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INTRODUCTION

One of the most controversial issues in uncertainty
modelling and information sciences is the relationship
between probability theory and fuzzy sets. This paper is
meant to survey the literature pertaining to this debate, and
to try to overcome misunderstandings and to supply access
to many basic references that have addressed the "probability
versus fuzzy set" challenge. This problem has not a single
facet, as will be claimed here. Moreover it seems that a lot
of controversies might have been avoided if protagonists had
been patient enough to build a common language and to
share their scientific backgrounds. The main points made
here are as follows. i) Fuzzy set theory is a consistent body
of mathematical tools. ii) Although fuzzy sets and
probability measures are distinct, several bridges relating
them have been proposed that should reconcile opposite
points of view ; especially possibility theory stands at the
cross-roads between fuzzy sets and probability theory. iii)
Mathematical objects that behave like fuzzy sets exist in
probability theory. It does not mean that fuzziness is
reducible to randomness. Indeed iv) there are ways of
approaching fuzzy sets and possibility theory that owe
nothing to probability theory. Interpretations of probability
theory are multiple especially frequentist versus subjectivist
views (Fine [31]) ; several interpretations of fuzzy sets also
exist. Some interpretations of fuzzy sets are in agreement
with probability calculus and some are not.

The paper is structured as follows : first we address some
classical misunderstandings between fuzzy sets and
probabilities. They must be solved before any discussion
can take place. Then we consider probabilistic
interpretations of membership functions, that may help in
membership function assessment. We also point out non-
probabilistic interpretations of fuzzy sets. The next section
examines the literature on possibility-probability
transformations and tries to clarify some lurking
controversies on that topic. In conclusion, we briefly
mention several subfields of fuzzy set research where fuzzy
sets and probability are conjointly used.

1. MISUNDERSTANDINGS

1.1. Membership Function and Probability Measure

At the formal level, the relative situation of fuzzy sets
and probability is clear. However some risk for confusion

are already present in the way the definitions are understood.
After Zadeh [81] a fuzzy set F on a universe U is defined by
a membership function µF : U !  [0,1] and µF(u) is the
grade of membership of element u in F. Here let us restrict
to finite universes for simplicity. In contrast, a probability
measure P is a mapping 2U ! [0,1] that assigns a number
P(A) to each subset of U, and satisfies the Kolmogorov
axioms :

P(U) = 1  ;  P(Ø) = 0
if A " B = Ø P(A # B) = P(A) + P(B) (1)

P(A) is the probability that an ill-known single-valued
variable x ranging on U hits the fixed well-known set A. A
first misunderstanding is to confuse P(A) with a
membership grade. But when we consider µF(u), the
element u is fixed and known and the set is ill-defined,
while when we consider P(A), the set A is well defined
while the value of the underlying variable x, to which P is
attached, is unknown (and moves). µF(u) has more
similarity with P({u}) = p(u), except that the condition
$u%U p(u) = 1 must hold while it is not so for µF. A set-
theoretic calculus for probability distributions has been
recently built up under the name of Lebesgue logic (Bennett
et al. [5]).

At the mathematical level the domain of the mapping P
is the Boolean algebra 2U while the set of fuzzy sets is
[0,1]U , i.e. can never be a Boolean algebra. It has
necessarily a weaker structure, depending on the choice of
fuzzy set operations. One should not assimilate (e.g. Cooke
[9]) the definition of a fuzzy set connective, e.g. union

µF#G(u) = S(µF(u),µG(u)) (2)

with the decomposability property

P(A # B) = S'(P(A),P(B)) (3)

of the probability measure with respect to two given events
A and B. First (3) cannot hold for all A and B when P is a
probability measure while (2) can be assumed for all u % U.
The temptation to get confused lies in the fact (due to the
Boolean algebra structure of 2U) that S and S' can both be
choosen among a family of semi-groups of the unit interval
(i.e. triangular co-norms such as max(a,b), a + b – ab, or
min(1, a + b)). This is because the properties usually



required for membership grade combinations (e.g. the
associativity of union and the empty set acting as an
identity leads to choose S among triangular co-norms), and
the properties induced by the structure of 2U on degrees of
probability are the same (e.g. Dubois and Prade [16]).
Concludingly, using min and max is not enough to claim
that fuzzy sets are at work ; similarly the fact that
sometimes P(A # B) = max(P(A),P(B)) (e.g. if A & B) is
not enough to claim that fuzzy sets are probabilities. This
type of confusion between degrees of probability and
membership grades pervades the literature of uncertainty in
expert systems (see Duda et al. [23], Horvitz et al. [42] for
instance).

A dual point of view is to start with a poorly structured
set of sentences  and consider various ways of attaching
numbers to sentence ' % , say v(') % [0,1]. The question
is then to analyze how the structure of  under the logical
connectives AND, OR, NOT, etc… is mapped on the unit
interval through the valuation mapping v. Gaines [34] has
shown that according to the axiomatic system satisfied by
the connectives in  and the valuation v, one may find a
particular representation of  as 2U and v(') = P([']) where
[' ] is the subset of worlds in U where '  is true, and
another representation where  = [0,1]U and v(') = µ['](u)
where u is fixed in U, and ' is a fuzzy statement. Both
fuzzy sets and probability can thus be cast in a more general
framework of weighted logics. Only in such a general
setting does it make sense to compare, say Bellman and
Giertz [3] fuzzy set axioms and Kolmogorov axioms.
Beyond its mathematical and philosophical interest, Gaines'
setting should not however lead us to confuse degrees of
probability and membership grades (e.g. Blockley [6],
Kovalerchuk and Shapiro [48]).

1.2. Fuzzy Relative Cardinality and Conditional Probability

It F is a fuzzy set on U, its cardinality is |F| =
$u µF(u). A well-known index of inclusion of F in another
fuzzy set G is (e.g. Dubois and Prade [17])

I(F,G) = |F " G|
|F|

(4)

where intersection is defined as minimum. Kosko [47] has
pointed out the analogy between I(F,G) and a conditional
probability P(B | A) where B and G play the same role. He
even noticed that the analogy carries over to Bayesian
inference, by noticing that

I(F,G) ( I(G,F) · I(U,G)
I(G,F) · I(U,G) + I(G,F) · I(U,G)

(5)

where I(U,G) is nothing but the relative cardinality |G|
|U|

.

Indeed, (5) reminds us of Bayes theorem

P(B | A) = P(A | B) · P(B)
P(A | B) · P(B) + P(A | B) · P(B)

. (6)

The inequality in (5) is related to I(F,G) + I(F, G) ( 1 due to
the lack of excluded middle law and the use of min for " in
(4). The equality holds in (5) when G is a crisp set. It would
hold as well with " expressed as a product in (4). Kosko
[47] claims that (5) implies Bayes theorem when both G
and F are crisp. This claim is debatable because in that case
(4) is only a special kind of conditional probability, namely
P(B | A) = |A "  B| / |A| provided that P is uniformly
distributed on U.

A natural way to generalize both (5) and (6) is to
consider a probability measure P on U and [0,1]U as a set of
fuzzy events [82]. Then if we let

P(F) = $p(u)µF(u) = )0
1
P(F*)d*,

where F* is the *-level cut of F (Höhle [41]), be Zadeh's
probability of the fuzzy event F, the natural extension of (4)
is

P(G | F) = P(F " G)
P(F)

(7)

and (5) can be generalized changing I(X,Y) into P(Y | X).
(7) generalizes both a conditional probability and the fuzzy
inclusion index advocated by Kosko [47]. Note that a whole
literature on conditional probabilities of fuzzy events exists,
starting with Okuda et al. [57]. See Dubois, Prade and
Yager [27] for a list of basic references.

Kosko [47] contains a derivation of the inclusion index
(4) from first principles. He criticizes Cox [10]'s derivation
of the standard conditional probability, as arbitrarily
assuming that the function f such that P(A "  B) =
f(P(A | B), P(B)) is twice differentiable. However the unicity
of conditional probability only requires that f be strictly
increasing in both places and continuous, due to Aczel [1]
results on the representation of associative real functions.

Concludingly, the comparison between fuzzy relative
cardinality and conditional probability should not lead us to
conclude with Kosko [47] that "probability is a special case
of fuzziness" but leads us to consider probability of fuzzy
events, a situation where, as Pearl [60] himself admits,
probability and fuzzy sets are orthogonal.

1.3. Possibility Theory is not Compositional

Related to fuzzy sets is the theory of possibility that has
been around for 15 years under this name (Zadeh [83],
Dubois and Prade [18]) but whose calculation rules go back
to Shackle [65] at least. Possibility theory appears as a
more direct challenger of probability theory than fuzzy sets
because it also proposes a set-function that quantifies the
uncertainty of events. A possibility measure on a finite set
U is a mapping from 2U to [0,1] such that

+(Ø) = 0 (8)
+(A # B) = max(+(A),+(B)). (9)

The condition +(U) = 1 is to be added for normal
possibility measures. They are completely characterized by a
possibility distribution , : U ! [0,1] (such that ,(u) = 1
for some u %  U, in the normal case) since +(A) =



max{,(u), u %  A}. In the infinite case the equivalence
between , and + requires that axiom (9) be extended to an
infinite family of subsets. Zadeh [83] views the possibility
distribution , as determined by the membership function
µF of a fuzzy set F. However this does not mean that the
two concepts of a fuzzy set and of a possibility distribution
are the same thing. Zadeh's equation ,x(u) = µF(u) is rather
similar to equating a likelihood function to a conditional
probability (which does not mean that likelihoods are
additive measures !). Indeed ,x(u) is short for ,(x = u | F)
since it estimates the possibility that the variable x is equal
to u, knowing the incomplete state of knowledge "x is F",
and µF(u) estimates the degree of compatibility of the
precise information x = u with the statement to evaluate "x
is F".

The controversy between possibility and probability
measures is related to the one about fuzzy sets. Cheeseman
[7] criticizes possibility theory because he thinks
+(A " B) = min(+(A),+(B)) holds. But in fact only the
inequality +(A " B) - min(+(A),+(B)) universally holds,
and part of Cheeseman's objections thus make no sense. But
his mistake may be due to the dangerous temptation to
consider that possibility measures satisfy a companion
axiom to (9) for conjunction as well (since possibility
theory is based on fuzzy sets). This is based on a
misunderstanding of the kind pointed out in Section 1.1,
i.e. confusing membership functions and set functions.

In fact possibility theory is not compositional (contrary
to what Pearl [61] p. 679 says). Possibility measures are
decomposable with respect to union only, and N(A) =
1 – +( A), where A is the complement of A ,is a degree of
certainty or necessity which is compositional with respect
to intersection only, i.e. N(A " B) = min(N(A),N(B)). For
instance when one is totally ignorant about event A we
have +(A) = +( A) = 1 (and N(A) = N( A) = 0) while
+(A " A) = 0 and N(A # A) = 1. This ability to model
ignorance in a non-biased way is typical of possibility
theory, while probability theory in its Bayesian approach,
cannot account for ignorance. This is why possibility
theory and probability theory, by modelling different kinds
of states of knowledge, are complementary theories of
uncertainty.

2. BRIDGES

Instead of pursuing sterile polemics, another attitude is
to relate fuzzy sets, possibility distributions, and
probability. The history of such relationships is already
quite long and we shall point out existing bridges between
probability and fuzzy sets viewed as possibility
distributions.

2.1. Upper Probability

A first point of view is to acknowledge a possibility
measure as an upper probability envelope. Namely if we
consider a set of probabilities (+) = {P | P(A) - +(A),
. A & U}, then the induced upper probabilities P*(A) =
sup{P(A), P % (+)} coincides with possibility degrees

+(A). The possibility distribution , is then defined by :

,(u) = P*({u}), . u % U. (10)

The set (+) is never empty due to the normalisation of
the possibility distribution. This view is adopted in Dubois
and Prade [19] for instance. More recently they give a
characteristic condition under which a set of probability
measures induced by lower bounds of probabilities of
specified events lead to possibility measures. Namely  =
{P | P(Ai) ( ai, i = 1,n} = (+) for some possibility
measure + if and only if the Ai's are nested (Dubois and
Prade [24]). Upper probabilities are closely related to
Choquet [8] capacities, and so are possibility measures (e.g.
Puri and Ralescu [62]).

2.2. Random Sets and Belief Functions

This view of possibility measures as upper bounds of a
family of probability measures has been adopted in the late
seventies in a more restricted framework namely that of
random sets and that of belief function theory (Shafer [66]).
Namely several scholars such as Fortet and Kambouzia [33],
Orlov [58], Kampé de Fériet [44], Sales [64], Goodman
[38], Nguyen [56], Wang and Sanchez [78], Dubois and
Prade [15] have pointed out that given a random set  on
U, i.e. a set of subsets A1, …, An &  U, and a mass
assignment m such that m(Ai) = mi % (0,1] and $i=1,n
mi = 1, then a membership function could be defined as

µF(u) = $u%Ai mi. (11)

Viewing {(Ai,mi), i = 1,n} as a random set F with
realizations Ai, the membership grade µF(u) is then
interpreted as the probability that u %  F. This kind of
probabilistic view of a membership function seems to go
back to E. Borel, as pointed out by Godal and Goodman
[37]. Interpreting the Ai's as imprecise observations, the
two following set functions are defined in belief function
theory (Shafer [66])

Bel(A) = $Ai&A mi   ;   Pl(A) = $Ai"A/Ø mi (12)

respectively called belief and plausibility functions. These
set functions coincide with lower and upper probabilities
respectively and (10) and (11) coincide in this setting due to
,(u) = Pl({u}). Moreover Shafer [66] showed in his book
that Pl(A # B) = max(Pl(A),Pl(B)) if and only if the Ai's
are nested. Hence a possibility measure is a special case of a
plausibility function, itself a special case of upper
probability.

2.3. Likelihood Function

Another point of view is to interpret the membership
function of a fuzzy set as a likelihood function. This idea is
actually quite old in fuzzy set theory (e.g. a Russian 1966
paper by Loginov [52], whose English translation talks
about "hussy" sets). It has been the basis of experimental



methods for constructing membership functions. Given a
population of individuals and a fuzzy concept F, each
individual is asked whether a given element u % U can be
called an F or not. The likelihood function P('F' | u) is then
obtained and represents the proportion of individuals that
answered yes to the question. 'F' is then the corresponding
non-fuzzy event. Then it is natural to let

µF(u) = P('F' | u), . u % U. (13)

This type of yes-no experiments have been used by Hersh
and Caramazza [39], and Hisdal [40]. Cheeseman [7]
exploits this link and claims that on such grounds fuzzy
sets are nothing new. See also Stallings [72] for an older
but similar critique. Here we suggest that this link will lead
to a cross-fertilisation of fuzzy set and likelihood theories,
provided that one does not stick to a dogmatic Bayesian
position.

Note also that the fundamental point in (13) is to view
the likelihood in terms of a conditional uncertainty measure,
here a probability. We may think of using other uncertainty
measures as well, for instance a possibility measure, i.e.

µF(u) = +('F' | u), . u % U.

This expresses the equality of the membership function
describing the fuzzy class F viewed as a likelihood function
with the possibility that an element u is classified in F.
This can be justified starting with a possibilistic counterpart
of Bayes theorem, i.e.

min(,(u | 'F'), +('F')) = min(+('F' | u), ,(u))

assuming that no a priori information is available, i.e. .u,
,(u) = 1, which leads to ,(u | 'F') = +('F' | u) (Dubois and
Prade [22]).

2.4. Fuzzy Sets in Statistical Inference

Direct relationships between possibility distributions
and likelihood functions have been pointed out by Smets
[69] and Thomas [74], [75]. Indeed the likelihood function
is treated as a possibility distribution in classical statistics
for so-called likelihood ratio tests. Namely if some
hypothesis of the form u % A is to be tested against the
opposite hypothesis u 0 A on the basis of observation O
alone, and the knowledge of elementary likelihood functions
P(O | u), u % U, then the likelihood ratio test methodology
suggests the comparison between maxu%A P(O | u) and
maxu0A P(O | u), i.e. +(A) and +( A) letting ,(u) =
P(O | u) (see e.g. Barnett [2], p. 150). Stallings [72] points
out the similarity between maximum likelihood pattern
classification and fuzzy pattern classification. Natvig [53]
interprets likelihood functions as possibility distributions in
the law of total probabilities. Thomas [75] also indicates
that the Bayesian updating procedure

p(u | O) = P(O | u) · p(u)
P(O)

(14)

can be reinterpreted in terms of fuzzy observations. For
instance it p represents the base rate of the size of some

population, and one learns the concerned individual is "tall",
where "tall" is defined by membership function µtall, then
the a posteriori probability can be computed in accordance
with (7) as follows

p(u | tall) = µtall(u) · p(u)
P(tall)

(15)

where µtall(u) is interpreted as a likelihood function, and
P(tall) = )µtall(u) dP(u) is Zadeh [82]'s probability of a
fuzzy event (see also Dubois and Prade [22]).

The two probability-oriented views (upper probability
and likelihood) of fuzzy sets and possibility distributions are
not antagonistic and can be reconciled. For instance (11)
corresponds to another experiment for constructing
membership functions whereby individuals are asked to
point out a single crisp subset Ai & U that represents some
fuzzy concept F best. mi represents the proportion of
individuals for which F is best described by Ai. It makes
sense to relate this experiment with the likelihood Yes-No
experiment provided that, when each individual chooses Ai
as representing F, it means that he would answer yes in the
other experiment to the question "is u an F ?" if and only if
u % Ai. Then as pointed out in Dubois and Prade [21]

P('F' | u) = $u%Ai mi. (16)

Another way of relating the two approaches is to notice that
the use of Dempster rule (Shafer [66]) to combine two
belief functions, one of which being a probability function,
leads to a probability function that is computed via (14) or
(15) exactly. Namely let Bel1 be defined by {(Ai,mi),
i = 1,n} and Bel2 = P, then

. u % U, Bel1 1 Bel2(u) = 
$i:u%Ai mi · p(u)
$u,i:u%Ai mi · p(u)

= µF(u) · p(u)
$u%U µF(u) · p(u)

where Bel1 1  Bel2 is a probability measure and µF is
defined by (11). Only the plausibility of singletons (i.e. the
possibility distribution) is useful for the updating, and it
plays the role of a likelihood function.The above results
suggest how to get likelihood functions from belief
functions.

As recalled in Dubois, Moral and Prade [14] the converse
problem is addressed by Shafer [66]. In this paper it is
suggested that an observation O defines a consonant belief
function (whose associated plausibility is a possibility
measure) with mass assignment given by

mO(Ai) = P(O | ui) – P(O | ui+1) Ai = {u1, …, ui}
mO(U) = P(O | un)
mO(A) = 0 otherwise

where U = {u1, …, un} with P(O | u1) (… ( P(O | un).
This is a non-normalized mass assignment. However if
P(O | u1) = 1, and letting ,(u) = P(O | u) then this
procedure is exactly the converse of equation (11).



Another way of putting together the upper probability
approach and the likelihood approach to possibility theory
is to consider a family of likelihood functions and to define
a possibility as the upper envelope of this family (see
Dubois, Moral and Prade [14]).

2.5. Probabilistic Interpretations of Fuzzy Set Operations

Viewing the membership function µF as a likelihood
function leads to interpret fuzzy set-theoretic connectives in
the framework of probability theory. For instance the
minimum rule of fuzzy sets is then seen as

P('F' " 'G' | u) = min(P('F' | u), P('G' | u)) (17)

where 'F' and 'G' are the crisp events consisting of assigning
labels F on G to u respectively. People have then claimed
the total dependence between the fuzzy sets F and G, thus
pointing out a limitation in fuzzy set theory. This claim is
debatable for two reasons : first the crisp events 'F' and 'G'
are related to the fuzzy sets F and G only through a random
experiment that is built as a model for constructing the
membership function. So the dependence is between the
crisp events, not the fuzzy sets. This remark also points out
that we do not succumb here to the fallacy described in
Section 1.1. A second reason is that if we remember the
role of possibility distributions as upper bounds the equality
in (17) should be turned into an inequality, the right-hand
side being an upper bound of the left-hand side. In that
perspective the minimum rule expresses a lack of
knowledge about dependence (this is the meaning of the
non-interactivity assumption in possibility theory) rather
than an assumption of strong dependence (see e.g. Dubois,
Moral and Prade [14]). The likelihood interpretation of
membership functions cannot capture all fuzzy set
connectives anyway. Only some connectives below
minimum and above maximum are amenable to a likelihood
interpretation, because due to inclusion monotonicity
P(A " B | x) - min(P(A | x), P(B | x)) and P(A # B | x) (
max(P(A | x), P(B | x)). Hence average like fuzzy
connectives and symmetric sums (see Dubois and Prade [18]
Chapt. 3 for instance) cannot be captured in this way.

The (consonant) random set view of membership
functions also provides a semantics to the main possible
choices for defining fuzzy set union and intersection Orlov
[58], Goodman [38] (see Dubois and Prade [21] for an
overview). But this framework seems to be much more
flexible than the one of likelihoods for describing fuzzy set
connectives, since in that case fuzzy set intersections or
unions correspond to forms of random set intersections or
unions, but other connectives such as averages continue to
make sense with random sets.

Lastly fuzzy set connectives can also be interpreted in
the setting of upper and lower probabilities. In that case
again the minimum rule should not be understood as
induced by a strong dependence assumption but as a
minimal commitment rule when nothing is known about
dependence (see Dubois and Prade [24]).

2.6. Possibility Degrees as Infinitesimal Probabilities

Recently Spohn [71] has proposed a theory for the
representation of epistemic states that bear strong
similarities with possibility and necessity measures, and
tries to model the idea of ordering between possible worlds.
What he calls an ordinal conditional function comes down
to a mapping from a finite set of events to the set of
positive integers, denoted 2 and such that 2(A #  B) =
min(2(A),2(B)) ; moreover there is an elementary event {u}
such that 2({u}) = 0. 2(A) expresses a degree of disbelief in
A, and grows as A becomes less plausible. It is easy to
check that for any real k > 1, 1 – k–2( A) is a degree of
necessity (see Dubois and Prade [23]). A probabilistic
interpretation of 2(A) has been suggested by Spohn [71].
Namely, 2(A) = n is interpreted as a small probability of
the form 3n, that is the probability of a rare event. Indeed, if
A has a small probability with order of magnitude 3n and B
has also a small probability of the form 3m, then P(A # B)
is of order of magnitude 3min(m,n). These remarks may
lead to an interpretation of possibility and necessity
measures in terms of probabilities of rare events. Clearly,
this relationship between possibility and probability theory
is completely unrelated to the ones in the preceding
paragraphs. However it explains the strong similarities
between Pearl [60]'s approach to non-monotonic reasoning
based on infinitesimal probabilities and the possibilistic
approach to the same problem (Benferhat et al. [4]).

3. GAPS

Instead of interpreting fuzzy sets and possibility theory
in a probabilistic framework one might on the contrary look
for interpretive settings for fuzzy sets in which the additive
notion of probability is no longer needed. Two such
settings are reviewed, that respectively relate possibility to
preference and to similarity.

3.1. Possibility as Preference

It is not always meaningful to relate uncertainty to
frequency. Some types of events can be rare, unrepeatable,
or statistical data may simply be unavailable. It does not
prevent people from thinking that some events are more
possible, probable or certain than others. And indeed the
most primitive way of comparing events is to define a
complete pre-ordering on 2U, that expresses comparative
possibility, probability or belief. Comparative counterparts
of probability have been searched for since the thirties (see
Fishburn [32] for an overview). However no fully satisfying
justification of additive probability has been proposed so
far, in the finite case.

Comparative possibility is more recent. The complete
preordering (+ such that A (+ B means A is at least as
possible as B should satisfy the basic axiom :

.C, A (+ B 4 A # C (+ B # C. (+)

Such comparative possibility relations can be found in
Lewis [51]' conditional logics and have been rediscovered by
Dubois [13] by suitably modifying the axioms of



comparative probability. In that paper it is proved that the
only numerical counterparts of comparative possibility are
possibility measures. The dual comparative certainty
relations (A (C B 5  B (+  A) play a crucial role in
problems of revision of propositional theories under the
name "epistemic entrenchment" (Gärdenfors [35] ; see
Dubois and Prade [23]). A comparative possibility relation
on 2U describing the location of an unknown variable x
induces a complete preordering on U that can be viewed as a
preference relation on the possible values of x. These
qualitative possibility distributions can be analyzed from the
point of view of their informational content (specificity), as
already done for numerical possibility distributions (see,
e.g. Benferhat et al. [4], Yager [80]).

3.2. Possibility as Similarity

There is a whole trend in fuzzy set theory according to
which the degree of membership µF(u) reflects the
similarity between u and an ideal prototype uF of F (for
which µF (uF ) = 1). This interpretation of partial
membership is clearly related to the relation of distance, and
not to probability. Then if a variable x is attached a
possibility distribution , = µF, x = u is all the more
possible as u looks like uF, is close to uF. This trend is
well represented by the so-called "type B membership
function" described by Zimmermann [85], and for which
direct scaling methods can be applied.

Ruspini [63] has pushed this view further by exploring
how the similarity notion R that exists on the referential U
affects the inference process between propositions ', 6, …
whose truth or falsity refers to U as a set of possible
worlds. For Ruspini, given two classical propositions '
and 6, the extent to which '  implies 6 is the minimal
amount of "stretching" that is required to include the set of
worlds in which ' is true in the neighborhood of the worlds
where 6 is true. More formally if U is the set of possible
worlds, if u  '  means '  is true in u %  U, then the
following metric counterpart of Carnap's confirmation
degree is obtained

I(6 | ') = infu ' supu' 6 µR(u,u') (18)

where R is a fuzzy proximity relation, that expresses
indiscernibility on U. In order to clarify the meaning of
I(6  | '), let us consider the case when R is a standard
equivalence relation. Let 6* be the upper approximation of
6  in the sense of rough set theory (Pawlak [59]), i.e.
u  6* 5  7u', u R u' and u'  6  ; then I(6  | ' ) = 1
corresponds to the classical entailment '  6*. We get very
close to the modal logic of rough sets developed by Fariñas
del Cerro and Orlowska [30]. Note that possibility as
preference leads to another non-probabilistic degree of
entailment namely (e.g. Benferhat et al. [4]) :

N(6 | ') = infu 68' 1 – ,(u) if +(6 8 ') > +( 6 8 ')
= 0 otherwise. (19)

It is positive only if 6 is true in all the preferred worlds
where ' is true, i.e. this entailment is preferential in the

sense of Shoham [68]. Similarity-based and preference-based
entailment degrees are orthogonal with respect to each other,
and both contrast with a conditional probability, used by
Carnap as a degree of confirmation.

4. POSSIBILITY-PROBABILITY TRANSFORMATIONS

The problem of transforming a possibility distribution
into a probability distribution and conversely has received
more and more attention. This question is meaningful in the
scope of uncertainty combination with heterogeneous
sources (some supplying statistical data, other linguistic
data, for instance).

However rising the issue means that some consistency
exists between possibilistic and probabilistic representations
of uncertainty. The basic question is whether it is a mere
matter of translation between languages "neither of which is
weaker or stronger than the other" (quoting Klir and Parviz
[46]). Adopting this assumption leads to transformations
that respect a principle of uncertainty and information
invariance, as done by Klir [45], on the basis that the
entropy H(p) of a probability distribution p and the non-
specificity NS(,) (or alternative indices of the same kind) of
a possibility distribution play the same role in each theory.
An uncertainty-invariant transformation between , and p is
one such that H(p) = NS(,). Klir [45] also requires that they
be log-interval scale transformations and satisfy the
consistency condition ,(u) ( p(u), .u, stating that what is
probable must be possible (Zadeh [83]).

The problem with this approach lies in the assumed
equality H(p) = NS(,) between quantities whose
commensurability sounds debatable. Changing it into
proportionality would claim that the entropy ordering of
probability exactly reflects the specificity ordering of
possibility.

Another point of view on transformations is that
possibility and probability theories have distinct roles in
describing uncertainty but do not have the same descriptive
power. Although it is clear that there are some states of
information that probability can describe while possibility
cannot (e.g. total randomness) and conversely (a probability
distribution cannot express ignorance), it can be advocated
that the possibilistic representation of ignorance is weaker
than the probabilistic representation, in the sense that the
first is additive and the other relies on an ordinal structure
induced by the consonance assumption. It does not mean
that strict probabilistic representations subsume
possibilistic representations, since possibilistic
representations can capture weaker states of information that
probability distributions cannot. This view is also
supported by the mathematical fact that possibility
measures coincide with a special class of upper bounds of
probabilities. Hence a possibility distribution represents a
set of probability measures, i.e. a weaker knowledge than
the one of a single probability measure. Klir and Parviz [46]
suggest that a probability distribution can be viewed as the
lower bound of a family of possibility distributions as well;
but it does not prove that a probability measure can always
be interpreted as a lower possibility measure, i.e. that .P,
.A, we have P(A) = inf{+(A), + % (P)} where (P) =



{+ | +(A) ( P(A), .A} and indeed  often possesses a
least element, that is a possibility measure itself.

If we accept that possibility distributions are weaker
representations of uncertainty than probability distributions,
the transformation problem must be stated otherwise.
Namely going from possibility to probability leads to
increase the informational content of the considered
representation, while going the other way around means a
loss of information. Hence the principles behind the two
transformations are different and we obtained asymmetric
transformations (Dubois et al. [26]) :
• From possibility to probability : a generalized Laplacean

indifference principle is adopted : the weights mi bearing
on the nested family of levels cuts of , are uniformly
distributed on the elements of these level-cuts. This
transformation, already proposed by Dubois and Prade [15]
consists in selecting the gravity center of the set  =
{P | .A, P(A) - +(A)} of probability distributions
dominated by +. This transformation also coincides with
the so-called pignistic transformation of belief functions
(Smets [70]). The rationale behind this transformation is
to minimize arbitrariness by preserving the symmetry
properties of the representation.

• From probability to possibility : in this case the rationale
is to preserve as much information as possible ; hence we
select as the result of the transformation of P, the most
specific element of the set (P) of possibility measures
dominating P. See Dubois and Prade [15], and Delgado
and Moral [12] for two different characterizations of this
transformation.

If we let ,(ui) = ,i and p(ui) = pi and assume ,1 = 1 (… (
,n ( ,n+1 = 0 and p1 (… ( pn ( pn+1 = 0 the two
transformations take the following form

pi = $j=i,n 
,j – ,j+1

j
,i = $j=i,n pj.

As expected they are not the converse of each other.
An interesting question pertaining to possibility-

probability transformations is their consistency with respect
to second order properties such as marginalization,
conditionalisation, independence and the like. Sudkamp [73]
recently proved general negative results along this line
regarding exact coherence. For instance the projection of a
transform is generally different from the transform of the
projection. Also, the transform of a product measure is
generally not the joint possibility of the transforms of the
marginal probabilities. These results should not be
surprizing because the probability-possibility
transformations cannot be structural homomorphisms due to
the strikingly different properties of the basic operations in
each calculus. It some consistency is to be looked for it
must be a weak form of consistency like the following :

Proposition : If P % (+) then Proj1(P) % (Proj1(+))
where P and + are defined on U1 × U2, and Proj1 is the
marginalization operator on U1.

The reason why this property holds is that the
marginalization process in belief function theory subsumes
those of possibility and probability theory (Shafer [67]). In
the case of conditionalization and independence the problem
is more tricky. First, probabilistic independence is a
stronger property than possibilistic non-interaction ;
moreover the probabilistic approach to combining
possibility distributions leads to the loss of consonance.
Hence only consonant approximations of the resulting
combination make sense. In the case of conditionalization,
several kinds of conditional possibilities exists : one is
based on purely ordinal arguments as in equation (19).
Hence there is no way of finding consistency with
probabilistic arguments. Another conditioning is based on
Dempster's rule of conditioning. However the implication
P %  (+) 4 .B, P(· | B) %  (+(· | B)) will not hold
because (+(· | B)) is generally strictly included in
{P(· | B) | P % (+)}. Dempster's rule of conditioning does
not agree with the upper and lower probability view of
belief functions, e.g. Kyburg [50]. The above consistency
result with respect to conditionalization will hold if we use
the focusing conditional (Dubois and Prade [25]) :

.B, +(A | B) = +(A "  B)
+(A "  B) + N(A "  B)

 = sup{P(· | B) | P % (+)}

which is a possibility measure with possibility distribution
,(u | B) = max ,(u), ,(u)

,(u) + N(B)
.

This view of conditioning is in accordance with De Campos
et al. [11] and Fagin and Halpern [29] for fuzzy measures
and belief functions respectively. Clearly much work
remains to be done in order to get sufficient insight on the
robustness and consistency of possibility-probability
transformations with respect to second order properties.

CONCLUSION

This survey was meant to point out that a fuzzy set is
not a one-sided object, and that investigations of the
relationships between fuzzy set, possibility and probability
may be fruitful in the sense that they shed new light on old
practice. For instance fuzzy set-theoretic operations can be
justified from several probabilistic points of view according
to whether the membership function is viewed as an upper
probability, the one-point coverage of a random set, or a
likelihood function. Conversely the possibilistic nature of
likelihood seems to be in accordance with the way
statisticians have used them, it leads to use fuzzy set theory
as a basis for deriving likelihood functions, and fuzzy events
can be considered as relevant evidence in statistics. There are
already several domains of application where fuzzy sets and
probability are conjointly used. A typical example is fuzzy
random variables (e.g. Kruse and Meyer [49], Negoita and
Ralescu [55]) that can handle opinion polls where people
can give fuzzy (linguistic) answers. Statistics with fuzzy
events has received extensive treatment in the past (from
Okuda et al. [57]) to Gil [36], and Viertl and Hule [76].
Lastly fuzzy sets can model linguistic probabilities as
verified experimentally (Wallsten et al. [77]). Linguistic



probabilities can be handled in inference processes, as done
by Zadeh [84], Dubois and Prade 20[], Jain and Agogino
[43], or in decision analysis as done by Watson et al. [79],
and Nau [54] for instance. These examples should convince
us that instead of considering probability and fuzzy sets as
conflicting rivals, it sounds more promising to build
bridges and take advantage of the enlarged framework for
modeling uncertainty and vagueness they conjointly bring
us to.
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