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Morphology and stability of droplets sliding on soft vis-
coelastic substrates.
Mathieu Oléron, Laurent Limat, Julien Dervaux and Matthieu Roché‡

We show that energy dissipation partition between a liquid and a solid controls the shape and stability
of droplets sliding on viscoelastic gels. When both phases dissipate energy equally, droplet dynamics
is similar to that on rigid solids. When the solid is the major contributor to dissipation, we observe
an apparent contact angle hysteresis of viscoelastic origin. We find excellent agreement between
our data and a non-linear model of the wetting of gels of our own that also indicates the presence
of significant slip. Our work opens general questions on the dynamics of curved contact lines on
compliant substrates.

An ever-increasing number of applications such as biofouling re-
pellency1,2, dew harvesting3–5 and anti-icing6 relies on the use
of viscoelastic coatings. Not only do these materials confer con-
trolled interfacial properties to their substrate, they may also be
compliant enough to deform and dissipate energy after the depo-
sition of a droplet7–10, affecting both the equilibrium shape of the
latter and the dynamics of the contact line between the solid, the
liquid and the ambient fluid11–13. This coupling leads to unique
substrate-droplet and droplet-droplet interactions14–18.

The influence of substrate compliance on the shape and sta-
bility of moving droplets is hardly known. On a rigid plate in-
clined at an angle α with the horizontal, the morphology of slid-
ing droplets is dictated by the dependence of the dynamic con-
tact angle θd between the liquid-gas and solid-liquid interfaces
on droplet velocity U and the ability of the trailing edge con-
tact line to form corners, the radius of curvature of which was
related to the nanometric scale at which the hydrodynamic de-
scription of wetting breaks down19–25. Beyond a threshold ve-
locity, corners destabilize into rivulets that fragment into tinier
droplets known as pearls19,21,23,26–28. These results hold for sys-
tems where energy dissipation occurs entirely in the liquid. How-
ever, on a gel with surface energy γs and shear modulus µ0, de-
formations having a magnitude comparable to the elastocapillary
length `s = γs/(2µ0) propagate with the contact line, leading to
dissipation in the droplet and the substrate. Thus, we expect a
more complex shape selection process.

Here we tune energy dissipation partition between the liquid
and the solid and we show that this balance controls the mor-
phology and stability of droplets sliding on soft solids. When both
materials dissipate energy equally, droplet dynamics are akin to
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those reported on a rigid substrate, despite the compliance of the
gel. When dissipation occurs only in the substrate, we observe
an apparent contact angle hysteresis and the appearance of sharp
features (corners, cusps. . . ) only beyond the pearling instability
threshold. We rationalize our results with a non-linear model of
the wetting of soft solids of our own and find very good agree-
ment. In all cases, our analysis points to the existence of sig-
nificant slip in our systems due to the presence of free polymer
chains in the gel. Finally we discuss the perspectives of our work
regarding our understanding of wetting.

1 Materials and Methods
1.1 Properties of the liquids

We use pure glycerol (G100, Sigma Aldrich, G5516), a
60wt%-glycerol-in-water mixture (G60), polyethylene glycol-ran-
propylene glycol (P25, PEG-ran-PPG, average molecular weight
Mw ∼ 2500 gmol−1, Sigma Aldrich), a 70wt%-polyethylene glycol-
ran-propylene glycol monobutyl ether-in-water mixture (P7, PEG-
ran-PPG ME, Sigma Aldrich), and the UCON lubricant 75-H-
90,000 (U90, Dow corning). Table 1 summarizes their proper-
ties. All the liquids are insoluble in silicone gels. These liquids
are chosen to minimize the effects of evaporation and hygroscopy
as much as possible. We measure the liquid-vapor surface tension
γ with the pendant drop technique. We estimate the density ρ

by weighing a volume V = 10± 0.5 mL of liquid with a 0.01-g-
accurate scale. We measure the dynamic viscosity η with a capil-
lary viscosimeter sitting next to the set-up twice a day to account
for hygroscopic and thermal effects.

1.2 Gel preparation

Gel slabs are prepared with a two-part commercial silicone kit
(Dow Corning Sylgard 527). We mix equal volumes of each part
of the kit together, as recommended by the manufacturer, in a
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Table 1 Properties of liquids used in our experiments. Values for the equilibrium contact angle are extracted from the measurements of the dynamic
contact angle as a function of velocity, see Materials and Methods for more details. The substrate in all cases is Sylgard 527 prepared following the
manufacturer-recommended process. Its shear modulus is µ0 = 1.077 kPa, its relaxation time τ = 18.2 ms, and the exponent characterizing its rheology
m = 0.626.

Surface tension Viscosity Density Equilibrium contact angle Relaxation ratio
γ η ρ θeq R

mN m−1 mPa s 103 kg m−3 ◦

U90 40.7± 0.9 36900± 690 1.08± 0.05 61.6± 0.7 2.24± 0.42
P7 37.3± 0.2 842± 99 1.05± 0.05 56.6± 0.7 92.7± 11.0
G100 63.1± 0.5 631± 104 1.27± 0.06 97.2± 1.1 119± 20
P25 37.1± 0.4 491± 34 1.05± 0.01 64.3± 0.2 165± 11
G60 62.9± 0.1 6.8± 0.2 1.16± 0.06 98.1± 0.9 10700± 400

weighing boat previously cleaned with ethanol and water, and
dried. The gel mixture is degassed under vacuum for 2 h to re-
move bubbles. It is then poured in a 60× 40-mm2 plastic vessel
(Caubère), also cleaned with ethanol and distilled water and let
to dry in a vacuum before use. Then, we leave the sample in an
oven at 65 ◦C for 15 to 18 h. We perform experiments exclusively
on dust-free unmarked gels.

1.3 Free-chain extraction

Soft silicone gels such as Sylgard 527 contain free mobile chains.
The presence of mobile chains in silicone gels affects adhe-
sion29–31 and wetting. For example, a small amount of mo-
bile chains can induce a transition between multiple sliding
regimes32,33. Hence quantifying their amount is necessary. We
extract free chains from silicone gels using the process described
by Hourlier-Fargette et al. 32 . After weighing pieces of gels, we
dip them into toluene (VWR, AnalaR NORMAPUR), a good sol-
vent for PDMS. Free chains migrate to the solvent. We renew
toluene everyday for five days to accelerate the extraction pro-
cess. Then the sample is immersed in a mixture of toluene and
ethanol (VWR, AnalaR NORMAPUR) to remove toluene from the
gel. Ethanol is added progressively to avoid damaging the sam-
ple. We start with a solution of 20wt% ethanol in toluene, and
we increase the ethanol proportion by steps of 20wt% every day,
until the sample sits in 100% ethanol. After three baths in pure
ethanol, the gel stops shrinking. We dry the gel under vacuum
to remove the remaining solvent and weigh it again. From this
procedure, we find that our materials contain 62wt% free chains.
We note that these cleaned samples proved difficult to manipu-
late and did not allow us to perform systematic experiments, as
the cleaning process would often lead to fracture, surface rough-
ness, etc, in line with previous reports34.

1.4 Rheology

We perform small amplitude oscillatory shear rheology on our
gels with an Anton Paar MCR 501 rheometer mounted with a
plate-plate geometry (diameter d = 25 mm). Strain amplitude
is set at 1%. We extend the frequency range using a time-
temperature superposition procedure35. We fit the data with the
Chasset-Thirion model36:

G(ω) = µ0(1+(iωτ)m), (1)
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Fig. 1 Rheology of Sylgard 527. Storage modulus G′ and loss modulus
G” as function of pulsation ω. Strain amplitude: 1%. Continuous black
lines: Chasset-Thirion law, Eqs. 2 and 3.

with G the complex modulus, ω the strain angular frequency and
τ a characteristic relaxation time. The exponent m depends on
the degree of polymerization of the polymer network and on the
coordination number of monomers36,37.

If we decompose the complex modulus G(ω) in a real elastic
part G′(ω) and an imaginary dissipative part G”(ω), we obtain

G′(ω) = µ0(1+ cos(mπ/2)(ωτ)m), (2)

G”(ω) = µ0 sin(mπ/2)(ωτ)m. (3)

We determine τ and m by fitting the loss factor deduced from the
model to its experimental value:

G”
G′ (ω) = tan(δ ) =

sin(mπ/2)(ωτ)m tan(mπ/2)
sin(mπ/2)(ωτ)m + tan(mπ/2)

. (4)

We inject the values of τ and m to fit equations 2 and 3 to the
rheological data (Fig. 1). We find µ0 = 1.077 kPa, τ = 18.2 ms,
and m = 0.626.

1.5 Sliding experiments
We deposit a liquid droplet with a micropipette on the gel. The
spherical radius R0 of the droplets before deposition is of the or-
der of the capillary length `c = (γ/(ρg))1/2 ' 1.5 mm of the liq-
uids in all cases.The experiment starts when we tilt the gel at an
angle α with the horizontal. A LED panel (Effilux) shines light
on the sample from below, and a camera (Imaging Source, DMK
33UX174) records top views of the droplet with a spatial reso-
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Fig. 2 Top view of droplets sliding on a silicone gel as a function of the Bond number Boα and the relaxation ratio R. Each image displays the value
of Boα . The pinch behind the front of the droplet at large R is an image artifact: the equilibrium contact angle is greater than π/2 for these systems
and the liquid/air interface hangs over the moving contact line. Orange arrow: direction of motion. Scale bar: 2 mm.

lution of 32 µmpx−1. We take side views on some experiments
(Imaging Source, DMK 33UX174, spatial resolution 4 µmpx−1).
The thickness of all the samples, hs ∼ 4 mm, is much larger that
the elastocapillary length of our material, `s ∼ 10 µm, to avoid
small-thickness effects16. Samples are covered with a polystyrene
lid that we find able to prevent surface ageing and dust deposi-
tion. We unmold gel layers and cut their edges so the meniscus is
not in the way of side views. We obtain identical results when the
silicone gel is in the box or unmolded.

We check the volume of droplets by weighing samples before
droplet deposition and after. We track the motion of droplets with
the software package FiJi38. Droplet velocities U range from 10−3

to 1 mm s−1. In most cases, the trajectories that we observe are
linear functions of time: droplets move at constant speed. For the
longest experiments, drops may lose or gain water from surround-
ing air. In that case, we focus on early stages of the dynamics,
when a steady state is reached . Thus we extract a single value U
of the droplet velocity from each experiment. Each set of experi-
mental conditions is tested three times to ensure reproducibility.
The large amount of free chains present in our gels explains likely
the absence of transition between two sliding regimes reported by
Hourlier-Fargette et al. 32,33 in our experiments.

Sliding experiments are characterized by two dimensionless
numbers, the Bond number

Boα =
ρgR3

0
γRc

sinα, (5)

and the liquid capillary number

Ca =
ηU
γ

, (6)

that compare capillary stresses to gravitational and viscous ones
respectively. Here, g is the acceleration of gravity, R0 is the radius
of the spherical droplet before deposition, and Rc is the contact
radius between the droplet and the substrate. Energy dissipation
partition between the two media is characterized by the relax-
ation ratio R39 that compares the viscocapillary relaxation veloc-
ity in the liquid, Ul = γ/η , to that in the solid, Us = `s/τ, giving

R=
γτ

η`s
. (7)

Contact line motion has been studied in the limit R → ∞ in the
literature40,41, i.e. energy dissipation in the liquid is neglected.
The liquids we use allow us to vary R over four orders of magni-
tude (Table 1).

1.6 Equilibrium contact angle measurements

Dynamic contact angles are measured at the front and trailing
edges of the droplet, on the side-view images. Wetting equilib-
rium is difficult to identify on these systems using classical tech-
niques such as droplet deposition. We see the contact line mov-
ing even a few hours after deposition. We circumvent this issue
by measuring the dynamic contact angles as close as possible to
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Fig. 3 (a) Dependence of the liquid capillary number Ca on the Bond number Boα . (b) Focus on the case R ' 2. Blue dashed line: Eq. 9. (c)
Dependence of the solid capillary number Cas on the Bond number Boα . Dashed line: Eq. 13. In all panels, filled symbols correspond to points
measured above the pearling threshold. (a) and (c) share the same legend.

U = 0. Then we fit the points around U = 0 with a linear law,
and estimate the value of the contact angle at U = 0. With this
method, we still do not have access to the true equilibrium con-
tact angle. Indeed, while we never observe droplet pinning, con-
tact hysteresis may still be present, hence inducing uncertainty on
the real equilibrium value of the contact angle, θeq, and allowing
us to estimate only the range over which the static contact angle
θs varies. However, our measurements constrain the range over
which θs varies. We find this range to be of the order of 3 to 5 ◦

for all of our systems. Given this narrow range, we assume that
θeq = θs in the rest of the paper.

2 Results
Droplet shapes carry obvious signatures of changes in the mag-
nitude of R (Fig. 2). While droplets remain nearly axisymmetric
at small Bond numbers, symmetry is lost as Boα increases. When
R ' 2, a corner appears at the trailing edge. In contrast, the aft
and fore radii of curvature of the droplets are comparable when
102 ≤ R ≤ 104. Besides, the droplet contour contains portions
parallel to the direction of motion, leading to shapes similar to
those observed in the case of droplets sliding on hysteretic sur-
faces26,42–44. A further increase of Boα at all values of R leads to
the observation of the pearling instability.

Figure 3a shows that, for equivalent Bond numbers, liquid cap-
illary numbers vary over four orders of magnitude as the relax-
ation ratio changes by the same amount. The data for R ' 2
suggest an affine relation between Ca and Boα (Fig.3b), similar
to the rigid case19,23 where the non-zero y-intercept is a signa-
ture of contact hysteresis, and hence droplet pinning. However,
we never observe the latter in our experiments, suggesting that
this non-zero intercept is either the signature of a contact an-
gle hysteresis with an amplitude smaller than our resolution or
the manifestation of another contribution in the force balance.
The functional form for the other datasets is more complex. We
multiply R with Ca to obtain a capillary number for the solid,
Cas = Uτ/`s and plot the data in Figs. 3a-b as a function of this

quantity. Accounting for variations of the equilibrium contact an-
gle θeq from one system to another, we observe a collapse of the
large-R data on a single master curve (Fig. 3c). We can discrim-
inate the curve obtained for R ' 2, in line with the assumption
that the power balance between viscous dissipation in the liquid
and gravity, relevant to these experiments, differs from the bal-
ance between viscous dissipation in the solid and gravity tested
in the Cas(Boα ) representation.

Another way to characterize the dynamics of sliding droplets
is to measure the dependence of the dynamic contact angle on
droplet velocity. Figure 4a shows the deviation from the equi-
librium contact angle θeq as a function of the capillary number
Ca, for each system. We observe that the apparent dynamic con-
tact angle θd increases smoothly as the capillary number goes
from negative to positive values when R ' 2. Corners appear
when Ca ≥ 7.5× 10−3, a value of the same order of magnitude
as those reported for fluoropolymer-coated silicon wafers19,21,23.
The other curves display a steep jump of several tens of degrees
around Ca = 0 that brings to mind results obtained in the case
of significant wetting hysteresis45 and when a contact line moves
on low-modulus natural rubber and cis-butadiene46. In a vein
similar to what we observed in figure 3, the datasets collapse on
a master curve when plotted against the solid capillary number
Cas (Fig. 4b). The curve obtained at R∼ 104 displays plateaus in
the advancing and receding branches, similar to those reported in
earlier studies12.

3 Discussion

3.1 R' 2: a deceptive resemblance to the rigid case.

The data presented in figure 3 can be discussed in terms of scaling
laws. We focus first on the case R' 2, and we follow a rationale
proposed in studies of droplets sliding on rigid substrates19,23 in
which we assume that dissipation occurs entirely in the liquid
and balances the gravitational force experienced by the droplet.
Contact-angle hysteresis may also be present. The force balance
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Fig. 4 (a) Dependence of the deviation from the equilibrium contact angle θd − θeq on the liquid capillary number Ca. Positive (resp. negative) Ca
values correspond to advancing (resp. receding) contact lines. Filled symbols: points measured above the pearling threshold. Red dashed line : fit of
the Cox-Voinov law (Eq. 10) to the R ' 2 data. (b) Same data as in a plotted against the solid capillary number Cas. Both figures share the same
legend.

then reads:

ρgR3
0 sinα ∼ η

U
h

R2
c + γ(cosθa − cosθr)Rc. (8)

with U/h the velocity gradient between the liquid/gas interface
and the substrate, and θa and θr the advancing and receding dy-
namic contact angles, i.e. the threshold values of the contact an-
gle above and below which contact line motion occurs.

After rearrangements and non-dimensionalization, this force
balance leads to (see Appendix)

Ca ∼ 1− cosθeq

sinθeq
[Boα −Boc] (9)

where Boc is a threshold Bond number for droplet motion below
which the droplet is pinned by contact angle hysteresis42.

Scaling 9 captures well the trend of the data obtained for R' 2
(Fig. 3b). We can estimate the magnitude of the contact angle
hysteresis of silicone gels from Boc

23,47 (See Eq. 24 in Appendix)
and we find ∆θ = θa − θr ' 3.5 ◦, a value compatible with the
constraint on hysteresis amplitude imposed by the data displayed
in Fig. 5. Indeed, we noted earlier that we never observe droplet
pinning. This absence still allows us to provide an upper bound
on the range of real contact angle hysteresis. The estimate of
∆θ is also consistent with the shapes of droplets at R' 2, which
display no signature of hysteresis44 (Fig. 2), and reports in the
literature regarding silicone gels1,16.

Given the similarities between the R ' 2 data and the rigid
case, we push the comparison further by testing the contact
angle dependence on the capillary number to the Cox-Voinov
law23,48,49:

θ
3
d −θ

3
eq = 9Ca ln

(
h
λ

)
, (10)

where h is the height on the liquid/vapor interface at which the
angle is measured and λ is a nanoscopic length scale introduced
to circumvent stress divergence at the contact line. The agree-
ment is qualitatively excellent. However, the logarithmic term
has an amplitude around 15. As we measure the contact angle at

h ∼ 100 µm, we obtain an unreasonable cutoff length scale λ ' 30
pm, smaller than an interatomic bond. The large value of the log-
arithmic term likely results from the fact that R∼ 1: dissipation
in the solid is of the same order of magnitude as in the liquid.
Failure of the Cox-Voinov law is then expected, as it does not ac-
count for all dissipation sources. Note that we can go back to the
Ca(Boα ) data in Fig. 3b and fit them with a more refined version
of Eq. 9 (Eq. 21 in Kim et al. 20),

Ca ∼ 2
3c(θ) ln L

λ

[Boα −Boc], (11)

where L is the horizontal extent of the wedge near the contact
line in which the stress balance involves only capillary and vis-
cous stresses, i.e. a distance of the order of the capillary length50.
c(θ) is a monotonic decreasing function of the contact angle θ

that characterizes the dependence of dissipation on the shape of
the region near the contact line, assumed to be a wedge with an
opening angle equal to θ . Following Kim et al. 20 , we assume that
θ ∼ θeq. Then, c(θ) ' 0.6 for the system we consider here. We
also obtain an unreasonable value of the logarithmic term, up to
some unidentified prefactors. Hence, while the data obtained at
low values of R resemble those obtained with a rigid substrate,
detailed analysis demonstrates that the agreement is only qualita-
tive and that some physics realted to dissipation in the substrate
is missing.

3.2 R >> 1: the substrate contributes the most to dissipa-
tion.

In the limit R → ∞, energy dissipates in the substrate. A rea-
soning similar to the one used in the previous paragraph leads to
a force balance that involves viscous dissipation in the solid and
droplet weight16:

ρgR3
0 sinα ∼ µ0Rc`

(
γ

γs
sinθeq

)3(Uτ

`s

)m

. (12)
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Fig. 5 Comparison between experimental dynamic contact angles θd and Eq. 14. The fitting parameter is the microscopic cutoff length scale, λ = 100
nm for all systems. Colored areas: fit spread reflecting experimental uncertainties.

After rearrangements and non-dimensionalization, we obtain the
following scaling (See Appendix):

Boα ∼
(

γ

γs

)2

(sinθeq)
3Cas

m, (13)

where m is the exponent of the power law describing the loss
modulus of the substrate as a function of strain frequency. For
systems where R ≥ 102, Eq. 13 captures our data up to Boα '
8×10−2 (Fig. 3c).

3.3 Comparison with a non-linear model of wetting.

We compare the data in Fig. 5 to a model that we proposed re-
cently39 that describes the wetting of soft solids in a regime of fi-
nite strains under the assumption that γs is independent of strain:
there is no Shuttleworth effect51. This analytic model relies on an
asymptotic expansion of the quantities describing the mechanics
of the substrate in terms of a power series of the ratio of the sur-
face tension of the liquid to that of the solid, γ/γs. The model can
also deal with arbitrary equilibrium contact angles. We assume
that shear stresses in the bulk of the substrate become singular
at the tip of the ridge because of an abrupt change of the sign of
the slope of the substrate surface. This singularity leads to the
existence of a finite viscoelastic force, Fve, exerted by the bulk of
the substrate on the moving contact line, on top of the capillary
force, Fcap, that works to restore the equilibrium shape of the
ridge that has rotated due to dissipation. The model provides an

analytic prediction for the dependence of θd on R and Ca:

g(θd) = g
(

π

2
+ f (Fcap(RCa,Λ),Fve(RCa,Λ),θeq)

)
+Ca ln

(
h
λ

)
, (14)

with g(x) =
∫ x

0
z−sin (z)cos (z)

2 cos (z) dz and Λ the ratio between the thick-
ness of the substrate hs to the elastocapillary length `s. The reader
should refer to the appendix for more extensive information on
functions f (Fcap,Fve,θeq) and g(θd). Equation 14 is formally sim-
ilar to the general form of the Cox-Voinov relation, where the
first r.h.s. term is related to the microscopic contact angle and the
second results from dissipation in the liquid52. Here, the micro-
scopic angle term is a dynamic quantity set by the response of
the solid to the propagation of the ridge. The correction to this
term increases as R increases. In our experiments, the thickness
of the substrate is much greater than the elastocapillary length,
Λ → ∞. Then both Fcap and Fve scale as (RCa)m = Cas

m in the
limit RCa << 1 while they both converge to the same constant
value m/(2(1 − m)) when RCa → ∞. The series expansion of
g(θd) when RCa → 0 shows that we expect a regime dominated
by dissipation in the solid around RCa = 0 for all non-zero values
of R, with g(θd) ∝ (RCa)m. As the velocity increases, we expect
to observe either a regime similar to that of a liquid spreading
on a rigid substrate and described by the Cox-Voinov relation,
Eq. 10, in the limit R → 0, or a regime that saturates to a con-
stant value dependent on the exponent m of the rheology in the
advancing branch, RCa > 0 and falls down quickly to 0 in the
receding branch when R→∞.

Figure 5 shows that the agreement between the experimental
data and Eq. 14, setting λ = 100 nm, is good to excellent for all
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datasets. The steepness of the R >> 1 curves close to Ca = 0 is
characteristic of what we called “soft hysteresis” in a previous pa-
per39, i.e. the steepening of the θd(Ca) curves around Ca = 0 be-
cause of dissipation in the solid. We emphasize that this is no true
hysteresis. Rather, figure 5 for R = 10,700 shows that an abrupt
and continuous variation of the dynamic contact angle in the re-
gion around Cas = 0 connects two flatter portions of the curve;
these flatter parts are connected by a discontinuous jump in the
case of real hysteresis. Nonetheless, the signature of this abrupt
contact angle variation on droplet shape is akin to that of real hys-
teresis (Fig. 2). These results and their interpretation shine new
light on the nature of the hysteresis reported for soft materials in
the past literature. The study of Extrand and Kumagai 46 charac-
terizes the inclination of a soft substrate beyond which a droplet
starts to slide. In their set-up, substrate inclination changes over
time at a fixed rate, and their experiments last from 10 to 30 s.
In our case, experiments at the smallest inclinations last several
hours and we can still observe droplet motion. Droplet pinning is
absent in our experiments. Our results highlight the necessity of
reaching and measuring the smallest possible velocities to char-
acterize wetting dynamics on soft solids accurately. We note that
the model fails to capture the receding branch Ca < 0 for R= 119.
The trailing edge of these droplets oscillates close to the pearling
transition, and our model does not predict this response.

The fitting procedure also suggests that all systems, even at
small values of R, exhibit a steep asymptote at Ca = 0. This is
because viscoelastic dissipation in the solid, ∝Um with m < 1, al-
ways exceeds viscous dissipation in the liquid, ∝ U , at vanishing
Ca. We note that the value of ∆θ obtained from Eq. 9 is compat-
ible with the jump magnitude seen in the fit of the model to the
data for R ' 2, despite the issues that we have identified. This
comparison indicates that signatures of soft hysteresis on droplet

dynamics are akin to those of real, defect-induced, hysteresis. Fig-
ure 6 shows that the model can also predict the full range of the
data displayed in Fig. 3.

Finally, fits to the datasets with Eq. 14 are obtained while keep-
ing λ constant. We can also set experimental parameters to their
nominal value and leave λ free to adjust. We find best-fit values
50 ≤ λ ≤ 1000 nm, larger than the molecular sizes of the liquids
we use, of the order of 10 nm at most, and smaller than the elas-
tocapillary length `s ' 20 µm. The large magnitude of λ is likely
the result of the presence of free chains that lubricate the gel-
droplet contact and induce slip2,32,53,54, in a manner similar to
liquid-infused surfaces55.

3.4 Properties of the system at the pearling threshold.
Characterization of the properties of the system at the pearling
threshold shows how different the transition to liquid deposition
on soft substrates is from that on rigid ones. First, the contact
angle just before pearling, θc, is around 32◦ when the relaxation
ratio R≤ 102 and rises up to 50◦ when R' 104 (Fig. 7a). These
values are much larger than those, around 10◦, reported for rigid
substrates23. Second, the threshold capillary number |Cac| de-
pends on both the equilibrium contact angle θeq and R (Fig. 7b).
While the former is expected56 and may at least partly explain the
jump of around an order of magnitude in |Cac| at R ∼ 100, the
latter remains to be investigated. For R ' 2, |Cac| ' 1.1× 10−2,
around twice as large as in the rigid case for a comparable equi-
librium contact angle θeq

23. Keeping the latter constant, a one-
hundredfold increase of R decreases |Cac| tenfold. This trend is
in agreement with our model. Indeed, the latter predicts that,
for a constant equilibrium contact angle, the capillary number at
which a zero receding contact angle is attained decreases as R
increases. Besides, predictions for the contact angle curves are
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Fig. 7 (a) Receding contact angle θc and (b) capillary number Cac

at the pearling threshold as a function of the relaxation ratio R. θc:
receding contact angle of the last stable point; Cac: mean of the capillary
numbers of the last stable and the first unstable points. Error on the
latter: standard deviation. Dashed lines: prediction based on Eq. 14 of
the vanishing-contact-angle capillary number.

steep in the vicinity of this capillary number. Sensible changes in
the contact lead to small changes in Ca. This rationale explains
why the prediction of our model for the zero-contact-angle reced-
ing capillary number captures quite well the data (Fig. 7b): while
the last value of the receding contact before destabilization differs
from 0, the capillary number is expected to be similar. Finally, dis-
sipation in the substrate increases the sensitivity of droplets to the
pearling instability.

4 Conclusion and Outlook
In conclusion, we document how droplets slide on soft viscoelas-
tic gels as a function of energy dissipation partition between
the liquid and the substrate. While the substrate is always de-
formable, sliding droplets display shapes and dynamics akin to
those observed on a rigid solid when dissipation occurs equally
in both materials. When the substrate is the main dissipative ele-
ment, straight lines parallel to the direction of motion appear in
the droplet contour as the signature of an apparent hysteresis in
the dependence of dynamic contact angles on velocity. The abil-
ity of a non-linear model that we proposed recently to describe
the data very well suggests that accounting for geometrical non-
linearities is enough to describe droplet dynamics on soft sub-
strates, without the need to assume a dependence of the surface
energy of the solid on strain, in line with recent experimental
results57. The model accounts at least qualitatively for the lu-

bricating effect of free chains present in our system. This issue
is currently attracting a lot of interest32,53,54. Droplet motion
seems possible only in the presence of mobile chains that act as
a liquid infusing the surface. The way the thickness of the liquid
layer is set and its relation to slip in soft gels is still a rather open
question54.

Our study raises questions around the physics of curved con-
tact lines. On rigid substrates, the trailing edge contact angle
decreases almost to zero at the pearling transition threshold. We
show that the path to fragmentation is different on a soft gel.
Our observations suggest that the curvature of the trailing edge is
constrained by the substrate, an issue that calls for future work.
The tenfold increase of the capillary number when passing the
pearling threshold at R ' 104 also deserves investigation, as we
were not able to find a smooth transition.
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Appendix
Scaling laws for the Ca(Boα ) curves in the limit R→ 0.

a b

R0

θeq

hh

Rc

Rcal

Fig. 8 Different configurations for a liquid drop. (a) A spherical
droplet of volume V = 4R3

0/3π. (b) The same droplet as a spherical cap
after spreading on a substrate, with radius of curvature Rcal, height at
the center h, contact radius Rc and contact angle θeq.

In experiments, a droplet of volume V is deposited on the sub-
strate. This volume corresponds to a sphere of radius R0 (Fig. 8a).
Once it has spread on the surface of the substrate, the droplet
reaches its equilibrium shape, a spherical cap with radius Rcal,
height h, contact radius Rc and contact angle θeq (Fig. 8b).
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Rc is difficult to measure in experiments, especially when the
equlibrium contact angle is larger than π/2. In contrast, we can
obtain R0 by weighing the drop. If we know the equilibrium con-
tact angle θeq, we can write, assuming that droplets form spheri-
cal caps after deposition:


Rc = Rcal cos

(
π

2
−θeq

)
Rcal −h = Rcal sin

(
π

2
−θeq

)
.

(15)

Rearranging, we can link the contact radius and the height of the
droplet to the spherical cap radius:

Rc = Rcal sinθeq

h = Rcal(1− cosθeq).

(16)

Now, we can express the volume for both a sphere and a spherical
cap: 

V =
4π

3
R3

0

V =
π

3
h2(3Rcal −h)

(17)

in terms of Rc and θeq:
V =

4π

3
R3

0

V =
πR3

c
3

(2+ cosθeq)(1− cosθeq)
2

sin3
θeq

.

(18)

Volume conservation then leads to:

Rc

R0
=

1
f (θeq)

= sinθeq

(
(2+ cosθeq)(1− cosθeq)

2

4

)− 1
3

. (19)

Injecting Eq. 19 into the definition of the Bond number, Eq. 5,
we obtain an expression for the Bond number that accounts for
changes in the equilibrium contact angle:

Boα = f (θeq)
ρgR2

0
γ

sinα. (20)

Now, let’s assume that the gravitational force experienced by
the droplet is balanced by dissipation in the liquid and contact
angle hysteresis:

ρgR3
0 sinα ∼ η

U
h

R2
c + γ(cosθa − cosθr)Rc. (21)

Here U/h estimates the velocity gradient in the droplet, and θa

and θr are the advancing and receding dynamic contact angles,
i.e. the threshold values of the contact angle above and below
which contact line motion occurs.

In what follows, we assume that the values of dynamic contact
angles are close to that of the equilibrium contact angle, a hy-
pothesis that is valid at low droplet velocities, Ca << 1. Thus, we
can use the description of the equilibrium shape of the droplet to
relate the contact angle and the contact radius. Using Eq. 16, we

0.00 0.05 0.10 0.15 0.20 0.25 0.30
1−cos θeq

sin θeq
Boα

0.0

0.5

1.0

1.5

2.0

C
a

×10−2

R = 2.24
Podgorski & al (ref. 19)

Fig. 9 Comparison between our data for R' 2 and the data of Podgorski
et al. 19 once corrections related to a different equilibrium contact angle
are accounted for. The blue dashed line is a guide for the eye.

obtain:
Rc

h
=

sinθeq

1− cosθeq
. (22)

Dividing both sides of Eq. 21 by the liquid-vapor surface tension
γ, replacing Rc/h, and using Eq. 19, we find that

Ca ∼ 1− cosθeq

sinθeq
[Boα −Boc], (23)

where Boc is a threshold Bond number below which contact hys-
teresis pins the droplet to the surface. A similar scaling was first
suggested in Podgorski et al. 19 . We observe that this correction
leads to the overlap of our data for R ' 2 and theirs (Fig. 9).
Following Dussan V. 47 and Le Grand et al. 23 , we can evaluate
contact angle hysteresis from the experimental value of Boc us-
ing:

Boc =

(
24
π

)1/3
(cosθr − cosθa)(1+ cosθa)

1/2

(2+ cosθa)1/3(1− cosθa)1/6
. (24)

Le Grand et al. 23 performed this estimation accounting for the
prefactor appearing in front of Boα when fitting their data with
Eq. 23. We use the same procedure to obtain our estimate.

Scaling laws for the Ca(Boα ) curves in the limit R→∞.
We expect that the relation between injected energy and dissipa-
tion be modified when the effective viscosity of the solid exceeds
that of the liquid. The collapse of the Ca − Boα curves in the
Cas − Boα space, with Cas = RCa, suggests that the latter is a
good metric. Besides, we know from the previous section that
the equilibrium contact angle matters. Hence we should derive a
scaling law for the solid-dominated case that accounts for all of
these modifications. Note that we use again the approximation
that the dynamic contact angles remain close to the equilibrium
contact angle.

Inspired by Ref. 16, we estimate the power dissipated per unit
of volume of the solid when the drop moves by a length `:

dPdiss ∼ σε
2
ω (25)

with σ the viscous stress, ε the strain and ω the pulsation. Using
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the Chasset-Thirion model:

G(ω) = µ0(1+(iωτ)m), (26)

and taking the typical strain scale to be:

ε ∼ γ

γs
sinθeq (27)

and the characteristic pulsation of the experiment as:

ω =
U
`s
, (28)

we have the following estimate for viscous stresses in the solid:

σ ∼ µ0

(
Uτ

`s

)m

. (29)

Then we have:

dPdiss ∼ µ0

(
Uτ

`s

)m(
γ

γs
sinθeq

)2 U
`s
. (30)

Dissipation takes place in a half-torus having a radius Rc, width
` and height `r. As elasticity balances the vertical component of
the resulting capillary force per unit length at the contact line
γ sin(θeq), the height of the ridge scales as:

`r ∼ γ sinθeq/µ0. (31)

Then, we can estimate the power dissipated in the solid, neglect-
ing numerical prefactors:

Pdiss ∼ σε
2
ωRc`r` (32)

Pdiss ∼ µ0URc`

(
γ

γs
sinθeq

)3(Uτ

`s

)m

. (33)

Now, we can write the force balance that a droplet sliding on
a viscoelastic substrate should obey. Dividing Pdiss by the sliding
velocity U , we have:

ρgR3
0 sinα ∼ µ0Rc`

(
γ

γs
sinθeq

)3(Uτ

`s

)m

. (34)

Dividing by the liquid-vapor surface tension γ and the contact
radius Rc on both sides and rearranging, we obtain:

Boα ∼ µ0`

γ

(
γ

γs
sinθeq

)3(Uτ

`s

)m

(35)

and using:
Uτ

`s
=RCa =Cas, (36)

we end up with the following prediction:

Boα ∼ µ0`

γ

(
γ

γs
sinθeq

)3

Cas
m. (37)

The prefactor [(γ/γs)sin(θeq)]
3 in Eq. 37 should capture the de-

pendence on equilibrium contact angles. In the limit of thick sam-
ples, ` = `s =

γs
2µ0

16, and we obtain Eq. 13 in the main text when

neglecting numerical prefactors:

Boα ∼
(

γ

γs

)2

(sinθeq)
3Cas

m. (38)

Full expression of function f (Fcap,Fve)

Below, we provide the full expression of the function f that ap-
pears in Eq. 14:

f (Fcap,Fve,θeq) =

arctan

 −1+
√

1+4A2 −4Acosθeq√
2(−1+2Acosθeq +

√
1+4A2 −4Acosθeq)

 (39)

where the dependence on the two forces Fcap and Fve lies in the
function

A=
γ

γs
(Fcap(RCa,Λ)+Fve(RCa,Λ)) (40)

The expressions of Fcap and Fve can be found in Dervaux et al.39,
Eqs. 45 and 46. The form 39 of function f reduces to the form
found in Eq. 64 in Dervaux et al.39 when θeq = π/2.

We note that the argument of function g is written (π/2+ . . .)

not because the equilibrium contact angle is equal to π/2 but
rather because we use the following trigonometric identity to
write its final form:

arctanx+ arctan
1
x
=

π

2
(41)
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