results. The velocity history
of the particle highlights four different phases: (i) An
acceleration phase – where the speed of the particle in-
creases gradually until it reaches its terminal velocity –.
(ii) A stationary phase – during which the particle ve-
locity remains constant –. (iii) A deceleration phase –
as the particle gets closer to the bottom wall, its veloc-
ity decrease under the effect of the viscous constraints
–. (iv) A contact phase when the motion of the particle
ends. With our method, the acceleration and decelera-
tion phases are qualitatively well captured. However the
method seems to underestimate the drag constraints, as
the computed terminal velocity in the equilibrium phase
is systematically slightly higher than the reference. As
a result, the collision with the bottom of the tank occurs
earlier in our simulations. Moreover, at low Reynolds
number, when the particle comes into contact with the
wall, an abrupt change in the slope of the velocity is no-
ticed.
Finally, by reproducing these cases, we demonstrate that
our method is able to reproduce the settling of a solid
sphere in a quiescent flow. This case allows, moreover,
to validate the implementation of the rigid body mo-
tion in the particle and the collision model for the no-
bouncing contact regime.

3.2. Bouncing motion of a solid sphere colliding onto a
planar surface in a viscous fluid

the second validation case is dedicated to the bounc-
ing collision regime. To this end, we reproduce the ex-
perimental data of Gondret et al. (2002) exploring the
bouncing motion of a solid sphere colliding onto a pla-
nar surface in a viscous fluid as conducted. The same
benchmark was also performed by Jain et al. (2019); Ki-
danemariam and Uhlmann (2014); Elghannay and Tafti
(2016). A stainless steel particle is released in a tank
filled with silicon oil RV10. Under the effect of grav-
ity, the particle accelerates towards the bottom of the
tank until multiple collisions are observed. The simu-
lated time evolution of the trajectory and vertical veloc-
ity profiles are compared to the experimental data. The
simulation is conducted in a 9×12×9 mm3 domain with
a mesh resolution dp/∆x = 20. The particle is 3 mm

in diameter, and its center is positioned at the coordi-
nates (4.5 mm, 8.88 mm, 4.5 mm). The densities of the
fluid and the solid are equal to 935 and 7800 kg/m3 re-
spectively. The fluid viscosity is equal to 0.01 Pa.s and
the viscosity ratio Rµ is kept to 1000. No-slip boundary
conditions are imposed on all the walls of the domain.
The time step is equal to 5×10−5 s. The advection time,
defined with the terminal velocity and the mesh size, is
equal to 5×10−3 s. To decrease the numerical costs, the
simulation begins at the second rebound of the Gondret
et al. (2002) experiments. This approach is justified be-
cause the impact of the fluid perturbation induced by
the first rebound does not carry over to the following
rebounds, as stated in Gondret et al. (2002).

Fig. 6 shows the time evolution of the particle gravity
center and it’s settling velocity. The simulated trajectory
agrees convincingly with the experimental data during
the initial settling phase. The trajectory after the first re-
bound is properly reproduced. However slight discrep-
ancies are observed with the experimental data for the
following rebounds. This is to be expected, as experi-
mental data are more scattered at lower Stokes numbers
(see Fig. 2). As the restitution coefficient underestima-
tion accumulates over the successive rebounds, numeri-
cally the particle comes at rest slightly sooner than in the
experiments. The Stokes numbers of the successive re-
bounds are respectively St = 76.1, St = 41.2, St = 18.9
and St = 5.2.

Finally, this case allows extending our validation of
the collision model to the bouncing regime. As the
particle-wall and particle-particle collisions are treated
the same way in our model (see Sec. 2), we consider at
this point our model validated and in the next section we
assess its capability to model complex flows involving a
large number of particles.

4. Particle resolved direct numerical simulation of a
2100 liquid–solid fluidized bed

In this section, our aim is to examine the overall ac-
curacy of the framework to reproduce the global be-
havior of a dense fluid-particles suspension. To do so,
we report simulation results of a 2100 particles flu-
idized bed at 4 different fluidization velocities. The
parameters for the simulation are derived from the ex-
periment of Aguilar-Corona (2008) who investigated
the fluidization of 6 mm monodisperse spherical par-
ticles of Pyrex (ρp = 2230 kg/m3) in a concentrated
aqueous solution (65 % w/w) of potassium thiocyanate
(ρ f = 1400 kg/m3, µ f = 3.8 × 10−3 Pa.s). The exper-
imental setup was designed to facilitate the validation
of numerical method. The refractive index matching of
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Figure 5: Time histories of the vertical position and velocity for a particle settling in a small container: (a) Normal-
ized gap height Hy/dp; (b) Settling Velocity Uy. Symbols: experimental data ten Cate et al. (2002), lines: present
simulations
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Figure 6: Time histories of the vertical position and velocity for a 3 mm steel sphere colliding with a normal surface in
silicon oil RV10: (a) Vertical position hy; (b) Settling Velocity uy. Symbols: experimental data Gondret et al. (2002),
lines: present simulations

both phases allows the authors to use non-intrusive op-
tical measurement technique (PIV) to characterize the
fluid velocity field and the particles agitation. The par-
ticle terminal velocity is Vt = 0.24 m.s−1 (see Aguilar-
Corona (2008)) and the associated Reynolds and Stokes
numbers are 530 and 94, respectively. Note that Ozel
et al. (2017) use a different definition of the Stokes num-
ber St =

8ρp

3ρ f Cd . With this definition, the Stokes number
is equal to 5.3. The two definitions are equivalent if

Re << 1 and consequently Cd = 24/Re. Both phases
are contained in a cylindrical shaped tank.

This configuration was already studied numerically
by Ozel et al. (2017) – using the Implicit Tensorial
Penalty Method of Vincent et al. (2014) – with a mesh
resolution of Nd = 12. To assess the performance of
our approach, we reproduce in this section the numer-
ical configuration of Ozel for four different fluidiza-
tion velocities: 0.15 m.s−1, 0.12 m.s−1, 0.09 m.s−1 and
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Figure 7: 3D views of the particles’ position distribution in the domain for t = 0 s and t = 9.6 s for the four fluidization
velocities tested.

0.073 m.s−1. However, as our code does not handle
O-grid mesh, the container geometry considered is a
cuboid of dimensions 0.072 × 0.648 × 0.072 (matching
the experimental cross-section area). The simulations
were performed on the same mesh resolution as Ozel,
imposing Nd = 12. This is slightly coarser than the
resolution used for the previous cases, but it appears to
be a fair balance between computational cost and accu-
racy for this numerical case. The viscosity ratio is set to
Rµ = 10000. To speed up the initial transient in the sim-
ulations, particles are initially positioned so that the ini-
tial bed height approximately matches the one expected
at stationary state (based on the results of Ozel et al.
(2017) for a fluidization velocity of UF = 0.12 m.s−1).
Fig. 7 shows the initial position of the particles (left) and
a snapshot at t = 9.6 s for the four fluidization velocities
(right).
The time-evolution of the maximum particles position
ymax(t) at various fluidization velocities is shown in

Fig. 8 along side of a box plot for the fluctuation of ymax.
This quantity is calculated by tracking the maximum
y-coordinate of the center of gravity for all particles.
Since the expected height of the bed at UF = 0.12 m.s−1

was used to initialize the position of the particles, the
transient in this case is the shortest. We can see that ymax

fluctuates around a mean value, and that the fluctuations
amplitudes increase with the fluidization velocities. The
height evolution shows that a statistical stationary state
is reached, roughly after 2 s, for UF = 0.09 m.s−1 and
UF = 0.073 m.s−1. However, even after 10 s of sim-
ulation, the bed-level oscillations are quite strong for
UF = 0.15 m.s−1. In this case, single particles are
ejected much higher than the average bed height (see
Fig. 7).

Fig. 9 shows the time averaged evolution of the solid
fraction α as a function of the height y, alongside a box
plot showing the spread of the values of the volume frac-
tion relative to the mean. These profiles were obtained
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Figure 8: (a): Time-evolution of maximum axial particle position at different fluidization velocities: UF =

0.15, 0.12, 0.09, 0.073 m.s−1. The continuous lines represent the average mean value of ymax over the range
t = [5 s, 10 s] (b) Box plot of the distribution of ymax (m). The box represents the interquartile range (IQR), the
line inside the box is the mean, the whiskers extend to the minimum and maximum values.
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Figure 9: (a) Time-section average of solid void fraction α as a a function of height. The continuous lines represent
the mean value of α over y = [0.05ymax, 0.95ymax]. (b) Box plot of the distribution of α. The box represents the
interquartile range (IQR), the line inside the box is the mean, the whiskers extend to the minimum and maximum
values.

by taking cross sections of the domain at regular in-
tervals and calculating the mean solid fraction over the
cross section. The instantaneous profiles obtained were
then time averaged over the period [t0 = 5 s, t1 = 10 s]
to obtain the time averaged profiles shown in Fig 9.
From both figures, One can see that the volume frac-
tion is fairly uniform along the height of the bed; how-

ever, a transition zone appears between the bed itself
and the pure fluid region. We can see that the thickness
of this transition zone directly depend on the fluidiza-
tion speed. The lower the fluidization velocity, the nar-
rower the transition zone. Indeed, this transition zone is
nothing but a time average of the fluctuation of the bed
height observed on Fig. 7 and 8. The bed volume frac-
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tion is calculated by taking the spatial average along the
y direction between [0.05ymax; 0.95ymax] to eliminate the
edge effects caused by the wide transition zone at high
fluidization speeds. ymax is the time averaged maximal
axial particle position given by:

ymax =
1

t1 − t0

∫ t1

t0
ymax(t)

The resulting average bed volume fraction is plotted
against the fluidization velocity, on Fig. 10, and com-
pared with the experimental data. of Aguilar-Corona
(2008) the numerical results of Ozel et al. (2017) and
the empirical correlation proposed by Richardson and
Zaki (1954) (for n = 2.4 and UF0 = 0.24 m.s−1 as pro-
posed by Aguilar-Corona (2008)) given by:

UF

UF0
= (1 − α)n (36)

where UF is the fluidization velocity, UF0 is the entrain-
ment velocity and n is a function of Ret.

n = 4.65 if Ret < 0.2
n = 4.4Re0.03

t if 0.2 < Ret < 1
n = 4.45Re0.1

t if 1 < Ret < 500
n = 2.4 if Ret > 500

(37)

One can observe in Fig. 10 that our results are in good
agreement with both the numerical and experimental
references. All the evolutions were well predicted by
the empirical correlation for the given n and UF0 values.
Fig. 11 displays a color map of the velocity magnitude,
at the center plan of the domain. One can observe that
the velocity in the particles is one order of magnitude

lower than the fluid velocities. As the fluidization veloc-
ities increase, larger pseudo-turbulent structures emerge
behind the particles. The interaction of the developing
wakes with the particles results in a complex flow dy-
namic. A more quantitative insight of this flow configu-
ration is detailed in the following.

4.1. Solid phase agitation

A much challenging validation relies on the ability
of the method to predict the velocity statistics of the
solid phase and especially its agitation. Statistical quan-
tities are computed using the same methodology as in
the reference data. The instantaneous variance of parti-
cle velocity in each direction i are first calculated using
Eq. 38:

〈ũ2
p,i〉p =

〈 (
up,i − 〈up,i〉p

)2
〉

p
(38)

The notation 〈·〉p denotes the particle phase average :

〈φp〉p =
1

Np

Np∑
1

φp (39)

where Np is the total number of particles in the domain.
Then, the time average of the variance of the particle
velocities (Eq. 40) is computed for all directions and
shown in Fig. 12 alongside the previous experimental
and numerical results.

〈ũ2
p,i〉 =

1
t1 − t0

∫ t1

t0
〈ũ2

p,i〉p (40)

We can see that our method allows to accurately pre-
dict the velocity variance, for the three components,for
solid fractions α > 0.2. The superimposition of the two
transverse components, x and z, attest the convergence
of the statistics. For the lowest volume fraction (high-
est fluidization speed), our simulation overestimates the
variance of the three components and the two trans-
verse components are no longer matching. Moreover,
the variance of the velocity along the vertical axis is al-
ways higher than in the transverse direction whatever
the solid fraction. This anisotropy can be characterized
by a coefficient kanis:

kanis =

√√
〈ũ2

p,y 〉

1
2

(
〈ũ2

p,x 〉 + 〈ũ2
p,z 〉

) (41)

The evolution of the anisotropy coefficient as a func-
tion of the volume fraction is plotted in Fig. 13. We
can see that, even if the values obtained are slightly
lower than Ozel et al. (2017), as expected we find
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Figure 11: Contours of the velocity magnitude, in a plane centered in the domain of the x-direction, in the established
phase (t = 9.6 s) and for the four fluidization velocities UF .
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Figure 12: Variance of axial (a) and transverse (b) particle velocity with respect to the bed solid concentration.
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Figure 13: Anisotropy coefficient of the particle veloc-
ity fluctuations as a function of the bed solid concentra-
tion

no dependence of the kanis on the averaged particle
volume fraction (overlooking the non-converged case
which corresponds to the highest fluidization velocity
UF = 0.15m.s−1). Based on this analysis, the accu-
racy of our approach is comparable to that of Ozel et al.
(2017); Vincent et al. (2014).

5. Conclusion

We have implemented in the Front-Tracking frame-
work a one-fluid method capable of performing Particle-
resolved direct numerical simulations of dense fluid-
particle flow. The interactions between the fluid and the
particles are taken into account by a combined viscous
penalty method and a front tracking algorithm. Both
collision and lubrication interactions are simultaneously
modeled by soft sphere collision model similar to what
Mohaghegh and Udaykumar (2019) proposed. During
a collision, the spring stiffness of the model is adjusted
to obtain the desired rebound velocity by using exper-
imental correlation relating the impact Stokes number
to the coefficient of restitution. This approach allows
to avoid using additional closure laws for lubrication
modeling, which results in a reduction of the number
of numerical parameters in the models. The method
has been tested against well-established experimental
benchmarks of, and demonstrated good overall numeri-
cal consistency. The hydrodynamics was first validated
by simulating the motion of a settling sphere in a fluid.
The method showed qualitatively good results with the
experiments on the range of terminal Reynolds numbers
studied (1.5 < Re < 32). The collision modeling was

then validated by reproducing the bouncing trajectory
of a spherical particle colliding into a planar surface.
The method proved to be quite capable of reproducing a
physically realistic bouncing motion. Finally, the abil-
ity of the method to simulate granular flow with numer-
ous particles (> 2000) was demonstrated by reproduc-
ing the experiments and Aguilar-Corona (2008). The
results obtained showed quantitative consistency with
the references for solid fraction ranging from 0.2 to 0.4.
In this range, our method showed similar performances
to the one developed by Ozel et al. (2017). Overall
the proposed numerical approach does capture convinc-
ingly the physics of particles–fluid and inter-particle in-
teractions and was shown to be valid over a wide range
of Stokes/Reynolds numbers.
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