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FROM FRACTAL R-L LADDER NETWORKS TO THE DIFFUSION EQUATION

We give a self-contained presentation of fractal R-L ladder networks as well as a detailed computation of the admittance of these systems. We also discuss the conditions under which such systems display a fractional behavior. Finally, we give a full discussion of the connection existing between fractal R-L network and the diffusion equation.
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Introduction

We are interested in a dynamical system S which is modeled by a functional relationship between system input e(t) and system output u(t).

Let E and U denote the image under the Fourier transform F of the functions e and u,

System e(t) u(t)

1 respectively, i.e.

(1) E(ω) = F [e](ω), U (ω) = F [u](ω).

The system S can then be described using a transfer function H connecting the functions E and U , precisely

U (ω) = H(ω)E(ω).

In this article, we study a special class of electronic systems called ladder networks. Ladder networks have been used in a variety of situations like modeling of electric machines [START_REF] Riu | Modélisation des courants induits dans les machines électriques par des systèmes d'ordre un demi[END_REF], respiratory system [START_REF] Ionescu | The human respiratory system -An analysis of the interplay between anatomy, structure, breathing and fractal dynamics[END_REF], hydrogen storage [START_REF] Sabatier | Fractional behaviours modelling -analysis and application of several unusual tools[END_REF], etc. Many examples can be found in the book of A. Oustaloup [START_REF] Oustaloup | Diversity and Non-integer Differentiation for System Dynamics[END_REF].

We are interested in ladder-network which possess a fractional behavior, meaning that the transfer function H behaves as [START_REF] Oustaloup | Diversity and Non-integer Differentiation for System Dynamics[END_REF] H(ω) ∼ ω→+∞ ω ν , for a given constant ν > 0.

In this paper, we focus on ladder-network of the form presented on Figure 1,

R 1 L 1 R 2 L 2 • • • L i R i • • • • • • • • • Figure 1. R-L ladder-network
where R i and L i are resistance and inertance respectively. Imposing scaling relations on the resistance and inertance, we obtain fractal R-L ladder networks. They were defined by A.

Oustaloup [START_REF] Oustaloup | Diversity and Non-integer Differentiation for System Dynamics[END_REF] (see also [START_REF] Riu | Modélisation des courants induits dans les machines électriques par des systèmes d'ordre un demi[END_REF],p.38, figure III.10).

We have not find a complete derivation of the expression given in ( [START_REF] Oustaloup | Diversity and Non-integer Differentiation for System Dynamics[END_REF], [START_REF] Riu | Modélisation des courants induits dans les machines électriques par des systèmes d'ordre un demi[END_REF],equation (III-38)) for the transfer function nor of the functional relation satisfied by this function.

In this paper, we give a self-contained characterization of the transfer function associated to R-L ladder network and how this function specialise in the case of fractal R-L ladder networks.

We study under which conditions such fractal R-L ladder networks produce fractional behavior. In particular, we give complete proofs for results presented in ( [START_REF] Oustaloup | Diversity and Non-integer Differentiation for System Dynamics[END_REF], [START_REF] Riu | Modélisation des courants induits dans les machines électriques par des systèmes d'ordre un demi[END_REF], III.42) as well as details about the connection with the diffusion equation. Our presentation follows the general strategy proposed by J. Sabatier and al. in [START_REF] Sabatier | Fractional behaviours modelling -analysis and application of several unusual tools[END_REF] interpreting some electronic devices as discretization of some partial differential equations and in particular as particular diffusion equations.

The paper is organised as follows:

In Section 2, we introduce the mathematical framework about trees and forest allowing us to encode the structure of the electronic diagram describing the R-L ladder networks. We derive in Section 3, the explicit expression of the transfer function for a R-L ladder network which makes use of continued fraction expansions.

Section 4 specialise the previous result in the case of fractal R-L ladder networks. In particular, we prove that the transfer function satisfies a functional relation.

In Section 5, we discuss under which conditions a transfer function can exhibit a fractional behavior.

Finally Section 6 describes in full details the connection between the diffusion equation and fractal R-L ladder networks.

We finish by some perspectives of this work.

Electronic diagrams and decorated forest

Every electronic diagram is constructed using two basic configurations connecting electronic elements called in series and parallel and classically represented as follows

• in series

a b • in parallel a b
where a and b are two electronic components.

The idea to represent electronic circuits as graphs goes back to G. Kirchhoff in 1847 [START_REF] Kirchoff | Über die auflösung der gleichungen, auf welche man bei der untersuchung der linearen verteilung galvanischer ströme geführt wird[END_REF]. We use the following graphs for the series and parallel diagrams respectively: An alternatively more algebraic way is to encode the previous graphs as ab when a and b are in series and a ⊗ b when a and b are in parallel.

As an example, we consider the following family of recursive diagrams denoted by D n , n ≥ 1, represented as it is shown in Figure 2.

It must be noted that recursive diagrams contain as a special case R-L ladder networks.

Using the previous notation, we obtain the encoding for D 1 , D 2 and D 3 presented in the Figure 3.

The special structure of recursive diagrams produces particular objects called forest for the graph notation and words for the algebraic one. Precisely, we have: A rooted tree is a finite, connected graph without cycles, with a special vertex called the root.

a 1 b 1 a 1 b 1 a 2 b 2 a 1 b 1 a 2 b 2 a 3 b 3 Figure 2. D 1 , D 2 and D 3 diagrams. a 1 b 1 a 1 b 1 a 2 b 2 a 1 b 1 a 2 b 2 a 3 b 3
We denote by T the set of rooted trees. The number of vertices of rooted tree we call the weight of this tree. Then we denote by T(n) the set of rooted trees of weight n. As an example, we have

T(1) = {•}, T(2) = , T(3) = , , . . .
As already seen in the representation of the diagram D n , we have not rooted trees but a finite collection of rooted trees called forests. Precisely: Definition 2.2. A rooted forest is a graph such that each connected component is rooted tree.

The set of forest is denoted by F. The set of rooted forest of weight n is denoted by F(n) 

F(1) = {•}, F(2) = , , F(3) = , , , , . . 
A n = {a 1 , b 1 , a 2 , b 2 , . . . , a n , b n }.
In applications to R-L ladder networks, the number a i will represent inertances and b i resistances.

Denoting by S n the basic element

L n R n
we can construct recursively the diagram D n using the notion of grafting map: let T 1 . . . T k be a decorated forest and a ∈ A. We denote by β a (T 1 . . . T k ) the tree having a as a root, i.e.

(4)

β a (T 1 . . . T k ) = a(T 1 ⊗ T 2 • • • ⊗ T k ).
Using this definition, we can of course graft a tree on a given forest by selecting a particular We then have ( 5)

a T 1 T 2 • • • T k a T 1 T 2 • • • T k β a
D 1 = S 1 , D 2 = β a 1 (S 2 D 1 ), D 3 = β a 2 (S 3 D 2 ), . . .
This can be seen as a composition of grafting maps:

(6) D n = β a n-1 (S n β a n-2 (S n-1 . . . β a 1 (S 2 S 1 ) . . . )). a 1 b 1 a 2 b 2 S 2 D 1 = S 1 β a1 (S 2 D 1 ) a 1 b 1 a 2 b 2 D 2 a 1 b 1 a 2 b 2 D 2 a 3 b 3 S 3 β a2 (S 3 D 2 ) a 1 b 1 a 2 b 2 D 3 a 3 b 3 Figure 5.

Recursive construction of D2 and D3

As the forest S n have a very particular structure, we can even give a more explicit form:

(7) D 1 = a 1 ⊗ b 1 , D 2 = a 1 (a 2 ⊗ b 2 ) ⊗ b 1 , D 3 = a 1 (a 2 (a 3 ⊗ b 3 ) ⊗ b 2 ) ⊗ b 1 , . . . .
These relations will be useful by deriving the recursive form of the admittance for the diagrams D n , n ≥ 1. 

Explicit computation of admittance/impedance for recursive diagram

(D n ) n≥1 3 
Y (F ) = 1 Z(F ) .
The mapping Y : F → R can be computed recursively on the weight of the Forest. Indeed, we have the following well known algebraic relations for the computations of Y : Lemma 3.1. Let F 1 and F 2 be two forest. Then, we have

(9) Y (F 1 F 2 ) = 1 Y (F 1 ) -1 + Y (F 2 ) -1 , Y (F 1 ⊗ F 2 ) = Y (F 1 ) + Y (F 2 ).
Using this rules, the admittance of any decorated forest with decorations {a 1 , . . . , a k } can be computed explicitly using the single admittance Y (a i ). Moreover, as the algebraic rules are only using addition and inversion, we have the following structural lemma: Lemma 3.2. For any decorated forest of finite weight n with decorations {a 1 , . . . , a n }, the corresponding admittance is a rational function of the single admittance Y (a 1 ), . . . , Y (a n ).

This lemma has an interesting consequence for R -L ladder network as in this case the single admittance have for all ω ∈ R (resp. R * ) a very special form given by:

(10) Y (R)(ω) = 1 R , and 
Y (L)(ω) = 1 jLω
, with j 2 = -1.

Then, using the structural lemma 3.2, we have :

Lemma 3.3. Let (D n ) n≥1 be a recursive diagram with decorations made of resistances R i and inertance L i . Then, for all n ≥ 1, the admittance Y (D n )(ω) is a rational function of ω.
The explicit form of the asymptotic impedance is nevertheless not so easy to catch and we need to have more information on the structure and properties of this function when n goes to infinity. 

D 2 = β a 1 (S 2 S 1 ) = a 1 S 2 ⊗ b 1 , D 3 = a 1 (β a 2 (S 3 S 2 )) ⊗ b 1 = a 1 (a 2 S 3 ⊗ b 2 ) ⊗ b 1 , . . .
which can be written for all n ≥ 1 as

(12) D n+1 = a 1 (a 2 (. . . a n-1 (a n S n+1 ⊗ b n ) ⊗ b n-1 . . . ) ⊗ b 2 ) ⊗ b 1 .
A more convenient way to write this relation is to denote by F (a 1 , b 1 , . . . , a n , b n ) the decorated forest associated to D n . Equation ( 12) is then given by ( 13)

F (a 1 , b 1 , . . . , a n , b n ) = a 1 F (a 2 , b 2 , . . . , a n , b n ) ⊗ b 1 .
A direct consequence of the algebraic rules (9) is that the admittance of

F (a 1 , b 1 , . . . , a n , b n ) satisfies (14) Y (F (a 1 , b 1 , . . . , a n , b n )) = Y (b 1 ) + 1 Y (a 1 ) -1 + Y (F (a 2 , b 2 , . . . , a n , b n )) -1 , for all n ≥ 1.
Using the classical notation for continued fractions given by

(15) [α 1 , . . . , α n ] = α 1 + 1 α 2 + 1 . . . + 1 α n ,
we can rewrite relation ( 14) as ( 16)

Y (F (a 1 , b 1 , . . . , a n , b n )) = [Y (b 1 ), Y (a 1 ) -1 , Y (F (a 2 , b 2 , . . . , a n , b n ))].
for all n ≥ 1.

Applying recursively relation (16), we obtain the following explicit form of the admittance: 

(17) Y (F (a 1 , b 1 , . . . , a n , b n )) = [Y (b 1 ), Y (a 1 ) -1 , Y (b 2 ), Y (a 2 ) -1 , . . . , Y (b n ), Y (a n ) -1 ].
In order to go further, we need some information on the decorations. This is done in the next Section by considering fractal R-L networks. We can simplify our notations for fractal diagrams. Let us denote for all n ≥ 1 by

F σ,ρ n (a 1 , b 1 ) the decorated forest (19) F σ,ρ n (a 1 , b 1 ) = F (a 1 , b 1 , σa 1 , ρb 1 , . . . , σ n-1 a 1 , ρ n-1 b 1
). We then have the following Lemma: 

(21) Y σ,ρ a 1 ,b 1 = [Y (b 1 ), Y (a 1 ) -1 , Y σ,ρ σa 1 ,ρb 1 ]
. This relation is difficult to handle but in many application of fractal diagram a more stringent condition is made relating the two intrinsic parameters σ and ρ of the diagram. We detail this situation in the next Section. 

(24) Y σ a 1 ,b 1 (ω) = [Y (b 1 ), Y (a 1 ) -1 , σY σ a 1 ,b 1 (σ 2 ω)].
The proof is a direct consequence of Lemma 4.2 and the following Lemma: 

(25) Y σ σa 1 ,σ -1 b 1 (ω) = σY σ a 1 ,b 1 (σ 2 ω
). The proof is given in Section 8.

Fractional behavior of infinite fractal R-L ladder networks

The functional equation ( 24) is difficult to solve. Following classical approaches, we make the two following hypothesis:

(26) σY (a 1 ) -1 (ω)Y σ a 1 ,b 1 (σ 2 ω) -→ ω→0 0, Y σ a 1 ,b 1 (σ 2 ω) -→ ω→0 +∞.
Under these assumptions, the asymptotic behavior of Y σ a 1 ,b 1 (ω) is related to the simplified functional relation:

(27) Y (ω) = σY (σ 2 ω),
meaning that Y is a scale invariant function.

We then look if fractional or power law behaviors are possible for functions satisfying the scale invariance relation (27). Precisely, can we find solutions of (27) in the class

(28) Y (ω) = Kω γ ,
for some real constants K and γ ?

Replacing directly Y by a function (28) in (27), we obtain (29) Kω γ = σKσ 2γ ω γ , so that γ have to satisfy (30)

σ 2γ+1 = 1, ∀ ω = 0.
We then deduce the following Theorem: As a consequence, we are waiting for asymptotic behavior of the form

(31) Y σ a 1 ,b 1 (ω) -→ ω→0 K √ ω .
It must be noted that this result is coherent with our asymptotic assumptions (26).

This kind of behavior suggest a possible connection between fractal R-L ladder networks and the diffusion equation. This fact is well known in the engineering community and we give details in the next Section.

Fractal R-L ladder networks and the diffusion equation

The aim of this Section is to give a precise presentation of computations found for example in Oustaloup [START_REF] Oustaloup | Diversity and Non-integer Differentiation for System Dynamics[END_REF], [START_REF] Riu | Modélisation des courants induits dans les machines électriques par des systèmes d'ordre un demi[END_REF] or more recently in [START_REF] Sabatier | Fractional behaviours modelling -analysis and application of several unusual tools[END_REF] and [START_REF] Ionescu | The human respiratory system -An analysis of the interplay between anatomy, structure, breathing and fractal dynamics[END_REF]. These computations are not easy to handle and we hope that this section will allow more people to deal with. 6.1. The continuous representation problem for R-L Ladder networks. Let us consider a R-L ladder network described by the family of inertance and resistance (L n , R n ) n≥1 . For each unit of this ladder we have relations between the quantities U n and I n corresponding to the voltage and current: for each n ≥ 1, we have (32)

U n -U n-1 = -jL n-1 ωI n , I n+1 -I n = - 1 R n U n . L 0 R 0 • • • L n R n • • • • • • I 0 I 1 I n I n+1 I n -I n+1 I 0 -I 1 U 0 U 0 -U 1 U n U n+1 U n -U n+1 Figure 6. Structure of R-L ladder networks
The main idea of the representation of R-L ladder networks by a partial differential equation (PDE), is to understand equations (32) as coming from the discretization in the space variable z of functions U (z, ω), I(z, ω), R(z) and L(z) over a particular discrete space-scale T = {z n } n≥1 to be determined.

The form of the discrete equations will be written as differences equations on the variable z and this will induce a particular partial differential equation.

Precisely, we interpret (32) as ( 33)

U (z n , ω) = U n (ω), I(z n , ω) = I n (ω), R(z n ) = R n , L(z n ) = L n .
Then, for each n ≥ 1, we can rewrite (32) as (34)

∆ -[U ](z n , ω) = -j L(z n-1 ) z n -z n-1 ωI(z n , ω), ∆ + [I](z n , ω) = - 1 R(z n )(z n+1 -z n ) U (z n , ω),
where ∆ + , ∆ -are the classical forward and backward finite difference operators defined for all f ∈ C(T, R d ) by ( 35)

∆ + [f ](z k ) = f (z k+1 ) -f (z k ) z k+1 -z k and ∆ -[f ](z k ) = f (z k ) -f (z k-1 ) z k -z k-1 ,
respectively.

In order to recover the underlying PDE, we can write the second order equation

(36) ∆ -[-R(z)(µ + (z) -z)∆ + [I]](z n , ω) = -j L(µ -(z n )) z n -µ -(z n ) ωI(z n , ω) where µ + (z k ) = z k+1 , µ -(z k ) = z k-1 .
It is not easy to determine the continuous form of the finite difference equation ( 36).

An idea is to simplify as far as possible the previous expression in such a way that the continuous PDE will be easy to identify. 6.2. Representation by a classical diffusion equation. The easiest situation is obtained by imposing the following conditions called the diffusion conditions as the associated continuous PDE will corresponds to the Fourier transform of the classical diffusion equation:

Diffusion conditions: For all z ∈ T, we have

(37) R(z)(µ + (z) -z) = R 0 and L(µ -(z)) z -µ -(z) = L 0 .
If such a discrete space-scale T and functions R and L exist, then equation (36) reduces to

(38) ∆ -[R 0 ∆ + [I]](z, ω) = jL 0 ωI(z, ω), for all z ∈ T ± .
A continuous analogue is then given by (39)

∂ 2 I ∂z 2 = j L 0 R 0 ωI.
However, one has to prove that a space-scale T and functions R and L solutions of the diffusion conditions can be indeed constructed. 6.3. Solution to the diffusion representation problem: the geometric case. The determination of R and L from the conditions (37) are in general difficult to handle. However, there exists a simple non trivial case called the geometric case:

We assume that the space-scale T is such that for all z ∈ T -

(40) µ + (z) -z = δz,
where δ is a constant.

In order for T to be non trivial we must assume that z 1 > 0 (or < 0). Then, we obtain z 2 = (1 + δ)z 1 , z 3 = (1 + δ) 2 z 1 , . . . . This corresponds to a geometric distribution of the elements of T.

Assuming that T is a geometric discrete space-scale, the functions R and L are then given by ( 41)

R(z) = R 0 δz , L(z) = L 0 δz, for all z ∈ T.
As a consequence, we obtain the following Lemma: Lemma 6.1 (Diffusion conditions-geometric case). Let T be a geometric space-scale with parameter δ = 0. A solution to the diffusion conditions (37) is given by the functions R and L defined on R * and R respectively defined by

(42) R(z) = R 0 δz , L(z) = L 0 δz.
It must be noted that other possibilities are certainly possible. However, a global characterization of the space-scale T leading to an easy identification of the functions R and L satisfying the diffusion conditions is out of the scope of this article. 6.4. Diffusion conditions, geometric space-scale and fractal R-L ladder networks. The previous results impose some constraints on the type of R-L ladder networks that one can represent by a diffusion equation. Indeed, taking the functions R and L as in Lemma 6.1 and reminding that their evaluation on the geometric space-scale T with parameter δ gives the coefficients (R n , L n ) n≥1 of the R-L ladder network, we deduce : Lemma 6.2. A recursive R-L ladder network (L n , R n ) n≥1 corresponding to the discretization of the functions R(z) = R 0 δz and L(z) = L 0 δz over a geometric space-scale T with parameter δ = 0 is a fractal R-L ladder network with parameter 1 + δ.

Proof. By assumption, we have

(43) L(z n+1 ) = L 0 δz n+1 = L 0 δ(1 + δ)z n = (1 + δ)L(z n ), and 
(44) R(z n+1 ) = R 0 δz n+1 = R 0 δ(1 + δ)z n = (1 + δ) -1 R(z n ).
As a consequence, the coefficients (L n , R n ) n≥1 satisfy the relations (45)

L n+1 = (1 + δ)L n , R n+1 = (1 + δ) -1 R n ,
which coincide with the conditions (43) with parameter 1 + δ. Then the family (L n , R n ) n≥1 corresponds to a fractal R-L ladder network with parameter 1 + δ.

We can now formulate the main result of this section:

Theorem 6.3. The behavior of a given current I 0 through a fractal R-L ladder network with inertance L 0 , resistance R 0 and a scaling factor 1 + δ can be obtained by considering the discretization of the Fourier transform of the diffusion equation

(46) ∂ 2 I ∂z 2 = L 0 2πR 0 ∂I ∂t ,
over a geometric space scale T with parameter δ given by

(47) ∆ -[R 0 ∆ + [I]](z, ω) = jL 0 ωI(z, ω).
This result explains in particular the asymptotic fractional behavior of fractal R-L ladder networks.

Proof. Using Lemma 6.2, the fractal R-L network with inertance L 0 and resistance R 0 with scaling factor 1 + δ can be recovered by discretization over the geometric space scale T of functions R(z) = R 0 δz and L(z) = L 0 δz. These functions satisfy the diffusion conditions so that the behavior of a current I 0 though the corresponding fractal R-L ladder network can be seen as the discretization of the equation 

∂ 2 F (I (z, •))(ω) ∂z 2 = L 0 R 0 jωF (I (z, •))(ω), F ∂ 2 I (z, •) ∂z 2 (ω) = F L 0 2πR 0 ∂I (z, •) ∂t (z, •) (ω), which leads to (53) ∂ 2 I ∂z 2 = L 0 2πR 0 ∂I ∂t . (52) 
This concludes the proof.

Conclusion and perspectives

This article was designed to provide a mathematical introduction to classical work in engineering about the modeling of fractional behavior using special electronic devices and in particular fractal constructions called fractal R-L ladder networks. If these results were of importance in the engineering community it was related to the fact that such representations are able to provide modeling of a given phenomenon with less parameters than a classical approach meaning that such procedure give an explicit reduction of parameters for models (see for applications and results the work of D. Riu in [START_REF] Riu | Modélisation des courants induits dans les machines électriques par des systèmes d'ordre un demi[END_REF]). Moreover, we wanted to introduce the connection between these fractal R-L ladder networks and the diffusion equation which was in fact at the beginning of this point of view.

The previous result suggest also, as already claimed by J. Sabatier and co-workers in [START_REF] Sabatier | Fractional behaviours modelling -analysis and application of several unusual tools[END_REF] that the modeling of fractional behaviors can be done perhaps more efficiently looking for some general form of the diffusion equation, in particular with non-constant diffusion coefficients. This is done for example by J. Sabatier and al. in [START_REF] Sabatier | Fractional behaviours modelling -analysis and application of several unusual tools[END_REF]. A mathematical treatment of these results with be given in a forthcoming article.

Proof of Lemma 4.5

We begin with a general property of continued fractions: Lemma 8.1. For all α = 0, we have if true for all k = 0, . . . , n.

As we have As the function is independent of jω, we can also write 
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 21 Admittance of Oustaloup and R-L fractal networks. We first introduce the definition of Oustaloup fractal diagrams: Definition 4.3. A fractal diagram (F σ,ρ n (a 1 , b 1 )) n≥1 is called a Oustaloup fractal diagram if the following relation between the fractal parameters holds (22) ρ = σ -Of special importance are Oustaloup fractal diagram where a 1 and b 1 are respectively inertance and resistance, then the Oustaloup fractal diagram corresponds to the fractal R-L ladder network. Denoting by Y σ a 1 ,b 1 the function (23) Y σ a 1 ,b 1 = Y σ,σ -1 a 1 ,b 1 , we obtain the following Theorem:
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 44 The asymptotic impedance Y σ a 1 ,b 1 of a fractal R-L ladder network with parameters σ, a 1 as inertance, b 1 as resistance, satisfies
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 45 The asymptotic impedance Y σ a 1 ,b 1 of a fractal R-L ladder network with parameters σ, a 1 as inertance, b 1 as resistance, satisfies

Theorem 5 . 1 .

 51 Fractional behaviors of the form (28) satisfying the scale invariance functional (27) for fractal R-L ladder networks exist if and only if γ = -1/2.

  for z ∈ T and I n = I(z n ), z n ∈ T. Denoting by F [g] the Fourier transform of a function g defined by (49) F [g](ω) = R e -2jπωs g(s)ds, and by I (z, t) the function defined by (50) F [I (z, •)](ω) = I(z, ω)and using the fact that (51)F (f )(ω) = 2πjωF (f ),we obtain that I satisfies a diffusion equation with constant coefficient, precisely

1 1 α -1 a 2 = α a 1 + 1 a 2 =

 1122 , α -1 a 2 , αa 3 , α -1 a 4 , . . . ] = α[a 1 , a 2 , . . . ].Proof. The proof is done by induction. We have(55) [αa 1 , α -1 a 2 ] = αa 1 + α[a 1 , a 2 ].Assume that (56)[αa 1 , α -1 a 2 , . . . , αa 2k+1 , α -1 a 2k+2 ] = α[a 1 , . . . , a 2k+2 ],

[a 1

 1 , a 2 , . . . ] = [a 1 , [a 2 , . . . ]],we deduce that for k = n + 1 we have(58) [αa 1 , α -1 a 2 , . . . , αa 2n+3 , α -1 a 2n+4 ] = [αa 1 , [α -1 a 2 , . . . , αa 2n+3 , α -1 a 2n+4 ]], = [αa 1 , [α -1 a 2 , [αa 3 , . . . , αa 2n+3 , α -1 a 2n+4 ]]].Using the induction hypothesis (56) and then equality (55), we obtain(59) [αa 1 , α -1 a 2 , . . . , αa 2n+3 , α -1 a 2n+4 ] = [αa 1 , [α -1 a 2 , α[a 3 , . . . , a 2n+4 ]]], = [αa 1 , α -1 [a 2 , a 3 , . . . , a 2n+4 ]],Finally, using again (55), we obtain(60) [αa 1 , α -1 a 2 , . . . , αa 2n+3 , α -1 a 2n+4 ] = α[a 1 , a 2 , a 3 , . . . , a 2n+4 ],which concludes the proof.For a given inertance a, we have (61) Y (a)(ω) = 1 jaω , so that for all σ = 0, we obtain (62) Y (σa)(ω) = σY (a)(σ 2 ω).In the same way, for a given resistance b, Y (σ -1 b)(ω) = σY (b)(ω).

  (65)Y (σ -1 b)(ω) = σY (b)(σ 2 ω).Using the previous results and formula(17), we obtain thatY σ σa 1 ,σ -1 b 1 must satisfy (66) Y σ σa 1 ,σ -1 b 1 (ω) = [Y (σ -1 b 1 ), Y (σa 1 ) -1 , Y (σ -2 b 1 ), Y (σ 2 a 1 ) -1 , . . . , Y (σ -n b 1 ), Y (σ n a 1 ) -1 , . . . ](ω) = [σY (b 1 ), σ -1 Y (a 1 ) -1 , . . . , σY (σ n-1 b 1 ), σ -1 Y (σ n-1 a 1 ) -1 , . . . ](σ 2 ω).Then we deduce from Lemma 8.1 that(67) Y σ σa 1 ,σ -1 b 1 (ω) = σ[Y (b 1 ), Y (a 1 ) -1 , . . . , Y (σ n-1 b 1 ), Y (σ n-1 a 1 ) -1 , . . . ](σ 2 ω) = σY σ a 1 ,b 1 (σ 2 ω), which concludes the proof of Lemma 4.5.

.

  As we can see, each electronic diagram D n is encoded by a rooted forest of weight 2n. Precisely, each electronic diagram D n is encoded by decorated forest. By decorated forest we mean the forest where elements of a given alphabet set A are attached to each vertices. For an electronic diagram D n we combine the set
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