
HAL Id: hal-04064848
https://hal.science/hal-04064848

Submitted on 14 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The calculus of fuzzy restrictions as a basis for flexible
constraint satisfaction

Didier Dubois, Hélène Fargier, Henri Prade

To cite this version:
Didier Dubois, Hélène Fargier, Henri Prade. The calculus of fuzzy restrictions as a basis for flexible
constraint satisfaction. 2nd International Conference on Fuzzy Systems 1993, IEEE, Mar 1993, San
Francisco, CA, United States. pp.1131-1136, �10.1109/FUZZY.1993.327356�. �hal-04064848�

https://hal.science/hal-04064848
https://hal.archives-ouvertes.fr


The calculus of fuzzy restrictions as a basis 
for flexible constraint satisfaction 

Didier Dubois - H&ne Fargier - Henri hade 
Institut de Recherche en Infoxmatique de Toulouse (I.R.I.T.) - C.N.R.S. 

Universitd Paul Sabatier, 118 route de Narbonne 
3 1062 Toulouse Cedex, France 

A bstruct-This paper proposes a unified treatment of priori- 
tized and flexible constraints, both of them being represented by 
possibility distributions. Arc- and path-consistency-based 
methods for constraint satisfaction problems are extended to this 
possibility theory framework. An illustrative example is given. 

1. INTRODUCTION 
Many engineering problems such as design or scheduling 

may be modelled as Constraint Satisfaction Problems (CSP) 
[12], [lo]: a CSP consists in finding an assignment of values 
to a set of variables ranging on discrete domains, so as to 
satisfy prescribed constraints. Most studies in this framework 
try to tackle the highly combinatorial nature (NP hard) of such 
problems, considering crisp constraints only. However, the 
classical CSP framework does not suit many practical 
situations, in which flexibility is an intrinsic characteristic of 
the information to be taken into account. 

The notion of soft constraint, whereby feasibility is a 
matter of degree, is not new [ll but it is only recently that 
this concept becomes attractive in Artificial Intelligence [2], 
[13], [6]. In [14] and [7] the flexible aspect of CSPs is 
stressed, and theoretical frameworks for expressing such 
constraints are proposed. General Branch and Bound techniques 
are developed in [71 for dealing with these constraints without 
extending classical propagation methods to them. In [14] it is 
pointed out that prioritized constraints modelled by logical 
formulas induce preference among interpretations. This is also 
the case with possibilistic logic [91. Other papers suggest that 
possibility theory [181 may be a suitable framework for the 
representation of prioritized constraints [ 151 and soft 
constraints [ l l l .  Making a step further, we claim that both 
prioritized constraints and soft constraints expressing 
preferences between values can be regarded as local criteria 
inducing total orderings over tuples of values that can be 
represented by fuzzy restrictions [17]. Hence, we propose an 
approach based on possibility theory for representing and 
solving such "Fuzzy Constraint Satisfaction Problems" 
(FCSP) involving both types of constraints. 

The main difficulty is to compute the global ordering 
induced over solutions - and to choose the best one($. Finding 
the (ordered) set of all the solutions becomes a problem of 
fuzzy restriction calculus. This problem is highly combinato- 
rial when solved by global combination techniques, but local 
propagation algorithms may be applied when the problem 
presents an hypertree structure [161, [51, [8]. We claim that 
local propagation can also be applied to hypergraphs in order 
to provide a good approximation of the solution. We have 
developed efficient algorithms inspired by both Zadeh's 

principle of combination-projection 1171, and existing 
techniques in constraint propagation. 

The next section deals with representational issues 
concerning flexible constraints. Section 3 then explains how a 
CSP involving such constraints may be defined in the 
framework of possibility theory. In Sections 4 and 5 ,  we 
present some computational schemes. These techniques are 
finally illustrated in Section 6 by a simple example. 

2. REPRESENTATIONAL ISSUES 
A hard constraint C between a set of variables (x 1,. . . ,xk) 

is traditionally represented by means of a crisp relation R on 
U1 X.. .X uk. Uj behg the range of variable Xj; R is the crisp 

called "instantiations" of [xi,. . . ,xk)) which satisfy C. The set 
(xi, ..., xk) is denoted V(R). 

A soft constraint expresses preferences between values (k- 
tuples) that can be assigned to a set of variables. In this paper 
we assume that these preferences can be modelled by means of 
a total order and that this total order is encoded by means of a 
fuzzy relation R, that assigns to each k-tuple (ui, ..., uk) its 
level of preference pR(U1, ..., Uk) in a totally ordered set L. 
This set is usually chosen as the unit interval [0,1]. 

preferred to (U'l, ..., U'k) as a value of V(R), pR(U1, ..., Uk) = 0 
that (Ul, ..., Uk) is a forbidden k-tuple and pR(U1, ..., Uk) = 1 
that this k-tuple totally satisfies the constraint. More 
generally, PR(U1, ..., Uk) can also be interpreted as degrees of 
satisfaction of the soft constraint. pR(U1,. . . ,Uk) > 0 indicates 
a feasible assignment, even if it satisfies C only partially. 

A fuzzy relation restricts the possible values that can be 
assigned to the variables according to a preference criterion C. 
Hence the concept of fuzzy restriction, that is "a fuzzy relation 
which acts as an elastic constraint on the values that may be 
assigned to variables" [17], seems to be suitable for capturing 
such a kind of information. In the terminology of possibility 
theory, p~ is a possibility distribution on Ulx ... x uk. 

Fuzzy restrictions also offer a suitable formalism for the 
expression of prioritized constraints. When it is possible to a 
priori exhibit a total order over the respective priorities of the 
constraints, these priorities will be represented by means of 
levels in the scale [0,1]: a coefficient ac is attached to each 
contraint C (its priority degree) and indicates the degree to 
which C must be satisfied. If crc = 1, C is an imperative 
constraint; if ac = 0, it is completely possible to violate C 

Subset of U1 x...X u k  of k-tuples Of values (Ul, ..., Uk) (also 

pR(U1, ..., Uk) > pR(U'1, ..., U'k) means that (ul, ..., Uk) is 
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(C has no incidence in the problem). Given two constraints C 
and C', cxc > ac' means that the satisfaction of C is more 
necessary than the satisfaction of C': if C and C' cannot be 
satisfied simultaneously, solutions compatible with C are 
preferable to solutions compatible with C only. 

Priorities on constraints can be transformed, without any 
loss of information, into satisfaction degrees on values. 
Indeed, since ac represents to what extent it is necessary to 
satisfy C, 1 - ac indicates to what extent it is possible to 
violate C. In other words, any instanciation (ui, ..., uk) 
satisfies C to a degree greater than or equal to 1 - ac. Hence, 
the pair (C,w), where C is a crisp constraint, can be mode- 
lled as a soft constraint represented by the fuzzy relation S on 
U1 x...xUk: ps(u1, ..., uk) = 1 if (ul, ..., uk) satisfies C 

= 1 -w if (ui, ..., u d  violates C. 
If C is a soft constraint modeled by the fuzzy relation R, 
(C,w) is represented by the fuzzy relation S: ps(u1, ..., uk) = 
max(l-cr,c, pR(u1, ..., uk)). These definitions are in accordance 
with the treatment of certainty-qualified assertions in 
possibility theory, and the principle of minimum specificity, 
interpreting priority levels as necessity degrees. When R is 
crisp, they are in full agreement with possibilistic logic [4]. 

3. FUZZY CONSTRAINT SATISFACTION PROBLEM 

A FCSP is a set of m fuzzy (soft or prioritized) constraints 
P = {RI,. . .,Rm) restricting the possible values of n variables, 
say [xi, ..., xn),  each Xj ranging on a finite domain Uj. The 
use of fuzzy relations enables the usual operations of conjunc- 
tive combination and projection to be applied [17]. 

Given W = (xwl ,..., xwk) and Y = (xyl ,..., xyh) two 
subsets of (xi, ..., xn) such that W E Y, and a fuzzy relation T 
restricting the possible values of Y, the projection (or the 
marginalisation) of T on W is a fuzzy relation R = (T)JW 
restricting the possible values of W. It is defined on Uwl x 

sup ( (uyl *-wyh)/(uyl *-*uyh)JW=(uw 1 *-**uwk)) p d U y  1 *.-luyh) 
where (uyl,. . ..uyh)Jw denotes the restriction of (uyl,. . .,uyh) 
to W. p~ (uwl, ..., uwk) estimates to what extent the instan- 
ciation (uw 1,. . . ,uwk) which is a partial instanciation of Y can 
be extended to a complete instanciation of Y that satisfies T. 

The conjunctive combination of two fuzzy restrictions R 
and S restricting the possible values of two sets of variables X 
and Y is a fuzzy resmction T = R @ S over the possible 
values of W = X U Y. It is defined by : p$uw 1,. . . ,uwk) = 

minUR((uwi ,..., uwk)JX 1, ps((Uw1.. ..,uwk)JY)). 
p ~ ( u ~  1.. . .,uwk) estimates to which extent the instanciation 
(uw 1 ,. . . ,uwk) of W satisfies both R and S .  

Note that the use of the combination rule underlies an 
assumption of commensurability between preference levels 
pertaining to different constraints, i. e. the user who specifies 
the constraints must describe them by means of a unique 
preference scale L. Moreover, priority levels must be chosen 
on the dual scale (I: c( a),  P E L) where c is an order-reversing 

... X Uwk by: pR(Uw1, .... Uwk) = 

mapping) so as to acknowledge the transformation of priority 
levels on constraints into preference degrees on solutions. 
Although natural and often implicit, these assumptions must 
be made clear. Note that soft constraints differ from criteria (or 
objective functions) by the fact that no compensation is 
allowed among them, as modelled by the min operation. 

The degree pR 1@... BRm(U1,. . .,un) estimates to what 
extent the instanciation ( ~ 1 , .  . . ,un) satisfies all the constraints 
(RI ,... &m). In other words, p~l@...@Rm(Ul,..., un) is the 
global satisfaction degree of problem P by (ul, ..., un). The set 
of fuzzy restrictions { RI,. . . ,Rm ) can be regarded as a 
decomposition [ 171 or a factorization [ 161 of a global fuzzy 
relation p = R1 @...@ Rm restricting the combinations of 
values that may be assigned to (xi ,. . . ,xn). 

Even if each constraint is often normalized in practice, p 
may be subnormalized if some constraints are conflicting, i.e. 
the problem can be partially or even totally inconsistent. The 
height of p is in fact the consistency degree of the FCSP: 
Cons(P) = HeigWp) = SUP(~~,...,%)E ulX...xun I+dul,-.-*un) 

Since R1 @...a Ri @...CO Rm G Ri (where G is the fuzzy 
set inclusion defined by the inequality 5 between the 
membership functions), it holds pJV(Ri) G Ri, which means 
that Ri does not explicitly account for all the dependencies 
between the variables it relates: further restrictions may be 
induced by other constraints. For instance, the problem P = 
(Rl,R2), where RI: "XI = x2" and R2: "x2 = x3", induces a 
restriction R3: "XI = x3" which is not expressed in P. The 
induced constraints may be computed according to the 
combination/projection principle: the constraint R induced by 
a set of constraints [RI, ..., Rm) on a subset of variables 
(xjl, .... xjh) is defined by: R = (RI CO.,.@ Rm)J(xjl*...*xjh). 
It should be pointed out that : 
(Rl@...@Rm)J{xjl~. . .~xjh)@ (RI@ ... @Rm) = (RI@ ... @Rm) 
according to the properties of projection and combination, 
especially the idempotence of combination. Hence, problems 
P = [RI ,..., Rm) and P = {RI ,..., Rm) U [R} have the same 
fuzzy set of solutions: they are said to be equivalent. 

In other words, there may be several decompositions of the 
same restriction p corresponding to equivalent FCSP in which 
the constraints are more or less explicit. Expliciting induced 
constraints will transform a problem into an equivalent one. 

Even if not stated explicitly in (RI ,. . .,Rm), p also induces a 
restriction on each variable x i ,  ..., xn: is the (explicit) 
restriction of possiblevalues that can be assigned to xi in 
accordance with P no matter what values are assigned to the 
other variables. Most of the time values than can be assigned 
to one variable are not independent of the values that can be 
assigned to the others: pJIxi*xj)c pJ(xi)@ pJ{xj). In case of 
equality, both variables are said to be non-interactive [ 171. If 
all the variables are non-interactive, p = @i=l,.. . ,n pJ{xi)  and 
p is said to be separable. FCSP are seldom separable since 
constraints express dependencies between variables. In the 
general case we have: p G Qi=l,. . . ,n pJIxi). 
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In summary, a FCSP is a set of m fuzzy relations P = 
{RI. ..., R,) restricting the possible values of n variables 
[ x 1 ,... , x n ) ,  and represents a global restriction p = 
@i=l,...,mRi on the values that can be assigned to the 
variables. The following propositions are equivalent: 
Determine the 
existence of a solution 
Find one of the 

Determine the relation - compute pJ(xi19-*vxik} 
restricting { xil,. . ,x&) 
Find all the possible values for variable xi - compute pJ(xi}. 
Thus, FCSP reduces to a fuzzy restrictions calculus problem. 

compute Cons(P) = Heigth(p). 

w determine any instanciation 
best solutions (U1 ,..., Un) ~ . t .  pp(ul ,..., un)=Cons(P) 

4. LOCAL, COMPUTATION SCJ3iMES 
Computing p = @i=l,...,m Ri or some of its projections 

is a "-hard problem when using a global combination 
technique. These tasks can be approximated using local 
computation techniques, whose aim is to transform the 
problem into an equivalent one in which some induced 
constraints have been made explicit (in the best case, they are 
equal to the appropriate projection of p). 

In order to graphically represent the structure of the 
problem, an hypergraph is often defined whose nodes are the 
variables (x 1 ,. . . ,xn) and hyperedges represent constraints Ri 
relating the subset of variables V(Ri). A unary restriction Aj 
is supposed to be associated with each variable Xj; by default, 
A, stands for "xj E Uj". Aj is an upper approximation of the 
fuzzy set of possible values of xj (A, 2 pl(xJ1) which is 
improved by the following local computation schemes. 

4.1. Making Unary Restrictions Explicit by Arc-Consistency 
The fuzzy unary restriction Aj of the possible values of a 

variable xj is said to be consistent with the hyperedge Ri 
relating Xj to variables V(Ri)- (Xj) = (XI, 

Aj E mi (@t=i,.. . ,  k, @#j A d W j ) .  
A FCSP is said to be arc-consistent if, for each variable 

xj, the associated unary restriction is consistent with all the 
resmctions relating this variable to some others; formally, if 

- (Xj) iE 

VXj, V Ri E (RI ...., Rm) S.t. Xj E V(Ri) = ( X I  ...., Xki). 
Aj E (Ri 8 (@O=l,.,.,ki O#j A d ) ' l h '  (1) 

In other terms, a problem is arc-consistent if the neighbour of 
each Xj does not induce on Xj other restrictions than those 
already described by the unary constraint Aj associated to Xj, 
i.e. if these induced restrictions are explicit in Aj. We now 
describe a local propagation scheme which transforms a FCSP 
into an equivalent one verifying arc-consistency. 

Arc-consistency of the FCSP is ensured by changing all Aj's 
into A> = Aj 8 Ri+xj for each Ri, where Ri+xj = Ri 8 
(8 v(R,), t#j A&(xj)). Note that A\ = (Ri 8 (aiE v(R~) 

Ap))J'xJ1* Since making a constraint explicit does not change 
the set of solutions, we can uptate the problem by replacing 
Aj by Aj. The modified problem is equivalent to the previous 
one, but Xj is now consistent with the hyperedge Ri. After 
being updated, Aj  is a better approximation of pk(xj) than Aj. 

For instance, let A1 (rev. A2) be a fuzzy set restricting 
the values of x1 (resp. x2) and R models the fuzzy rule "if x1 
is C, then x2 is D :  pR(U1,Ud =  xi) + p ~ ( x i ,  for some 
implication function +. The restriction induced via arc- 
consistency on x2 is B' = (R @ A1 @ A2)k(X2); clearly, 
(R 8 A1)kIX2) computes the generalized modus ponens with 
fuzzy fact A1 and fuzzy rule R, while (R 8 A2).1(X1) 
computes the generalized modus tollens. 

Combination being associative, commutative and 
idempotent, we can compute an equivalent problem which is 
arcconsistent using a local propagation scheme. First consider 
each couple (Ri,xj) and u m t e  Aj; if Aj has been modified, 
propagate the modification on all the variables depending on 
Xj, i.e. consider each couple @k.Xh) such as Rk relates Xh to 
Xj. If Ah has been modified, propagate the modification 
similarly. The process is repeated until no modification 
occurs. This procedure has been implemented by means of an 
algorithm (F-AC3) which is an extended fuzzy version of the 
classical AC3 algorithm [ 101. The algorithm is not given here 
for the sake of brevity. 

Since each variable xj ranges on a discrete set of values U,, 
this algorithm stops in a finite number of steps, F-AC3 
increases the worst-case complexity of AC3, O(mrdr+l) (m 
being the number of constraints, r the maximal arity of the 
constraints and d the maximum cardinality of sets of values 
U,), by a factor p only, which is the number of distinct 
satisfaction degrees effectively used to describe the preferences: 
the complexity of F-AC3 is O@mdr+l). The result does not 
depend on the order in which constraints are examined. 
However, the choice of this order may enhance the efficiency. 
Our hypergraph representation is similar to those proposed 

in [16], [5]. Note that edges are not required to be directed and 
may represent other dependencies than causal ones. Contrary 
to algorithms proposed in [51, [161, [8] our propagation 
scheme is not limited to hypertrees. However, it just 
computes, for each variable, an upper approximation of the 
marginalization of p. Moreover, the approximation is exact if 
the hypergraph is in fact an hypertree @toof is similar to the 
one given in 183). Another difference with these algorithms is 
that F-AC3 does not not control the propagation of the fuzzy 
unary restrictions. As a consequence, a piece of information 
A, or Ri may be combined with itself, for instance after being 
propagated via a circle. Since the combination is idempotent 
propagation does not generate meaningless information. 
Moreover, the result of conjunctive combination can only 
decrease in the sense of fuzzy set inclusion and no new level 
of satisfaction can appear. These properties ensure the 
termination of the algorithm. In fact, other formalisms which 
use combination operations that do not verify these important 
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properties (for instance, Dempster rule of combination), can 
not be dealt with as simply by local propagation algorithms 
in structures other than hypertrees. 

4.2. Making Induced Restrictions Explicit by Ensuring 
Path-Consistency 

None of the previous local computation schemes in 
hypertrees adresses the compuattion of the restrictions induced 
over pairs of variables by the global problem. For instance, 
consider a problem P = (R12,R23,R13), restricting the 
possible values of (xl,x2,xg): R12: xi I x2 K23: x2 I x3 
R13: xi 2 x3. Constraints R12 and R23 induce a restriction 
on x i  and x3: xi 5 x3; therefore, the constraint between xi 
and x3 becomes "xi I x3 and x i  2 x3", i.e. R13: "xi = x3". 

The concept of path-consistency introduced by classical 
CSP literature [12], captures this notion of transitivity in 
constraint graphs where restrictions are unary or binary. Let us 
denote Ri, the fuzzy restriction linking xi and xj, and Rii = Ai 
the unary restriction on Xi. In terms of fuzzy constraint 
networks, the original definition can be extended as follows: a 
problem P is "path-consistent" if and only if every pair of 
values (ui,Uj) allowed by a direct constraint Rij for the pair of 
variables (xi.xj) with the satisfaction degree pRij(Ui,Uj) is also 
allowed with a degree at least equal by every path from xi to 
xj. That is all the restrictions induced by these paths are 
subsumed by the direct constraints. 

Moreover, the graph can be considered as complete, adding 
non-informative restrictions between pairs of variables which 
are not linked. Under this assumption, the consistency of each 
direct constraint with every path of length 2 implies path 
consistency. This condition which is due to Mackworth [lo] 
when relation are crisp is one of transitive closure. It may be 
easily extended to fuzzy binary relations (by induction on the 
length of the path) and is formally expressed by: 

(XiJj) G (Xl,...,Xn), v Xk E (Xl,...,Xn) - (Xi,.Xj), 
(2) 

Hence, a procedure which considers the graph as complete 
and transforms the problem into an equivalent one which 
verifies property (2) ensures path consistency.The following 
algorithm is a generalisation to FCSP of PC-2 [lo]. It 
ensures both arc and path consistency in graphs of binary 
fuzzy restrictions. Since it takes more induced restrictions into 
account than F-AC3, each unary constraint Aj is a better 
approximation of p&IXj). Since the variables range on finite 
domains, F-PC-2 is of complexity O(d5n3p). Like for F-AC3, 
some heuristics on the ordering of nodes may be used. 

Ai 8 Rij 8 Aj E mik 8 Ak 8 Rkj]l(Xi*XJ) 

F-PC-2 ( (R 1 .. ..Rm))): 
enumber all the nodes from 1 to n> 
Q t ((i,kj) / &j, not(i=j=k)) 
While Q# 0 do: 

<choose and remove (ikkj) in Q> 
Modified := false 

If height(R'ij ) = 0, stop /* Cons(P)=O) */ 
R'ij := Rij 8 [Rik 8 Ak 8 Rkj]&(xi*xJ) 

else, if Rij f Rij do Rij := Rij Modified := true. 
If Modified, then Q t Q U related-paths (i,kj). 

if icj, ((ij,") / ilm, m#j} U ((m,ij) / mgj, m+i) U 

else if i=j ((p,i,m) / plm, not(p=i=m), not(p=m=k)} 
Note that the updating pattern R'ij := Rij @ [Rik 8 Ak 8 

Rkj] .1 {xiaxj encodes modus ponens, modus tollens and a kind 
of resolution principe (i.e. involving only three variables). 
Indeed, if i=j, the updating pattern becomes A'i := 
Ai 8 [Rik 8 Ak]l(Xi), which is nothing but the updating 
pattern of arc-consistency which encodes both modus ponens 
and modus tollens. Moreover, suppose that p, q and r are three 
Boolean variables restricted by the following constmints: 
Ap: p Q (U) ; Aq: q E (t,f) ; Ar: r E ( t f )  
Rpq: "p or -q (priority a) "represented by p ~ ~ ( p , 9 )  = 1 - a if 

p 5: f and q = t, p ~ ~ @ , [ 1 )  = 1 otherwise; 
Rqc "q or r (priority b)" represented by pRqr(q,r) = 1 - b if 

q 5: f and r = f, pRq(qI') = 1 otherwise; 
[Rik 8 Ak Q RkjlJ{xi*xJ)  is the fuzzy restriction 
corresponding to the fuzzy set p ~ ~ ~ ( p j )  = "(1 - a, 1 - b) 
if p = f and r = f, pRpr(p,r) = 1 otherwise. In other words, 
path-consistency computes the pattern of resolution of 
possibilistic logic: (p v l q  a): (q v r b) t- (p v r min(a,b)), a, b 
being lower bounds of necessity degrees. 

Related-paths (i,kj): 

((i,i,m) / jcm) U {(mkj,i) / m i )  

5. FINDING THE BEST SOLUTION 
The previous algorithms calculate approximations of 

pJ"J) which can be exact under some structural conditions. If 
the approximation is exact, the minimal height of all the 
constraints is equal to the consistency of the problem: 
Cons(P) = height@). Otherwise, it is only an upper bound of 
Cons(P) and computing the problem consistency requires the 
determination of a best solution, i.e. an instanciation 
(U1 ,..., Un) such as pp(ul ,..., Un) = height@). In fact, the 
problem of computing Cons(P) can be formulated as a 
sup/min optimisation problem (some Ri may be unary): 

Following Lang [9] or Schiex [15], such a problem may be 
solved in the finite case using classical tree-search algorithms, 
as Depth first, Branch&Bound, a-p, SSS*, beam search .... 

Using a classical tree search algorithm, variables are 
instanciated in a prescribed order say (XI ,. . . ,xn). The root of 
the tree is the empty assignment. Intermediary nodes denote 
partial instanciations. Leaves represent complete 
instanciations of (XI, ... ,xn), i.e. potential solutions. 
Following a depth-fit exploration of the tree, we search for 
the leaves that maximize b. 

The use of flexible constraints makes it possible to prune 
each branch that will necessarily lead to complete 
instanciations whose degree of satisfaction is worse than the 
one of the best already evaluated solutions. In other terms, it 

. 1 { X i l  .... X& 
suP(ul....~) m i n R ; ~  (Rl,..,Rm) PRi((Ul*..JJn) i )  
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is useless to extend intermediary nodes (ul,. . . ,Uk) such that 
pp l{x l  ,..., xkj(u1, ..., uk)la, a being the current lower bound 
of Cons@'). Threshold 01 may be initialized by 0 and updated 
when a solution (u1, ..., Un) such as pp(ul ,..., un)>a is reached. 

The computation of p p l { x l  ,..., xk] (u1, ..., Uk) is too 
costly (since it requires the computation of all the extensions 
of (U1 ,..., Uk) to (XI ,..., xk]). So in practice, we compute an 
upper bound of ppl{xl ...., xk] (u1, ..., Uk) instead. We call 
this upper bound the "consistency" of the partial instanciation 
(u1, ..., uk). The consistency of (u1, ..., Uk) only considers the 
restrictions pertaining to the variables instanciated in 
(ul, ..., Uk), i.e. constraints Ri such that V(Ri) c; ( x i  ,..., Xk): 

Cons(u1, ..., uk) = 
minR; s.t. V(Ri)c( ~l,...,xk]pRi((~17... iuk)*v(Ri)) 

This bound decreases when extending the nodes and becomes 
exact for complete instanciation. Moreover, it may be 
incrementally computed as the tree is explored downward: 
Cons(u 1 ,..,uk,uk+ 1)=min(Cons(ul ,..,uk),min { K ~ / ~ ~ + ~ ~  v(R,) 

and V(R;&( XI,. . . ,xk+l] ]pRi((ul 9 . -  -*uk+ l)'V(Ri))) 

It is interesting to notice that the incremental computation of 
Cons(u1,. . .,Un) considers each constraint only once. 

Let's (ul,. . . ,Uk) denotes the current partial instanciation, a 
the current lower bound of Cons(P). For all Uk+l, 
Cons(u1 ,... ,Uk.uk+l) is computed. Only the nodes 

created, and the next to be developed is the one such that 
Cons(u1,. . . ,Uk) is maximal. 

The search stops when no more node can be created. It is 
successful if a complete instance has been reached, and the 
best among those which have been reached is optimal 
(a = Cons(P)). If no complete instance has been reached, 
Cons@') = 0 and the problem is unfeasible. 

It is possible to stop the search as soon as a solution of a 
degree greater than or equal to some threshold p is obtained. 
Therefore, if a satisfaction level b is considered as sufficient 
for the solution you look for, fix p = b. Mareover, some 
heuristics may be applied to this tree search, namely on the 
order of instanciation. In fact, it is possible to develop a large 
class of tree search algorithms (e.g.. beam search) based on the 
Same principle and integrating different heuristics or variants. 

(U1 ,..., Uk,Uk+l) such that Cons(u1, ..., Uk,uk+l) 2 a may be 

6. EXAMPLE 
A tutorial is supposed to be made of lectures on topics P 

and Q, plus training sessions and computer sessions for topic 
P. Each type of activity must not involve more than 5 
sessions. There should be approximately 8 lectures overall, 
and the person in charge of lectures and computer sessions on 
topic P proposes about 6 sessions overall. There should be 
exactly two more computer sessions than exercise sessions, 
and exactly as many lectures on P as exercise sessions. The 
FCSP is defined in Figure 1. A 5-level satisfaction scale is 
used L = (0, a, b, c, 1). Representing fuzzy sets by pairs 

(U, ~F(u)), we have the following representations of 'about 
8' (E) and 'about 6 (B), and 'exactly 2' (C): E = ((6,a), (7,c), 
@J), ( 9 , ~ ) ~  (1Oa)); B = [(5,b), 611, (7,b)); C = I ( U )  1. 

-C I Fig. 1 

1 2 3 4 5 6 7 8 9 1 0  
* 

With the following understanding of the variables, x (resp. y): 
number of lectures on P (resp. Q); w: number of computer 
sessions on P; z: number of exercise sessions, the constraints 
write Ax: x E' I; Ay: y E I; Az: z E I; Aw: w E I; Rxy: x + 

Arc consistency performed on x via Rxy leads to compute 
~ R ~ ~ + ~ ( u )  = maxy,1,5 ~ E ( U  + y), V u  which gives I n 
Rxy+x = ((l,a), (2,c), (3,1), (4,1), (51)) = Ax. Clearly 
more precision has been obtained on x since only 3, 4, 5 
remain totally possible values. Note that the computation of 
Rxy+x could be done via fuzzy arithmetics: the restriction 
Rxy+x = (RyaRxy) L(x )  induced on x is in fact: x E E 8 I, 
9 denoting the substraction of fuzzy quantities. 

Applying FAC-3 to this example (see Figure 2). we 
discover that the height of each unary restriction is c, i.e. that 
constraints are conflicting. Note that the unary restrictions are 
only upper approximations of the marginals of the global 
relation. For instance, x = 1 is allowed with degree b, 
although there is in fact no assignment of x, y, z, w with 
x = 1 satisfying all the constraints even partially. 

y E E; RXW: x + w E B; RWZ: w - z E C; RXZ: x = Z. 

d 2 3 4  5 * d  1 2 3  4 5' 
Consider now =+path consistency instead of arc-consistency 
only. Rxz states that x = z. The path x, w, z states that Rxw: 
x+w E B and Rwz: w-z E C. Combining these restrictions, 
we obtain the induced resmction (Rxw 03 Rwz C3 A W ) ~ ( ~ ~ ] .  
Because of Aw, this restriction is more restrictive than x+z E 
B W  = (Rxw 63 R W Z ) ~ { ~ ~ ] .  In this example, path consistency 
performs nothing but variable elimination. Intersecting this 
restriction with the set Rxz of possible pairs of values for x 
and z, we get R'xz: x = z = 2. The new restriction is then 
propagated on x by arc-consistency: p ~ l ~ ( 2 )  = c, ~ R ~ I ( X )  = 0 
otherwise (notice that value x = 1 is ruled out). Applying F - 
PC2 instead of FAC - 3 to the example (see Figure 3), the 
restrictions Rx, Ry, and Rz are tighter. Moreover, they are 
equal to the marginals of the global relation. 

The search algorithm is then applied, with p = c: we take 
avantage of the results of FPC2 to enhance the search giving 
an upper-bound of Cons@'). 8 nodes are generated (see Fig. 4) 
and the best solution is: x = 2, y = 5, z = 2, w = 4. In fact, 
there is no assignment satisfying completely all the 
constraints; thus, constraint Rxy is "relaxed" according to the 
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preferences: one accepts to reduce the number of lectures to 7 
since no plan with 8 lectures is feasible. 

Y Z W 

2 4 
Fig.4 

m- 2 <& (a) (a) 
(c) (c) 5 2 4 

(c) ( 4  ( 4  

Notice that if the filtering algorithm is not applied before the 
search, reaching the best solution requires 18 nodes. The first 
reason is that the upper bound of Cons(P) provided by Fpc2 
allows the search to stop immediately after the discovery of 
the solution. Moreover, the problem obtained by FPC2 
contains more explicit constraints than the original one; thus, 
the consistency of a partial instanciation is a better upper 
bound of the satisfaction level of its best extension: more 
useless branches are pruned. 

Our example involves imperative constraints only. 
Consider a problem where Rxz has now a priority c ~ R ~ ~  = d S 
1 - c. This conflicting FCSP may be solved by relaxing Rxz: 
the consistency of the problem is 1 - d and a solution satisfying 
all the constraints but Rxz is got (x = 3, y = 5, z = 1, w = 3). 

7. CONCLUSION 
Flexible constraints have two advantages over crisp ones: 

the different solutions are rank-ordered in accordance to their 
degrees of feasibility and the search algorithm takes advantage 
of this flexibility to efficiently focus on the best solutions. 
Moreover, the FCSP approach may handle partial inconsis- 
tencies between constraints and provides a solution (the best 
one) as long as the problem is not totally inconsistent. 

Thus the FCSP framework seems to be a suitable 
approach to handle flexible constraints, i.e. constraints 
involving preferences as well as prioritized constraints - and 
more generally problems involving fuzzy relations. It marries 
possibility theory and classical CSP theory. Possibility 
theory offers its rich and powerful setting for the 
representation of soft and prioritized constraints; the classical 
operations of combination and projection of fuzzy restrictions 
present a low computational cost, and properties (especially 
idempotence) allow the use of local computational schemes on 
general structures. Moreover, the CSP literature provides 
theoretical results as well as efficient algorithms which can be 
easily adapted to the treatment of fuzzy restrictions. 

In terms of applications, FCSP seems particularly 
promising in ateas such as scheduling, planning, design which 
often make use of classical CSP techniques mixed with 
informal approaches to flexibility (see for instance [3]). Note 
that the framework we have described only handles variables 
ranging on discrete domains; in order to handle some of these 
applications, it must be extended to continuous domains. 

Lastly, the FCSP approach may be regarded as a problem 
solving paradigm for every application involving fuzzy 
restrictions, e.g. problems of combination of vague 
information, fuzzy relational databases, or qualitative reasoning. 
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