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ABSTRACT

Fractures of the acetabulum, the cavity of the hip that hosts the femoral head, are complex to understand,
plan, and surgically reduce. Segmenting bone fragments in CT scans is fundamental for assisting surgeons in
their therapeutically process, and can benefit from recent learning-based advances. In this paper, we extended
a learning-based network for the semantic segmentation of 6 pelvic bones: left and right hip, left and right
femur, sacrum, and lumbar spine. This semantic segmentation is then process by a surgeon to separate fracture
fragments, similarly to an existing baseline process. Results on 6 fracture cases show a qualitative improvement of
the final fragment segmentation quality. Mostly, the segmentation time is statistically significantly reduced from
94 min to 18 min, in mean, which is a promising step towards using such learning-based method in preoperative
clinical routine.
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1. INTRODUCTION

Medical image segmentation is an essential process in many image-guided procedures. This is especially the
case for acetabular surgery, where the segmentation of bone fragments is a core step to assist in analysing the
fracture, planning the surgery, and for guiding procedures.1–5 Numerous methods, usually semi-automatic, have
been proposed to segment fractured pelvis with standard segmentation method like region growing, wavelets, or
active shape modeling.6–8 With the advent of Deep Learning as a state-of-the-art segmentation approach, several
authors have addressed bone segmentation in non-fracture contexts.9 Still, only a few works are dedicated to
segmenting the pelvic area10 or localizing pelvic fracture lines.11,12

In previous studies3,5 we proposed a semi-automatic segmentation method. Bones were first segmented using
region growing, followed by significant manual refinements. After this semantic segmentation, the different bone
fragments were manually separated which corresponds to an instance segmentation. The objective of this study
was to replace the semantic segmentation phase by a fully-automated learning-based segmentation, then to
evaluate its impact on the instance segmentation phase and in terms of total segmentation time.

We extended the cascade 3D U-Net framework proposed by Liu et al. (2021)10 for the automatic semantic
segmentation of 6 bone structures of the pelvis: left & right hip, left & right femur, sacrum, and lumbar spine.
The fracture fragments were thus segmented manually as in our baseline procedure. Results on 6 fracture cases
show a clear qualitative improvement of the final fragment segmentation quality. Mostly, the segmentation time
is statistically significantly reduced from 94 min to 18 min, in mean, which is a promising step towards using
such learning-based method in preoperative clinical routine.
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2. MATERIAL AND METHODS

2.1 Datasets

The initial neural network from Liu et al. (2021)10 was re-trained/tested with 110 CT scans and labels from
their open source CLINIC and CLINIC-metal datasets available at https://github.com/ICT-MIRACLE-lab/

CTPelvic1K. Most of the cases from these datasets have a pelvic ring fracture, and about 10% of them have an
acetabular fracture. The CLINIC-metal set also contains post-operative CT with metal artifacts generated by
the fixation screws and plates.

In addition to these publicly available datasets, we included 6 pre-operative CT scans from the Grenoble
University Hospital, France. All cases have a fracture of the acetabulum, sometimes combined with a pelvic ring
fracture. Patients signed an informed consent prior to surgery, with the approval of the local ethics committee
(RCB 2022-A01472-41).

2.2 Baseline segmentation method

In our previous studies,5,13 we proposed a semi-automatic procedure based on the open-source application ITK-
SNAP (www.itksnap.org).14 This procedure consists in successive stages:

1. the segmented volume is first cropped around the region of interest: the fracture fragments and the bones
connected to these fragments through ligaments. Non-relevant structures are ignored.

2. A semantic segmentation is then performed to identify bone tissue. After a thresholding initialization,
seeds are manually set to initiate a region growing algorithm.14 This phase has proven to be quite difficult
as the method tends to stop on every discontinuity, not only the fracture lines but the discontinuities
artifically created by the thresholding operation in areas where the bone is very thin. Thus, a significant
number of initial seeds is required. Many leeks also occur along cancellous bone, where the signal is never
clearly defined.

3. Manual refinement is always necessary to clean the semantic segmentation, expand under-segmented areas,
and trim over-segmented ones.

4. Finally, the different fragments are manually separated. This stage is analogous to an instance segmentation.

As reported over 10 patients,5 the total segmentation time was 82 ± 18 minutes [range 60–120]. For the 6
cases selected for this study, the mean segmentation time was 94 minutes.

2.3 Learning-based semantic segmentation

For the semantic segmentation of the pelvic bones, we adapted the open-source deep learning network proposed
by Liu et al. (2021).10 This network is composed a two 3D nnU-Net15 working in cascade on low resolution and
then full resolution CT volumes. The 4-class output is then post-processed based on a Signed Distance Function
(SDF) filtering16 to avoid the removal of isolated fractured bone fragments from the segmentation.

The initial multi-class network labels 4 classes referred as the left hip, right hip, sacrum, and lumbar spine.
A fundamental structure to plan surgery is the femoral head, which is tighly connected to the acetabulum via
the acetabular capsule. In the case of a fracture, this ligament capsule can be partially torn off and the femoral
head can be in contact with surrouding bone fragments or even be dislocated from the joint. We therefore added
two classes to the network’s output and annotation set: left femur and right femur.

The network modification was straightforward as we simply increased the number of classes from 4 to 6 in
the decoder of the low resolution 3D nnU-Net and in both the encoder and decoder of the full resolution U-Net.
However, due to the change of dimension of the layers, we could not simply refine or transfer the network weights
from the original paper and instead had to fully retrain the network.

Similarly to Liu et al. (2021),10 an iterative procedure was followed to create the femoral annotations. Both
femurs were first manually segmented on 20 cases using ITK-SNAP (www.itksnap.org).14 The network was
then trained with these cases, and used to infer femur annotations in 10 new cases. After manual refinement, the
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10 corrected annotations were added to the training set. Note that only the femur annotations were conserved
from the last inference, and merged with the original 4-class open source annotations. This process was repeated
to obtain a 6-class annotation on 70 cases, when basically no manual refinement were needed for the femurs.
These 70 cases came from the publicly available CLINIC and CLINIC-metal datasets. The 40 remaining cases
from these datasets were left for testing.

2.4 Experiments and evaluation protocol

We studied how the learning-based semantic segmentation could benefit the overall segmentation process. The
semantic network replaced the first steps of our baseline method (section 2.2) and we simply performed the
fragments identification and separation starting from the network output inference.

After training the 6-class segmentation network on public images, we used the network to automatically infer
the classes on 6 cases from the Grenoble University Hospital. Then, an orthopaedic surgeon manually segmented
the instances from the network output. The 6 cases had already been segmented for a previous study, by the
same surgeon, so we could compare the different results. Three models were compared:

baseline manual instance segmentation after a semi-automatic, region-growing segmentation (section 2.2).

1-class semantic manual instance segmentation from the automatic, 1-class semantic segmentation. The 6
output classes of the network were re-labelled with a single ”bone” label, to mimic the output of the
baseline region-growing method.

6-class semantic manual instance segmentation from the automatic, 6-class semantic segmentation (left and
right hip, left and right femur, sacrum, lumbar spine).

Two metrics were considered. We first evaluated the quality of the different models. We could not use a
quantitative metric such as the DICE coefficient since the baseline models were not complete (only the regions
of interest were segmented with refinement, others regions were roughly curated or totally discarded). We thus
only verified that the number of fracture fragments was the same, and then we qualitatively evaluated the quality
of the segmented instances. The second metric was the total curation time. The semantic segmentation was
automatically performed on a DELL Ampere server, then when added the time needed for the manual instance
segmentation.

3. RESULTS AND DISCUSSION

3.1 Semantic segmentation

The modified network was first evaluated. The model was retrained on 70 cases of the 110 cases segmented with
6 classes, and tested on the remaining 40 cases. The Dice coefficients for the initial classes (left and right Hip,
sacrum, and lumbar spine) were all between .98 and .99 in mean, which is no different than the results reported
in.10 This was unexpected as only 70 volumes were used to retrain the model instead several hundreds. Similar
Dice coefficients were obtained for the left and right Femur, which validated the extension of the model from 4
to 6 classes.

While these results are already excellent, we plan to continue the iterative process to segment femurs on all
public images to fully benefit from the size of the datasets and increase the robustness of the semantic network.

3.2 Qualitative comparison of the segmentations

Unfortunately, the baseline and network-based results could not be quantitatively compared with metrics such
as the Dice coefficient or Haussdorf distance. The reason is that baseline segmentations are limited to an area
around the fracture, while the whole pelvis is systematically segmented with the network. In addition, areas far
the fracture or irrelevant for the simulation planning were not refined during the baseline process. For example,
the femur was never separated from the acetabulum on the side opposite the fracture.

The different results were thus qualitatively compared by the surgeon, yielding the following comments:



Figure 1. Segmentation of case 2. Top row, from left to right: CT images, baseline segmentation, automatic 6-class
segmentation, and final fracture segmentation after fragment separation. Bottom row: 3D view of the baseline, 4-class
segmentation from Liu et al. (2021), and final segmentation.

• The segmentation is always clearly improved for all cases.

• First, classes already labelled do not have to be manually separated which is a direct benefit. This is
especially relevant for the femurs, the sacrum, and the pubic symphysis. Note that the femur was correctly
separated even in cases with a severe dislocation (see Figure 2), even if such configuration was never present
in the training dataset.

• The overall 3D aspect is more pleasing since the pelvis is totaly segmented, and ”holes” in areas where the
cortical bone is thin (e.g. in the middle of the iliaque) are much smaller if not absent (see Figure 1).

• The semantic segmentation was not perfect, though, and several small fragments or extremities were either
over- (cases 1 & 3) or under-segmented (cases 4 & 5). These defects still had to be manually refined
similarly to the baseline procedure.

• Finally, unseparated fragments with a common label after the 6 class-segmentation (e.g. left hip) were
easier to separate than from the baseline region growing output.

3.3 Computation times

Table 1 reports the computation times for all segmentation models, on 6 fracture cases from our center. The
time analysis yields:

• The automatic 6-class semantic network took 3 to 6 minutes to perform a case, with a strong correlation
with the number of slices in the CT scan.

• Separating the fragment instances from the semantic 1-class inferences took 24.5 minutes in mean. Even
after adding the network computation time, this is a statistically significant reduction compared to the
baseline time.

• this reduction is even more significant when fragments are segmented from the 6-class inferences, with a
segmentation time reduced to 13 minutes in mean from more than 90 minutes.



Figure 2. Segmentation of cases 1, 6, 3. From left to right: CT images with final segmentation, 3D view of the baseline
and final segmentation.

Table 1. Computation times for the different segmentation methods: baseline, instance segmentation from the automatic
1-class semantic segmentation, instance segmentation from the automatic 6-class semantic segmentation.

Case # slices # labels
baseline
(min)

semantic
network (min)

from 1-class
semantic (min)

from 6-class
semantic (min)

1 458 7 90 6.12 30 18

2 489 9 70 5.36 22 15

3 236 9 120 3.35 20 8

4 259 8 100 5.17 25 12

5 430 7 90 5.43 35 17

6 137 9 - 3.19 15 8

mean computation time (min) 94 4.77 24.5 13

4. CONCLUSION

Automatizing the semantic segmentation of pelvic bones with a learning-based network has proven to be a signif-
icant step for the segmentation of bone fractures. First, the quality of the fracture segmentation is consistently
improved. However, the main benefit is the significant reduction of the total segmentation time, bringing the
method towards a use in routine clinical planning.

Future works include completing the femur segmentation of the public datasets, and potentially improving
the SDF post-processing10 to better segment small comminuted fragments and thin extremities. In a longer
term, we plan to investigate the automatization of fragments separation using graph cut methods or panoptic
segmentation networks such as Mask R-CNN.17
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