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Abstract. We propose a simple network of Hawkes processes as a cognitive model
capable of learning to classify objects. Our learning algorithm, named EWAK for
Exponentially Weighted Average and Kalikow decomposition, is based on a local
synaptic learning rule based on firing rates at each output node. We were able to
use local regret bounds to prove mathematically that the network is able to learn
on average and even asymptotically under more restrictive assumptions.

1 Introduction

Hawkes processes [10] are point processes that are frequently used as models in a variety of
settings: network analysis, financial transactions, seismic or health data [9,29]. In particular,
a classic application consists in modeling interactions between neurons [23,14]. Many works
deal with estimation in these models [27,26], sometimes using recurrent neural networks [24,28].
Simulation of large networks of these processes is also widely studied in the literature [1,22,15,16].
Generalizations of these interaction models have also been studied for estimation purposes using
deep networks [17,29].

Our purpose in the present work is totally different from estimation or simulation. We use
Hawkes networks as a model for a cognitive network that can learn categories by updating
synaptic weights with a local learning rule. In this network, the output nodes are post-synaptic
neurons that produce spikes as a very simple discrete-time Hawkes process [21], whose spiking
probability is a weighted sum of the activity of the pre-synaptic neurons at the previous time
step. Kalikow decomposition [21] allows us to interpret these synaptic weights in the previous
sum as a probability distribution. In particular, it is possible to randomly choose the presynaptic
neuron of interest instead of doing the whole sum over all presynaptic neurons.

This interpretation of the synaptic weights leads to the following local vision: for an output
neuron, its presynaptic neurons can be seen as so many experts and the distribution, given by
the weights, can be related to an expert aggregation problem. This is why we use at this stage
the classical exponential weighted average (EWA) algorithm [2,3,25] .

However, the key ingredient is that losses of presynaptic neurons in EWA are not given ex-
nihilo, as usual in EWA, but are interpreted as an Activity-based Credit Assignment (ACA) [20].
Specifically, they are calculated based on pre- and post-synaptic firing patterns and multiplied by
a sign encoding whether the firing is sensible at that time or not.

The resulting algorithm is called EWAK (Exponential Weighted Average and Kalikow decom-
position).

Contributions. We propose a Hawkes network that learns to classify objects with a local
learning rule. More precisely, our contributions are the following:
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• Thanks to Kalikow decomposition, we interpret the optimization of synaptic weights as
small expert aggregation problems that are solved locally by each of the output neurons, see
Algorithm 1 (EWAK).
• We prove a neuronal discrepancy result on the firing rates (Proposition 1) thanks to a regret
bound on EWA.
• We prove that the network learns to correctly classify objects on average when the number
of time steps is large under very general assumptions (Theorem 2). More precisely, we have an
oracle inequality (with constant 1): the obtained network has the same class discrepancy
in firing rate as the best possible network up to an additive error in O(M−1/2), where M is the
number of objects presented to the network during its learning phase.
• Under more restrictive assumptions, we can even explicitly compute the limit of the
weights (Theorem 5).

Related Work. The proposed network is inspired by the Component-Cue model [8]. In
this cognitive model, the objects classified by the network have several features, and the network
learns to classify them in the right category by learning combinations of features which predict
correctly the category. The features of the objects to classify are represented by input nodes and
their categories by output nodes. [19] compared this model to the ALCOVE model [13], where
objects are classified according to their similarities with previously learned objects, and showed
that the Component-Cue model is most of the time a better fit to human learning than the
ALCOVE model. At the difference with the present work, the original Component-Cue model
does not incorporate firing patterns of neurons nor local learning rule.

Kalikow decomposition has been mainly used to prove existence of stationary processes [6,5,11].
Recently it has been used [22] to simulate neurons in interaction with a potentially infinite neural
network.

Online learning in a context of a Hawkes network has been used by [9], where a dynamic
mirror descent is performed to track how events influence future events, and by [27], to estimate
the triggering functions of the processes. However, in these works, online learning has not been
used to make the Hawkes network learn by itself, as we are doing in this work.

In neuroscience, two main local synaptic rules have been proposed to link a behavior to a
corresponding synaptic mechanism. The three-factors rule [7] assumes that a synaptic weight
update depends on (i) the presynaptic activation, (ii) the post-synaptic activation, and (iii) the
eventual outcome of the overall behavior. The rate-based learning rule [12] assumes that the
weight update depends on the firing rate of pre- and post-synaptic neurons. Our local rule is a
combination of both approaches. To the best of our knowledge, the present work mathematically
proves for the first time that such local learning rules make a very simple network learn.

2 Framework

2.1 First notations and set-up

The objects to be classified belong to a set of objects O, and have several features; each feature
is a version of a general characteristic. For instance, an object can have the feature “blue” and
the associated characteristic is the color.

Time is discretized in time steps of length δt. A number M of objects are successively presented
to the network, each for a duration T , which corresponds to N := T

δt
time steps. We denote by

o(m) ∈ O the mth object presented to the network. We want the network to learn to classify the
objects in classes. For class j, jM is the number of objects belonging to class j in the first M
presented objects.
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The network is made of two layers. We denote by I the set of input neurons, and J the set of
output neurons. Each output neuron j corresponds to a class, also noted j in which one wants to
classify the objects that are shown.

Then the network activity is a sequence of random variables

X = (Xi,m,t)i∈I∪J
1≤m≤M
1≤t≤N

with

Xi,m,t =

{
1 if neuron i spiked at time step t for object m
0 otherwise.
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Fig. 1. Specific network of section 4.1. Neuron f+
k,l is active when presented an object with the

feature fk,l and neuron f−
k,l is active when presented an object without the feature fk,l. If neuron

A spikes more than neuron B, the presented object is classified in class A; otherwise, it is classified
in class B.

2.2 The input layer

In the general case, neurons of the input layer emit discrete Poisson processes, i.e., sequences of
random variables following a Bernoulli distribution. The parameter of the Bernoulli distribution
is denoted by pi,m := P(Xi,m,1 = 1), and

pi,m
δt

is the firing rate of neuron i when presented the

mth object, that is its instantaneous spiking frequency (see Steps 5-6 of Algorithm 1).

For instance, the network we study in the case described in section 4.1 is visible in Figure 1.
We denote by c the number of characteristics, each declined in n features. For each feature fk,l
where k ∈ {1, . . . , c} and l ∈ {1, . . . , n}, there are two neurons f+

k,l and f−
k,l on the input layer. If

the object presented to the network has the feature fk,l, then f+
k,l spikes with a fixed probability

and f−
k,l does not spike; and if the object does not have the feature fk,l, then f−

k,l spikes with a

fixed probability and f+
k,l does not spike.

2.3 The output layer

In the general case, the output layer is made of neurons coding for the classes in which the objects
are classified, so J is used for both the set of output neurons and classes.

The rule for classifying the objects is as follows: the object is classified in the class coded by
the output neuron which spiked the most during the presentation of the object.
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We denote by Ij the set of input neurons linked to neuron j ∈ J . Then the spiking probability
of neuron j at time t of object m knowing the network past activity is given by:

pjm,t :=
∑
i∈Ij

wm
i−→jXi,t−1,m, (1)

where wm
i−→j corresponds to the weight of the connection between neurons i and j during the

presentation of the mth object. We denote wj
m = (wm

i−→j)i∈Ij the weights of neuron j when the

mth object is presented and W j := (wj
m)1≤m≤M the family of synaptic weights of neuron j.

Synaptic weights are updated after every time period during which an object is presented,
so they depend on m. Moreover they represent a probability distribution, that is: for all j ∈ J ,
i ∈ Ij , 1 ≤ m ≤M , wm

i−→j > 0, and
∑

i∈Ij
wm

i−→j = 1. This implies that pjm,t ∈ [0, 1] a.s.

One can simulate Xj,m,t by (i) picking at random a presynaptic neuron ı̂ w.r.t. the distribution
wj

m (ii) taking the value of Xı̂,m,t−1 and copy pasting this value in Xj,m,t. The fact that this
method indeed gives a process satisfying (1) comes from the Kalikow decomposition of the Hawkes
process. For more details about the legitimity of this operation and the particular case of discrete
Hawkes processes, we refer the reader to Section 4.2.3 of [21]. This corresponds to Steps 7-8-9 of
Algorithm 1.

2.4 Learning rule

Our learning rule comes from a classic expert aggregation algorithm (EWA) (Step 14 of Algorithm
1). One interpretation of the expert aggregation problem [3] is as follows: a forecaster can choose
between several experts, each with an unknown gain, during M rounds. In each round, the
forecaster defines a strategy, i.e., a probability distribution over the set of experts, and receives
the corresponding aggregate sum of the gains.

Here, each output neuron j is a forecaster, and the experts are the input neurons connected
to it. A round corresponds to the presentation of an object, and the synaptic weights, that
we reinterpret as a probability distribution using Kalikow decomposition, correspond to the
probability distribution chosen by neuron j in the expert aggregation. The gains are defined in
our case by activity-based credit assignment (Step 12 and 13) that is defined precisely in the next
section.

This overall result is Algorithm 1 (EWAK). The parameter η > 0 is called the learning rate,
and the sum Cj

i,m is the cumulated credit of neuron i until the mth object.

2.5 Credit formula

To define the credit cji,m, we need some additional notation. Let N j
i,m the amount of times j spiked

after choosing i. We use the following activity-based credit, computed in Step 12 of Algorithm 1:

cji,m =


N

j
i,m

Nwm
i−→j

× M
jM

if o(m) ∈ j

−
N

j
i,m

Nwm
i−→j
× M

j
′
M

× 1
|J|−1

if o(m) ∈ j′,
(2)

where j′ ∈ J \ {j}. Indeed, if the object belongs to class j, then the network classifies correctly
the object if neuron j spikes more than the others, so input neurons get positive activity-based
credits (i.e., gains), to force j to spike more. Otherwise, j should spike less than the neuron coding
for the correct class, so the input neurons get negative activity-based credits (i.e., penalties or
losses) to get j to spike less. In the present work, the credit does not depend on the network own
classifications.
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Algorithm 1 EWAK

1: Initialization
2: Cj

i,0 := 0, w1
i−→j := 1

|Ij |
3: for m = 1 to M do
4: for t = 1 to N do
5: for i ∈ I do
6: Xi,m,t−1 ∼ Ber(pi,m).
7: end for
8: for j ∈ J do
9: ı̂ ∈ Ij ∼ (wm

i−→j)i∈Ij .
10: Xj,m,t ←− Xı̂,m,t−1

11: end for
12: end for
13: for j ∈ J do
14: for i ∈ Ij do
15: Compute the credit cji,m according to (2).

16: Cj
i,m ← Cj

i,m−1 + cji,m

17: wm+1
i−→j ←

exp(ηCj
i,m)∑

l∈Ij

exp(ηCj
l,m)

.

18: end for
19: end for
20: end for

Using this credit suppose that we know before the last object M the value of jM , that is the
number of presented objects in class j among the first M objects, and this, for every j ∈ J . If
it is not the case, we can replace M

jM
by m

jm
at object m and obtain similar results. If neuron j

spiked at a time step after choosing neuron i, it means that neuron i spiked at the previous time

step. Besides, the probability to choose i is wm
i−→j . Therefore

N
j
i,m

Nwm
i−→j

is an estimator of pi,m (the

spiking probability of neuron i when presented the mth object), and |cji,m| is an estimator of pi,m
multiplied by a normalization term. In this sense, it is close to rate-based learning rule [12].

2.6 Regret and discrepancies

EWA is a well studied algorithm for which one can prove regret bounds. More precisely, when
applied to our setting, the regret of the forecaster/neuron j is given by

Rj
M := max

qj∈Xj

M∑
m=1

∑
i∈Ij

qji c
j
i,m −

M∑
m=1

∑
i∈Ij

wm
i−→jc

j
i,m.

where X j is the set of probability distributions over Ij .
This regret can be translated in firing rates inside the network thanks to our particular choice

of credit. Indeed, for Qj := (qjm)1≤m≤M a family of weights, we have that

f j
m(qjm) :=

∑
i∈Ij

qji,m
N j

i,m

Nwm
i−→jδt

is an estimator of the firing rate of neuron j if the synaptic weights were given by qjm during the
presentation of the mth object. Note that when applying this formula to qjm = wj

m, the weights
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given by EWAK, this simplifies into

f j
m(wj

m) =
N j

m

Nδt
,

where N j
m is the number of spikes emitted by neuron j when presented the mth object. Hence,

f j
m(wj

m) is the empirical firing rate of neuron j during the presentation of the mth object, when
EWAK is used.

For any weights Qj := (qjm)1≤m≤M , we then interpret

F j,j′

M (Qj) :=
1

j
′
M

∑
m, o(m)∈j′

f j
m(qjm)

as an estimator of the average firing rate of neuron j with weights (qjm)1≤m≤M during the

presentation of objects in class j′. In the notation F j,j′

M , the first index j refers to a neuron,
whereas the second index j′ refers to a class.

The neuronal discrepancy of neuron j in a network governed by weights Qj is defined by

Dj
M (Qj) := F j,j

M (Qj)− 1

|J | − 1

∑
j′ ̸=j

F j,j′

M (Qj).

It is the difference between the average empirical firing rate of neuron j over the objects belonging
to class j and the average empirical firing rate of neuron j over objects belonging to other classes,
normalised by the number of objects of each class. It gives information about how much neuron j
spikes more than usual when presented objects in category j and when the weights Qj are used.
It is a local information (local because at neuron j).

Since
∑M

m=1

∑
i∈Ij

qji,mcji,m = MδtDj
M (Qj), we have the following interpretation of regret in

terms of discrepancy:

Rj
M

Mδt
= max

qj∈Xj
Dj

M (Qj)−Dj
M (W j) (3)

where Qj = (qj)1≤m≤M is the constant family of weights. Therefore, the regret gives information
about the proximity of the neuronal discrepancy of neuron j under EWAK with the maximum
possible neuronal discrepancy of neuron j when the weights are stationary.

Note that if we want to understand how the network learns, we need a more global notion:
the class discrepancy of class j that is defined by

Γ j
M (Q) = F j,j

M (Qj)− 1

|J | − 1

∑
j′ ̸=j

F j′,j
M (Qj′),

with Q = (Qj)j∈J is the global family of weights. This class discrepancy measures how much
neuron j fires more than the other neurons when an object of class j is shown and it is therefore
a global information at the network level.

3 Theoretical results

In this section, we give theoretical guarantees that our network learns the correct classes under
certain conditions. These guarantees are expressed in terms of discrepancy of the firing rates,
that are linked to the regret thanks to (3).
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3.1 Regret bounds

The following proposition derives from the regret bound using EWA given in [3,25].

Proposition 1 (Regret bound). Let j ∈ J , Kj > 0

Gj
M := max

1≤m≤M
i∈Ij

cji,m and Hj
M := max

1≤m≤M
i∈Ij

−cji,m.

Using the learning rate ηj
M = 1

Kj

√
8ln(|Ij |)

M
, we have almost surely

Rj
M

Mδt
≤ 1

δt

√
ln(|Ij |)
8M

(
Kj +

(Gj
M +Hj

M )2

Kj

)
.

First, some remark on the choice of Kj . We show for instance in Appendix D.2 that under
Assumptions 1 and 4, limN→∞ Gj

M + Hj
M exists and is bounded by an absolute constant K

depending only on the set of objects. Hence, if constant K is known, choosing Kj = K is a
sensible choice and the resulting bound is in O(M−1/2).

Let

Ej
reg(M) :=

1

δt

√
ln(|Ij |)
8M

(
Kj +

(Gj
M +Hj

M )2

Kj

)
. (4)

Then the inequality of Proposition 1 can be rewritten as follows:

Dj
M (W j) ≥ max

qj∈Xj
Dj

M (Qj)− Ej
reg(M) a.s. (5)

This means that the neuronal discrepancy of neuron j Dj
M (W j) is maximal with an error term

in O(M−1/2). Hence, this regret bound gives a local information about the way the network
classifies objects: in general, a neuron will spike more than usual during the presentation of objects
belonging to its class, and so it is on the right track to spike more than other class neurons. To
have result on the whole network, we need to move from neuronal discrepancy to class discrepancy
and this is done under more stringent conditions in the sequel.

3.2 Feasible weight family

If the previous results holds even if the firing rates change over time even for the same object, we
need to make a more rigid assumption to get stronger results.

Assumption 1 For every i,m, t, the variable Xi,m,t follows the same distribution as a variable
Yi,o where o ∈ O is the mth object presented to the network. Then pi,m depends only on the nature
of the mth object, i.e., pi,m = pi,o where pi,o = P(Yi,o = 1).

Under Assumption 1, the exact firing rate of neuron j with synaptic weights qj when object
o ∈ O is presented to the network is

f
j

o(q
j) :=

∑
i∈Ij

qji
pi,o
δt

.

Definition 1 (Feasible weight family). Suppose Assumption 1 holds. A feasible weight family
is a constant weight family q = (qj)j∈J independent of m such that for all j ∈ J , o ∈ j, j′ ∈ J \{j},

f
j

o(q
j) > f

j′

o (qj
′
).

The constant
∆(q) := min

j∈J,o∈j,j′ ̸=j

{
f
j

o(q
j)− f

j′

o (qj
′
)
}

is called the security margin of the feasible weight family q.
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Hence, a feasible weight family is a weights family which enables the network to correctly
classify the objects in general; the larger ∆(q), the lesser it will be mistaken.

In section 4.1, we give an example of such a feasible weight family in a particular case.

3.3 Average learning

Theorem 2 (Oracle inequality). Suppose Assumption 1 holds. Let α ∈ (0, 1]. Suppose there
exists a feasible weight family q = (qj)j∈J with security margin ∆(q). Then using the learning

rate ηj
M = 1

Kj

√
8ln(|Ij |)

M
, we have with probability greater than 1− α that

1

|J |
∑
j∈J

Γ j
M (W ) ≥ ∆(q)− Etot(M, q, α)

with

Etot(M, q, α) :=
1

|J |
∑
j∈J

(
Ej

reg(M) + Ej
approx(M, qj , α)

)

where Ej
reg(M) is given by (4) and

Ej
approx(M, qj , α) = ej,japprox +

1

|J | − 1

∑
j′ ̸=j

ej,j
′

approx, (6)

with

ej,j
′

approx =
1

j
′
M

∑
m s.t. o(m) ∈ j′

i ∈ Ij

qji
δt

[√
2pi,mxj

Nwm
i−→j

+
xj

3Nwm
i−→j

]

and xj = ln
(2M |Ij ||J |

α

)
.

In a nutshell, assuming that we are in the favorable regime, this result on average class
discrepancy means that in average, a class neuron spikes more than the other neurons when
presented with an object in its class with high probability. Thus, in average, the network correctly
classifies the objects under the hypothesis that a feasible weight family exists. The error w.r.t.
this ideal situation is two fold: one part, Ej

reg(M), comes from the regret bound and is in

O(M−1/2), whatever N . The other part, Ej
approx(M, qj , α), comes from the inherent randomness

of our system that can be cancelled out when N tends to infinity. Note that this last term is

in O
(√

ln(M)
Nwm

i−→j
+ ln(M)

Nwm
i−→j

)
. Two regimes are therefore possible: when N is large compared to

1
wm

i−→j
then only the regret bound matters and if M is large enough, the total error Etot(M, q, α)

is negligible compared to the constant ∆(q). In this sense, EWAK performs as well as an oracle
that would know the feasible weight family in advance: its average class discrepancy is larger than
the safety margin given by the feasible weight family, with asymptotic multiplicative constant
1. However if M is not large enough we pay a price in O(M−1/2) for having seen only that
many objects and being initialized with a weight family that is not feasible. Finally when the
randomness in the system increases (i.e., N is not that large), there are particular situations
where nothing can be said because the EWAK random weights can be very close to zero and this
increases the global variance of the system. To see numerical results in this case, see Appendix A.
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3.4 Limit behavior

Under stronger hypothesis, we prove that each of the EWAK network weights converge to a
feasible weight family: the network asymptotically correctly classifies each of the objects, and
this is not just an average result.

We define the limits of cji,m, Cj
i,M and wm

i−→j as

– cji,m :=

{
pi,m × M

jM
if o(m) ∈ j

−pi,m × 1
|J|−1

× M

j
′
M

if o(m) ∈ j′ ̸= j

– C
j
i,M :=

M∑
m=1

cji,m

– wm
i−→j :=

exp(ηj
MC

j
i,m−1)∑

l∈Ij

exp(ηj
MC

j
l,m−1)

.

Theorem 3. For all 1 ≤ m ≤ M , j ∈ J, i ∈ Ij, all the network parameters cji,m, Cj
i,M and

wm
i−→j converge respectively in probability towards cji,m, C

j
i,m and wm

i−→j when the number of time
steps N →∞.

Now we are interested by the limit when M → +∞. Instead of assuming that a feasible weight
family exists as in the previous section, we want to build directly the limit of the weights, hoping
that this limit makes sense from a learning point of view. But if the input neurons encoding
the features have nothing to do with the output class (e.g. two classes ”blue” and ”red” and all
neurons having the same firing rates whatever the color) the problem cannot be solved. This
is why we introduce the notion of feature discrepancy of input neuron i with respect to class j,
defined by:

dji :=
1

nj

∑
o∈j

pi,o
δt
− 1

|J | − 1

∑
j′ ̸=j

1

nj′

∑
o∈j′

pi,o
δt

where nj is the number of objects belonging to class j. This feature discrepancy is the difference
between the average firing rate of neuron i when presented objects belonging to class j, and the
average firing rate of neuron i when presented objects belonging to other classes. It indicates
the extent to which neuron i has higher-than-usual firing rate when presented with objects in
category j.

Thus one can define the set of input neurons that are the most sensible to class j : Ĩj =
argmaxi∈Ij d

j
i , as well as the gap in discrepancy if Ĩj ̸= Ij :

γj = max
i∈Ij

dji − max
i∈Ij\Ĩj

dji ,

which measures how good the most sensible neurons are with respect to the others. Note in
particular that if all the dji ’s are null, Ĩj = Ij , there is no gap and nothing can be learned from
the network because the input neurons are in fact not sensible to important features for the
classification.

Assumption 4 Each object is presented the same amount of times: for all o ∈ O, |{m, o(m) =
o}| = M

|O| .

Theorem 5. Suppose Assumptions 1 and 4 hold. For all j ∈ J , i ∈ Ij, let

q̃j := (q̃ji )i∈Ij where q̃ji =


1

|Ĩj |
if i ∈ Ĩj

0 otherwise.
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• If Ĩj = Ij, then for all i ∈ Ij, the limit weights wM+1
i→j at the end of the learning phase did not

evolve, i.e. wM+1
i→j = q̃ji .

• If Ĩj ̸= Ij, then for all i ∈ Ij, the limit weights wM+1
i→j at the end of the learning phase satisfy

|wM+1
i→j − q̃ji | ≤ E

j
(M)

where

E
j
(M) := max

{
1,
|Ij |
|Ĩj |
− 1

} 1

|Ĩj |
e
−

2γjδt

Kj

√
2 ln(|Ij |)M .

The first case is the non interesting one, where there is nothing to learn (weights are constant)
either because EWAK is good since initialisation or because the features are so badly encoded by
the input neurons that nothing can be learned. In the second and intersting case, the synaptic
weights converge to the stationary family (q̃j)j∈J , which is uniform on input neurons with maximal
feature discrepancy, with exponential rate in exp(−O(γj

√
M)). This points out that the larger

the gap in discrepancy the quicker the learning.

The value of the maximal feature discrepancy with respect to class j is directly linked to the
neuronal discrepancy of neuron j. Indeed, Dj

M (Q̃j) asymptotically in N does not depend on M
and

Dj
M (Q̃j)

P−−−−→
N−→∞

max
i∈Ij

dji . (7)

Moreover, the weights wj
m should be close to q̃j , so Dj

M (W j) should also be close to maxi∈Ij d
j
i .

Therefore the previous result means (with some restrictions) that the network converge towards a
weight family that achieves the largest possible neuronal discrepancy. This means that neuron j
is more active when presented with object in class j. Going from this local notion to the global
notion of class discrepancy is not straightforward, even if it seems intuitive to hope that the
weight family with the largest neuronal discrepancy also achieves the largest class discrepancy.
This is why, to close the loop, we need to assume that q̃ is a feasible weight family in the next
corollary.

Corollary 1. Suppose Assumptions 1 and 4 hold and (q̃j)j∈J is a feasible weight family. Then
for all j ∈ J , j′ ̸= j, o ∈ j:

f
j

o(w
M+1
j )− f

j′

o (wM+1
j′ ) ≥ ∆(q̃)− E

j,j′
(M)

where

E
j,j′

(M) =
(
E

j
(M)

∑
i∈Ij

pi,o
δt

+ E
j′
(M)

∑
i∈Ij′

pi,o
δt

)
.

This means that when N tends to infinity, at the end of the learning phase the network classifies
objects as well as it would with the feasible weight family q̃, with an exponentially decreasing
error term of the same order as in Theorem 5.

4 A concrete example

In this section, we give a specific case for which the limit can be guessed beforehand. Then, we
give the condition for which this family is a feasible weight family, and we give numerical results
respecting these conditions showing that the network correctly classifies the objects.
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4.1 Specific case

Here, we have a number c of characteristics, each declined in n features. Therefore, an object
is identified with c given features, one for each characteristic, and there are n choices for each
feature. We consider two classes, class B, containing one object, and class A, containing every
possible other object. Class B represents an exception. The features are denoted by fk,l, where
k ∈ {1, . . . , c} and l ∈ {1, . . . , n}, and the object in B is oB := (fk,1)1≤k≤c.

For each feature fk,l, there are two neurons on the input layer: one neuron f+
k,l, which spikes

with firing rate λ when presented with an object having the feature fk,l, and one neuron f−
k,l,

which spikes with firing rate ν when presented with an object not having the feature fk,l, and
does not spike otherwise. Hence, neuron f+

k,l is here to detect the presence of the feature fk,l,

and neuron f−
k,l is here to detect its absence. The network is visible on Figure 1. In particular,

Assumption 1 is verified.

Proposition 2. Suppose Assumption 4 holds. We denote by (q̃A, q̃B) the pair such that q̃A puts
the weight c−1 on every neuron f−

k,1 and q̃B puts the weight c−1 on every neuron f+
k,1. Suppose

n ≥ 2 and
λ(n− 1)−1 < ν < λ(n− 1). (8)

Then for all j ∈ {A,B}, and i ∈ Ij,

lim
m→+∞

wm
i−→j = q̃ji .

Note that q̃A uniformly distributes the weights on neurons detecting the absence of features
belonging to oB , while q̃B uniformly distributes the weight on neurons detecting the presence
of features belonging to oB . Thus, this is a perfect candidate for neuron B to spike more than
neuron A when oB is presented to the network, and under some conditions on λ and ν, A will
also spike more than neuron B when an object in A is presented.

Note that with stationary weights (q̃A, q̃B), neurons A and B have the following firing rates.

o ∈ A with a l common features with oB oB
A ν(c− l)/c 0

B λl/c λ

This leads to the following proposition.

Proposition 3. The pair (q̃A, q̃B) is a feasible weight family if, and only if,

ν > (c− 1)λ. (9)

If so, the security margin is

∆(q̃) = min
{ν − λ(c− 1)

c
, λ

}
.

Hence, under both (8) and (9), the conclusions of Theorem 2, Theorem 5 and Corollary 1
hold: the network correctly classifies the objects in average and asymptotically. Moreover the rate
of convergence is exponentially fast.

4.2 Numerical results

To illustrate this specific case, we use c = 2 characteristics with n = 3 features for each: the
shape, corresponding to the features circle, square and triangle, and the color, corresponding to
the features blue, gray and red.
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Fig. 2. Numerical results with M = 2997, δt = 2ms, λ = 100Hz and ν = 150Hz. Each kind of
object is presented alternately. On the top, results for T = 2s, which corresponds to N = 1000
time steps. On the bottom, results for the limit parameters (i.e., when N goes to the infinite).
On the top (resp. bottom) left, evolution of synaptic weights (resp. limit synaptic weights) of
neurons A and B with time. On the top (resp. bottom) right, evolution of the empirical firing
rates (resp. limit empirical firing rates) of neurons A and B through time for each kind of object.

The classes are A = {□,△,⃝,□,△,⃝,□,△} and B = {⃝}. We consider large N ; indeed,
the refractory period of a biological neuron, which is the time in which a neuron, after emitting
a spike, is unable to spike again, lasts a few milliseconds [4]. We choose δt of this order: the
presentation of an object to the network lasts T = 2s and we take δt = 2ms, which corresponds
to N = 1000 time steps by object. See appendix A for numerical results with not very large N .

The numerical results of the network learning phase can be seen in Figure 2, as well as the
numerical results of the limit parameters. We can see that for N = 1000, the synaptic weights and
empirical firing rates are very close to the limit ones. Here, the parameters λ and ν are chosen
so that conditions (8) and (9) are satisfied. The object of class B is ⃝, and we can see that
the synaptic weights of neurons A and B converge as expected to the pair (q̃A, q̃B) such that q̃A

distributes the weight uniformly over neurons blue− and circle− and q̃B distributes the weight
uniformly over neurons blue+ and circle+.



Provable local learning rule by expert aggregation for a Hawkes network 13

Looking at the empirical firing rates per object, we see that very quickly, neuron B spikes
more than neuron A when presented ⃝ and neuron A spikes more than neuron B when presented
□,△,□,△, which are the objects with no features in common with⃝. Thus, the network correctly
classifies these objects very quickly. However, when objects with a feature in common with ⃝ are
presented, for a while neuron B spikes more than neuron A, so the network classifies the objects
into the wrong class. Then the empirical firing rate of neuron B decreases and neuron A emits
more spikes, so the network eventually classifies these objects correctly as well.

4.3 Comparison with Component-Cue

We can compare our algorithm to the original Component-Cue algorithm, for which there is no
theoretical guarantee nor a spiking neuronal network interpretation. The results can be seen in
Figure 3. We see that Component-Cue is making fewer mistakes at the beginning of the learning
but that EWAK is in the end making less mistakes than Component-Cue. Note that the choice of
the parameters in Component-Cue is tricky, and that the behavior of the algorithm (learning or
not) highly depends on this choice (see details in [18]).
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Fig. 3. Comparison between EWAK and the exponential version of the Component-Cue model.
This is the histogram of incorrect classifications for every 100 objects for both models, for the
objects and classes used in section 4.2. The parameters used for EWAK are the same as in section
4.2. For the Component-Cue model, the parameters are λw = 0.005 for the learning rate and
ϕ = 10 for the parameter of the softmax function used in the model.

5 Conclusion

In this paper, we introduced a Hawkes network that provably learns to classify objects thanks
to a local learning rule inspired by an expert aggregation method. This learning rule led to an
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algorithm (EWAK) allowing us to prove a neuronal discrepancy result on the firing rate and an
oracle inequality on the class discrepancy. A promising – but ambitious – line of research is to
understand if such local rules can be generalized for Hawkes network with one, or more, hidden
layers.
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This is the appendix for “Provable local learning rule by expert aggregation for a Hawkes
network”. Appendix A provides numerical results in the case where N is not large, and Appendix
B-F provide the proofs of our results.

A Numerical results when N is not large enough

The numerical results of the network learning phase with N = 50 can be seen in Figure 4. The
other parameters are the same as in Figure 2. First, we can see that the empirical firing rates are
much more scattered than with N = 1000 (Figure 2). Indeed, with this value of N , their variance
is significant. Besides, the evolution of the weights is much less regular, and around m = 2200 the
weight wm

Gray−→A jumps from almost 0 to almost 1. This is because before the jump, wm
Gray−→A

−1

is very large compared to N and as soon as Gray− is chosen as a neighbour (Step 8 of Algorithm
1), its credit is significantly increased (see (2)). This provokes major disturbances in the empirical
firing rate of neuron A. In a sense, it resets its learning process because every weight is put at 0
except wm

Gray−→A which is put at 1; these are not the initial weight values, but these are values

far from the weight limits towards which they should tend, i.e., 1
2
for wm

Blue−→A and wm
Circle−→A

and 0 for the others, and which they were close to just before the jump.
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Fig. 4. Numerical results with M = 2997, λ = 100Hz, ν = 150Hz, δt = 2ms and T = 0.1s which
corresponds to N = 50. Each kind of object is presented alternately. On the left, evolution of
synaptic weights of neurons A and B with time. On the right, evolution of the empirical firing
rates of neurons A and B through time for each kind of object.

B Proof of proposition 1

Let (Ω,F ,P) be a probability space. Let ω ∈ Ω, m ≤M . The weights wm
i−→j(ω) are updated with

EWA algorithm using the losses (−cji,m(ω))i∈Ij . The losses take value in [−Gj
M (ω), Hj

M (ω)]. The
regret bound given in [3] holds for losses taking value in [0, 1], but a more general demonstration
for losses only assumed to be bounded is given in [25], and provides the following bound:

Rj
M (ω) ≤ ln(|Ij |)

ηj
M

+ ηj
M

(HM (ω) +GM (ω))2

8
M.
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By replacing ηj
M by its value, we get

Rj
M (ω)

Mδt
≤ 1

δt

√
ln(|Ij |)
8M

(
Kj +

(Gj
M (ω) +Hj

M (ω))2

Kj

)
.

It is true for every ω so almost surely, we have

Rj
M

Mδt
≤ 1

δt

√
ln(|Ij |)
8M

(
Kj +

(Gj
M +Hj

M )2

Kj

)
.

C Proof of Theorem 2

We want to bound from below 1
|J|

∑
j∈J Γ j

M (W ). We have almost surely

1

|J |
∑
j∈J

Γ j
M (W ) =

1

|J |
∑
j∈J

F j,j
M (W j)− 1

|J |
∑
j∈J

1

|J | − 1

∑
j′ ̸=j

F j′,j
M (W j′)

Let us exchange the name of the indexes j and j′ in the second term.

1

|J |
∑
j∈J

Γ j
M (W ) =

1

|J |
∑
j∈J

F j,j
M (W j)− 1

|J |
∑
j′∈J

1

|J | − 1

∑
j ̸=j′

F j,j′

M (W j)

Let us exchange the sums in the second term.

1

|J |
∑
j∈J

Γ j
M (W ) =

1

|J |
∑
j∈J

F j,j
M (W j)− 1

|J |
∑
j∈J

1

|J | − 1

∑
j′ ̸=j

F j,j′

M (W j)

=
1

|J |
∑
j∈J

(
F j,j
M (W j)− 1

|J | − 1

∑
j′ ̸=j

F j,j′

M (W j)
)

=
1

|J |
∑
j∈J

Dj
M (Wj)

≥ 1

|J |
∑
j∈J

(
Dj

M (Qj)− Ej
reg(M)

)
thanks to inequality (5).

1

|J |
∑
j∈J

Γ j
M (W ) ≥ 1

|J |
∑
j∈J

(
F j,j
M (Qj)− 1

|J | − 1

∑
j′ ̸=j

F j,j′

M (Qj)
)
− 1

|J |
∑
j∈J

Ej
reg(M)

=
1

|J |
∑
j∈J

F j,j
M (Qj)− 1

|J |
∑
j∈J

1

|J | − 1

∑
j′ ̸=j

F j,j′

M (Qj)− 1

|J |
∑
j∈J

Ej
reg(M)

Let us exchange the sums in the second term.

1

|J |
∑
j∈J

Γ j
M (W ) ≥ 1

|J |
∑
j∈J

F j,j
M (Qj)− 1

|J |
∑
j′∈J

1

|J | − 1

∑
j ̸=j′

F j,j′

M (Qj)− 1

|J |
∑
j∈J

Ej
reg(M)

Let us exchange the name of the indexes j and j′ in the second term.
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1

|J |
∑
j∈J

Γ j
M (W ) ≥ 1

|J |
∑
j∈J

F j,j
M (Qj)− 1

|J |
∑
j∈J

1

|J | − 1

∑
j′ ̸=j

F j′,j
M (Qj′)− 1

|J |
∑
j∈J

Ej
reg(M)

=
1

|J |
∑
j∈J

(
F j,j
M (Qj)− 1

|J | − 1

∑
j′ ̸=j

F j′,j
M (Qj′)

)
− 1

|J |
∑
j∈J

Ej
reg(M)

=
1

|J |
∑
j∈J

Γ j
M (Q)− 1

|J |
∑
j∈J

Ej
reg(M)

Let

– f
j

m(qj) :=
∑
i∈Ij

qji
pi,m
δt

. This is the exact firing rate of neuron j with synaptic weights qj when

presented with the mth object.

– F
j′,j
M (Qj′) :=

1

jM

∑
m, o(m)∈j

f
j′

m(qj
′
). It is the average firing rate of neuron j′ with stationary

synaptic weights qj
′
during the presentation of objects in class j.

–
1

|J |
∑

j∈J Γ
j
M (Q) :=

1

|J |
∑
j∈J

(
F

j,j
M (Qj)− 1

|J | − 1

∑
j′ ̸=j

F
j′,j
M (Qj′)

)
is the corresponding average

class discrepancy.

The family q is a feasible weight family, so for all j ∈ J , j′ ̸= j, m ≤M such that o(m) ∈ j,

f
j

m(qj) ≥ f
j′

m(qj
′
) +∆(q).

so
F

j,j
M (Qj) ≥ F

j′,j
M (Qj′) +∆(q)

and
1

|J |
∑
j∈J

Γ
j
M (Q) ≥ ∆(q).

We would like to prove that Γ j
M (Q) is close to Γ

j
M (Q) with high probability, and give an explicit

expression of the error term. For this purpose, we need the following result.

Theorem 6. Let α > 0. Then for all synaptic weights q = (qj)j∈J , we have

P
(
∀m ≤M, j ∈ J, j′ ∈ J, |F j′,j

M (Qj′)− F
j′,j
M (Qj′)| ≤ ej

′,j
approx

)
≥ 1− α

Proof. First, let us rewrite N j
i,m the following way for m ≤M , j ∈ J , i ∈ Ij :

N j
i,m =

N∑
t=1

1
{
i−1∑
l=1

wm
l−→j

<U
j
m,t≤

i∑
l=1

wm
l−→j

}
Xi,m,t−1 (10)

where the random variables U j
m,k are i.i.d following a uniform distribution on [0, 1], independent

from the neurons activity. The random variable

1
{
i−1∑
l=1

wm
l−→j

<U
j
m,t≤

i∑
l=1

wm
l−→j

}

corresponds to the choice of a presynaptic neuron in Kalikow decomposition at time t during
the presentation of the mth object. We remind that the sequence (Xi,m,t)0≤t≤N corresponds to
the activity of input neuron i when presented the mth object: it is a sequence of i.i.d random
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variables following a Bernoulli distribution. We suppose that for each object, input neurons start
to spike at time t = 0 (it corresponds to Xi,m,0), and output neurons at time t = 1.

Knowing the variables wj
m = (wm

l−→j)l∈Ij , the quantity N j
i,m is the sum of independent random

variables bounded by 1. Then, thanks to Bernstein inequality, for all x ≥ 0 we have

P
(
|N j

i,m − E[N j
i,m|w

j
m]| ≥

√
2Var(N j

i,m|w
j
m)x+

x

3
| wj

m

)
≤ 2e−x.

Besides, knowing wj
m, the variable N j

i,m follows a binomial distribution with parameters N and
pi,mwm

i−→j . Hence,

E[N j
i,m|w

j
m] = Npi,mwm

i−→j

Var(N j
i,m|w

j
m) = Npi,mwm

i−→j(1− pi,mwm
i−→j) ≤ Npi,mwm

i−→j .

Hence,

P
(
|N j

i,m −Npi,mwm
i−→j | ≥

√
2Npi,mwm

i−→jx+
x

3

)
≤ 2e−x.

Let us choose x = xj such that 2e−xj =
α

M |J ||Ij |
, i.e., xj = ln

(
2M|J||Ij |

α

)
. Let Dc be the

event

Dc =
{
∃m ≤M, j ∈ J, i ∈ Ij , |N j

i,m −Npi,mwm
i−→j | ≥

√
2Npi,mwm

i−→jxj +
1

3
xj

}
.

Then,

P(Dc) = P
( ⋃

1≤m≤M
j∈J, i∈Ij

{
|N j

i,m −Npi,mwm
i−→j | ≥

√
2Npi,mwm

i−→jxj +
1

3
xj

})

≤
∑

1≤m≤M
j∈J, i∈Ij

P
(
|N j

i,m −Npi,mwm
i−→j | ≥

√
2Npi,mwm

i−→jxj +
1

3
xj

)

≤
∑

1≤m≤M
j∈J, i∈Ij

α

M |J ||Ij |

= α

Hence P(D) ≥ 1− α. Let m ≤M , j ∈ J , j′ ∈ J not necessarily distinct from j. On D, we have

|F j′,j
M (Qj′)− F

j′,j
M (Qj′)| =

∣∣∣∣∣∣ 1

jM

∑
m, o(m)∈j

(f j′
m(qj

′
)− f

j′

m(qj
′
))

∣∣∣∣∣∣
≤ 1

jM

∑
m, o(m)∈j

∑
i∈Ij′

qj
′

i

δt

∣∣∣∣∣ N j′

i,m

Nwm
i−→j′

− pi,m

∣∣∣∣∣
≤ 1

jM

∑
m, o(m)∈j

∑
i∈Ij′

qj
′

i

δt

[√
2pi,m

Nwm
i−→j′

xj′ +
1

3Nwm
i−→j

xj′

]

=ej
′,j

approx

Hence
D ⊂

{
∀m ≤M, j ∈ J, j′ ∈ J, |F j′,j

M (qj
′
)− F

j′,j
M (qj

′
)| ≤ ej

′,j
approx

}
so

P
(
∀m ≤M, j ∈ J, j′ ∈ J, |F j′,j

M (Qj′)− F
j′,j
M (Qj′)| ≤ ej

′,j
approx

)
≥ 1− α.
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Then with probability 1− α,

1

|J |
∑
j∈J

Γ j
M (W ) ≥ 1

|J |
∑
j∈J

Γ
j
M (Q)− 1

|J |
∑
j∈J

(
ej,japprox +

1

|J | − 1

∑
j′ ̸=j

ej
′,j

approx

)
− 1

|J |
∑
j∈J

Ej
reg(M)

Besides, by exchanging the two sums and the name of the indexes j and j′, we have

1

|J |
∑
j∈J

1

|J | − 1

∑
j′ ̸=j

ej
′,j

approx =
1

|J |
∑
j∈J

1

|J | − 1

∑
j′ ̸=j

ej,j
′

approx

i.e.,

1

|J |
∑
j∈J

Γ j
M (W ) ≥ 1

|J |
∑
j∈J

Γ
j
M (Q)− Etot(M, q, α).

D Proof of Theorem 3 and choice of Kj in Proposition 1

D.1 Proof of Theorem 3

We recall that

cji,m =

{
pi,m × M

jM
if o(m) ∈ j

−pi,m × 1
|J|−1

× M

j
′
M

if o(m) ∈ j′ ̸= j, C
j
i,m =

m∑
m′=1

cji,m′ and wm
i−→j =

exp(ηj
MC

j
i,m−1)∑

l∈Ij

exp(ηj
MC

j
l,m−1)

.

To clarify the dependency on N of the network parameters, we will use the following notations:
wm,N

i−→j , c
j,N
i,m, Cj,N

i,m and N j,N
i,m .

Let us prove by induction that for all m ≥ 1, j ∈ J , i ∈ Ij , we have

wm,N
i−→j

P−−−−→
N−→∞

wm
i−→j , cj,Ni,m

P−−−−→
N−→∞

cji,m and Cj,N
i,m

P−−−−→
N−→∞

C
j
i,m.

Case m = 1. According to the weights definition, w1,N
i−→j =

1

|Ij |
and w1

i−→j =
1

|Ij |
. According

to (10), we have

N j
i,1

N
=

1

N

N∑
t=1

1
{
i−1∑
l=1

w
1,N
l−→j

<U
j
1,t≤

i∑
l=1

w
1,N
l−→j

}
Xi,1,t−1

=
1

N

N∑
t=1

1
{
i−1∑
l=1

w1
l−→j

<U
j
1,t≤

i∑
l=1

w1
l−→j

}
Xi,1,t−1

The random variables in the sum are i.i.d. They follow a Bernoulli distribution of parameter
w1

i−→jpi,1 (thanks to the indendence of Xi,1,t−1 with U j
1,t). According to the law of large numbers,

N j
i,1

N

P−−−−→
N−→∞

w1
i−→jpi,1

i.e.,

cj,Ni,1
P−−−−→

N−→∞
cji,1.
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Moreover, we have Cj,N
i,1 = cj,Ni,1

P−−−−→
N−→∞

cji,1 = C
j
i,1.

Case m > 1. Suppose the convergences are true for m − 1. We have the convergence in
probability of

wm,N
i−→j =

eη
j
M

C
j,N
i,m−1∑

l∈Ij

e
η
j
M

C
j,N
l,m−1

P−−−−→
N−→∞

eη
j
M

C
j,N
i,m−1∑

l∈Ij

eη
j
M

C
j,N
l,m−1

= wm
i−→j

Let ε > 0. According to (10), knowing the weight wm,N
i−→j , the random variable N j,N

i,m follows

a binomial distribution with parameters N and wm,N
i−→jpi,m (because the variables Xi,m,t are

independent from wm,N
i−→j). Then

E
[N j,N

i,m

N
| wm,N

i−→j

]
= pi,mwm,N

i−→j and Var
[N j,N

i,m

N
| wm,N

i−→j

]
=

wm,N
i−→jpi,m(1− wm,N

i−→jpi,m)

N
.

Then, according to to Bienaymé–Chebyshev inequality,

P
(
|
N j,N

i,m

N
− wm,N

i−→jpi,m| ≥ ε | wm,N
i−→j

)
≤

wm,N
i−→jpi,m(1− wm,N

i−→jpi,m)

Nε2
≤ 1

Nε2
.

Hence,

P
(
|
N j,N

i,m

N
− wm,N

i−→jpi,m| ≥ ε
)
≤ 1

Nε2
−−−−→
N−→∞

0.

This means that
N j,N

i,m

N
− wm,N

i−→jpi,m
P−−−−→

N−→∞
0.

Thus,

N j,N
i,m

Nwm,N
i−→j

P−−−−→
N−→∞

pi,m. (11)

Therefore,

cj,Ni,m
P−−−−→

N−→∞
cj,Ni,m.

Finally, Cj,N
i,m = Cj,N

i,m−1 + cj,Ni,m

P−−−−→
N−→∞

C
j
i,m−1 + cji,m = Ci,m.

D.2 Details about the choice of Kj in Proposition 1

Let
G

j
M = max

1≤m≤M
i∈Ij

cji,m and H
j
M := max

1≤m≤M
i∈Ij

−cji,m.

Then
Gj

M = max
1≤m≤M
i∈Ij

cji,m
P−−−−→

N−→∞
max

1≤m≤M
i∈Ij

cji,m = G
j
M

and
Hj

M = max
1≤m≤M
i∈Ij

−cji,m
P−−−−→

N−→∞
max

1≤m≤M
i∈Ij

−cji,m = H
j
M .

Suppose Assumptions 1 and 4 hold. Then for every j ∈ J ,
M

jM
=
|O|
nj

. Let

K :=
(
1 +

1

|J | − 1

)
max
j∈J

{ |O|
nj
× max

i∈Ij ,o∈j
pi,o

}
.
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Then
G

j
M +H

j
M ≤ K

and choosing Kj = K is a sensible choice to minimize the bound of Proposition 1.

E Proof of Theorem 5, (7) and Corollary 1

E.1 Proof of Theorem 5

First, let’s prove that for all m ≥ 1, for all j ∈ J and i ∈ Ij

C
j
i,M = dji δtM. (12)

Indeed,

C
j
i,M =

M∑
m=1

cji,m

=
∑

m, o(m)∈j

M

jM
× pi,m −

∑
j′ ̸=j

∑
m, o(m)∈j′

1

|J | − 1
× M

j
′
M

× pi,m

= M
( 1

jM

∑
m, o(m)∈j

pi,m −
1

|J | − 1

∑
j′ ̸=j

1

j
′
M

∑
m, o(m)∈j′

pi,m
)

= M
( 1

jM

∑
o∈j

∑
m, o(m)=o

pi,o −
1

|J | − 1

∑
j′ ̸=j

1

j
′
M

∑
o∈j′

∑
m, o(m)=o

pi,o
)

Besides, each kind of object is presented the same amount of times, so for all j ∈ J ,

jM = nj ×
M

|O|

so we have

C
j
i,M = M

( 1

nj

∑
o∈j

pi,o −
1

|J | − 1

∑
j′ ̸=j

1

nj′

∑
o∈j′

pi,o
)

= dji δtM.

Let djmax := max
i∈Ij

dji .

Case Ĩj = Ij . Then for all i ∈ Ij ,

wM+1
i−→j =

exp(ηj
MdjmaxδtM)∑

l∈Ij

exp(ηj
MdjmaxδtM)

=
1

|Ij |
.

Case Ĩj ̸= Ij . Then

wM+1
i−→j =

eη
j
M

Md
j
i δt∑

l∈Ij

eη
j
M

Md
j
l
δt
≤ eη

j
M

Md
j
i δt

|Ĩj |eη
j
M

Md
j
maxδt

=
1

|Ĩj |
e−η

j
M

M(djmax−d
j
i )δt.

Thus

0 ≤ wM+1
i−→j ≤

1

|Ĩj |
e−η

j
M

M(djmax−d
j
i )δt. (13)
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Let i ∈ Ĩj , d
j
max bis := max

i∈Ij\Ĩj
dji .

wM+1
i−→j =

eη
j
M

Md
j
i δt∑

l∈Ij

eη
j
M

Md
j
l
δt

≥ eη
j
M

Mdjmaxδt

|Ĩj |eη
j
M

Md
j
maxδt + (|Ij | − |Ĩj |)eη

j
M

Md
j
max bis

δt

=
1

|Ĩj |
1

1 +
|Ij |−|Ĩj |

|Ĩj |
e−η

j
M

γjMδt

≥ 1

|Ĩj |

(
1− |Ij | − |Ĩj |

|Ĩj |
e−η

j
M

γjMδt
)

=
1

|Ĩj |
− |Ij | − |Ĩj |

|Ĩj |2
e−η

j
M

γjMδt,

and thanks to (13),

wM+1
i−→j ≤

1

|Ĩj |
.

Thus
1

|Ĩj |
− |Ij | − |Ĩj |

|Ĩj |2
e−η

j
M

γjMδt ≤ wM+1
i−→j ≤

1

|Ĩj |
.

Let i ∈ I \ Ĩj . Then (13) tells us that

0 ≤ wM+1
i−→j ≤

1

|Ĩj |
e−η

j
M

Mγjδt.

In particular, with ηj
M =

1

Kj

√
8ln(|Ij |)

M
, for all i ∈ Ij

|wM+1
i→j − q̃ji | ≤ E

j
(M)

E.2 Proof of (7)

Let us recall that

Dj
M (Q̃j) = F j,j

M (Q̃j)− 1

|J | − 1

∑
j′ ̸=j

F j,j′

M (Q̃j)

=
1

jM

∑
m, o(m)∈j

f j
m(q̃j)− 1

|J | − 1

∑
j′ ̸=j

1

j
′
M

∑
m, o(m)∈j′

f j
m(q̃j)

=
1

jM

∑
m, o(m)∈j

∑
i∈Ij

q̃ji
δt

N j
i,m

Nwm
i−→j

− 1

|J | − 1

∑
j′ ̸=j

1

j
′
M

∑
m, o(m)∈j′

q̃ji
δt

N j
i,m

Nwm
i−→j

Besides, according to (11),

N j
i,m

Nwm
i−→j

P−−−−→
N−→∞

pi,m.
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Let

D
j
M (Q̃j) :=

1

jM

∑
m, o(m)∈j

∑
i∈Ij

q̃ji
δt

pi,m −
1

|J | − 1

∑
j′ ̸=j

1

j
′
M

∑
m, o(m)∈j′

q̃ji
δt

pi,m.

Then
Dj

M (Q̃j)
P−−−−→

N−→∞
D

j
M (Q̃j)

and

D
j
M (Q̃j) =

1

jM

∑
m, o(m)∈j

f
j

m(q̃j)− 1

|J | − 1

∑
j′ ̸=j

1

j
′
M

∑
m, o(m)∈j′

f
j

m(q̃j)

=
1

jM

∑
o∈j

∑
m, o(m)=o

f
j

o(q̃
j)− 1

|J | − 1

∑
j′ ̸=j

1

j
′
M

∑
o∈j′

∑
m, o(m)=o

f
j

o(q̃
j)

=
1

nj

∑
o∈j

f
j

o(q̃
j)− 1

|J | − 1

∑
j′ ̸=j

1

nj′

∑
o∈j′

f
j

o(q̃
j)

=
1

nj

∑
o∈j

∑
i∈Ij

q̃ji
pi,o
δt
− 1

|J | − 1

∑
j′ ̸=j

1

nj′

∑
o∈j′

∑
i∈Ij

q̃ji
pi,o
δt

=
1

nj

∑
o∈j

∑
i∈Ĩj

1

|Ĩj |
pi,o
δt
− 1

|J | − 1

∑
j′ ̸=j

1

nj′

∑
o∈j′

∑
i∈Ĩj

1

|Ĩj |
pi,o
δt

=
1

|Ĩj |

∑
i∈Ĩj

( 1

nj

∑
o∈j

pi,o
δt
− 1

|J | − 1

∑
j′ ̸=j

1

nj′

∑
o∈j′

pi,o
δt

)
=

1

|Ĩj |

∑
i∈Ĩj

dji

= max
i∈Ij

dji

E.3 Proof of Corollary 1

According to E.1, for all j ∈ J , i ∈ Ij ,

|wM+1
i→j − q̃ji | ≤ E

j
(M).

Let j ∈ J , o ∈ j, j′ ̸= j.

f
j

o(w
M+1
j )− f

j′

o (wM+1
j′ ) =

(
f
j

o(w
M+1
j )− f

j

o(q̃
j)
)
+
(
f
j′

o (q̃j
′
)− f

j′

o (wM+1
j′ )

)
+
(
f
j

o(q̃
j)− f

j′

o (q̃j
′
)
)

Besides, q̃ is a feasible weight family so

f
j

o(q̃
j)− f

j′

o (q̃j
′
) ≥ ∆(q̃).

Let l ∈ {j, j′}.

|f l

o(w
M+1
l )− f

l

o(q̃
l)| ≤

∑
i∈Il

|wM+1
l − q̃li|

pi,o
δt

≤ E
l
(M)

∑
i∈Il

pi,o
δt

Finally,

f
j

o(w
M+1
j )− f

j′

o (wM+1
j′ ) ≥ ∆(q̃)− E

j,j′
(M)
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F Proof of Proposition 2 and Proposition 3

F.1 Proof of Proposition 2

Let us compute the cumulated activity-based credits. Let us use the formula (12).
We have |A| = nc − 1 and |B| = 1. Let k ∈ {1, . . . , c} and l ∈ {2, . . . , n}. Here, |J | = 2 so for

all i ∈ I, dAi = −dBi . Besides, there are nc−1 − 1 objects in A and 1 in B with the feature fk,1,
nc−1 in A and 0 in B with the feature fk,l, n

c − nc−1 in A and 0 in B without the feature fk,1
and nc − nc−1 − 1 in A and 1 in B without the feature fk,l. Hence,

dA
f+
k,1

=
nc−1 − 1

nc − 1
λδt− λδt

dA
f+
k,l

=
nc−1

nc − 1
λδt

dA
f−
k,1

=
nc − nc−1

nc − 1
νδt

dA
f−
k,l

=
nc − nc−1 − 1

nc − 1
νδt− νδt

dB
f+
k,1

= λδt− nc−1 − 1

nc − 1
λδt

dB
f+
k,l

= − nc−1

nc − 1
λδt

dB
f−
k,1

= −nc − nc−1

nc − 1
νδt

dB
f−
k,l

= νδt− nc − nc−1 − 1

nc − 1
νδt.

It is clear that dA
f+
k,1

< dA
f+
k,l

and dA
f−
k,l

< dA
f−
k,1

. Besides,

dA
f+
k,l

< dA
f−
k,1
⇐⇒ λ

n− 1
< ν

and
dB
f−
k,l

< dB
f+
k,1
⇐⇒ ν < (n− 1)λ.

Thus, under the hypothesis
λ

n− 1
< ν < (n− 1)λ,

the neurons having maximal cumulated activity-based credit are neurons f−
k,1 for A, and f+

k,1 for

B. Hence, according to Theorem 5, the limit synaptic weights converge to the family (q̃A,q̃B) such
that q̃A uniformly distributes the weights on neurons detecting the absence of features belonging
to oB , while q̃B uniformly distributes the weight on neurons detecting the presence of features
belonging to oB .

F.2 Proof of Proposition 3

According to the table preceding Proposition E.1, with ν > (c− 1)λ, the pair (q̃A, q̃B) is indeed a
feasible weight family. Besides,

∆(q̃) = min
{

min
l∈{0,c−1}

{
ν
c− l

c
− λ

l

c

}
, λ

}
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The second minimum is achieved for l = c− 1, so

∆(q̃) = min
{ν − λ(c− 1)

c
, λ

}
.
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