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The European Union (EU) targets 451 GW of wind power installed by 2030 [START_REF] Komusanac | Wind energy in europe. 2021 statistics and the outlook for 2022-2026[END_REF], doubling the installed capacity in 2022. However, 40 GW to 80 GW of EU wind capacity will reach its end of life by 2030 [START_REF] Lacal-Arántegui | Technology effects in repowering wind turbines[END_REF]. Wind turbines deteriorate with age due to structural fatigue and technological obsolescence: they typically last 25 years [START_REF] Liu | Wind turbine blade waste in 2050[END_REF]. The replacement (see figure 1) of these old wind farms with newer wind farms, called repowering, is critical for achieving EU goals and supports EU targets by increasing power capacity at existing wind farm sites. Indeed, recent wind turbines are more powerful and reliable than those commercially available 20 years ago, resulting in higher capacity factors after repowering [START_REF] Lacal-Arántegui | Technology effects in repowering wind turbines[END_REF]. This explains why WindEurope [START_REF] Windeurope | Windeurope repowering and lifetime extension: making the most of europe's wind energy resource[END_REF] expects 50% of the wind farms reaching their end of life to be repowered by 2030, representing 8 GW per year.

Similarly to the case of a greenfield wind farm project, the first step to assess the profitability of a repowering project is to repeat an Energy Yield Assessment (EYA). An EYA requirement involves establishing a reliable uncertainty estimation of the predicted AEP in the form of a confidence index [START_REF]International Organization for Standardization (ISO), Guide to the expression of uncertainty in measurement (GUM)[END_REF], since this significantly impacts the wind farm's profitability. Indeed, a 2% reduction in uncertainty can increase the project's internal rate of return by 7-9% [START_REF] Bailey | The financial implications of resource assessment[END_REF].

EYA methods have historically been dedicated to greenfield projects. They solve a chain of deterministic models mainly based on the laws of physics. Wind speed measurement campaigns, typically lasting one year, at the wind farm site [START_REF] Clifton | Wind plant preconstruction energy estimates. current practice and opportunities[END_REF] are used to calibrate the model chain. We refer to such a model chain as a Physics-Driven Model (PDM). On the other hand, a long history of production and wind speed measurements are available from Supervisory Control And Data Acquisition (SCADA) system at the end of a wind farm's life. These data reflect the actual conditions of the wind farm and allow us to assess the AEP realized. We refer to the EYA assessment based on SCADA data as an Operational Assessment (OA).

Intuitively, one might expect that if the OA results are integrated into the EYA process when repowering, this can reduce the EYA uncertainty. However, few scientific references discuss EYA methods for repowering that integrate the available operating farm data in the process. This paper intends to bridge this research gap by proposing an EYA method called CONWEY (Correction from backcast Observed errors in New Wind farm Energy Yield assessments) that can exploit the OA results and achieve uncertainty reductions in the AEP estimation compared to PDMs for repowering projects.

The key contributions of this paper are:

1. A literature review on EYA methods in the specific case of repowering. This review does not aim to cover the energy yield assessment domain in general, which is broad, but only the publications pertinent to repowering (i.e. consideration of data from the operating wind farm). This analysis reveals that most work focuses on the AEP estimation and very little on estimating the expected uncertainties. 2. A new EYA method for repowering is proposed, hereafter "CONWEY", which utilizes the historical measurements from the operating farm. Despite the complexity of initial considerations, the final formulation is simple and can be easily adopted by EYA engineers. 3. The proposed method estimates the expected uncertainty. We illustrate how an uncertainty reduction can be achieved compared to the case where production measurements are not integrated into the EYA process.

The various EYA methods that apply to repowering are reviewed in Section 2. Primarily, we give a broad review of the use of operational data in EYA. We identify a promising EYA method that utilizes the OA results. Section 3 presents the mathematical formulation, based on Gaussian processes, that lays the foundations for CONWEY. The section includes the CONWEY equations for AEP and uncertainty prediction. Section 4 applies the new method to a real-world case study and compares CONWEY to a state-of-the-art PDM. We finally conclude in Section 5.

Background

Physics-Driven Models 2.1.1. PDM description

A PDM follows a "white-box" approach. It is based on extended mathematical equations that represent the governing physics of wind power production [START_REF] Zehtabiyan-Rezaie | Data-driven fluid mechanics of wind farms: A review[END_REF]. A typical PDM consists of a chain of models [START_REF] Clifton | Wind plant preconstruction energy estimates. current practice and opportunities[END_REF][START_REF] Zhang | Wind Resource Assessment and Micro-Siting[END_REF]. The first model for Wind Resource Assessment (WRA) derives the long-term wind climate at each turbine location. Then, the wake flow model captures the wind speed deficit inside the farm due to turbine interactions with the airflow. The power curve model converts wind speed to power production. Power loss factor models capture the power production losses, such as technical losses, turbine unavailability for maintenance, self-power consumption of the wind farm, blade icing, and blade erosion. Ref. [START_REF] Lee | An overview of wind-energy-production prediction bias, losses, and uncertainties[END_REF] provides an exhaustive list of possible loss origins. Figure 2 presents a generic version of PDM model chain.

We represent PDM with the function f . The inputs of f are the site data x, the farm characteristics θ, and its lifetime T . x encompasses the wind climate at the site, which is generally obtained by extrapolating short-term onsite wind measurements with long-term reference weather data, topographical inputs, and any site-related wake and flow model parameters. θ corresponds to the farm layout and turbine technical characteristics such as, for example, the power and thrust curves. Finally, T indicates the period during which the farm will be operated, typically 20 to 25 years.

AEP = f (x, θ, T ) (1) 
The AEP of an operating farm is denoted with a sub-index "o", AEP o , while that of the planned farm after repowering is denoted by sub-index "p," AEP p . AEP p is the PDM outcome for the planned farm: it is the result of f for the expected operation period of the planned farm T p , given its characteristics θ p and the site data x. Likewise, it is possible to estimate AEP o , using a PDM: in such case, the extrapolation period T o is in the past, the farm characteristics are θ o but the site data are still x. The latter remain unchanged as they relate to the site, not the wind farm. The estimate is denoted AEP o . Although not impossible, it is improbable that θ o and θ p are the same because developers generally seize the opportunity to install newer, more powerful turbines and optimize the site layout.

Applying a PDM as a backcast is common to identify modeling errors [START_REF] Vidal | Wind energy yield methods update a white paper on validation and update of methods for performing pre-construction wind energy yield assessments in the european context[END_REF][START_REF] Papadopoulos | DNV GL Energy Production Assessment Validation White Paper[END_REF][START_REF] Lunacek | Understanding biases in pre-construction estimates[END_REF][START_REF] Jude | Experience feedback on 97 wind resource assessment studies in france[END_REF].

PDM uncertainty

The lack of knowledge about wind resources and wind power production system models, coupled with the inherent stochastic nature of the modeled variables -such as the variability of wind speed across years -limit the accuracy and precision of any PDM. The probability distribution of the PDM estimate reflects this uncertainty. The business practice assumes that AEP follows a normal distribution. A few works in the literature have attempted to verify this hypothesis. In [START_REF] Kwon | Uncertainty analysis of wind energy potential assessment[END_REF], the authors run a Monte Carlo simulation of a PDM for an offshore project. A normality test passed at a 1% significance level. The authors also consider that the central limit theorem applies in this context [START_REF] Murcia Leon | Uncertainty quantification in energy yield assessment[END_REF]. In the present work, we also follow this hypothesis.

In the literature, the point estimate (the value) f (x, θ, T ) and the point estimator (the stochastic variable) AEP are often confounded. Metrology standards such as [START_REF]International Organization for Standardization (ISO), Guide to the expression of uncertainty in measurement (GUM)[END_REF] even mention that the same notation applies to both. Given the properties of AEP, the confidence interval, also referred to as uncertainty, derives from the standard deviation σ( AEP). Its value is project-specific. It is often presented as normalized by the estimated AEP value. It ranges from 6% to 12% as reported for simple terrain projects [START_REF] Lee | An overview of wind-energy-production prediction bias, losses, and uncertainties[END_REF].

It is also convenient to consider the PDM error:

ϵ PDM = AEP -AEP (2) 
Several papers prefer using the relative error defined as:

ϵ r PDM = AEP -AEP AEP (3) 
A literature review of PDM error assessment showed that recent PDM modeling approaches have negligible bias [START_REF] Lee | An overview of wind-energy-production prediction bias, losses, and uncertainties[END_REF]. This implies that the error distribution has a zero mean. Wind farm financing decisions generally rely on the 50% exceedance probability of AEP, labeled P50. Given the properties of AEP, the P50 equals the mean of AEP and, therefore, the spot estimate f (x, θ, T ).

PDM in repowering studies

Given the lack of standardized EYA models dedicated to the repowering case, the basic industry practice, but also approaches in the literature like [START_REF] Nivedh | Repowering of wind farms -a case study[END_REF][START_REF] Paul | Technical and economic feasibility study on repowering of wind farms[END_REF][START_REF] Hou | Offshore wind farm repowering optimization[END_REF][START_REF] Villena-Ruiz | A techno-economic analysis of a real wind farm repowering experience: The malpica case[END_REF][START_REF] Vicente-Ramírez | Economic feasibility study for the repowering of la venta i and la venta ii wind farms in mexico[END_REF][START_REF] Verma | Wind farm repowering using wasp software -an approach for reducing co2 emissions in the environment[END_REF], is based on using classic PDMs. The above references do not consider the possibility of using the existing measurements of the operating wind farm, and as a consequence, they do not assess the potential benefits of using these data.

Alternative models to PDM for repowering

From a review of the scientific literature, we identified three types of EYA methods besides PDM that apply to repowering projects. These are adjustment methods, calibration methods, and physics-guided data-driven models (PGDDM). We introduce the AEP from the OA before presenting alternative models to PDM. AEP is the OA outcome, obviously only for the operating farm as it requires operational data. Thanks to OA, the PDM error at the operating farm can be estimated. It is denoted ϵ PDM o :

ϵ PDM o = AEP o -AEP o (4) 
In the context of repowering, the OA process must eliminate data points irrelevant to acquiring information regarding the planned farm configuration. For example, a grid-mandated curtailment may occur once in the operating farm's lifetime and should therefore not be considered a nominal performance of the farm. The OA process is not as simple as summing the power production recorded. It also requires defining and identifying anomaly data points. As demonstrated in references [START_REF] Craig | Uncertainty quantification in the analyses of operational wind power plant performance[END_REF], operational yield assessment necessitates modeling farm behavior in the presence of anomalous data points or data unavailability, commonly achieved through power curve models.

The authors found few attempts in the literature to model OA uncertainty. Ref [START_REF] Craig | Uncertainty quantification in the analyses of operational wind power plant performance[END_REF] investigated the uncertainty associated with state-of-the-art methods to filter anomalies and model the power curves: the associated uncertainty is 2.9% for most datasets investigated. However, the authors suggest higher values for a data set containing multiple anomalies. Other references [START_REF] Bodini | Operational-based annual energy production uncertainty: Are its components actually uncorrelated?[END_REF][START_REF] Lindvall | Post-construction production assessment of wind farms assessment and optimization of the energy production of operational wind farms: Part 1[END_REF] estimated uncertainty for power recordings covering a few years and therefore derived an uncertainty value for long-term extrapolation. The latter is generally irrelevant for repowering since several years of power recording are available. Given the lack of references on uncertainty calculation, wind engineers rely on their own experience to derive a value. In the case of repowering, where a long history of power recording is available, the suggested value of 2.9% in [START_REF] Craig | Uncertainty quantification in the analyses of operational wind power plant performance[END_REF] is relevant. Finally, likewise AEP, it is business practice to assume that AEP is normally distributed, which allows for the calculation of uncertainty following the standard approach of [START_REF]International Organization for Standardization (ISO), Guide to the expression of uncertainty in measurement (GUM)[END_REF]. The visual inspection of the plot of the distribution of OA errors in ref [START_REF] Craig | Uncertainty quantification in the analyses of operational wind power plant performance[END_REF] is consistent with this assumption.

The OA error is denoted ϵ OA :

ϵ OA = AEP o -AEP o (5) 
Finally, the observed PDM error is the difference between the PDM error and the OA error:

ϵ PDM o = ϵ PDM -ϵ OA (6) 

Adjustment methods

The adjustment methods are "black-box" regression methods that adjust the PDM result using the OA result. Figure 3 provides an overview of the adjustment model: the learning process involves a regression analysis, where the regressor is the estimate of the PDM based on the operating farm parameters, and the response variable is the OA results. Subsequently, estimating the annual energy production (AEP) is a two-stage process. Firstly, the PDM is executed with the planned farm parameters, and secondly, the regression model is performed using the resulting PDM output. Linear regression is one potential option for the regression model:

AEP a p = β *
where AEP a denotes the AEP estimate that results from an adjustment model. In [START_REF] Bullard | Getting back in the game, uncertainty in wind speed dating in the repower world[END_REF], the optimal parameter β * 1 is obtained matching the PDM and OA results at the operating farm, using a least squares optimization:

β * 1 = argmin β 1 AEP o -β 1 * f (x, θ o , T o ) 2 ⇐⇒ β * 1 = AEP o f (x, θ o , T o ) (8)
If the linear model can be considered as representative of the planned farm, the estimated AEP resulting from the adjustment process is subject to an uncertainty level equivalent to that of the OA. This assertion is supported by a comparison of a PDM and its corresponding adjustment method for an onshore repowering project, as reported in Ref [START_REF] Bullard | Getting back in the game, uncertainty in wind speed dating in the repower world[END_REF]. Notably, the PDM and the adjustment model exhibit estimated uncertainties of 13.5% and 4.3%, respectively. It should be noted, however, that the author did not explicate the precise method employed to compute the uncertainties.

The conditions underlying the proposed methodology may not always hold in the context of repowering, given that the regression coefficient derived from the operating farm may not reflect the same underlying relationship at the planned farm. This limitation reduces the generalizability of the approach. It is worth noting that the latest wind turbine models exhibit greater reliability than their counterparts installed two decades ago. Consequently, if wind turbine performance issues at the operating site are not detected and corrected during the learning phase, they may influence the adjustment coefficient β * 1 , potentially introducing bias into the AEP prediction for the planned farm.

In [START_REF] Victoria | Wind condition analysis and partial repowering concept for fantanele-cogealac onshore project[END_REF], authors opt for an alternative β * 1 : the ratio of rotor diameters. However, no associated uncertainty is presented.

Calibration methods

A calibration model enhances the accuracy of a PDM by adjusting specific characteristics of the site data, such as the mean wind speed, so that OA and PDM results match. Based on the authors' experience, calibrating the mean wind speed is a frequently employed technique in repowering projects for industrial applications. Other intermediate outputs of the PDM can also be subject to calibration, such as the wake model parameters. The general form of the calibration (using least square) is:

x * = argmin x AEP o -f (x, θ o , T o ) 2 (9)
Once the optimal parameter x * is estimated, the AEP is calculated using the planned characteristics (θ p ) for the operation period of the planned farm T p :

AEP c p = f (x * , θ p , T p ) (10) 
In [START_REF] Bezbradica | Introducing multi-criteria decision analysis for wind farm repowering: A case study on gotland[END_REF], the long-term mean wind speed is calibrated based on OA results for a repowering project. The primary issue with this type of calibration is that it neglects that the prior mean wind speed values might have been correct and the discrepancy between PDM and OA may have been due to other sources of errors. Indeed, the wake modeling error, the power curve modeling error, or the topographic flow modeling error might be the reason for the discrepancy. Finally, the Figure 3: Schematic view of the adjustment method. The error of the PDM at the operating farm corrects the outputs of the PDM at the planned farm. AEP denotes the AEP from the PDM while AEP a denotes the AEP from the adjustment method calibration might result in an unrealistic biased mean wind speed value. Schreiber et al. [START_REF] Schreiber | Improving wind farm flow models by learning from operational data[END_REF] addressed this concern by calibrating a comprehensive wind farm model with multiple parameters in a study not intended for repowering. However, it is still possible for the model to yield unrealistic parameter values if a modeled phenomenon does not occur during the observation of power production. This issue can arise, for example, if there are no instances of wind direction that align with all the wind turbines, making it impossible to calibrate the wake flow model parameters. The authors address this issue by estimating the calibrated parameters' uncertainty from the Fischer information matrix. The latter quantifies the information in the observations related to a certain parameter. Ultimately, it is up to the wind engineer to determine whether the calibration produces satisfactory results based on the assessed uncertainties. The method applied to a wind farm in a wind tunnel and two operational wind farms showed an improvement of the root mean square error assessed on time series of power production [START_REF] Schreiber | Improving wind farm flow models by learning from operational data[END_REF][START_REF] Braunbehrens | The wind farm as a sensor: learning and explaining orographic and plant-induced flow heterogeneities from operational data[END_REF]. However, in the present article, we are interested in the AEP, the sum of power production. AEP prediction accuracy cannot be evaluated from the presented results. In [START_REF] Syed | Partial repowering analysis of a wind farm by turbine hub height variation to mitigate neighboring wind farm wake interference using mesoscale simulations[END_REF][START_REF] Khan | Optimization of a wind farm by coupled actuator disk and mesoscale models to mitigate neighboring wind farm wake interference from repowering perspective[END_REF], the standard parameters of an inter-wake model are compared to those found using the calibration method: since the parameters are close, the repowering project PDM estimate uncertainty decreases (non-quantified). In [START_REF] Teng | A calibration procedure for an analytical wake model using wind farm operational data[END_REF], a wake model is calibrated using wind speed measurements from wind turbine anemometers. We observe on error plots that the calibrated wake model performs slightly better.

Physics-guided data driven models

Purely data-driven models showed promising results in forecasting wind power at the shortterm scale [START_REF] Kariniotakis | Renewable Energy Forecasting: From Models to Applications[END_REF]. However, application to multi-annual timescales and accommodation of the different characteristics of learning data (operating farm) and target (planned farm) remains challenging. Purely data-driven approaches complement physics-driven methods to overcome the above-mentioned issues. For example, ref [START_REF] Zehtabiyan-Rezaie | Data-driven fluid mechanics of wind farms: A review[END_REF] combines purely data-driven approaches, such as neural networks, and "physics-driven approaches resulting in a gray-box approach into a socalled physics-guided data-driven model (PGDDM)". In [START_REF] Yan | A general method to estimate wind farm power using artificial neural networks[END_REF], an artificial neural network is trained on turbine power losses using wind speed, the blockage ratio, and the wind turbines' distance from each other. The latter two vary for each wind direction and represent the proportion of the farm facing wake flow. The PGDDM showed low prediction bias and root-mean-square error at the target site. However, the authors found that the method only works if learning and target farms have the same type of turbines, unlike in most repowering projects. Similarly, other PGDDMs showed promising results for various wind farm layouts but did not overcome the issues arising from the difference between the operating and planned farm turbine parameters [START_REF] Park | Physics-induced graph neural network: An application to wind-farm power estimation[END_REF][START_REF] Sun | Wind turbine power modelling and optimization using artificial neural network with wind field experimental data[END_REF].

Literature review conclusion

Following the above presentation, we can conclude that the PGDDM approach is not suitable for repowering because of the change from the original physical system, which generates the training data, to the target system (repowered) farm on which the approach is evaluated. Instead, calibration and adjustment methods appear to be promising. However, the calibration method described in [START_REF] Schreiber | Improving wind farm flow models by learning from operational data[END_REF] may not be suitable for industrial use, as it requires extensive data preparation, can be time-consuming, and requires statistical and probability expertise for tuning. Furthermore, there is currently no established method for propagating parameter uncertainties, such as those associated with the wake flow parameters, into an AEP uncertainty. Although the adjustment method is straightforward and easy to implement, existing adjustment methods do not provide means of predicting uncertainty, particularly with respect to the model's limited applicability to the planned farm. To address these limitations, a novel adjustment method, referred to as "CON-WEY", is proposed in the following section. This method is suited to industrial applications and includes an uncertainty prediction model.

The proposed "CONWEY" method

Posterior error distribution of PDM errors

We assume that ϵ PDM is a Gaussian vector, which is a reasonable, commonly employed assumption in the field of wind energy. This assumption is grounded in empirical evidence, as the PDM error has been observed to exhibit Gaussian distribution both when applied to predict the AEP of individual wind turbines and when applied to predict the AEP of an entire wind farm. It can be deduced that certain linear combinations of PDM errors are also Gaussian. However, it should be noted that this does not fulfill the requirement for random variables to constitute a Gaussian vector since the distribution of any linear combination of Gaussian variables is not guaranteed to be Gaussian. Although we cannot demonstrate this in our specific case, it is important to recognize that this does not contradict the initial assumption of a Gaussian ϵ PDM . The Gaussian process is denoted N:

ϵ PDM ∼ N 0, K(x, θ, T, x ′ , θ ′ , T ′ ) ( 11 
)
where K is the PDM error covariance matrix. It evaluates the covariance of a pair of PDM errors for several different sites (x, x ′ , ...), farm characteristics (θ, θ ′ , ...) and, periods (T, T ′ , ...). For repowering, K is a 2*2 matrix, and x = x ′ since we are considering the same site. The off-diagonal terms are the covariance functions of the pair of PDM errors for the operating and planned farm k:

k(x, θ o , θ p , T o , T p ) = σ(ϵ PDM o , ϵ PDM p ) (12) 
The diagonal terms correspond to k(x, θ o , T o , θ o , T o ) and k(x, θ p , T p , θ p , T p ): they are the variances of the PDM errors. Finally, we introduce the correlation function ρ o,p for notational convenience:

ρ o,p = k(x, θ o , θ p , T o , T p ) σ(ϵ PDM o ) σ(ϵ PDM p ) (13) 
In a physical sense, this correlation function quantifies the degree of similarity between the errors a PDM would make in predicting the operating and planned farms AEP. Or, likewise, the similarity between the operating and planned farms: for a planned farm with an identical layout and comparable turbine characteristics to the operating one, ρ o,p will be very close to 1. Conversely, if the layout and turbine characteristics change, ρ o,p will be minimal, and the quantity of information learned at the operating farm that applies to the planned farm will be much reduced. We assume that the PDM and OA are two independent processes such that the observed PDM error ϵ PDM o consists of the sum of the a priori error ϵ PDM o and the independent measurement noise ϵ OA . The Gaussian process, specific to repowering, therefore, is:

ϵ PDM o ϵ PDM p ∼ N 0, σ 2 (ϵ PDM o ) + σ 2 (ϵ OA ) ρ o,p σ(ϵ PDM o ) σ(ϵ PDM p ) ρ o,p σ(ϵ PDM o ) σ(ϵ PDM p ) σ 2 (ϵ PDM p ) (14) 
Finally, the posterior distribution, conditioned on observations, is ( [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF]):

ϵ PDM p | ϵ PDM o ∼ N(µ post , σ 2 post ) (15) 
where the parameters are:

µ post = ρ o,p σ(ϵ PDM o ) σ(ϵ PDM p ) ϵ PDM o σ 2 (ϵ PDM o ) + σ 2 (ϵ OA ) ( 16 
)
σ 2 post = σ 2 (ϵ PDM p ) - ρ 2 o,p σ 2 (ϵ PDM o ) σ 2 (ϵ PDM p ) σ 2 (ϵ PDM o ) + σ 2 (ϵ OA ) (17) 
where ϵ PDM o , in this context, is the point estimate.

CONWEY equations

The posterior PDM error for the planned farm has a bias of µ post . We define an estimator, named CONWEY, that consists of the centering of the PDM estimate:

AEP con p = f (x, θ p , T p ) -µ post (18) 
Using the equation ( 16), we obtain:

AEP con p = f (x, θ p , T p ) - ρ o,p σ(ϵ PDM o )σ(ϵ PDM p ) ϵ PDM o σ 2 (ϵ PDM o ) + σ 2 (ϵ OA ) (19) 
Given that AEP con p has a Gaussian distribution, its mean value corresponds to the median value (or the P50) and its uncertainty corresponds to σ post :

σ 2 (ϵ con p ) = σ 2 post = σ 2 (ϵ PDM p ) - ρ 2 o,p σ 2 (ϵ PDM o ) σ 2 (ϵ PDM p ) σ 2 (ϵ PDM o ) + σ 2 (ϵ OA ) (20) 
3.3. Discussion on CONWEY Figure 4 shows the calculation of the CONWEY uncertainty for various values of PDM error correlation (x-axis) and operational assessment uncertainty (color scale), using equation [START_REF] Villena-Ruiz | A techno-economic analysis of a real wind farm repowering experience: The malpica case[END_REF], for an example repowering project. In this example, the PDM uncertainties for the operating and planned farms are set to 10%. For the sake of simplicity, the uncertainties are normalized by the AEP.

The results indicate that the effectiveness of CONWEY in reducing uncertainty is closely related to the correlation coefficient between the operating and planned farms. Specifically, when there is no transfer of information between the two farms, as indicated by a correlation coefficient of 0%, the use of CONWEY offers no benefits over the baseline PDM uncertainty. Conversely, as the correlation coefficient approaches 100%, the superiority of CONWEY over PDM becomes evident. For instance, when the PDM errors correlation is 95%, and the OA uncertainty is 2%, the resulting CONWEY uncertainty is 3.75%, representing a 6.25-point decrease in the prior PDM uncertainty.

Furthermore, the magnitude of OA uncertainty has a discernible impact on CONWEY uncertainty for correlation values greater than 50%. The magnitude of OA uncertainty determines the range of CONWEY uncertainty, and for a correlation of 95%, it ranges from 3.6% to 5.8%.

Figure 4: CONWEY uncertainty for an ideal repowering project: operating and planned PDM error correlation from 0% to 100% (x-axis) and OA uncertainty from 0% to 6% (colors). In this simulation, the operating and planned farms prior PDM uncertainty are set to 10%.

Importantly, even when ρ o,p is equal to 100%, which suggests that all information about the operating farm applies to the planned farm, OA uncertainty precludes the reduction of CONWEY uncertainty to zero. However, in cases where the OA uncertainty is negligible, CONWEY results in simplified equations (equations 19 and 20):

AEP con p = f (x, θ p , T p ) - ρ o,p ϵ PDM o σ(ϵ PDM p ) σ(ϵ PDM o ) σ 2 (ϵ con p ) = σ 2 (ϵ PDM p )(1 -ρ 2 o,p ) (21) 
A CONWEY uncertainty of 0% for a 100% correlation between PDM errors is an unrealistic repowering scenario of a farm by the same farm over the same period. However, it is worth noting that for very favorable cases, the uncertainty theoretically tends to 0%. Figure 5 depicts the difference between the AEP estimates obtained through the CONWEY and PDM. Besides the above-mentioned simulation parameters, the PDM estimated AEP is 65 GWh/year for the planned farm, with an observed PDM error of -2 GWh/year. The amplitude between the two methods corresponds to the correction applied to the PDM method. If the correlation between the PDM errors is 0%, then no information can be transferred, and the correction remains at 0 GWh/year. However, as the correlation increases, the correction increases linearly as more information is acquired from the observed PDM error. Notably, the correction applied to the PDM method is inversely related to the OA uncertainty, implying that higher uncertainty results in lower correction. This phenomenon reflects the lower confidence associated with the likelihood of observations. It may appear counterintuitive that the P50 varies with the OA uncertainty.

Figure 5: CONWEY AEP prediction for an ideal repowering project: operating and planned PDM error correlation from 0% to 100% (x-axis) and OA uncertainty from 0% to 6% (colors). In this simulation, the operating and planned farms' prior PDM uncertainties are set to 10%. However, it is important to note that the CONWEY estimate merely reflects the best possible estimation given the available information.

Unlike the adjustment models presented in section 2, CONWEY quantifies the uncertainty for each possible repowering scenario, including repowering projects with low-quality SCADA datasets or repowering projects with planned farm configuration deviating from the operating farm configuration. The covariance function k quantifies the similarities between projects and also derives the PDM uncertainty σ(ϵ PDM o ) and σ(ϵ PDM p ). Indeed, for the same farm characteristics θ and for the same period T , the estimation of the function k permits to derive the PDM error variance:

σ 2 (ϵ PDM o ) = σ(ϵ PDM o , ϵ PDM o ) = k(x, θ o , θ o , T o , T o ) σ 2 (ϵ PDM p ) = σ(ϵ PDM p , ϵ PDM p ) = k(x, θ p , θ p , T p , T p ) (22) 
Finally, the estimation of the value of the function kandthevalueo f theOAuncertaintyaretheonlytwovaluesthatneedestima

Examples of application of CONWEY

This section first derives the covariance function k for the PDM used in the examples. Then, we present a simplified application of CONWEY, followed by a real-life repowering project in southern France.

Uncertainty quantification for PDMs

The uncertainty quantification of PDM is an active area of research: the contributing errors to PDM are still being characterized, and the propagation of errors through the PDM still faces challenges of computational costs [START_REF] Murcia Leon | Uncertainty quantification in energy yield assessment[END_REF]. Ref [START_REF] Lackner | Uncertainty analysis in wind resource assessment and wind energy production estimation[END_REF] states that, regardless of the wind data used (time-varying or statistical), there are three main sources of error: the power curve uncertainty ϵ P , the WRA uncertainty ϵ U and the power losses uncertainty ϵ η . Standard [START_REF]Wind energy generation system-part 12-1: Power performance measurements of electricity producing wind turbines[END_REF] describes a method to assess the power curve uncertainty. Refs [START_REF] Clifton | Accounting for the effect of turbulence on wind turbine power curves[END_REF][START_REF] Lee | An overview of wind-energy-production prediction bias, losses, and uncertainties[END_REF] discuss the WRA uncertainty; however, similar to power losses uncertainties, no consensus exists, and wind engineers generally rely on their expertise.

A common practice for uncertainty propagation is using Taylor's development since it only requires low computational performance, although it has lower efficiency than Monte Carlo or Bayesian propagation [START_REF]International Organization for Standardization (ISO), Guide to the expression of uncertainty in measurement (GUM)[END_REF]. Taylor's development requires determining the derivatives of f with respect to the error sources. It does not produce simple equations; for example, when the wind speed is described with a Weibull function [START_REF] Lackner | Uncertainty analysis in wind resource assessment and wind energy production estimation[END_REF]. A common simplification of this method consists of considering only constant additive errors. For example, the power curve error ϵ P is a value that corresponds to the modification of AEP, resulting from the difference between the official and real (onsite) power curves. Similarly, the power losses error can be calculated. Finally, the WRA error is simplified to the mean wind speed assessment error. The contribution to PDM error is the wind speed error multiplied by the sensitivity of the power curve to the wind speed at the mean wind speed value.

ϵ PDM = ∂P ∂U U= Ū ϵ U + ϵ P + ϵ η (23) 
Wind industry experts use this simplification process [START_REF] Clifton | Wind plant preconstruction energy estimates. current practice and opportunities[END_REF]. Backcast studies have shown it is skilled at estimating uncertainty [START_REF] Papadopoulos | DNV GL Energy Production Assessment Validation White Paper[END_REF][START_REF] Vidal | Wind energy yield methods update a white paper on validation and update of methods for performing pre-construction wind energy yield assessments in the european context[END_REF]. The covariance function k of the PDM error, is deducted from ( 23) assuming the errors are uncorrelated if they are of different kinds:

k(x, θ o , θ p , T o , T p ) = σ(ϵ PDM o , ϵ PDM p ) = ∂P o ∂U Ūo ∂P p ∂U Ūp σ(ϵ U o , ϵ U p ) + σ(ϵ P o , ϵ P p ) + σ(ϵ η o , ϵ η p ) (24) 
where the subindex o and p correspond to the operating and planned farms. Equation 24 is convenient for evaluating error variance, i.e. applying k to the same value of θ and T e.g. k(x, θ, θ, T, T ). However, it is hardly applicable for different periods (such as T o and T p ) since few (if any) covariance models exist. The covariances must therefore be estimated from expert elicitation. The following sections present two examples of repowering projects for which we evaluate k.

Simplified example

We illustrate the use of CONWEY on an ideal repowering project. We consider the repowering of a single wind turbine with the same characteristics (θ o = θ p ), and we disregard that the periods are different (T o = T p ). The PDM results are the same for both farms: f (x, θ o , T o ) = f (x, θ p , T p ) = 5.0 GWh/year. The AEP from the OA is 5.2 GWh/year. Thus, the PDM error is: εPDM o = -0.2 GWh/year. The WRA uncertainty is assumed to be the same:

σ(ϵ U o ) = σ(ϵ U o ) = 0.2 m/
s. The derivatives of the power curves with respect to wind speed equal 2 GWh/year/m/s. The power curve uncertainty is σ(ϵ P o ) = σ(ϵ P p ) = 0.2 GWh. Therefore, the prior PDM uncertainties are σ(ϵ PDM o ) = σ(ϵ PDM p ) = 0.45 GWh/year for both farms. Figure 6 summarises all values. The OA uncertainty is negligible: equation ( 21) can be used to estimate the AEP and its associated uncertainty with CONWEY.

To calculate the PDM error correlation ρ o,p (Equation ( 13)), we first need to estimate the covariance function k (Equation ( 24)). The derivation of k comes down to deriving the covariances 

(ϵ U o , ϵ U p ) = σ(ϵ U o ) * σ(ϵ U p ).
In other words, if the operating farm's wind speed is overestimated by 0.1 m/s, then the planned farm's wind speed is also overestimated by 0.1 m/s. Conversely, we assume that the power curve model errors are independent so that σ(ϵ P o , ϵ U p ) = 0. The PDM error correlation is:

ρ o,p = k(x, θ o , θ p , T o , T p ) σ(ϵ PDM o ) σ(ϵ PDM p ) = ∂P θo ∂U U= Ūo ∂P θp ∂U U= Ūp σ(ϵ U o ) σ(ϵ U p ) σ(ϵ PDM o ) σ(ϵ PDM p ) = 2 * 2 * 0.2 * 0.2 0.45 * 0.45 = 0.79
With a PDM error correlation of 79% the AEP and uncertainty can be calculated as follows:

AEP con p = f (x, θ p , T p ) - ρ o,p ϵ PDM o σ(ϵ PDM p ) σ(ϵ PDM o ) = 5.0 - 0.79 * (-0.2) * 0.45 0.45 = 5.16 GWh/year σ(ϵ CON p ) = σ(ϵ PDM p ) (1 -ρ 2 o,p ) = 0.45 * (1 -0.79 2 ) = 0.28 GWh/year
The CONWEY model provides an estimated annual energy production (AEP) of 5.16 GWh/year, with an associated uncertainty of 0.28 GWh/year, which represents a 38% reduction compared to the uncertainty associated with the PDM. This result may seem counterintuitive to a wind engineer who would typically estimate the AEP directly based on the OA value, which is 5.2 GWh/year with an uncertainty of 0.2 GWh/year, equivalent to the uncertainty of the power curve.

While the CONWEY model has improved upon the PDM, it acts as a negative update when considering the OA results. Understanding this issue requires distinguishing between semantic and aleatoric uncertainties. The former refers to power curve modeling errors, such as those arising from the neglect of turbulence and shear, while the latter refers to specimen variability, such as batch-to-batch variability.

If the power curve error is a modeling error, the OA value can help correct the power curve model. The question then becomes whether this correction applies to the new wind turbine. The correlation of power curve model errors can provide insight into this question. If the correlation is 0%, then using the OA results to correct the power curve model would be erroneous. Similarly, if the power curve error is aleatoric, then the 0.2 GWh/year difference represents a sampling effect, and using the OA results would also lead to bias in predictions. In both cases, the planned farm AEP uncertainty could be as high as the sum of uncertainty and bias (0.2 GWh/year + 0.2 GWh/year = 0.4 GWh/year).

CONWEY distinguishes between the part of the observed PDM error that applies to correcting the PDM at the planned farm and the part that does not, using the value of ρ o,p . In this example, 0.16 GWh/year of errors are due to WRA errors and should be corrected, while 0.04 GWh/year of errors are due to power curve errors and should not be corrected since the latter are independent.

This example highlights the importance of investigating the correlation of errors when estimating the AEP. In the following real-life example, we will detail the calculation of the value k.

Actual project example

We apply CONWEY to a repowering project in southern France. For confidentiality reasons, the exact location of the project and the values of AEP cannot be disclosed. The proposed repowering project involves replacing the 8 Nordex N60 wind turbines, each with a capacity of 1.3 MW, at the existing farm with 8 Enercon E70 wind turbines, each with a capacity of 2.3 MW. The original farm was installed in 2000 and features a two-row layout that will remain unchanged in the planned farm. The existing Nordex N60 turbines have a hub height of 69 meters and a rotor size of 60 meters, while the new Enercon E70 turbines are 64 meters high with a rotor size of 71 meters. The WRA is conducted for both farms in similar ways. A time series of wind speeds from 2000 to 2020 obtained from re-analysis data is calibrated on onsite wind speed measurement. A Lidar located a few hundred meters from the operating farm measured wind speeds up to 200 meters for one year from 2018 to 2019. The calibrated wind speeds are extrapolated spatially to each turbine's location using a CFD flow model dedicated to topographic-induced effects. Finally, the wind speeds are interpolated at hub heights using a power law profile. At this stage, the wind speed values differ between the operating and planned farm configurations since the hub heights differ. An NO Jensen model [START_REF] Jensen | A note on wind generator interaction[END_REF] simulates the wind speed deficit due to turbine wakes and, finally, the effective wind speed at each turbine's location is calculated for each farm. A time series of power production is deduced using power curves obtained from turbine manufacturers. The power loss factors are then applied, using the farm owner models. More details on the PDM applied can be found in Appendix A. The PDM simulates a production time series from 2000 to 2020 for the operating and planned farm parameters. The period of re-analysis data does not match the expected period of operation for the planned farm: a specific uncertainty evaluates the impact of assuming the persistence of wind climate from 2000 to 2020 and the expected operating period of the planned farm. Finally, the AEP is obtained by summing the time series and averaging the figure to one year.

PDM uncertainty

This section presents uncertainty normalized with the estimated AEPs because the AEPs of the farms are confidential. The correlation ρ o,p is calculated with:

ρ o,p = k r (x, θ o , θ p , T o , T p ) σ(ϵ r PDM o ) σ(ϵ r PDM p ) (25) 
where the relative error covariance function k r is defined:

k r (x, θ o , θ p , T o , T p ) = σ(ϵ r PDM o , ϵ r PDM p ) = ∂P r o ∂U Ûo ∂P r p ∂U Ûp σ(ϵ r U o , ϵ r U p ) + σ(ϵ r P o , ϵ r P p ) + σ(ϵ r η o , ϵ r η p ) (26) 
where P r is the power curve normalized by the AEP value. Table 1 describes the values of PDM uncertainty and error correlation obtained from applying equations ( 25) and [START_REF] Bullard | Getting back in the game, uncertainty in wind speed dating in the repower world[END_REF]. The operating farm PDM uncertainty is 8.59% and the planned farm PDM uncertainty is 8.83%. The prevailing uncertainty is the WRA uncertainty. The wind speed errors highly correlate. Indeed, the WRA for both farms relies on the same re-analysis datasets and measurement campaign, which induces that measurement errors and part of long-term correlation errors correlate. Additionally, the topographic induced flow modeling errors are similar since the turbines' coordinates are the same. The fact that the periods of operation are different makes the correlation lower than 100%.

Error 1: PDM prior uncertainty and error correlation and covariance for a repowering project in southern France. The values are calculated using equations ( 25) and [START_REF] Bullard | Getting back in the game, uncertainty in wind speed dating in the repower world[END_REF].

The power curve errors slightly correlate: a significant part of the power curve errors arises from the neglect of site-specific parameters such as TI and shear in the power curve model. We estimated that these "site-specific" errors correlate. Finally, we did not identify correlated errors in the technical loss models, nor in the wake wind speed deficit model. In Appendix A, we present detailed explanations of the correlation calculation for the WRA, the power curves, and the power loss factors model. Finally, the PDM error correlation is 69.33%.

CONWEY

In this section, we apply the CONWEY equation. The use of relative error over absolute error slightly modifies equation ( 19) by adding a scaling factor:

AEP con p = f (x, θ p , T p ) - AEP p AEP o ρ o,p σ(ϵ r PDM o ) σ(ϵ r PDM p ) ϵ PDM o σ 2 (ϵ r PDM o ) + σ 2 (ϵ r OA ) (27) 
Equation ( 20) remains similar:

σ 2 (ϵ r con p ) = σ 2 (ϵ r PDM p ) - ρ 2 o,p σ 2 (ϵ r PDM o ) σ 2 (ϵ r PDM p ) σ 2 (ϵ r PDM o ) + σ 2 (ϵ r OA ) (28) 
It should be noted that the value of OA uncertainty, the other input of CONWEY besides the results of the function k, is 4%. The calculation of this value is described in a farm owner's internal report. Given that the correlation is relatively close to 50%, our aim was not to estimate OA uncertainty better, as it has a moderate impact on CONWEY results for such correlation values. The observed PDM error is 0.55 GWh/year: at the operating farm, the PDM estimated a higher AEP than the OA result. All values required to apply CONWEY are listed in table 2.

CONWEY AEP is 0.56 GWh/year lower than the PDM AEP. The difference is consistent with the observed overestimation of the PDM at the operating farm. CONWEY uncertainty is 6.92%, which is 1.90% lower than the PDM uncertainty.

Discussion on CONWEY results

This reduction of uncertainty is mostly explained by the high similarity between the two farms, in particular because the turbines are at the same locations. This implies that the correlation coefficient related to the wind resource ρ ϵ Uo ,ϵ U p is very high and is the major contributor to the global correlation coefficient ρ o,p despite the relatively low wind to power sensitivity factor for this farm that limits its weight in Equation [START_REF] Bodini | Operational-based annual energy production uncertainty: Are its components actually uncorrelated?[END_REF]. For the same repowering setup in another region of France with a more significant sensitivity factor (typically around 2), the contribution of wind resources to the global correlation would be higher, which would lead to a much larger reduction of uncertainties compared to the PDM. On the other hand, repowering generally consists in replacing existing turbines with new models featuring larger rotors and higher hub heights, implying a different layout. The WRA errors could therefore correlate less than in the above example.

Finally, it is also interesting to study the exceedance probability of the AEP at the 90% level, labeled P90, which is a quantity generally used for financing a wind project, and directly related to the uncertainty through the following equation:

P90 = P50 (1 -1.28 σ) (29) 
In this specific example, it can be noted that although the P50 of the planned farm is reduced by -0.56GWh/year when using CONWEY instead of the PDM, the P90 is 0.88 GWh/year higher. This means that applying CONWEY does not endanger the bankability of a project; on the contrary the reduction of uncertainty is enough to compensate any decrease of the P50 in the P90.

Conclusion

The results of our study indicate that the integration of PDM and OA through the use of Gaussian processes can lead to a notable reduction in uncertainty when compared to the use of PDM alone. Our proposed method, referred to as CONWEY, can be feasibly applied at an industrial scale. To illustrate the practicality of CONWEY, we employed this method on a repowering project in southern France, and obtained error covariance values through expert elicitation.

The CONWEY methodology is reliant on the correlation of errors within the PDM process. Specifically, this correlation is based on the errors resulting from applying the PDM to both the operating and planned farms, taking into account their respective characteristics. This correlation serves to capture the similarities between the two farms, which is particularly relevant in the context of a repowering project. In this type of project, the site conditions and topography of the operating and planned farms are often similar, leading to non-independent WRA estimation errors that are partially correlated due to their relationship with site-specific factors. Additionally, similarities in the type of wind turbine and farm layout can further induce correlations between estimation errors for wake losses, power curves, and technical losses.

For a repowering project in southern France, the PDM errors correlate at 69.33%, mainly due to a high WRA error correlation (95.24%). CONWEY increases the P90 value by 0.88 GWh/year. The primary hurdle in implementing CONWEY lies in accurately estimating the covariance function for PDM errors. This is only possible for a limited number of ideal cases, such as when the turbine types or layout are identical between the operating and planned farms. To address this challenge, our future work will propose a model for the PDM error covariance that extends the model presented in [START_REF] Clerc | A systematic method for quantifying wind flow modelling uncertainty in wind resource assessment[END_REF] to include the covariance of WRA errors. Additionally, we plan to develop a model for the correlation of errors in the power curve model. This model will build upon the power curve normalization equations described in [START_REF]Wind energy generation system-part 12-1: Power performance measurements of electricity producing wind turbines[END_REF] or utilize a Kriging method, as presented in [START_REF] Zhang | A new wind turbine power performance assessment approach: Scada to power model based with regression-kriging[END_REF]. A measurement campaign to collect power curve data for different types of wind turbine at the same site will serve as a validation dataset and help distinguish the contributions of the site and farm-specific errors. Finally, our future work will focus on evaluating the uncertainty associated with OA. While authors in [START_REF] Bodini | Lowering post-construction yield assessment uncertainty through better wind plant power curves[END_REF][START_REF] Bodini | Operational-based annual energy production uncertainty: Are its components actually uncorrelated?[END_REF][START_REF] Lindvall | Post-construction production assessment of wind farms assessment and optimization of the energy production of operational wind farms: Part 1[END_REF][START_REF] Craig | Uncertainty quantification in the analyses of operational wind power plant performance[END_REF] have discussed models for uncertainty assessment, a comprehensive framework for OA uncertainty assessment is currently lacking.

1. ϵ r U meas : A Lidar sited 1km from the site measured the wind conditions for a year before the installation of the planned farm. The measurement data availability is 97.5% over a continuous year. The analysis of the wind speed time series shows no outlier points. The uncertainty in wind measurement σ(ϵ r U meas ) is evaluated at 1.4%. Since the same wind measurement data are used by the PDM for the operating and planned farm, the wind measurement errors are fully correlated. 2. ϵ r U LT : The inter-annual variability uncertainty σ(ϵ r U LT ) is 1% for both farms. The interannual variability errors of wind are uncorrelated since the farms operate over distinct periods T o and T p . 3. ϵ r U MCP : The reference data for the long-term extrapolation comes from a re-analysis database and has a 97% correlation coefficient with the onsite wind speed measurement on an hourly basis. The uncertainty associated with the long-term extrapolation method σ(ϵ r U MCP ) is 2.5% for both farms. The PDM for the operating and planned farms uses the same reference datasets and the same MCP method; therefore, the long-term correlation errors fully correlate. 4. ϵ r U HE : The terrain topography is hilly: a wind flow model produces speed-up values between the Lidar and the locations of the turbines. The farm layouts are the same: the flow model errors are then fully correlated. The flow model uncertainty σ(ϵ r U HE ) is evaluated at 3%. 5. ϵ r U Inputs : The flow model input uncertainty σ(ϵ r U Inputs ) is also evaluated at 3%. Flow models for the operating and planned farms use the same topographical data and therefore, the input data error correlation is 100%. 6. ϵ r U V E : A power law profile models the wind speed difference from measurement height at the height of the turbine hubs. The uncertainty of the vertical extrapolation σ(ϵ r U V E ) is evaluated at 0.5%. Vertical extrapolation errors are independent since the hub heights of turbines are different for the operating and planned farms.

Finally, the covariance of the WRA error is the following, using a correlation notation: variability, the power curve values may differ across the production series of wind turbines. Finally, the power performance at the target site varies from the test site due to the difference in environmental conditions and the sub-optimal performance of wind turbines:

σ(ϵ r U o , ϵ r U p ) = ρ ϵ Umeas,o ,ϵ Umeas,p σ(ϵ r U meas ,o ) σ(ϵ r U meas,p ) +ρ ϵ U LT,o ,ϵ U LT,p σ(ϵ r U LT ,o ) σ(ϵ r U LT,p ) +ρ ϵ U MCP,o ,ϵ U MCP,p σ(ϵ r U MCP ,o ) σ(ϵ r U MCP,p ) +ρ ϵ U HE,o ,ϵ U HE,p σ(ϵ r U HE ,o ) σ(ϵ r U HE,p ) +ρ ϵ U inputs,o ,ϵ U inputs,p σ(ϵ r U inputs ,o ) σ(ϵ r U meas,p ) +ρ ϵ U V E,o ,ϵ U V E,p σ(ϵ r U V E ,o ) σ(ϵ r U V E,p ) (A.3)
ϵ r P = ϵ r P,meas + ϵ r P,ss + ϵ r P,spec + ϵ r P,sub (A.4)

The various error sources for the power curve model at the turbine location are detailed below:

1. ϵ r P meas : The power curve measurement error arises from all of the sensor errors at the test site [START_REF]Wind energy generation system-part 12-1: Power performance measurements of electricity producing wind turbines[END_REF]. Since wind turbines date back to different points in time, the measurement setup is likely different for the operating and planned farm turbines: the measurement errors are deemed independent. 2. ϵ r P ss : Power production depends on turbulence intensity, shear, inflow angle, and other site conditions [START_REF] Clifton | Accounting for the effect of turbulence on wind turbine power curves[END_REF][START_REF] Wagner | Accounting for the speed shear in wind turbine power performance measurement[END_REF][START_REF] Zhang | A new wind turbine power performance assessment approach: Scada to power model based with regression-kriging[END_REF]. However, these inputs are seldom accounted for when calculating the power production at a target site, inducing a power curve modeling error. Models suggested in [START_REF]Wind energy generation system-part 12-1: Power performance measurements of electricity producing wind turbines[END_REF] would support this error assessment. Since the wind turbines are subject to similar site conditions, a 100% correlation of power curve modeling errors is considered. 3. ϵ r P spec : The power curve values may differ across wind turbines from the same production series: these specimen errors are likely independent for the operating and planned farms. 4. ϵ r P sub : It is common to observe power production deficits due to constant yaw misalignment of the wind turbine, improper blade pitch regulation, or any defects in the turbine controller. The estimation errors of the power production losses are turbine-dependent; therefore, the errors are considered to be independent.

Error covariance can be derived assuming the independence of the sources of the errors oneby-one: σ(ϵ The power curve uncertainty values and the error correlation are detailed in table A.4.

Appendix A.3. Power factors assessment error

The error in power factors estimation is composed estimation errors of the wake losses, the curtailment losses, the environmental losses, and the availability losses:

ϵ r η = ϵ r η w + ϵ r η curt + ϵ r η envi + ϵ r η avail (A.6)
The various error sources for the power factors at the turbine location are detailed below:

1. Curtailment losses: wind turbines are curtailed during periods when they can harm birds and bats, generate excessive disturbance to neighbors, or impair their structural integrity, or when the grid cannot handle their power production. There is no curtailment for the planned farm or the operating farm. 2. Environmental losses: icing or blade degradation impair wind turbine production. There is no model for uncertainty σ(ϵ r η envi ), and a rule of thumb consists in considering that the uncertainty equals half of the loss amplitude. The losses model produces a 0.2% losses estimation with an associated uncertainty of 0.1%. Since this loss arises from site conditions, errors are not independent. However, there is no model to assess the error correlation, and we assume that the errors are independent from a conservative standpoint. 3. Availability losses correspond to losses due to automatic or manual shutdown of the farm, such as maintenance. The model for availability losses produces an estimate of 5.5% of the power production. There is no model for the uncertainty σ(ϵ r η avail ) and similar to σ(ϵ r η envi ), the uncertainty is estimated at 2.75%. Since the availability losses are not related to site conditions, the errors are deemed independent.

No model exists for wake model uncertainty. In [START_REF] Rathmann | The park2wake model -documentation and validation[END_REF], the authors evaluate the uncertainty of determining the wake decay constant at 10%. However, this is only a component of the wake loss estimation error. Generally, the models take uncertainty to be a fraction of the wakeinduced power losses [START_REF]Assessment of wind resource, energy yield and site suitability input conditions for wind power plants[END_REF]. With state-of-the-art wake models, it is impossible to model the error covariance. To obtain a conservative evaluation of the uncertainty, we assume that all errors are independent1 . 
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 2 Figure 2: Flow chart of a physics-driven model "PDM". The blue box represents the models, while the white boxes represent inputs, intermediate values, and outputs.
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 6 Figure 6: Values of the assessed AEPs for an idealized repowering project based on a single wind turbine

  

  

  

  

  

  (x, θ o , θ p , T o , T p ))

	source	Uncertainty at operating farm	Uncertainty at planned farm	Error correlation	Error covariance
	ϵ r u	5.25%	5.25%	95.24%		0.2%
	∂P ∂U	1.28	1.31	Non applicable	Non applicable
	ϵ r P ϵ r η	4.36% 3.11%	4.36% 3.44%	32.90% 0%		0.06% 0%
	ϵ r PDM (=k r Table 8.59% 69.33% 8.83% (=ρ o,p )	0.52%

Table 2 :

 2 Southern France repowering project: results of the adjustment model

Table A .

 A 3 lists the standard deviation values of errors along with the correlations. The resulting standard deviations of mean wind speed evaluation errors are 5.25% for operational and planned farms. The covariance, and therefore, the correlation coefficient, is calculated using equation (A.3). The correlation coefficient is 95.24%. The derivatives of the power curves with respect to the wind speed are 1.28 and 1.31 for the operating and planned plant, respectively.

	Error	Standard deviation operating farm (%)	Standard deviation planned farm (%)	Assessed correlation (%)
	ϵ U meas	1.40	1.40	100
	ϵ U V E	0.50	0.50	0
	ϵ U LT	1.00	1.00	0
	ϵ U MCP	2.50	2.50	100
	ϵ U HE	3.00	3.00	100
	ϵ U Inputs	3.00	3.00	100
	ϵ U	5.25	5.25	95.24

Table A .

 A 3: Uncertainty values for the mean wind speed evaluation of the operating and planned farms. Covariance is calculated from equation (A.3) then the correlation is deduced by dividing the covariance by the product of the standard deviations. Only the correlation is presented.

Table A .

 A r P o , ϵ r P p ) = ρ ϵ Pmeas,o ,ϵ Pmeas,p σ(ϵ r P meas,o )σ(ϵ r P meas,p )+ ρ ϵ Pss,o ,ϵ Pss,p σ(ϵ r P ss,o )σ(ϵ r P ss,p )+ ρ ϵ Pspec,o ,ϵ Pspec,p σ(ϵ r P spec,o )σ(ϵ r P spec,p )+ ρ ϵ P sub,o ,ϵ P sub,p σ(ϵ r 4: Uncertainty values for the power curve of the operating and planned farms for the PDM.

		Standard	Standard	
	Error	deviation operating	deviation planned	Assessed correlation
		farm	farm	
	ϵ r P meas ϵ r P ss ϵ r P spec	2.50% 2.50% 0.50%	2.50% 2.50% 0.50%	0% 100% 0%
	ϵ r P sub	2.50%	2.50%	0%
	ϵ r P	4.36%	4.36%	32.90%
				(A.5)
				P sub,o )σ(ϵ r P sub,p )

Table A .

 A 5: Uncertainty values for the operating and planned farm power loss factors for the PDM. The values are retrieved from the farm owner's internal reports.Given that error sources are uncorrelated one-by-one, the error covariance is calculated from equation (A.6) with:σ(ϵ r η o , ϵ r η p ) = ρ ϵ ηw,o ,ϵ ηw,p σ(ϵ r η w,o )σ(ϵ r η w,p )+ ρ ϵ ηcurt,o ,ϵ ηcurt,p σ(ϵ r η curt,o )σ(ϵ r η curt,p )+ ρ ϵ η envi,o ,ϵ η envi,p σ(ϵ r η envi,o )σ(ϵ r η envi,p )+ ρ ϵ η avail,o ,ϵ η avail,p σ(ϵ r η avail,o )σ(ϵ r η avail,p ) (A.7)TableA.5 lists the uncertainty values and correlations.

		Standard	Standard	
		deviation	deviation	Assessed
		operating	planned	correlation
		farm	farm	
	ϵ r η w ϵ r η curt ϵ r η envi ϵ r η elec ϵ r η avail	1.35% 0.00% 0.10% 0.50% 2.75%	2.00% 0.00% 0.10% 0.50% 2.75%	0% 0% 0% 0% 0%
	ϵ r η	3.11%	3.44%	0%

f (x, θ p , T p )[START_REF] Clifton | Wind plant preconstruction energy estimates. current practice and opportunities[END_REF] 

However, the error cannot be considered independent since the wake decay constant evaluation errors are site dependent and are therefore correlated.

development time when they benefit from established infrastructure, existing permits, and local acceptance.
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Appendix A. PDM details of error equations

Appendix A.1. Wind resource assessment

The WRA error, ϵ r U , captures the relative difference between the predicted and actual mean wind speed. The error arises from the wind measurement error ϵ r U meas , the wind speed inter-annual variability ϵ r U LT , the long-term correlation method error ϵ r U MCP , the wind flow model errors (ϵ r U HE and ϵ r U V E ), and the input data of the flow models error ϵ r U Inputs :

Error sources are independent one-by-one (i.e. measurements and long-term correlation error are independent), such that the wind speed uncertainty can be deduced from the sum of the variances:

The various error sources for the assessment of the mean wind speed at the turbine location are detailed below:

. Power curve model error

The turbine manufacturer provides the power curve values P. The wind turbine manufacturer measures the power curve at a test site with a measurement error. Due to manufacturing