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Abstract. This paper investigates the possibility of performing automated reasoning in probabilistic 
knowledge bases when probabilities are expressed by means of linguistic quantifiers. Data are 
expressed in terms of ill-known conditional probabilities represented by linguistic terms. Each 
linguistic term is expressed as a prescribed interval of proportions. Then instead of propagating 
numbers, qualitative terms are propagated in accordance with the numerical interpretation of these 
terms. The quantified syllogism, modeling the chaining of probabilistic rules, is studied in this context. 
It is shown that a qualitative counterpart of this syllogism makes sense and is fairly independent of 
the thresholds defining the linguistically meaningful intervals, provided that these threshold values 
remain in accordance with the intuition. The inference power is less than a full-fledged probabilistic 
constraint propagation device but corresponds better to what could be thought of as commonsense 
probabilistic reasoning. Suggestions that may improve the inferencing power in the qualitative setting 
are proposed. 
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1. Introduction 

Precise values of probabilities are not always available. Experts often assess 
probabilities under the form of intervals (e.g., "between 80% and 90% of As 
are Bs") or even linguistically (e.g., "almost all As are Bs"), or are only able to 
rank-order probability values, stating that one probability is certainly greater than 
another. Thus it raises the question of the possibility of reasoning with probabilities 
in a qualitative way. The main appeal of a qualitative approach (when such an 
approach is feasible), is that it requires less precision than a pure numerical 

*This paper is an extended and revised version of a paper entitled "A Symbolic Approach to Reason- 
ing with Linguistic Quantifiers" in Proc. 8th Conf. Uncertainty in Artificial Intelligence Dubois, 
D., Wellman, M.P., D'Ambrosio, B., and Smets, Ph. (Eds.), Morgan Kaufmann, pp. 74-82, 1992. 
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representation insofar as it still leads to meaningful conclusions in the reasoning 
process. Also, the qualitative approach allows us to have a better interface with 
human users, in a way more compatible with their own reasoning processes. 

A major part of this paper deals with syllogisms involving linguistic quantifiers 
such as "few" and "most." The extension of logical syllogisms to quantifiers 
distinct from the existential one (there exists .... denoted by 3) and the universal 
one (for all .... denoted by V) currently used in first-order logic looks natural to 
be considered. In the nineteenth century philosophers such as De Morgan (1966, 
p. 9 and pp. 242-246) and Boole (1854, pp. 284-285) studied such quantified 
syllogisms. Quantifiers like "most" and "few" have been more recently considered 
mainly from a linguistic point of view (e.g. Peterson (1979)). Nowadays, 
numerical quantifiers receive attention from philosophical logic (see Van Benthem 
(1984), and Westerstahl (1989)). However, these works are devoted to integer- 
valued quantifiers like "4 As are Bs", and mainly consider their embedding into 
a logical system involving conditionals. Integer-valued quantifiers have been 
implemented in semantic networks by Shapiro (1979), for instance. 

Another, maybe more usual, approach to numerical quantifiers is to handle 
relative proportions in the description of conditional statements. Namely "most 
As are Bs" means that the relative cardinality [An BI/IA [ lies in an interval 
which is not far from 1. More generally, this relative cardinality can be changed 
into a conditional probability P(B[A). We then get close to probabilistic logics, 
as surveyed in Bacchus (1990). There have been some attempts in the past to 
handle conditional probabilities in inference systems. However, most of them 
have some limitations. The Bayesian approach to conditional probability always 
assumes a unique underlying joint probability (Pearl, 1988). In contrast, inference 
systems such as INFERNO (Quinlan, 1983) rely on some knowledge of bounds 
on absolute and conditional probabilities and compute bounds on other absolute 
probabilities from the former ones. The type of inference method considered 
here is about deriving bounds on conditional probabilities from the knowledge of 
other conditional probabilities only. Systematic results on quantified syllogisms 
have been obtained and this paper investigates whether these results can be 
exploited in a qualitative format, where conditional probabilities are changed 
into linguistic labels. 

It is obvious that progress in the handling of conditional probabilities may 
have some impact on information systems. Very early, the encoding of expert 
knowledge has taken the form of weighted "if... then. . ."  rules, and the main 
question has been to elucidate the meaning of such weights. It turns out that there 
is not a single meaning for all situations. But in many eases the weight is naturally 
interpreted as a numerical quantifier often roughly assessed in a linguistic way that 
corresponds to an estimation of the amount of exceptions to the rule. A proper 
handling of such linguistic quantifiers might help information systems supply 
answers to queries in a more realistic way than purely logic-oriented systems 
would do. Basically it would enable the information system to address queries of 
the form "how many As are Bs", "how often As are Bs?", "what is the probability 
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of B for a standard example of A?", etc. In this respect our approach differs 
from those adapted to purely statistical information systems, where the analysis 
of a lot of examples has enabled a probability distribution to be completely 
determined, and stored under the form of, for instance, a Bayesian net. Here 
we assume that only some conditional probabilities are known in a rough way, 
and the question-answering problem is to infer conditional probability bounds 
(possibly in a linguistic format) from other already known ones, the knowledge 
of which is not enough to determine a unique probability distribution. 

The idea of reasoning qualitatively with probabilities has been investigated 
along different lines by various researchers in artificial intelligence, especially 
in the last five years. A first family of approaches works with inequalities 
between probabilities. Wellman (1988, 1990) deals with qualitative probabilistic 
networks where positive influences between nodes capture statements of the 
form "A makes B more likely" (than "not A"), and reflect inequalities between 
probabilities of the type P(B[Ax) > P(BIAx) where x denotes the context. 
Neufeld (1990) uses P(B[A) > P(B) for expressing that "A favors B," as a 
qualitative probability counterpart of a default rule. A second type of approach 
consists in defining probability-like functions which take their values in an abstract 
finite totally ordered semigroup rather than in [0, 1] (Aleliunas, 1988; Xiang, 
Beddoes and Poole, 1990); however, these authors do not try to interpret the 
symbolic probability values as numerical subintervals of [0, 1] nor to check the 
consistency of their calculus with this interpretation. Another kind of qualitative 
probability approach is Adams' (1975) conditional logic (see also Pearl (1988), 
Geffner (1992)) which manipulates probabilistic-like default rules "if A then 
B generally" understood as P(BIA ) > 1 -  E, where E is infinitesimal, a very 
demanding interpretation. At a purely symbolic level let us also mention work 
on so-called conditional objects trying to give a meaning to the entity "B[A" 
independently of the notion of probability, but still in agreement with this notion 
in the sense that P(BIA) can indeed be considered as the probability of the 
entity "BIA" (Goodman et al., 1991; Dubois and Prade, 1991). 

The approach developed in this paper maintains an interpretation of qualitative 
(linguistic) probability values in terms of numerical intervals. Here, linguistic 
quantifiers such as most, few, etc., are viewed as imprecisely or fuzzily known 
conditional probabilities, i.e., terms represented by crisp or in the most general 
case, fuzzy, subintervals of [0, 1] (Zadeh, 1985; Dubois and Prade, 1988; Spies, 
1989). In the approach presented here, first an ordered set of elementary labels 
of quantifiers is chosen in order to provide a linguistic scale for conditional 
probabilities (or proportions) used in default rules like "Q As are Bs" where Q 
is viewed as the answer to the question: "how many As are Bs?". A qualitative 
algebra (Q-algebra) (Trav6-Massuy~s and Piera, 1989) is defined on the set of 
possible labels, built from the elementary labels constituting the scale. Inference 
rules which are the qualitative counterparts of numerical formulas for computing 
bounds on probabilities in quantified syllogisms or similar propagation rules, can 
be proposed for reasoning in qualitative probability networks. 
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The next section gives the necessary background about local patterns of infer- 
ence used to propagate constraints on probabilities known to belong to intervals. 
Two inference rules, namely, the quantified syllogism and the generalized Bayes 
theorem, are reviewed. Section 3 illustrates the interest of the quantified syllo- 
gism on two cases in statistics and nonmonotonic reasoning respectively. Section 
4 discusses how to build a set of linguistic labels to be used in the qualitative 
probability computations; qualitative versions of these rules of inference are 
defined and the robustness of the approach is discussed, i.e., to what extent 
the qualitative calculus remains unchanged when the numerical interpretation of 
the linguistic labels is slightly modified. Section 5 discusses the problems en- 
countered when trying to extend to a qualitative setting a constraint propagation 
rule based on Bayes theorem. Section 6 gives one example that shows how the 
constraint propagation-based strategy, described in Section 2, can answer queries 
about linguistic conditional probabilities once adapted to the qualitative setting. 
Section 7 also indicates that the proposed approach, based on absolute orders 
of magnitude, is very limited for Bayesian nets, which leads to a suggestion of 
using relative orders of magnitude as supplementary information, on top of abso- 
lute orders of magnitude. These would lead to more precise results whenever 
products or quotient of qualitative probabilities need be performed. 

2. Local propagation of interval-valued probabilities 

Consider the following inference problem: given three predicates A, t3, C which 
model some properties of interest, and given the precise knowledge of conditional 
probabilities P(AIB ), P(BIA ), P(CIB),P(/31C ), what is the value of the condi- 
tional probabilities P(CIA ) and P(AIC ) obtained from these four conditional 
probabilities? It corresponds to a numerical model of inference from uncertain 
pieces of knowledge, called the quantified syllogism, an example of which is 

most students are young 

most young people are single 

; few young people are students 

; about half singles are young 

what can be said about students being single and singles being student? 

where the terms "most," "few," "about half" above are understood precisely 
as, say, P (younglstudent) = 0.9, P (studentlyoung) = 0.2, P (singlelyoung) = 
0.8, P (younglsingle) = 0.5, respectively. Exact bounds for P(AIC ) and P(CIA) 
have been derived by Dubois et al. (1990) and are as follows, given the four 
probabilities P(A[B), P(BIA), P(CIB), P(BIC ) strictly lie between 0 and 1: 

P(C]A) > P(B[A).max(O, 1 1-  P(CIB)) 
- -P( IB) ' 

(1) 
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p(BIA)(CIB ) P(BIA)P(CIB) 
P(CIA ) < min 1, 1 -P(B]A)  + p(AIB) ,p(AIB)P(B]C), 

P(BIA)P(CIB)(1 _p(BIC) ) + P(BIA)).  
P(AIB)P(BIC) 

(2) 

The complete proof of these bounds and their optimality is given in the Appendix 
(Theorems 1 and 2). Degenerated cases when P(AIB ) = 0 or P(BIC ) = 0 are 
also studied. With the above numerical values, we get that P(student I single) 
< 5/36 = 0.1388 and that P(single I student) is left totally unknown, i.e., belongs 
to [0, 1] without being able to restrict the value. 

Denoting by P,(CIA) and P*(CIA) the best lower and upper bounds, respec- 
tively, obtained from (1) and (2), it can be proved that very often P,(CIA) < 
P*(CIA ), i.e., the obtained probability estimate is imprecise (that is, not com- 
pletely determined) as in the above example. In fact the only cases when 
P*(CIA ) = P,(CI A) i.e., which yield precise results are the following obvious 
cases (see Theorem 3 in the Appendix): 

| P(BIA ) = P(CIB ) = 1; hence P(CI A) = 1. This is a form of the usual logical 
chaining of rules. 

| P(BIA ) = P(AIB ) = 1; then P(CIA ) = P(CIB ), because A and B are 
indiscernible. 

| P(CIB ) = P(BIC ) = 1; then P(CIA ) = P(BIA ), because C and B are 
indiscernible. 

* P(AIB) = P(BIC) = 1; then P(CtA) = P(CIB). P(BIA). This is because 
in that case, P(BIA) = P(B)/P(A), P(CIB ) = P(C)/P(B), and P(CIA ) = 
P(C)/P(A). 

This inference pattern can be extended to cope with incompletely specified 
input probabilities as follows: 

As are Bs with P(BIA ) 

[P,(BIA), P*(BIA)]; 

Bs are Cs with P(CIB ) 

e [P.(CIB), P*(CIB)I; 

Bs are As with P(AIB) 

E [P,(AIB), P*(A[B)] 

Cs are Bs with P(B[C) 

E [P,(BIC), P*(BIC)] 

As are Cs with P(CIA ) ~ ? Cs are As with P(AI C) ~ ? 

where P, and P*, respectively, denote lower and upper bounds. Again, we are 
interested in computing (the tightest) bounds which can be deduced for P(CIA) 
and P(AIC). 

The following bounds have been established and have been shown to be the 
tightest ones when no division by zero occurs in the expressions: 
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Lower bound: 

P,(CIA ) = P,(B]A). max (0, 1 

Upper bound: 

P*(CIA ) = min 

1 - P , ( C I B  
1" (3) 

P,(BIA). P*(CIB) 
1,1 - P,(BIA ) + p,(AlS ) , 

P*(BIA ) �9 P*(CIS) 
P,(AIB ) �9 P,(BIC ) ' 
P*(BIA ) .  P*(CtB ) _ 

(4) 

P*(CIB) + P,(BIC). (P,(AIB) - P*(CIB)) 

Related local patterns of inference for interval-valued conditional probabilities 
have been independently developed by Gfintzer, Kiet~ing and Th6ne (1991), Th6ne 
et al. (1991) and by Heinsohn (1991) in the contexts of deductive databases and 
terminological languages, respectively. Th6ne, Gfintzer and Kiet3ing (1992) have 
pointed out the necessity of the additional term in (4). This is basically due 
to the fact that the third and fourth terms in (2) are linearly increasing with 
respect to P(BIA ) while the second term is linearly decreasing in P(BIA) if 
P*(CI B) < P,(AIB). See the Appendix (Theorem 4) for a complete proof, 
including degenerated eases. 

Another local inference rule is proposed in Amarger et al. (1991b). It takes 
advantage of an extended form of Bayes rule expressed in terms of conditional 
probabilities only, namely 

YI P(A~IAi+I) 
VA,, . . . ,  Ak, P(AIIAk) = P(AkIA1)" =, , - "tr'l'2"li+ll2:ti) (5) 

(with all involved quantities positive), from which useful inequalities are obtained 
in the case where only lower and upper bounds are available. 

The usual Bayes theorem is recovered when we choose k = 3, and -42 = U, 
the referential set such that A1 = A C_ U and As = B C_ U. Then (5) becomes 

p(A1B) = P(BIp)(~IAP~A1U). P(UIB) = P(B]A). P(A) 
�9 P ( B I U  ) P ( B )  ' 

(6) 

noticing that unconditional probabilities such as P(A) can be written as P(AIU ), 
and P(U~A) = 1. Another interesting case is when A1 = A, A2 = B, As = 
C, A4 = B, the complement of B. Then (5) becomes 

P(AIB-B-B~ -- (1 - P(BIA)). P(AIB ) �9 P(BIC). P(CFB) 
P(BIA) . P(CIB) " (1 - P(BtC)) ' (7) 
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i.e., P(AI-B ) is a function of P(BIA), P(AIB ), P(BIC), P(CIB), and P(CIB) for 
any sets A, B, C. 

The constraint propagation method which is used for the processing of a set of 
conditional probability bounds is the following: recursively apply the quantified 
syllogism to generate upper and lower bounds of missing probabilities. This 
step is performed until the probability intervals can no longer be improved. 
Then recursively the extended Bayes rule is applied to improve the bounds 
thus generated, and the whole procedure is continued until no improvement 
takes place. It has been observed that this constraint propagation method can 
sometimes give bounds which are as tight as the best ones computed by a 
global optimization method based on linear programming (see Amarger et al. 
(1991b)). However, not all of the laws of probability are captured by (3-4-5). 
It is possible to find cases when the combined use of the inference rules (3), 
(4), (5) is inefficient. Such cases can be found in Heinsohn (1991), for instance. 
Despite the incompleteness of this set of two propagation rules (the quantified 
syllogism and the generalized Bayes theorem), they have been proved to be 
generally efficient both in computation time and accuracy of probability bounds 
when only positive information relating classes to one another (without involving 
negation) is available, and simple queries of the form P(A[B), with A and B 
being elementary categories, are solved (see Amarger et al. (1991b)). However 
more work is needed to clarify under what condition the two propagation rules 
are sufficient to obtain the tightest bounds. 

These rules of inference are not capable of dealing with negation in a totally 
satisfactory way. Especially, if no knowledge about absolute probabilities is 
available, nothing can be known about probabilities of the form P(AIB ), given 
only P(BIA),P(AIB). Namely, using Bayes theorem: 

P(A) 
P(AIB ) = (1 - P(B[A)). 1 -P-('B)" 

Moving P(A) in [0, 1] and P(B) in [0, 1), P(AIB ) ranges over the whole 
unit interval as well. Namely, fixing P(BIA ) and P(A[B), only the quotient 
P(A)/P(B) = P(AIB)/P(BIA ) = A is fixed. A is a positive number as long as 
P(AIB ) ~ 0 (or equivalently P(BIA ) # 0). Then we have 

p(AI~) = (1 - P(BIA)) AF(B) 
1 - P(B) 

=0 i f P ( B ) = 0  
P(BIA) 

= 1 if P(S) = P(A[B) + P(B[A) - P(A[B). P(B[A)" 

Particularly, P(A[B) and P(A[B) are unrestricted and unrelated quantities when 
P(A). P(B) r {0, 1}. 

Note that the knowledge of other conditional probabilities such as P(C]B) 
and P(BIC ) may create some constraints on P(AIB ) since from (7), P(AIB ) is 
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proportional to P(CIB). When the latter moves in [0, 1], we get 

0 < P(AIB ) <_ 
(1 - P(B[A)). P(A]B). P(BIC ) 
P(BIA). P(CIB). (1 - P(BIC))' 

i.e., we may get a nontrivial bound on the "negative" conditional probability 
P(AIB ) if the upper bound is smaller than 1. 

3. Some applications of the quantified syllogism 

In this section we show two examples of situations where the quantified syllogism 
rule looks useful: a classical question in statistics and the study of the approxi- 
mation made when assuming that small probabilities behave like infinitesimals. 

3.1. Can we apply statistics-based probabilities to individual cases? 

The case P(BIA ) = 1 ("all As are Bs") and P(BIC ) = 1 ("all Cs are Bs") 
represents a typical case of statistical inference, when knowing from statistical 
data the probability P(CIB ), and considering some individual in class B, one 
tries to say something about its probability of being a C. Namely, B represents a 
population, C a subclass of this population for which the proportion or probability 
P(C[B) is known. For instance, B represents the inhabitants of some city and 
C the proportion of individuals in that population that are older than 60. Now 
take an individual x0 in B. What is the probability that he is more than 60? 
There are several ways of considering x0 according to its peculiarities. Let A be 
the maximal subset of B containing individuals "just like x0." It means that A is 
the subset of individuals in B that have enough common features with x0. Note 
that A can range from {a:0} (if x0 is so particular that nobody is like him) to B 
itself (if x0 is viewed as having nothing special that makes him differ from other 
individuals in B). The problem is then: knowing P(C[B), what is the probability 
that x0 belongs to C? This problem can be solved by computing P(CIA) where 
A is a maximal subclass of B, such that x0 is a typical element of A. 

This problem corresponds to the quantified syllogism where P(BIA ) = 1 and 
P(BIC ) = 1, by definition. The probability to be computed, namely P(Clxo ), is 
supposed to be equal to P(CIA ) and depends on P(AIB); other probabilities in 
the syllogism are known. 

This phenomenon can be precisely studied in an analytical way, letting 
P(C[B) = c~, and P(AIB ) = t ~ 0 as A C B, and P(A) ~ 0 by assump- 
tion. The parameter t can be called a typicality index of the set A with 
respect to B. It expresses the probability that selecting at random an indi- 
vidual in B, it lies in A i.e., it is "like x0." The commonsense saying that 
statistics should be cautiously used when making decisions about individual sit- 
uations can be given a precise form thanks to the quantified syllogism. When 
P(AIB ) = t, P(BIA ) = 1, P(CIB ) = a, P(BiC ) = 1, we get the following results 
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P(CIA) 

P*i 

P,(CIA) 

1 

i.iiii! iii!i!i!i 

iiiiiiiiiiiiii t 
0 1 - a  1/2 tx P(AIB) 1 

Figure I. Statistical inference and typicality. 

for P(CIA ) using (1-2): 

( ) (~ P,(6'IA ) = m a x  0,1 1 - ~  . p , (6 ,1A)=min  1,~- (8) 
T ' 

We obtain the portions of hyperbola in Figure 1. As shown in this figure the 
only case when P(CIA ) must be equal to P(C'IB ) is when t = 1, i.e., when the 
reference class of z0 is B itself. In other words, all individuals in B should be 
like z0, which implies that B is homogeneous enough. This result nicely fits our 
intuition that one should not trust statistical knowledge based on a heterogeneous 
population. Let us consider the situation where P(OIB ) > 1/2 as in Figure 1. 
If the degree of typicality t < P(OIB) = o~ then the probability P(C'IA ) is no 
longer upper-bounded by a bound strictly less than 1. When the typicality t is 
low enough, that is t < min(P(CIB ), 1 - P(CIB)) nothing can be inferred for 
P(CIA), i.e., P.(CIA ) = 0 and P*(CIA) = 1. It corresponds to the case when 
A and 6' could be disjoint subsets of B. This phenomenon also suggests the 
existence of cases where despite the high values of some of the probabilities the 
result of the chaining is very imprecise, i.e., a big gap exists between P,(OIA ) 
and P*(C'IA). 

3.2. A qualitative analysis of Adams" inference rules 

Adams (1975) has proposed a probabilistic inference system based on the three 
rules: 
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Triangularity : 

1 Most 

Ac~B A C 

? 

Cut : 

Most Most 

f ......... - a f - a  
A A n B  C 

Figure 2. Triangularity and cut rules. 

Triangularity:A --, B, A ~ C ~ (A N B) --* C. 
Cut: A --, B, ( A n  B) ~ C =~ A ~ C. 
Disjunction: A ~ C, B ~ C =~ (A tA B) ~ C. 

which are sound when A ~ B means that P(B[A) is high (i.e., close to 1), 
and is understood as P(B[A) _< 1 - e  where e is arbitrarily small. These rules 
are used in Pearl (1988) to build a probabilitistic-inference-like default logic. It 
is interesting to consider finistic semantics for these rules in relationship with 
imprecise probabilities. In this respect A --, B will be interpreted as "most As 
are Bs." First, it is easy to verify that triangularity and cut rules can be expressed 
in terms of the quantified syllogism, of which they are special cases, noticing that 
P(BIA ) = P(A n BIA ). See Figure 2. 

Taking "most" = [1 - a, 1) where a < 1/2, we easily get the lower bound on 
P(CIA n B) and P(CIA ) in each case by using the quantified syllogism 

1 - P,(CIA ) "~ 1 - 2a, 
P,(C[A n B) = max O, 1 - P,(A n B[A),} = "1""~ 

P,(CIA ) = P,(BIA ) �9 P,(CIA n B) = (1 - a )  2. 

There  is a degradation of the lower bounds. However these lower bounds are 
greater than ot when a _< (3 - v ~ ) / 2  ~- 0.38. Indeed this threshold is found when 
we compute a such that (1 - 2a) / (1  - a)  >_ a or equivalently (1 - c~) 2 > a. 
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The third axiom pertains to another kind of inference that does not directly 
relate to the quantified syllogism. In Amarger et al. (1991a) the following identity 
was obtained: 

P(CI A to B) = P(CIA)/P(BIA) + P(CIB)/P(AIB) - P(CIA n B) 
1/P(BIA) + 1/P(AIB) - 1 (9) 

Hence,  a lower bound to P(CI A U B) is obtained by putting P(CIA O B) = 1. 
When P(CIA ) > 1 - a, P(CIB ) > 1 - ~' where a and ~' are independent values 
less than 1/2 (both express "most"), we get if a = a t 

K(1 - o 0 - 1 
P(CIA U B) >_ 

K - 1  

where K = 1/P(BIA ) + 1/P(AIB ) _> 2. The right-hand term of the inequality is 
increasing with K. Hence the lower bound for P(CIAUB ) >_ 2 ( 1 -  a ) -  1 = 1 -  2a. 
More generally, P(CIA u B) >_ 1 - a - a' when P(CIA ) _> 1 - a,  P ( C I B  ) _> 1 - a ' ,  
as it can be checked from (9). On the whole, we have found finistic counterparts 
of Adams'  axioms that make it possible to quantify how inaccurate we are when 
we apply these axioms for commonsense reasoning with high probabilities (here 
> 1/2). 

The three axioms can be summarized as 

A ~ B ,  A~C:=:::~(A N B ) ~ C ,  

A T B ,  (An  B)~C----~A ~ C, 
2o~--ot 2 

A T C  , B----~C-.--~A tO B---*C, 
ot 2or 

where A---+B reads P(BIA ) _> 1 - a. These rules enable probabilistic reasoning 

to be performed as a qualitative nonmonotonic logic, but where the validity of  
conclusions can be numerically assessed. 

4. The qualitative quantified syllogism 

4.1. Lattices of linguistic labels 

Let us consider an ordered set of elementary labels of linguistic quantifiers that 
may account for any probability value. Each label corresponds to a subinterval of  
the unit interval, and the set of subintervals completely covers it. So a linguistic 
scale will be made of the labels of a collection of subintervals covering [0, 1] 
of the form {0, (0, al], [al, a2] . . . .  , [an- l ,  an], [an, 1), 1}. For convenience we 
shall still call a partition such a collection, although the intervals overlap at their 
edges, except in 0 and 1, which are dealt with separately due to their particular 
meanings corresponding to "none" and "all." 
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Specificity 
t~dering 

[None Alll / \  
[None AI-aU] [Al-none All] 

/\/\ 
[Non e Mosq 

/ 
[None Ab-half] 

/ \  
[None Few] 

\ /  
[Al-none Few] 

/ \  
/ 

[None Al-none] / - \  

\/ 
[Al-none Most] 

/ \  

[Al-none Al-all] [Few All] 

\ / \  
[Few Al-all] [Ab-half All] 

/\/\ 

None Al-none 

[Al-none Ab-half] [Few Most] lAb-half Al-all] [Most All] 

\/\/\/', 
[-Few Ab-lmlQ [Ab-half Most] [Most Al-all] [Al-alt All] 

/ \/\/\/\ 
Few Ab-half Most Al-all All 

Certainty ordering 

Figure 3. The biordered structure of qualitative probabilities. 

Let 7) be such a "partition" of [0, 1] in subintervals representing quantifiers from 
a linguistic scale. By convention, both the linguistic scale and the corresponding 
partition will be denoted by 79 . It seems reasonable that this linguistic scale 
should be symmetric with respect to 0.5 since the antonym of each linguistic 
quantifier in the scale should also be in the scale. Linguistic antonymy, for 
instance ANT(Almost none) = Almost all or ANT(Few) = Most, is expressed at 
the numerical level by relations like ANT([a, b]) = [1 - b ,  1 -  a], since intervals 
are used to represent the meaning of linguistic quantifiers. As a consequence, 
if P(A) is the probability of an event A, linguistically_qualified by X E 79, then 
P(A), the probability of the complementary event A, should be qualified by 
ANT(X) E 79 (see, e.g., Peterson (1979) for a systematic study of antonymy in 
linguistic quantifiers). 
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The universe of descriptions, U, induced by a partition 5 ~ is defined as the 
set of intervals that are the union of adjacent elements of 50. The set inclusion 
relationship (_C) equips U with an ordered structure that has a lattice-like 
representation. Given X, Y E U, X is said to be more specific than Y if and 
only if X _ Y; it means that X and Y are in agreement but X gives tighter 
bounds than Y. 

For instance, if we take parameters a and b to be smaller than 0.5 with a < b, 
then [0, 1] can be (nonstrictly) symmetrically partitioned as 

50 = {0, (0, a], [a, b], [b, 1 -b] ,  [1 - b ,  1 - a ] ,  [ 1 -  a, 1), 1} 

corresponding to the following linguistic quantifiers: 

0 ::= None 
(0, a] ::= Almost none (Al-none for short) 
[a, b] ::= Few 
[b, 1 - b] :: = About half (Ab-half for short) 
[1 - b, 1 - a] ::= Most 
[1 - a, 1 ) ::= Almost all (Al-all for short) 
1 ::= All 

The set 79 constitutes the highest meaningful level of specificity with respect 
to the language. Between this level and the least specific one (i.e., the whole 
interval [0, 1]), the universe of description U contains several internal ordered 
levels of specificity. For example, with the seven terms defined above we have 
five levels in between: see the vertical ordering in Figure 3. 

The set of elementary (most specific) linguistic quantifiers can also be ordered 
according to the usual certainty ordering in the unit interval: 

None < Almost none < Few <_ About half < Most < Almost all <_ All. 

Higher level (less specific) elements of the universe U can be considered as 
intervals defined on the partition set, with respect to the certainty ordering. For 
instance, 

[Few, Most] = {X E 501 Few < X < Most} 

and this is compatible with the above numerical interpretation in terms of 
probability intervals. The semantics of the higher level elements of the universe 
corresponds to the convex hull of the intervals attached to their edges. For 
instance, the (numerical) interpretation of [Few Most], i.e., "From few to most," 
is the interval [a, 1 - a]. The certainty ordering can be partially extended to the 
whole universe U as well, by defining for every [Xx, Y1], [)(2, Y2] E U, 

IX1, Y1] < [X~, Y2] if and only if, X1 < X~ and Y~ < Y2, 

giving rise to the horizontal ordering, shown also in Figure 3, which differs from 
the specificity ordering, and where the certainty ordering now increases from left 
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to right. It is worth noticing that, if we add the empty set 0 to U, and if we equip 
it with both the specificity (c_) and the certainty (<) orderings, together with 
a suitable negation operator N, the structure of the qualitative algebra we are 
dealing with, {U, _<, none, all, C_, 0, [none, all], N}, turns out to be a bilattice as 
discussed in Ginsberg (1988). Namely, (U, _<, none, all) is the certainty lattice 
where "none" corresponds to "false" and "all" corresponds to "true," and < is the 
"truth" ordering of Ginsberg. (U, c_, 0, [none, all]) is the specificity lattice where 
0 means "contradictory" and [none, all] means "unknown", and c_ is the (perhaps 
misleadingly called) "uncertainty ordering" of Ginsberg. The negation performs 
a reflection around the [none, all]-0 axis (that goes through "ab-half"), and is 
such that for X, Y E P, N([X, Y]) --[ANT(Y), ANT(X)], i.e., it is the extension 
of the antonym operation that relates P(A) and P(A) for two complementary 
events A and A. 

There would be another kind of qualitative term pertaining to degrees of 
probability, namely relative orders of magnitude. It makes sense to declare that 
the probability of some event A is negligible with respect to the probability of 
another event B. This type of information could be represented as linguistic 
odds on the scale [1, +c~). Consider three landmarks, rl,  r2, ra where 1 < rl < 
r~ < r3 < +c~, and interpret them as follows: 

1 < P(A) 
r-"l ~ < rl : P(A) is close to P(B), 

P(A) 
rl < ~ < r2 : P(B) is small with respect to P(A), 

P(A) 
r2 < ~ < r3 : P(B) is very small with respect to P(A), 

P(A) . 
r3 < P(B) " P(B) is negligible with respect to P(A). 

Although this type of information could be viewed as redundant with respect 
to absolute orders of magnitude, it is not. First relative orders of magnitude 
can be more expressive than absolute ones for describing extreme probabilities, 
while absolute orders of magnitude better represent linguistic terms referring 
to probabilities between say, 0.1 and 0.9. A second reason is that combining 
absolute probabilities by quotienting will usually deteriorate the precision of 
the resulting probabilities while relative probabilities are directly expressed as 
quotients. However in this paper we stick to absolute probabilities. 

4.2. Computation of the qualitative syllogism table 

In this section we will focus on the qualitative counterpart of the quantified 
syllogism inference pattern, introduced in the preceding section. We use the 
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following notations, where Qi are linguistic labels. 

Q1 A's are B's; Q2 B's are A's 

Q3 G's are B's; Q4 B's are G's 

Q5 A's are C's; Q6 C's are A's 

This inference rule is interesting from the point of view of commonsense 
reasoning since it offers a precise model of chaining uncertain "if... then.. ." 
statements expressed by means of imprecise quantifiers or conditional proba- 
bilities. In the following we build the qualitative quantified syllogism function 
QS corresponding to that pattern for a given partition 79, i.e., we build a table 
providing qualitative values for Q5 and Q6 for any combination of possible qual- 
itative values for Q1, Q2,Q3 and Q4 (of course we have the restriction that Q1 
= none r Q2 = none and Q3 = none r Q4 = none). Thus, the QS function 
must be defined as a mapping from U x U x U x U to U, U being the universe 
of description associated with the partition 79. However, as will be shown, it will 
be necessary to compute the table for any combination of elementary quantifiers 
only, i.e., to build a mapping from 7 9 x 79 x 79 x 79 to U. 

The process of buildings the QS function is performed according to the 
following steps: 

1. Consider a linguistic scale of linguistic quantifiers together with a suitable 
partition of the unit interval [0, 1] that represents them. In what follows we will 
use the partition 79 defined above with parameters a = 0.2, and b = 0.4, that is, 

0 ::= None 
(0, 0.2] ::= Almost none 
[0.2, 0.4] ::= Few 
[0.4, 0.6] ::= About half 
[0.6, 0.8] ::= Most 
[0.8, 1) ::= Almost all 
1 ::= All 

2. Consider all possible combinations of these linguistic values for P(BIA ), 
P(AIB ), P(BIC), and P(CIB). 

3. For each of such combinations, compute the lower and upper bounds Of 
P(C/A) (and P(A/C)) using the numerical expression of the pattern given in 
Section 2. For example if we have 

Q1 =Most 

Q2 =Almost-all 

Q3 =About half 

Q4 = AImost-aU 
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then we have 

P*(B]A)=0.8, P,(BIA)=0.6 , 

P*(AIB ) = 1, P,(AIB ) = 0.8, 

P*(BIC)=0.6, P,(B]C)=0.4, 

P*(CIB)= I, P,(CIB)=0.8, 

which gives for Q5 and Q6 

P*(CIA ) = 1, P,(CIA) 

P*(AIC ) = 1, P,(AIC ) 

= 0 . 4 5 ,  

= 0 . 3 .  

4. These results are then approximated by the most specific element of the 
universe of description U (see Figure 3) which contains them. So, the interval 
[0.45, 1] for P(CIA ) is approximated by the larger interval [0.4, 1], that is, the 
resulting Q5 is set to [About-half, All]. In the same way, Q6 is approximated to 
[Few, All]. 

In this way, we have partially defined the qualitative functions Q5 and Q6, i.e., 
defined as functions Q5 and Q6: ~p • T' • 7 ~ x ~ ~ U. Table 1 shows a small 
part of the table thus generated for Q5 and Q6. 

5. Finally, the complete definition of the qualitative function QS : U • U • 
U x U ~ U can be easily derived from the above partial one using the obvious 
property of interval analysis f(Ix U 12) = f ( / 1 ) U  f(I~) where 11 and /2 are 
subintervals of [0, 1]. Applying this property implies (i) any quantifier Qi can be 
considered as the union of the set Si of all elementary quantifiers below Qi in 
the universe of description (see Figure 3), and (ii) for any 4-tuple of quantifiers, 
the function QS is applied over all possible 4-tuples combining the elements of 
the sets Si. That is, 

Q5 = QS(Q1, Qe, Qa,Q4) = U Qs(s1, $2, 83, $4). 
SiE$ 9 
Si C Qi 

However, this computation can be further simplified due to the following fact. 
The numerical expression of the quantified syllogism (see Section 2) shows that 
the lower bound for Q5 only depends on the lower bounds of Q1,Q2, and Q4, 
whereas the upper bound not only depends on the lower bounds of Q2 and Q3, 
the upper bound of Q4, but also on both the upper and lower bounds of Q1. 
Therefore, we can obtain the qualitative bounds for Q5 from the table defined 
on the set of elementary quantifiers in the following way: 

Q5 = QS(Q1, Q2, Q3, Q4) 

= [QS(QI,, Q2,, X, Q4,), U QS(S, Q2,, Q3,, Q4*)] 
8CP 
SO_Q, 
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Table 1. Instances of the quantified syllogism for the 7-element partition. 

QI As are Bs Q2Bs are As Q3C's are Bs Q4Bs are Cs 

Most Ai-all All Ab-half 

Most Al-all All Most 

Most Al-all All Al-all 

Most Al-ali All All 

Most All None All 

Most All Al-none None 

Al-all All Al-all Most 

Al-all All Al-all Al-all 

Al-aU All Al-all All 

Al-all All All None 

AI-all All All Al-none 

Al-all All All Few 

Al-all All All Ab-half 

AI-all All All Most 

All All Ab-half Most 

All All Ab-half Al-all 

All All Ab-half All 

All All Most None 

Q5 As are Cs Q6 Cs are As 

[None, Ab-half] [Ab-half, All] 

[Few, Most] [Most, All] 

[Ab-half, Most] [Most, All] 

[Most, Most] [Al-all, Al-all] 

[Most, All] [None, None] 

[None, All] [None, All] 

[Ab-half, All] [Al-all, All] 

[Most, All] [Al-all, All] 

[Al-ail, All] [Al-all, All] 

[None, None] [None, All] 

[None, Al-none] [None, All] 

[None, Few] [All, All] 

[Few, Ab-hallq [All, All] 

[Ab-half, Most] [All, All] 

[Most, Most] lAb-half, Ab-half] 

[AI-all, All] [Ab-half, Ab-half] 

[All, All] lAb-half, Ab-half] 

]None, None] [None, All] 

where Qi = [Qi., Qi*], Qi. and Qi* are elementary quantifiers of U, i.e., elements 
of p,  and X can be any element of P. Let us see an example of how this 
expression is applied. 

QS([Most, All], All, [None, All], [Ab-half, Almost-all]) 

= [QS(Most, All, None, Ab-half), QS(Most, All, None, Almost-all) 

uQS(Almost-all, All, None, Almost-all)u QS(All, All, None, Almost-all)] 

= [[Few, Most], [Ab - Half, Almost-all]U 

[Most, Almost-all] U [Almost-all, Almost-all]] 

= [Few, Almost-all] 

Remark. Note that in the above procedure, the qualitative calculation table for 
the quantified syllogism is computed by using the approximation step only at 
the end of the computation. Another approach one may think of would be to 
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have precomputed tables for the product and quotient operations and to use 
them in the calculation of the bounds. However, this latter approach would not 
be satisfactory because it yields results that are too imprecise. For instance, if 
one needs to compute the product Q1 �9 Q 2 ,  Q3, where Q1, Q2, Q3 ~ P and 
denoting A([a, b]) = NQetI{Q I [  a ,  b] C Q}, the function that maps interval [a, b] 
to its "name" in the qualitative scale (approximation function), then generally 

A(Q1 �9 Q2 �9 Q3) c A(Q1 �9 .A(Q2 �9 Q3)) 

because A(Q2 * Q3) strictly contains Q 2 .  Q3 generally. Even associativity may 
be lacking, i.e., A(Q1 �9 A(Q2 �9 Q3)) # A(A(Q1 �9 Q2) �9 Q3). 

Let us analyze the results obtained on the most elementary type of qualitative 
scale of linguistic quantifiers, i.e., {none, few, about half, most, all} where few 
is of the form [E, a] for some positive, infinitesimal value e, a is some number 
in (0, 1/2), about half is interpreted as [o~, 1 - tx] and most is [1 - o~, 1 - e]. 
Note that the name "about half" is indeed short for "neither few nor most, 
but in between," since the interval [a, 1 - a] may be quite large. Table 2 gives 
the complete results when o~ = 0.3 on 4-tuples which give nontrivial results for 
P(CIA); the table is sorted by putting together the 4-tuples (Q1 Q2 Q3 Q4) that 
lead to the same value of Q5. A first remark is that in many situations when 
none of the quantifiers mean "all," no information is obtained on P(C[A). This 
is especially true when both P(AIB ) and P(BIA ) take small qualitative values. 
Some results may look surprising. For instance, we read that nothing can be 
inferred from the four statements 

"all As are Bs," 
"most Bs are As," 
"all Cs are Bs," 
"about half of the Bs are Cs". 

Especially, the lower bound P.(CIA) = 0 is attained if pessimistic interpretations 
of "most" and "about half" are chosen, say 70% and 30% respectively. This 
case should not be surprising since it is the one studied in Section 3.i. 

4.3. The robustness of qualitative probabilistic reasoning 

Table 2 is obtained for a specific value of the threshold o~ between "few" and 
"halL" A legitimate question is whether such results are still valid for other values 
of the threshold. Let us start with qualitative tables for product and quotient, 
with "few" = (0, a], "most" -- [1 - a, 1) "half" = [o~, 1 - tx]. The product table 
is given in Table 3, and the identities N o n e ,  Q = None, A l l .  Q = Q. The 
"?" indicates some ambiguity due to the choice of the value of o~. Namely 
half �9 half ---- [t~ 2, (1 - o0 z] c_ (0, o~] only if (1 - a) 2 < ~ which requires o~ _> d, 
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Table 2. C o m p a c t e d  tab le  o f  the  quan t i f i ed  syl logism fo r  the  five e l e m e n t  partition 
( " h a l f "  m e a n s  " a b o u t  ha l f" ) .  

P(BM) P(AIB) P(BIC) P(CIB) 

none none [none, most] [none, all] 

few few [few, most] [few, most] 

few half [few, half] [few, most] 

few most [few, half] half 

[half, all] most [few, most] half 

[half, all] [few, half] [few, most] [few, most] 

all [few, half] all [few, most] 

all most all half 

few [few, all] none none 

few half most most 

[few, half] most few few 

most [few, half] all [few, most] 

most most all half 

few half most [few, half] 

few most half few 

few most most half 

half [few, half] all [few, most] 

half [few, all] none none 

[most, all] most [few, all] few 

few [few, half] all [few, most] 

few most most few 

few most all [few, half] 

half most all few 

most [few, all] none none 

none none all [few, all] 

all [few, all] none none 

few few most all 

few [few, all] [few, half] all 

[few, half] most [few, half] most 

half most most most 

few half most all 

few all few [few, most] 

few all half most 

half all [few, half] [half, most] 

P(CIA) 

[none, all] 

[none, most] 

9~ 

[none, half] 

[none, few] 

s~ 

none, none] 

few, all] 

[few, most] 

Continued. 
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P(BIA) 

half 

half 

most 

few 

few 

half 

half 

half 

most 

most 

few 

few 

few 

few 

few 

half 

most 

all 

half 

[most, all] 

all 

most 

most 

half 

all 

most 

most 

all 

all 

P(AIB) 

all 

all 

all 

[most, alll 

all 

most 

all 

all 

all 

all 

[few, all l 

most 

all 

all 

all 

all 

all 

all 

[few, all] 

most 

most 

most 

all 

[few, all] 

all 

[few, all] 

[few, all] 

all 

[few, all] 

P(B[C) 

few 

most 

[few, most] 

most 

half 

all 

half 

all 

[few, most] 

all 

all 

all 

half 

most 

all 

[most, all] 

all 

[few, all] 

[few, most] 

[few, mostl 

all 

all 

[few, all] 

all 

[few, all] 

[few, most] 

all 

[few, all] 

[few, all] 

P(ClB)  

few 

most 

half 

[most, all] 

half 

most 

few 

[half, mosq 

few 

half 

all 

most 

few 

[few, half] 

[half, most 1 

few 

few 

few 

all 

most 

most 

most 

most 

all 

half 

all 

all 

most 

all 

P(CIA) 

[few, half] 

[few, few] 

[half, all] 

[half, mostl 

[half, half] 

[most, all] 

[most, most] 

Jail, all] 
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Table 3. Product table. 

Product ] few half most 
i 

I 
few [ few few few 

half I few ? [few, half] 

most l few [few, half] ? 

Table 4. Quotient  table. 

Quotient none few half most all 

none 

few 

half 

most 

all 

[none, all] none none none none 

all [few, all] [few, all] [few, half] few 

all all [half, all] [half, all] half 

all all all [most, all] most 

all all all all all 

where d = (o~ - v ~ ) / 2  ~ 0.382. In that case half �9 half = few and most �9 most 
= [(1 - o02, 1) r [c~, 1) when c~ > d so that most �9 most = [few, most]. The 
latter equality does not sound natural. On the contrary if a < d, then 

half �9 half = [few, half]; most �9 most= [half, most]. 

From a commonsense point of view, it is not counterintuitive to require that 
"few" may mean a proportion less than 0.3 or so. Again "half" is here short for 
"neither few nor most but in between." Hence it is clear that the product of  
qualitative probabilities is almost independent of  the choice of the threshold a 
in (0, 1/2). It fits the intuition and is completely threshold independent for "c~" 
small enough. 

The same problem can be solved for the quotient, and it leads to the almost- 
robust table (Table 4). The term half/half and few/most are given for c~ < d. 
Only these terms change if oL is larger. Note  that the subdiagonal part of  the 
table has been truncated to "all." 

In order to study the robustness of the quantified syllogism table, several 
runs of the program that generate this table have been done, with o~ varying 
between 0.025 and 0.38. Only a few lines of the qualitative table change 
(nine over 625 = 54 distinct 4-tuples of quantifiers for 0.025 < o~ < 0.35). In 
order to get a better insight, it is interesting to consider a significant subpart  
of  the table, where quantifiers are either "few," "most", or "half," i.e., when 
P(AIB), P(BtA ), P(CIB), P(BIC' ) are close to 0, close to 1, or neither close to 
0 nor close to 1 but in between. In order to let the parameter  oL appear, we 
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Table 5. Parametrized instances of the quantified syllogism. 

P(BIA) P(AIB) P(BIC) P(CIB) P(CIA) 

Vo(~) v~/20/2 - ~) v~(~) Vo(~) 
Vo(cx ) v1/2(1/2 - o 0 vl(ot ) v1/2(1/2 - or) 
Vo(ot) v1/2(1/2 - a) Vl(C 0 Vl(a ) 
Vo(tx) Vl(O~ ) V1/2(1/2 - c 0 Vo(o 0 

Vo(~) v,(~) vl(~) Vo(~) 
Vo(ot) VI(O~ ) Vl(Ot ) 1 : 1 / 2 ( 1 / 2  - a) 
Vo(~) vl(~) vl(~) vl(~) 

V1/2(1/2 - a) VI(~ ) V1/2(1/2 - c 0 Vo(a) 
V1/2(1/2 - oO Vl(oO Vl(c*) Vo(~) 
Vl(~) VI (or) Vo(oL) Vo(r 
V,(~) V,(~) V~(~) V,(~) 
Vl((~ ) Vl(Ot) ~/2(1/2 - a) Vo(oO 
Vl(a) VI(~) V1/2(1/2 - a) Vl(a) 
v,(~) vl(~) v,(~) Vo(,O 
Vl(~X) Vl (or) Vl(O~ ) Vl (o~) 

vo(~/O - ~)) 
Vo(2cO 
~((2~ - ~2)/0 - ,~)) 

vo(,~/O - ,~)) 
Vo(ot2/(1 -- o~) 2) 

Vo(~/(1 - cO) 

Vo((,~lO - ,~))2 + ~) 

Vo(1/(2(1 - cO) ) 

Vo(,~lO - ,~)) 

Vo(2cO 
Vl(2a) 

Vo(2a) 
v~(2,~) 
VO(O~/((1 - 002 + ~2)) 

V1 (2a) 

shall use the following notation, 

P(AIB)Vo(a ) means P(AIB)  < a, 
P(AIB)V1/2(ot) means 1/2 - a <_ P(AIB  ) < 1/2 + ~, 
P(AIB)V, (a)  means P(AIB)  > 1 - a, 

where V~(~) means "in the vicinity of z" for z --- 0, 1/2, 1, and cx < 0.5 
quantifies the error (i.e., the actual imprecision). Using this notation, the above 
quantifiers "few," "half," and "most" can be represented by "P(AIB)Vo(oO," 
"P(AIB)V1/E(1/2-  a)," and "P(AIB)V1 (c0" respectively. Notice that representing 
"few" by "P(A[B)Vo(oO" and "most" by "P(AIB)VI(oO" includes P(AIB  ) = 0 
and P(A[B) -- 1 as possible interpretations of "few" and "most" respectively. 
This representation is adopted to simplify the computations, although it differs 
slightly from the previous ones where P(A[B) = 0 and P(AIB)  = 1 were only 
interpreted as "none" and "all" respectively. Then by applying the optimal bounds 
on P(CIA  ) as described in Section 2 on the 64 = 4 3 4-tuples of quantifiers, 
potential instability of the results was obtained only for the 15 cases in Table 5. 
It is easy to verify that for a < 1/3, 

o~ ot 2 
< 1 - a ,  < c~ ,  

1 - a - 1 - o< 2 - 
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Table 6. Robus t  linguistic inferences.  

P(B/A) P(A/B) P(B/C) P(C/B) P(C/A) 

few half most 

few half most 

few half most 

few most half 

few most most 

few most most 

few most most 

half most half 

half most most 

most most few 

most most few 

most most half 

most most half 

most most most 

most most most 

few [few, 

half [few, 

most [few, 

few [few, 

few few 

half [few, 

most [few, 

few [few, 

few [few, 

half] 

half] 

half] 

half] 

half] 
half] 

half] 

half] 
few [few, half] 

most [half, most] 

few [few, half] 

most [half, most] 

few [few, half] 

most [half, most] 

oz 2 
a +  1 _ a 2 _ < 1 - c  q 2a_< 1 - ~ ,  

( l -a)  2 + a  2 - < 1 - ~  since ( 1 - c 0 2 + c ~  2 -<2~  , 

and for  o~ < 7 = 1 - v ~ / 2 ,  i.e., approx imate ly  0.292, the re  also holds  

2 a  - a 2 1 
~ < l - a ,  ~ < l - a .  

1 - a  - 2 - 2 a  - 

T h e s e  inequal i t ies  gua ran t ee  tha t  wha tever  the  va lue  of  a < 7, the  va lue  of  
P(C/A), as shown in Table 5, remains  within a given range  (e.g., [0, ~], [0, 
1 - ~], [a,  1]) co r re spond ing  to a symbol ic  label even if t he re  is a deg rada t i on  
of  the  result  which, except  in the fifth line of  Table 5, is less specific than  V0(a) 
or  Vl(a) .  Hence ,  we get  the robust  c o m p u t a t i o n  in Table 6 for  the  quant i f ied  
syllogism (we only give here  the  4- tuples  tha t  lead to an in format ive  ou tput ) .  T h e  
table  ob ta ined  for  o~ = 0.3 r emains  cor rec t  if smal ler  values  of  ~ a re  used  bu t  
may  not  be  opt imal ly  precise,  i.e., ob ta ined  intervals f rom the table  are  possibly 
wider  than  they should be.  
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Table Z Product. 

Product none al-n few half most al-all all 

none  

al-n 

few 

half 

most 

M-all 

all 

none none none none none none none 

none al-n al-n al-n al-n al-n ai-n 

none al-n ai-n [al-n few] [al-n few] [ai-n few] few 

none al-n [ai-n few] [al-n-few] [few half] [few half] half 

none al-n [al-n few] [few half] [few most] [half most] most 

none al-n [al-n few] [few half] [half most] [most al-all] M-all 

none al-n few half most al-all all 

$. The qualitative version of Bayes theorem 

The computation of Bayes theorem, namely P(AIB) = P(An B)/P(B) using 
absolute qualitative values usually yields very imprecise results. Consider, for 
instance, the quotient table given in Section 4.3. Only when both P(A ~ B) 
and P(B) carry the value "most" does the imprecision remain small, for the 
five-quantifier case. The same phenomenon can be observed in Tables 7 and 
8, which show the qualitative product and qualitative quotient corresponding to 
the partition 7 9 used in Section 2. Applying several times the qualitative version 
of Bayes theorem is likely to produce uninformative results due to the already 
strong deterioration of the precision of the results at the first step. 

On the other hand, the generalized Bayes' theorem (GBT), described in 
Section 2, 

P(AiIA~+I) 
VA,, ..., Ak, P(A, IAk) - -  P(Ak[A,) H "P(AI+,IAi) 

i--l,k-I 

can be used, given a cycle A1, A2, . . . ,  A,, A,,+I = A1 in a probabilistic network, 
to improve the upper and lower bounds of P(A1 tA,~) from the upper and lower 
bounds of the remaining 2n - 1 conditional probabilities. Now, given a linguistic 
scale of numerical quantifiers determined by a partition of [0, 1], the problem 
is to obtain the qualitative counterpart of this local inference rule. In this case, 
we cannot use the same method as we did in Section 4.1 with the quantified 
syllogism rule because here the number of arguments, i.e., the length of the 
involved cycle, is variable. This prevents us from having the qualitative inference 
pattern defined by only one table. Therefore the following two approaches have 
been investigated. 



QUALITATIVE REASONING WITH IMPRECISE PROBABILITIES 343 

Table 8. Quotient. 

Quotient none al-n few half most al-all all 

none 

al-n 

few 

half 

most 

al-all 

all 

[none all] none none none none none none 

all [al-n all] [al-n all] [al-n half] [al-n few] [al-n few] al-n 

all all [half all] [few all] [few most] [few half] few 

all all all [most all] [half all] [half most] half 

all all all all [most all] [half most] most 

all all all all all [al-all all] al-all 

all all all all all all all 

5.1. Using generalized Bayes theorem with qualitative operations 

The first and more straightforward approach consists of replacing, in the above 
expression, the product and quotient operations by the corresponding qualitative 
ones, defined on a given universe of descriptions U, such as the ones defined 
in the above Tables 7 and 8. Therefore, given a cycle (A1, . . . ,  Ak, A1) with 
A1 = A, Ak = B, the qualitative probability QP(A[B), known to lie in the interval 
[QP.(AIB)ola, QP*(AIB)olO ], should be improved by letting 

~ikS_2 QP.(AiIAi+a)- 
QP,(A]B),ew = QP,(AIB)old V QP,(BIA ) �9 I.I~_~ Qp,(Ai+IIAi) , 

= QP*(AIB)o,d A [QP*(BIA). 1-IkiZ-2 QP*(AilAi+I)" QP*(AIB)new 
I k -2  l-L_,.1 QP.(A~+t IA0 

where/x and V denote the min and max operations in the sense of the certainty 
ordering. But the computation of these quantities raises several problems. 

(i) For a given cycle, find a proper ordering for the computation. 
Especially, it is not always the case that 

X 1 �9 X 2 
)(3. X4 (computing products first) 

is equal to 

( X ~ ) "  ( X ~ ) ( c o m p u t i n g  quotients first). 

Furthermore, because of the truncation effect of the quotient table, this second 
mode of computation may lead to incorrect results. Therefore, products should 
be computed first and the computation of quotients should be delayed as much 
as possible. 
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(ii) Since this operation must be done for all cycles one might look for the 
counterpart of a longest path algorithm, here with qualitative values. But this 
is tricky if we want to compute quotients only at the end of the shortest path 
procedure and keep the products of terms along cycles separate. In that case, 
the maximum operation 

Q1 $1 v 
Q2 S2 

should be directly expressed as an operation v'  between pairs (Q1, Q2) and 
($1, 82), furnishing a new pair of qualitative values. Moreover, longest-path 
algorithms make an extensive use of the distributivity of the product~over the. 
maximum. Here we would require a property such as 

X1 (X3 X4) XI"X3 Xl"X4 
x - - i  v = v 

Clearly, this property does not always hold in our qualitative algebra. 
But the basic question is whether this constraint propagation rule, which proved 
useful in the quantitative case leads to really improved qualitative probability 
bounds. This can be precisely studied on the five-quantifier case {none, few, 
half, most, all}. 

The smallest expression to be computed with nonextreme probabilities is of 
the form 

Q1. Q2. Q3 

Q4 "Q5 ' 

with Qi E {few, half, most}. It is easy to check from the product and quotient 
tables (see Section 4.3) that 

(i) Ql" Q2 ~ {few, [few, most], [few, half], [half, most]}, 
(ii) Q1 �9 Q2" Q3 can only belong to the same set as above, 
(iii) the only cases where the quotients can be significantly informative are 

few half half 
most = [few, half], half = [half, all], mos'--"t = [half, all]. 

As a consequence (QI" Q2" Q3)/(Q4" Q5) can give [few, all] at the very best. 
This is when QI" Q2" Q3 = [few, half] and Q4" Qs = [half, most]. This is 
not likely to be very useful for improving probability bounds. For example, in 
the 7-quantifier case, the best informative result can be shown to be [half, all] 
corresponding to the case when 

Q1 �9 Q2. Q3 [half, most] [half, most] [most, al-all] 
----- or  or  

Q4. Q5 [half, most]' [most, al-all] ' [most, al-all] ' 

as shown in the product and quotient tables given for this case. 
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5.2. Using generalized Bayes theorem on fixed-length cycles 

Due to the difficulties encountered with the first approach, we have studied a 
second approach to obtain a qualitative counterpart of GBT. As mentioned, it 
is not possible to associate a qualitative function to the GBT because cycles of 
variable length are involved. However, we can build, for different fixed lengths, 
the qualitative function corresponding to the generalized Bayes theorem for cycles 
with these fixed lengths. Therefore, we can think of approximating the "exact" 
qualitative GBT by using one of such partial computations with cycles of fixed 
length. The greater the number of considered cycles, the better the improvement 
(in the sense of precision) we may expect. We have then a classical trade-off 
between accuracy and computational cost. In doing that we found out that most 
of the time there was no substantial improvement of the qualitative bounds due 
to the increase of the length. So it is not worth working with long cycles. 

For example, for cycles of length n (n > 2), the expression to be computed is 
of the form 

QI" Q2""Q,, 
Q n +  l " "" Q 2 n - 1  ' 

which involves 2 n -  1 operands. Again, it is not necessary to define such functions 
in the whole universe of descriptions U, but only on the set of elementary 
quantifiers 79. In particular, for n = 3, we would have 

Q~ " Q2 " Q3 _ [Q,,.:_Q.2_, :Q3, Q; " Q~ " Q; ] 
Qa " Q5 [ Q~ " Q~ ' -Qa, T Q-s ] 

where Qi = [Qi., Q*] and Qi,,  Q* E 79. Using this approach, much better results 
can be obtained with respect to the previous section. In particular, as we have 
seen in the five-quantifier case, the above expression gives [few, all] at the 
very best with nonextreme probabilities using qualitative products and quotients, 
whereas now more precise results, like [few, few], [few, half], [few, most], or 
even [half, all], can be obtained. For instance (for a _< 0.3), Table 9 lists some 
of these. 

6. Symbolic constraint propagation 

The quantified syllogism rule followed by the generalized Bayes rule with fixed- 
length cycles, as precomputed for a given linguistic partition of the unit interval, 
can be recursively applied to any set of linguistically quantified statements of the 
form Q Ais are Bis which form a probabilistic network. It is then possible to 
generate new statements of that kind and to improve precision for the ones that 
were originally stated. Let us consider the following qualitative counterpart of a 
5-predicate example of Amarger et al. (1991): 



346 DUBOIS, GODO, MANTARAS, AND PRADE 

Table 9. Symbolic calculations of the generalized Bayes theorem. 

QI Q2 Q3 Q4 Q5 Q1.Qz'Q3/Q4"Q5 

few few few half half 

half few most most most 

half most few most half 

most most few half half 

most most most most most 

[few, few] 

[few, half] 

[few, most] 

[few, all] 

[half, all] 

�9 Most to almost all students are sportsmen (Q = [most, al-all]). 

�9 Almost all students are young (Q -- al-all). 

�9 Half of the sportsmen are students (Q = half). 

�9 Almost all sportsmen are single (Q = al-all). 

�9 At least almost all sportsmen are young (Q = [al-all, all]). 

�9 Most to almost all singles are sportsmen (Q = [most, al-all]). 

�9 Most singles are young (Q = most). 

�9 Almost no singles have children (Q = al-none). 
�9 Few young people are students (Q = few). 

�9 Almost all young people are sportsmen (Q = al-all). 

�9 At least almost all young people are single (Q = [al-all, all]). 
�9 At most almost no young people have children (Q -- [none, al-none]). 
�9 At most almost no people who have children are single (Q = [none, al-none]). 

�9 At most almost no people who have children are young (Q = [none, al-none]). 

These statements are just examples and must not be examined as reflecting 
sociological reality. We have been experimenting with this seven-quantifier 
examples as well as with its adaptation to accommodate nine-quantifiers. We 
have also experimented with different ways of partitioning, i.e., different intervals 
to represent these quantifiers, and with cycles of different length (3 and 4) when 
applying the generalized Bayes rule. 

The process of symbolic constraint propagation is the following one. The 
quantified syllogism rule is run until no improvement of the quantifiers (that is 
narrowing of the intervals [Qi, Qj]) nor new statements can be generated. Then 
the generalized Bayes rule is applied over all cycles of a particular length (3 or 
4). Only in the case that some improvement of the quantifiers is obtained using 
this rule, the process starts again. 

What  follows is a representative selection of results, showing some interesting 
aspects. Let  us consider a seven-element partition as follows: 



QUALITATIVE REASONING WITH IMPRECISE PROBABILITIES 347 

Table 10. Input data. 

Input data 

student 

sport 

single 

young 

children 

student sport single young children 

[1.o00, 1.o00] [0.700, 0.900] [0.000, 1.000] [0.850, 0.950] [0.000, 1.000] 
[0.400, 0.600] [1.000, 1.000] [0.800, 0.850] [0.900, 1.000] [0.000, 1.000] 
[0.000, 1.0o0] [0.700, 0.900] [1.000, 1.000] [0.600, 0.800] [0.050, 0.100] 
[0.250, 0.350] [0.800, 0.900] [o.900, 1.000] [1.000, 1.000] [0.000, 0.o50] 
[0.000, 1.000] [0.000, 1,0001 [0.000, 0.0501 [0.000, 0.050] [1.00o, 1.000] 

partition : (0, 0.2, 0.4, 0.6, 0.8, 1), 

P = {none, al-none, few, half, most, al-all, all}. 

The following results were obtained: 

�9 At least few students are single (Q = [few, all]). 
�9 Not more than few sportsmen have children (Q = [none, few]). 
�9 From almost-none to half singles are students (Q = [al-none, half]). 

It is worth noticing that the generalized Bayes rule gave no improvement on 
cycles with length up to 4. Let us consider now a nine-element partition as 
follows: 

partition : (0,0.1,0.2,0.4,0.6,0.8,0.9,1), 

P = {none, ai-none, v-few, few, half, most, v-many, al-all, all}, 

where v-few stands for "very few" ([0,1, 0,2]) and v-many stands for "very many" 
([0.8, 0.9]). Using the same input data, more results are obtained: 

�9 At least half of the students are single (Q -- [half, all]). 
�9 Not more than half of the students have children (Q = [none, half]). 
�9 Not more than very few sportsmen have children (Q = [none, few]). 
�9 From very few to half singles are students (Q = [v-few, half]). 
�9 Most to very many singles are sportsmen (Q = [most, v-many]). 

The last statement is a conclusion obtained by the application of the generalized 
Bayes rule. These results are consistent but stronger than those obtained with 
the seven-element partition. It is interesting to compare these results with those 
of the numerical procedure that directly handles interval probabilities given in 
Table 10 and 11 under the form of incidence matrices. 

The main difference between the numerical and symbolic results appears in 
the last row. The symbolic inference device was not able to deduce that 
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Table I1. Probabilities after constraint propagation. 

Saturated network student sport single young children 

student 
sport 
single 
young 
children 

[1.000, 1.0001 [0.900, 0.900] [0.607, 1.000] [0.850, 0.850] [0.000, 0.271] 
[0.400, 0.400] [1.000, 1.000] [0.850, 0.850] [0.900, 0.958] [0.000, 0.154] 
[0.222, 0.366] [0.700, 0.700] [t.000, 1.000] [0.800, 0.800] [0.050, 0.100] 
[0.350, 0.350] [0.834, 0.8881 [0.900, 0.900] [t.000, 1.0001 [0.000, 0.050] 
[0.000, 0.099] [0.000, 0.127] [0.000, 0.050] [0.000, 0.044] [1.000, 1.000] 

almost no person having children is a student, and very few are sportsmen. 
However, better results with respect to this particular problem were obtained 
when choosing partitions where the upper bound for the quantifier "almost none" 
has been significantly reduced. For instance, if we consider the seven-element 
partition 

partition : (0, 0.05, 0.4, 0.6, 0.95,1), 

P = {none, al-none, few, half, most, al-all, all}, 

the statement 

�9 Not more than most people with children are sportmen (Q = [none, most]) 

can be now inferred. On the contrary, nothing can be now inferred about the 
proportion of students who are single, which was inferred to be [few, all] with 
the first seven-element partition considered. Much better results are obtained 
when introducing two additional intermediate quantifiers in the last partition, 
i.e., when considering a nine-quantifier partition as 

partition : (0, 0.05, 0.2, 0.4, 0.6, 0.8, 0.95,1), 

P = {none, al-none, v-few, few, half, most, v-many, al-all, all}. 

With respect to the previous nine-quantifier partition, although we lose a little 
bit of information about the proportion of students who are single (from [half, 
all] to [few, all]) and that no improvement on the proportion of singles who are 
sportmen is obtained, a significant improvement is obtained with the inferred 
statements: 

�9 Not more than few students have children (Q = [none, few]). 
�9 Not more than few children are sportmen (Q = [none, few]). 

Moreover, Bayes rule applied on cycles of length 4 allows us to further infer 
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| Not more than very few children are student (Q = [none, v-few]). 

All these results show that, as one could expect, the finer the partition is, the 
better (more precise) the results are. But it is also true that, as the number of 
elements of the partition increase, results become more sensitive with respect to 
the values defining the intervals of the partition, i.e., the representation of the 
meaning of the quantifiers. As a matter of fact, recall that in Section 4.3 the 
quantified syllogism table was proved to be "almost" robust for the five-element 
partitions. In contrast, coming back to the above example, if, in the last partition, 
we move the upper bound for "almost none" from 0.05 to 0.01, the inferential 
power is drastically reduced with respect to the one provided by the first seven- 
element partition presented in this section due to a loss of sensitivity in the 
neighborhood of 0. Of course there would remain the problem of choosing the 
"best partition" with a given number of terms. But it is not clear that we have 
the freedom of choosing the partition (the meanings of the terms depend on the 
person who uses them). 

7. Propagating qualitative probabilities in Bayesian networks: 
the smoke-alarm problem 

The approach to reason qualitatively with imprecise probabilities developed so 
far in this paper can also be applied to propagate qualitative probability values 
in Bayesian networks. As pointed out by Xiang et al. (1990), the two inference 
rules needed in such networks are the Bayes rule and the reasoning-by-case rule. 
This last rule, expressed as 

P(AIC ) = P(AI B, C). P(BIC ) + P(AI-B, C). P(--,BIC ). 

allows the computation of a conditional probability by partitioning the condition 
C into the exclusive cases of B true and B false. 

Using the same approach as in Section 5.2, these numerical rules easily admit a 
qualitative counterpart. The case of Bayes rule reduces to compute qualitatively 
a three-argument expression of the type 

B(Q1, Q2, Q3) = Q1. Q2/Q3 

that is, a special case of the qualitative version of GBT with only three operands. 
For the reasoning-by-case rule, it should be noticed that only three independent 
arguments are involved because P(-~BIC ) = 1 -P(BIC ) and thus it leads to the 
computation of the following qualitative expression: 

G(Q1, Q2, Q3) = (Q1 - Q2). Q3 + Q2 = Q3. Q1 + (1 - Q3). Q2 

Note again (see remark in Section 4.2) that in doing so, the qualitative com- 
putation of such expressions involves an approximation only at the end, and so 
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Tampering 

Figure 4. Smoke-alarm problem. 

we avoid introducing imprecision as much as possible. It is also the case that, 
having defined such functions on the set of elements of a partition P, we can 
safely extend them to the whole universe of description U by letting 

B(Q1, Q2, Q3) = [B(01,, Q2,, Q3*), B(QI*, Q2*, 03,)] 
G(Q1, Q2, Q3) = [G(QI,, Q2,, Q3,) A G(QI,, Q2,, Q3*), 

G(QI*, Q2*, Q3,) v G(QI*, 02*, Q3*)] 

where Qi -- [Qi,, Q~], with Qi,, Q~ E 79. 

As an example, consider the well-known smoke-alarm problem (Figure 4) dis- 
cussed also in Xiang et al. (1990), with the following numerical data (supposedly 
based on empirical experience): 

P(fire) = 0.01, 

P(tampering) = 0.02, 

P(alarm [fire, tampering) = 0.5, 

P(alarm [fire, -,tampering) = 0.99, 

P(alarm [--,fire, tampering) -- 0.85, 

P(alarm I --,fire,--,tampering ) = 0.0001, 

P(smoke I fire) = 0.9, 

P(smokel-~fire ) = 0.01. 

We take the following scale of qualitative probabilities: 

impossible = 0 
extremely unlikely = (0, 0.005] 
very unlikely -- [0.005, 0.2] 
unlikely = [0.2, 0.4] 
maybe = [0.4, 0.6] 
likely = [0.6, 0.8] 
very likely = [0.8, 0.995] 
extremely likely = [0.995, 1) 
sure = 1 
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Given such a partition, tables corresponding to the qualitative Bayes and 
reasoning-by-case rules respectively are generated, and then the qualitative con- 
straint propagation can be performed. For instance, P (alarm [ fire) (whose 
computed value is 0.98) can be qualitatively evaluated by using the reasoning- 
by-case table, according to the following expression: 

P(alarmlfire) = 
G(P(alarm[fire, tampering), P(alarm[fire, -~tampering), P(tampering)) = 
G(maybe, verydikely, very_unlikely) = [likely, veryAikely] 

which is an acceptable result, i.e., it is quite informative and compatible with the 
exact value 0.98. In general, in those cases where the only inference rule involved 
is reasoning-by-case, i.e., when we estimate probabilities of effects given causes, 
the results are acceptable. However, when we need to estimate probabilities of 
causes given effects, i.e., when Bayes rule is involved, results are much more 
imprecise, especially when dealing with small probability values. For instance, 
the qualitative value of P(firelsmoke), whose exact computed value is 0.47, is 
computed as follows: 

P(smoke) = G(P(smoke [fire), P(smoke [ -~fire), P(fire)) 

= G(verydikely, very_unlikely, very_unlikely) 

= [very_unlikely, unlikely], 

P(fire [smoke) = B(P(smoke [ fire), P(fire), P(smoke)) 

= B(verydikely, very_unlikely, [very_unlikely, unlikely]) 

= [very_unlikely, sure]. 

Clearly, the result is almost uninformative. This is mainly due to the fact that 
Bayes rule is very sensitive to the relative orders of magnitude of the probabilities 
involved but not so sensitive to their absolute values. So we think that this type 
of situation should be approached, as mentioned in the last part of Section 4.1, 
by adding qualitative information concerning the relative orders of magnitude 
for the variables involved in the network. This issue will be the subject of 
future studies. 

8. Concluding remarks 

We have shown that a qualitative calculus for the probabilistic scale "none," 
"few," "from few to most," "most," "all" can be developed in agreement with a 
numerical interpretation of probabilities, provided that the intended numerical 
meaning of "few" is less than 30 percent in any case and the one of "most" is more 
than 70 percent. These thresholds are quite in agreement with commonsense 
reasoning, which seems to disagree that "most A's are B's" if less than 70 percent 
of A's are B's, or that "few A's and B's" when there are more than 30 percent 
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of A's which are B's. However, it does not mean that humans are currently able 
to provide the correct (in the sense of probability calculus) qualitative values 
given by the rules derived in this paper. It is well known (e.g., Kahneman et 
al. (1980)), that humans find it difficult not only to correctly assess probabilities, 
but also to make accurate inferences from them. 

One might wonder whether fuzzy intervals are useful or not in the modeling 
of linguistic quantifiers. Clearly the use of precise thresholds to delimit the 
extensions of "few," "half, .... most," is somewhat arbitrary. However, since the 
linguistic computation tables obtained here are partially independent of the choice 
of the threshold, it turns out that using fuzzy partitions instead of nonfuzzy ones 
would not make much difference here, especially if a fuzzy partition is viewed as an 
imprecise specification of the thresholds between the meanings of the basic terms. 
Nevertheless, fuzzy intervals remain useful in the scope of specifying numbers 
in probabilistic networks, with respect to understanding linguistic values, rather 
than reasoning with linguistic values. Indeed, when looking for the numerical 
interpretation of linguistic quantifiers, fuzzy intervals look like a more faithful 
model than crisp ones. But then the constraint propagation algorithms must be 
adapted to handle fuzzy upper and lower probabilities in the numerical setting. 
Applying fuzzy arithmetic to the quantified syllogism rule (as done by Dubois and 
Prade (1988)) appears to be in total contrast with defining linguistic counterparts 
of numerical constraint propagation rules, as done here. In the above-mentioned 
paper no qualitative computation is performed: starting from linguistic data, a 
numerical translation of these data is done by means of fuzzy numbers, and 
a quantitative computation on fuzzy numbers is performed. Here we tried to 
remain at a symbolic level for the computations themselves, in an attempt to 
avoid the translation step, but trying anyway to remain in accordance with the 
numerical counterparts of the terms if we had them. 

The present work, despite its limitations, can be useful to deal with information 
systems containing partial statistical knowledge like ill-known contingency tables, 
or binary relations between attributes, weighted by conditional probabilities. The 
numerical version of the proposed inference rules may help addressing queries 
that relate two attributes whose relationships are known only via other attributes 
in the data base. The linguistic version of the inference rules gives a precise 
idea about what is lost when using symbolic frequency information (like "most" 
and "few") instead of the numeric frequency data. Specifically we have found 
that Bayes rule does not get along well with absolute orders of magnitude. Yet, 
it may be considered as rather surprizing that, on examples such as in Section 
6, linguistic labels can be propagated in accordance with the laws of probability, 
regardless of their precise numeric counterpart, and give results that, although 
suboptimal, remain somewhat informative. 
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Appendix 

Let A, B, C be three events corresponding to subsets of U. Suppose we start with 
the knowledge of P(AIB ), P(BIA), P(CIB), P(BIG), and we want to compute 
the resulting values of P(CIA ) and P(AIC ). In the following we shall assume 
that P(A). P(B). P(C) > 0. The case when one of P(A), P(B), P(C) is zero 
is not considered because in that case some of the conditional probabilities 
are undefined. To see that this assumption is self-consistent note that the 
only constraint induced by P(BIA ) and P(AIB ) on P(A) and P(B) is of the 
form /3P(A) = aP(B) with /3 = P(BIA), o~ = P(AIB). Hence if P(A) E 
(0 ,1 ] ,P (B)  E (0,/3/a] provided that 0 < /3 < a. When /3 = ~ = 0 then 
P(A n B) = 0 and P(A), P(B) can be given any value in [0, 1]. Hence 
P(A) > 0, and P(B) > 0 can always be assumed. This assumption also implies 
P(A n B) = 0 r P(AIB) = P(BIA ) = 0. Lastly, P(C) is not constrained by 
P(At B) and P(BIA ). Note that assuming P(A) > O, P(B) > O, P(AIB ) > 0, and 
P(BIA) = 0 leads to an inconsistency with respect to Bayes theorem. 

THEOREM 1. Assume P(A).P(B).P(C) > O, and P(B[A), P(AtB), P(BIC), P(CIB ) 
are fixed; then the following inequality holds: 

(0, 1 1 ~ P(C]B)'~ P(CIA)>P(BIA) " _ max \ P(AIB) ] if P(BIA ) > O, P(A]B) > O, 

>0 if P(BIA ) = P(A]B) = O, 

P(B[A)P(CtB) P(BIA)P(CIB) P(CIA)<min (1, 1 - P(BIA) + 
P(A[B) ' P(AIB)P(BIC )' 

P(BtA) P(C]B) 
~ ( 1  - P(BIC))  + P(BIA)) 

if P(BIA ) > O, P(AIB) > O, 
P(CtB ) > O, P(BIC ) > O, 

<1 - P (B]A)  if P(BIC ) = P(CIB ) = O, 
_.<1 otherwise. 

Proof 
(i) Lower bound. 

probability theory: 
Let us start with the following inequality which holds in 

max(O, P( A N B) + P( B n C) - P( B ) ) < P( A n C). (A1) 
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This inequality is obtained using the additivity property of probability as 

P ( A U B U C )  = P ( A ) + P ( B )  + P ( C ) - P ( A n B )  

- P ( B n C ) - P ( A n C )  + P ( A n B N C ) .  (A2) 

Noticing that P(A U B U C) + P(A f3 C) - P(A) - P(C) > O, we can claim that 
P(B) - P (AAB)  - P ( B n C )  + P ( A A B n C )  > O, and (A1) is obtained by turning 
P ( A o B n C )  into P(AnC)  in the preceding inequality. Now assuming P(A) > O, 
(A1) leads to 

P(B n C) 
max 0, P(BIA) + P(A) 

Now 

P(B)~ 
p---('~] <- P(CIA ). 

and 

P ( B A C )  P ( B n C )  P(B) P ( A n B )  
P(A) P(B) P ( A A B )  P(A) 

provided that P(B) > O, P(A n B) > 0 
P(CIB).P(BIA) 

P(AIB) 

P(B_..)) = P(B).  P(A n B) = P(B/A___~) if P(A n B) > O. 
P(A) P(A).  P(A n B) P(A/B) 

Hence we get the lower bound of P(CIA) in the general case. The only case 
when P(A n B) = 0 can occur when P(BiA) = P(AI B) = 0. In that case (A1) 
becomes the trivial inequality P(A n C) >_ O, hence, P(CIA ) >_ O. 

(ii) Upper bound. Consider again (A2) and note that P(A o B u C) - P(B) - 
P(C) + P(B n C) > O. Hence P(A) - P(A O B) - P(A O C) + P(A t3 B n C) > O, 
and we arrive at 

P(A n C) <_ P(A) - P(A n B) + P(B n C). (A3) 

Moreover, the following bound also exists 

P(A n C) < P(A) (A4) 

and it is not 
we also have 

P(A O 

P(A n 

Again, since 

P(CIA) 

the two other nontrivial, independent bounds: 

C) _ e ( c )  - e ( z  n C) + P(A n B) 

c)  < P(c).  

it is always possible to assume P(A) > 0, (A3)-(A6) lead to 

P( B n C) 
<_ 1 - P(BIA ) + 

P(A) ' 

redundant with respect to (A3). By symmetry between A and C, 

(AS) 
(A6) 
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P(CIA ) < 1, which is trivial, 
P(C) P(BAC) 

P(CIA) ~ P(A-----) P(A) + P(BIA)' 

p(c) 
P(CIA) ~ P(A'-'-'~" 

Now we use the following identities: 

P(BNC) = P(BAC) P(AAB) 
P(g) P(A) P(AAB) 

P(B) 
P(B) 

provided that P(A N B) > O, 
P(CIB). P(BIA ) 

P(AIB) 
provided that P(B]A) > 0 (or equivalently P(AIB ) > 0), 

P(C) _ P(C). P(B). P(A n B). P(B O C) 
P(A) P(A). P(B). P(A n B). P(S n C) 

P(BIA)P(CIB) 
P(A]B)P(BIC) 

if P(B N C) > O, P(A n B) > O, 
i.e. if P(AIB) > O, P(BIC) > O, 

P(B) _ P(BIA ) 
P(A) P(AIB) if P(A n B) > 0, i.e., P(AIB ) > O. 

Hence we get the upper bound in the general case. 
If P(BIA) = P(AIB ) = O, then (A3) becomes trivial, (AS) becomes 

P(A n C) < P(C) - P(B o C) 

and subsumes (A6) and then 

P( A n C) P( C) P( B n C) 
P(A) P(A) P(A) 

But it is possible to choose P(A) = P(C) -  P(B O C) since P(A) can be freely 
chosen. Hence P(CI A) is only upper-bounded by 1. 

If P(B N C) = O, i.e., P(BIC) = P(CIB) = O, then P(C) can be freely chosen. 
Taking P(C) = 1 leads to trivial inequalities in (A5) and (A6). The only nontrivial 
inequality is (A3) that yields P(CIA) <_ 1 - P(BIA ). 

THEOREM 2. The bounds given in Theorem 1 are the best ones (i.e., are optimal). 

Proof. 
(i) Lower bound. Let Z l ,  X 2 . . . .  , X7 be nonnegative quantities proportional 

to the probabilities of the elements of the partition induced by A , B , C  as in 
Figure A1. 
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Figure A 1. 

A B 

C 

The knowledge of P(B[A) is equivalent to the linear constraint 

P(A n B).  P(BIA) = P(A n B).  (1 - P(BIA)), 

which is written 

(x4 + xs). P(BIA) = (x6 + z7) .  (1 - P(BIA)). (A7) 

And similarly we have 

(x2 + z3)P(A[B) = (x6 + x7)(1 - P(AIB)), (m8) 

(xl + xs)P(BIC) = (x3 + x7)(1 - P(BIC)), (A9) 

(x2 + x6)P(CIB) = (x3 + x7)(1 - P(CIB)). (A10) 

Note  that changing all values xl into k.xi for k > 0 yields another  solution to (A7) -  
(A10). Let  us assume that  the lower bound P(BIA). (1 - (1 - P(CIB))/P(AIB)) 
can be attained. It means that (A1) holds with equality, i.e., 

P(A fq B) + P(B n C) - P(B) = P(A N C). 

It  is easy to verify that it forces x2 = x5 = 0. To show that  this situation 
can occur, start with any original distribution xl,  . . . ,  x7 satisfying (A7)-(A10)  
and make the following change: X1 = x 1 + z s ,  X2 = 0, X3 = x z + x 3 ,  X4 = 
x4 + xs, )(5 - 0, X6 = x2 + z6. Replacing zi by XI, i = 1, 6 in (A7)-(A10)  leads 
to 

X4. P(BIA) = (X6 - x2 + zv)(1 - P(B[A)), 

X3. P(AIB) = (X6 - x2 + x7)(1 - P(AIB)), 

X1. P(B[C) = (X3 - x2 + x7)(1 - P(B]C)), 

X6. P(CIB) = (X3 - x2 + x7)(1 - P(CIB)). 

Hence  the distribution X1, X2, . . . ,  )(6, X7 = x 7 -  z2 is feasible, insofar as 
x7 >_ x2, and leaves the data unchanged while saturating the lower bound, since 
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X2 = )(5 = 0. Note  that P(A n B) + P(B  n C) - P(B)  = z 7 - -  X 2 < 0 when 
x7 < x2; hence, the bound (A1) becomes ineffective when x7 < x2. In that  case 
let us prove that  P(CIA ) = 0 is always possible to get; that  is, x5 + z7 = 0. 
Consider  the new distribution X~ = xl + xs, X~ = xa + xT, X~ = x4 + x5, X6 = 
0, X~ = x6 + x7, X$ = 0, and X~ = x2 - x7 > 0. Making these substitutions in 
(A7)-(A10)  leads to a feasible assignment such that  P(CIA ) -- 0. Hence,  the 
set of  solutions allows the reduction of  (A1) to a zero lower bound. 

Lastly, consider the case when P(A n B)  = 0, i.e., x6 = x7 = 0. Then  x2 > x7 
always holds and the last substitution always makes sense. 

(ii) U p p e r  bound. Again let us saturate (A3), (A4), (A5), and (A6) in turn. 
Saturation of (A3) leads to P(A n C) = P(A) - P(A n B) + P(B  n C), i.e., 
X 5 "l- X7 = •4 -I- z 5 -1- z 6 at- X7 - -  X6 - -  x 7  4" X3 at" X7.  Hence,  Z 4  + Z 3  ----- 0 ,  i.e., 
x4 = x3 = 0. Consider the new set of  weights X1 = xl - x4, X2 = x2 + x3, X3 = 
0, X4 = 0, 2(5 = x4 + xs, X6 = x6 - x3, X7 = z7 + x3. These weights satisfy 
(A7)-(A10).  It is feasible to make this change if x6 > x3 and xl > z4. Then 

P(BIA) 'P (CIB)  
P(CIA ) = 1 - P(BIA ) - P(AIB) 

is attained. 

Saturation of (A4) leads to P ( A N C )  = 0, i.e., Z 4 = Z 6  = 0. From a distribution 
of weights zl ,  . . . ,  x7 satisfying (A7)-(A10) let us compute  the new distribution 
X1 = z ~ - z 4 ,  X 2 = x 2 + x 6 ,  X3 = z 3 - x 6 ,  X4 = 0 ,  X 6 = 0 ,  X 7 = z 6 + x 7 .  It  is 
feasible to make this change if Xl > x4, x3 > z6. 

Saturation (A5) reads 

m 

P ( A N C ) -  P ( B A C )  + P ( A A B )  = O = x l + x 3 - x 7 - x 3  + x6 + x7 

i.e., x I = x6 = 0. This is obtained by the following new set of weights that  
satisfies (A7)-(A10):  X~ = 0, X2 = z2 + z6, X3 = z 3 -  x6, X4 = z 4 -  xl ,  
)(5 = xl + zs, X6 = 0, X7 = x6 + x7. This set of  weights is feasible if and only if 
z3 > x6 and x4 > xl. 

Saturation of (A6) reads P ( C  n A) = 0, i.e., xl = x3 = 0. This is obtained 
by the following new set of weights: X1 = 0, X2 = z 2 + z a ,  X3 = 0, X4 = 
x4 - xl ,  Xs = xl + xs, X6 = x6 - z3, X7 = z7 + z3. This set of  weights is feasible 
if and only if x4 > xl and z6 > x3. 

Clearly, the four situations correspond to a parti t ion of the set of  feasible 
weights for constraints (A7)-(A10),  according to the signs of  x4 - z l  and z6 - z3. 
Hence  any set of weights verifying (A7)-(A10) can be modified in such a way 
that one of the upper  bounds is reached without modifying the input conditional 
probabilities. Therefore,  bounds are optimai in the general case. 

The  pathological case P(AIB) = P(BIA) = 0 leads to z6 + z7 = 0. Then 
P ( C I A  ) = 1 requires P ( C  n A) = 0, i.e., z4 = 0. But x4 is not restricted by (A9) 
and (A10) and can always be taken as 0. 



358 DUBOIS, GODO, MANTARAS, AND PRADE 

The pathological case P(BIC ) = P(CIB ) = 0 leads to x3 + x7 = 0, i.e., 
x3 = z7 = 0. Hence (A7)-(A10) become 

(z4 + zs)P(B]A) = x6(1 -- P(BIA)), 

z2P(A]B) = x~(1 - P(BIA)). 

The first bound P(C/A) = 1 obtained if P(A n C----) = 0, i.e., x4 = 0 = x6; but 
this implies P(B[A) - 0. Otherwise the only attainable upper bound is when 
P(C N A) = P(A) - P(B  N A) = P(A n B-B'), which reads x5 = x4 + xs, i.e., x4 =0. 
Then given any assignment of weights (z2, z4, xs, x6), the new set of weights 
X2 = x2, X4 = 0, X5 -- x4 + xs, X6 = x6 leads to attaining the upper bound. 

THEOREM 3. The only cases when the result of the quantified syllogism is precise, 
i.e., P*(C[A) = P ,  (CIA), are as follows: 

(i) P(BIA ) = P(CIB) = 1 and then P(C[A) = 1, 
(ii) P(AIB) = P(BIA) = 1 and then P(CIA) = P(CIB), 
(iii) P(AIB) = P(BIC) = 1 and then P(CIA) = P(CIB).  P(BIA), 
(iv) P(CIB) = P(BIC) = 1 and then P(CIA) = P(BIA). 

Proof. Note that P*(C[A) = 0 is impossible. Indeed when P(B[A) = P(A[B) = 
0, P(CIA ) is totally unknown; and all terms in the upper bound of P(CIA ) are 
strictly positive if P(B/A)  > O. 

Let  us check when P*(CIA) = P �9 (CIA) > 0. Note that P(B[A) and P(AIB ) 
are positive. 

(i) P*(UIA) = P,(CtA) = 1. This reads 

( 1 -  1 - P ( C I B ) ~  P(B]A) . �9 p(AIB) ] =1 ,  

which forces P(BIA) = P(CIB) = 1. 
(ii) 

P(BIA) .  P(C[B) 
P*(CIA) = P,(CtA ) = 1 - P(BIA ) + 

P(AiB) 

Using the value of P,(CIA) and simplifying, we get the condition 

P(AtB ) �9 (1 - P(B]A)) + P(BIA ) �9 (1 - P(AIB)) = O, 

which forces P(BIA) = P(AIB) = 1. Then P(CIA ) = P(CIB).  
(iii) 

P,(CIA) = P*(CIA) = P(BIA)" P(CIB) 
P(AIB ) P(S lC )" 

Performing as in (ii) leads to the condition 

P(BIC ) �9 (1 - P(A[B)) + P(C[B).  (1 - P(BtC)) = O, 
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which forces P(AtB ) = 1 and P(BIC ) = 1. Then 

p(ClA) = P(C A = P(C) P(B) = p(ClB) .P(BIA)" 
P(A) P(B) P(A) 

(iv) 
P(BIA). P(CIB) 

P,(CIA) = P*(CIA ) = p(AIB)" P(BIC) . (1 - P(BIC)) + P(BIA ). 

A similar treatment leads to the condition 

P(CIB ) �9 (1 - P(B[C)) + P(BIC) . (1 - P(CIB)) = O, 

which forces P(CIB ) = P(B[C) = 1. Then P(C[A) = P(BIA ). 

THEOREM 4. When P(AIB), P(BIC), P(BIA), P(C[B) are imprecisely known, 
say P(A[B) ~ [P,(AIB ), P*(AIB)], etc., then the optimal bounds on P(CIA) are 
given as follows: 

P,(CIA ) = P,(BIA ). max (0, 1 1 - P,(CtB )'~ 
P,(AIB) J 

if P,(AIB ) > 0 ( A l l )  

= P,(BIA ) if P,(AIB ) = O, P,(C[B) = 1 (A12) 
= 0 otherwise (A13) 

P*(CIA ) = min (1,P*(BIA) (1 + P*(CIB) 
p,(AIB ) (~-,(BIC) 1 ) ) )  

if P,(AIB) > O, P,(BIC) > O, P*(CtB ) > P,(AIB) (A14) 

= min ( l  + P,(BlA) ~ P*(CIB) 1) 
\p,(AIB) ' 

P*(CIB) P*(BtA)P*(CIB ) 
P*(CIB ) + P,(BIC)(P,(AIB ) - P*(CIB))' ~ ] 
if P,(AIB ) > O, P,(BIC ) > 0, P*(CIB ) < P,(AIB ) (A15) 

p,(B1A ) 
= min 1, p,(BIC)] 

if P*(CIB) = P,(AIB) > O, P,(BIC) > 0 (A16) 

= min ( 1 , 1 +  P,(BIA)(P(CIB)  ) )  \ P,(AIB) 1 if P,(BIC) = 0, 

P,(AIB) > O, P*(BIA) > 0 (A17) 

= P*(BIA ) if P,(AIB) = o, P,(BIC) = 1, P*(BIA) > O, 
P*(CIB ) > 0 (A18) 

= 1-P,(BIA ) if P,(B[A) = 0, P*(CIB ) = O, P*(B[A) > 0,(A19) 
= 1 otherwise (A20) 
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Proof. Consider the regular form of the lower bound, with x = P(AIB ), 
y = P(BIA ), z = P(CIB ). It is of the form 

f ( x , y , z ) = y . m a x ( O , 1  1 - z ) . x  

This function is increasing with x, y, z as long as x > 0, on [0, 1] 3. This proves 
(Al l ) .  If x can reach 0 but P,(CIB) < 1 then the term 1 -  ( 1 -  z)/x can 
get arbitrarily negative and the bound (A13) is obtained. When P, (CIB)  = 1, 
then the original bound in Theorem 1 when P(CIB) is precise and is 1, reads 
P(CIA ) > P(BIA ) provided that P(BIA ) > O, P(AIB ) > 0. Hence f(x, y, 1) = y, 
Vx > 0. Hence lim~,_~0 f(z,  y, 1) = y and the bound (A12) is obtained, since if 
y > 0, we cannot have x = 0 exactly (P(BIA) > 0 =~ P(AIB ) > 0). In this case 
P,(AIB) = 0 means that this probability is allowed to be infinitesimal without 
being zero. 

For the upper bound let us consider t = P(BIC), and the function 

g ( x , y , z , t ) = m i n ( 1 , 1 - y +  yz yz yz yz ) 
, , + Y  . x xt xt x 

It comes from the upper bound of P(CIA ) in the precise case. It is always 
decreasing with x and increasing with z. But the behavior is less simple with y 
and t. Let us write the second term 1 + y (z/x - 1). It is increasing with y when 
z > x and decreasing otherwise. The last term can be written y [1 + z/x (1/t - 1)] 
and is clearly increasing with y, and decreasing with t; moreover this term is 
clearly subsumed by yz/xt when z < x. 

In summary, when P,(AIB ) > P,(BIC) > 0 we have 

yP,(CiB ) yP*(CIB) 
supg(x ,y ,z , t )  = rain 1 , 1 - y  + p,(AIB ) , p,(AIB)P,(BIC), 
Xr~,Z 

P , ( A I B )  " 

If P*(CIB ) > P,(AIB ) then the third term above is not involved and we can 
substitute y = P*(B[A) elsewhere since the second and fourth terms are then 
increasing with y. This explains (A14) since the second term is above 1. 

1. When P*(C[B) > P,(AIB), the fourth term is greater than the third, so 
that we must compute 

supmin 1 - y  1 ~ ] , y p , ( A I B ) P , ( B I C )  

where the first term and the second one are respectively linearly decreasing 
and increasing. If y is unrestricted, the optimum is attained when the terms 
are equal: 
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P*(CIB)~ P*(CIB) 
1 -  y 1 P,(AIB) ] = YP,(AIB)P,(B[C)" 

hence for 

y* = P*(AIB)P*(BIC) 
P*(CIB ) + P,(BIC)(P,(AIB ) - p*(CIB))" 

But this optimum makes sense only if P,(BIA ) < y* < P*(BIA ). In that case 

P*(CIB) 
P*(CIA ) = p,(CiB ) + P,(BIC)(P,(AIB) - p*(CIB))" 

If y* < P,(BIA), the maximum is obtained by letting y = P,(B[A) in g(P,(AIB), 
y, P,(B[C), P*(CIB)), and is equal to 1 - P , ( B I A  ) (1 -P*(C[B) /P , (AIB) )  (sec- 
ond term). If y* > P*(B[A), then we must let y = P*(BIA ) in g(P,(A[B), y, 
P,(B]C), P*(CIB)) and the optimum is equal to P*(BIA)P*(CIB)/P,(AIB)P,(BtC ). 
On the whole, we get (A15), and (A16) follows obviously. 

Let us now assume that only P,(BIC ) = 0. Then the term z/t  can become 
as large as needed in g(x, y, z, t) (fixing z > 0 and choosing t small enough). 
Hence the third and fourth terms in g can grow arbitrarily large. Only the 
second term remains bounded. If P*(CIB ) > P,(AtB ) then this term is bigger 
than 1 for any y. Otherwise its bound is obtained by letting y = P,(B]A). This 
proves expression (A17). If P*(CIB ) = 0 too, then, from Theorem 1, P(CIA) is 
bounded from above only by 1 - P,(BIA ), and this again justifies (A17). 

Assume now that P,(AIB) = 0. Then, if P*(BIA ) > 0, the term y/x can 
grow arbitrarily. Now if P*(CIB ) > 0 and P,(BIC) # 1, all terms in g can grow 
arbitrarily and P*(CIA ) = 1. This proves (A20). If P*(B[A) = 0, then (A20) 
applies again because of Theorem 1. 

Assume P,(AIB ) = O, P*(BIA ) > O, P,(BIC ) = 1, and P,(CtB ) > 0. Then for 
all x > 0, sup,,~, g(x, y, 1, z) = y, and (A18) holds. 

Lastly assume P,(AIB) = O, P*(BIA ) > 0, and P*(CIB) = 0. Then from 
Theorem 1, P*(CtA ) < 1 - P*(BIA), and (A19) holds. 
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