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Morphology and stability of droplets sliding on soft vis-
coelastic substrates.

Mathieu Oléron, Laurent Limat, Julien Dervaux and Matthieu Roché‡

We show that energy dissipation partition between a liquid and a solid controls the shape and
stability of droplets sliding on viscoelastic gels. When both phases dissipate energy equally, droplet
dynamics is similar to that on rigid solids. When only the solid dissipates, we observe an apparent
contact angle hysteresis of viscoelastic origin. We find excellent agreement between our data and a
non-linear model of the wetting of gels of our own that also indicates the presence of significant slip.
Our work opens general questions on the dynamics of curved contact lines on compliant substrates.

An ever-increasing number of applications such as biofouling re-
pellency1,2, dew harvesting3–5 and anti-icing6 relies on the use
of viscoelastic coatings. Not only do these materials confer con-
trolled interfacial properties to their substrate, they may also be
compliant enough to deform and dissipate energy after the depo-
sition of a droplet7–10, affecting both the equilibrium shape of the
latter and the dynamics of the contact line between the solid, the
liquid and the ambient fluid11–13. This coupling leads to unique
substrate-droplet and droplet-droplet interactions14–18.

The influence of substrate compliance on the shape and sta-
bility of moving droplets is hardly known. On a rigid plate in-
clined at an angle α with the horizontal, the morphology of slid-
ing droplets is dictated by the dependence of the dynamic con-
tact angle θd between the liquid-gas and solid-liquid interfaces
on droplet velocity U and the ability of the trailing edge con-
tact line to form corners, the radius of curvature of which was
related to the nanometric scale at which the hydrodynamic de-
scription of wetting breaks down19–25. Beyond a threshold ve-
locity, corners destabilize into rivulets that fragment into tinier
droplets known as pearls19,21,23,26–28. These results hold for sys-
tems where energy dissipation occurs entirely in the liquid. How-
ever, on a gel with surface energy γs and shear modulus µ0, de-
formations having a magnitude comparable to the elastocapillary
length ℓs = γs/(2µ0) propagate with the contact line, leading to
dissipation in the droplet and the substrate. Thus, we expect a
more complex shape selection process.

Here we tune energy dissipation partition between the liquid
and the solid and we show that this balance controls the mor-
phology and stability of droplets sliding on soft solids. When both
materials dissipate energy equally, droplet dynamics are akin to
those reported on a rigid substrate, despite the compliance of the
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gel. When dissipation occurs only in the substrate, we observe
an apparent contact angle hysteresis and the appearance of sharp
features (corners, cusps. . . ) only beyond the pearling instability
threshold. We rationalize our results with a non-linear model of
the wetting of soft solids of our own and find very good agree-
ment. In all cases, our analysis points to the existence of sig-
nificant slip in our systems due to the presence of free polymer
chains in the gel. Finally we discuss the perspectives of our work
regarding our understanding of wetting.

1 Materials and Methods

1.1 Properties of the liquids

We use pure glycerol (G100, Sigma Aldrich, G5516), a
60wt%-glycerol-in-water mixture (G60), polyethylene glycol-ran-
propylene glycol (P25, PEG-ran-PPG, average molecular weight
Mw ∼ 2500 gmol−1, Sigma Aldrich), a 70wt%-polyethylene glycol-
ran-propylene glycol monobutyl ether-in-water mixture (P7, PEG-
ran-PPG ME, Sigma Aldrich), and the UCON lubricant 75-H-
90,000 (U90, Dow corning). Table 1 summarizes their proper-
ties. All the liquids are insoluble in silicone gels. We measure the
liquid-vapor surface tension γ with the pendant drop technique.
We estimate the density ρ by weighing a volume V = 10±0.5 mL
of liquid with a 0.01-g-accurate scale. We measure the dynamic
viscosity η with a capillary viscosimeter sitting next to the set-up
twice a day to account for hygroscopic and thermal effects.

1.2 Gel preparation

Gel slabs are prepared with a two-part commercial silicone kit
(Dow Corning Sylgard 527). We mix equal volumes of each part
of the kit together, as recommended by the manufacturer, in a
weighing boat previously cleaned with ethanol and water, and
dried. The gel mixture is degassed under vacuum for 2 h to re-
move bubbles. It is then poured in a 60× 40-mm2 plastic vessel
(Caubère), also cleaned with ethanol and distilled water and let
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Table 1 Properties of liquids used in our experiments.

Surface tension Viscosity Density Equilibrium contact angle Relaxation ratio
γ η ρ θeq R

mN m−1 mPa s 103 kg m−3 ◦

U90 40.7± 0.9 36900± 690 1.08± 0.05 61.6± 0.7 2.24± 0.42
P7 37.3± 0.2 842± 99 1.05± 0.05 56.6± 0.7 92.7± 11.0
G100 63.1± 0.5 631± 104 1.27± 0.06 97.2± 1.1 119± 20
P25 37.1± 0.4 491± 34 1.05± 0.01 64.3± 0.2 165± 11
G60 62.9± 0.1 6.8± 0.2 1.16± 0.06 98.1± 0.9 10700± 400

to dry in a vacuum before use. Then, we leave the sample in an
oven at 65 ◦C for 15 to 18 h. We perform experiments exclusively
on dust-free unmarked gels.

1.3 Free-chain extraction

We extract free chains from silicone gels using the process de-
scribed by Hourlier-Fargette et al. 29 . After weighing pieces of
gels, we dip them into toluene (VWR, AnalaR NORMAPUR), a
good solvent for PDMS. Free chains migrate to the solvent. We
renew toluene everyday for five days to accelerate the extraction
process. Then the sample is immersed in a mixture of toluene and
ethanol (VWR, AnalaR NORMAPUR) to remove toluene from the
gel. Ethanol is added progressively to avoid damaging the sam-
ple. We start with a solution of 20wt% ethanol in toluene, and
we increase the ethanol proportion by steps of 20wt% every day,
until the sample sits in 100% ethanol. After three baths in pure
ethanol, the gel stops shrinking. We dry the gel under vacuum
to remove the remaining solvent and weigh it again. From this
procedure, we find that our materials contain 62wt% free chains.
We note that these cleaned samples proved difficult to manipu-
late and did not allow us to perform systematic experiments, as
he cleaning process would often lead to fracture, surface rough-
ness, etc.

1.4 Rheology
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Fig. 1 Rheology of Sylgard 527. Storage modulus G′ and loss modulus
G” as function of pulsation ω. Strain amplitude: 1%. Continuous black
lines: Chasset-Thirion law, Eqs. 2 and 3.

We perform small amplitude oscillatory shear rheology on our
gels with an Anton Paar MCR 501 rheometer mounted with a
plate-plate geometry (diameter d = 25 mm). Strain amplitude
is set at 1%. We extend the frequency range using a time-

temperature superposition procedure30. We fit the data with the
Chasset-Thirion model31:

G(ω) = µ0(1+(iωτ)m), (1)

with G the complex modulus, ω the strain angular frequency and
τ a characteristic relaxation time. The exponent m depends on
the degree of polymerization of the polymer network and on the
coordination number of monomers31,32.

If we decompose the complex modulus G(ω) in a real elastic
part G′(ω) and an imaginary dissipative part G”(ω), we obtain

G′(ω) = µ0(1+ cos(mπ/2)(ωτ)m), (2)

G”(ω) = µ0 sin(mπ/2)(ωτ)m. (3)

We determine τ and m by fitting the loss factor deduced from the
model to its experimental value:

G”
G′ (ω) = tan(δ ) =

sin(mπ/2)(ωτ)m tan(mπ/2)
sin(mπ/2)(ωτ)m + tan(mπ/2)

. (4)

We inject the values of τ and m to fit equations 2 and 3 to the
rheological data (Fig. 1). We find µ0 = 1.077 kPa, τ = 18.2 ms,
and m = 0.626.

1.5 Sliding experiments

We deposit a liquid droplet with a micropipette on the gel. The
spherical radius R0 of the droplets before deposition is of the or-
der of the capillary length ℓc = (γ/(ρg))1/2 ≃ 1.5 mm of the liq-
uids in all cases.The experiment starts when we tilt the gel at an
angle α with the horizontal. A LED panel (Effilux) shines light
on the sample from below, and a camera (Imaging Source, DMK
33UX174) records top views of the droplet with a spatial reso-
lution of 32 µmpx−1. We take side views on some experiments
(Imaging Source, DMK 33UX174, spatial resolution 4 µmpx−1).
The thickness of all the samples, hs ∼ 4 mm, is much larger that
the elastocapillary length of our material, ℓs ∼ 10 µm, to avoid
small-thickness effects16. Samples are covered with a polystyrene
lid that we find able to prevent surface ageing and dust deposi-
tion. We unmold gel layers and cut their edges so the meniscus is
not in the way of side views. We obtain identical results when the
silicone gel is in the box or unmolded.

We check the volume of droplets by weighing samples before
droplet deposition and after. We track the motion of droplets with
the software package FiJi33. Droplet velocities U range from 10−3

to 1 mm s−1. In most cases, the trajectories that we observe are
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Fig. 2 Top view of droplets sliding on a silicone gel as a function of the Bond number Boα and the relaxation ratio R. Each image displays the value
of Boα . The pinch behind the front of the droplet at large R is an image artifact: the equilibrium contact angle is greater than π/2 for these systems
and the liquid/air interface hangs over the moving contact line. Orange arrow: direction of motion. Scale bar: 2 mm.

linear functions of time: droplets move at constant speed. For the
longest experiments, drops may lose or gain water from surround-
ing air. In that case, we focus on early stages of the dynamics,
when a steady state is reached . Thus we extract a single value U
of the droplet velocity from each experiment. Each set of experi-
mental conditions is tested three times to ensure reproducibility.
The large amount of free chains present in our gels explains likely
the absence of transition between two sliding regimes reported by
Hourlier-Fargette et al. 29,34 in our experiments.

Sliding experiments are characterized by two dimensionless
numbers, the Bond number

Boα =
ρgR3

0
γRc

sinα, (5)

and the liquid capillary number

Ca =
ηU
γ

, (6)

that compare capillary stresses to gravitational and viscous ones
respectively. Here, g is the acceleration of gravity, R0 is the radius
of the spherical droplet before deposition, and Rc is the contact
radius between the droplet and the substrate. Energy dissipation
partition between the two media is characterized by the relax-
ation ratio R35 that compares the viscocapillary relaxation veloc-

ity in the liquid, Ul = γ/η , to that in the solid, Us = ℓs/τ, giving

R=
γτ

ηℓs
. (7)

Contact line motion has been studied in the limit R → ∞ in the
literature36,37, i.e. energy dissipation in the liquid is neglected.
The liquids we use allow us to vary R over four orders of magni-
tude (Table 1).

1.6 Equilibrium contact angle measurements

Wetting equilibrium is difficult to identify on these systems using
classical techniques such as droplet deposition. We see the con-
tact line moving even a few hours after deposition. We circum-
vent this issue by deducing equilibrium contact angles θeq from
experimental dynamic contact angles: we fit the points around
U = 0 with a linear law, and take θeq equal to the value of the
fitted contact angle at U = 0.

2 Results

Droplet shapes carry obvious signatures of changes in the mag-
nitude of R (Fig. 2). While droplets remain nearly axisymmetric
at small Bond numbers, symmetry is lost as Boα increases. When
R ≃ 2, a corner appears at the trailing edge. In contrast, the aft
and fore radii of curvature of the droplets are comparable when
102 ≤ R ≤ 104. Besides, the droplet contour contains portions
parallel to the direction of motion, leading to shapes similar to
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Fig. 3 (a) Dependence of the liquid capillary number Ca on the Bond number Boα . (b) Focus on the case R ≃ 2. Blue dashed line: Eq. 8. (c)
Dependence of the solid capillary number Cas on the Bond number Boα . Dashed line: Eq. 11. In all panels, filled symbols correspond to points
measured above the pearling threshold. (a) and (c) share the same legend.

those observed in the case of droplets sliding on hysteretic sur-
faces26,38–40. A further increase of Boα at all values of R leads to
the observation of the pearling instability.

Figure 3a shows that, for equivalent Bond numbers, liquid cap-
illary numbers vary over four orders of magnitude as the relax-
ation ratio changes by the same amount. The data for R ≃ 2
suggest an affine relation between Ca and Boα (Fig.3b), with a
non-zero y-intercept, similar to the rigid case19,23. The functional
form for the other datasets is more complex. We multiply R with
Ca to obtain a capillary number for the solid, Cas = Uτ/ℓs and
plot the data in Figs. 3a-b as a function of this quantity. Account-
ing for variations of the equilibrium contact angle θeq from one
system to another, we observe a collapse of the large-R data on
a single master curve (Fig. 3c). We can discriminate the curve
obtained for R ≃ 2, in line with the assumption that the power
balance between viscous dissipation in the liquid and gravity, rel-
evant to these experiments, differs from the balance between vis-
cous dissipation in the solid and gravity tested in the Cas(Boα )

representation.

Another way to characterize the dynamics of sliding droplets
is to measure the dependence of the dynamic contact angle on
droplet velocity. Figure 4a shows the deviation from the equi-
librium contact angle θeq as a function of the capillary number
Ca, for each system. We observe that the apparent dynamic con-
tact angle θd increases smoothly as the capillary number goes
from negative to positive values when R ≃ 2. Corners appear
when Ca ≥ 7.5× 10−3, a value of the same order of magnitude
as those reported for fluoropolymer-coated silicon wafers19,21,23.
The other curves display a steep jump of several tens of degrees
around Ca = 0 that brings to mind results obtained in the case
of significant wetting hysteresis41 and when a contact line moves
on low-modulus natural rubber and cis-butadiene42. In a vein
similar to what we observed in figure 3, the datasets collapse on
a master curve when plotted against the solid capillary number
Cas (Fig. 4b). The curve obtained at R∼ 104 displays plateaus in
the advancing and receding branches, similar to those reported in

earlier studies12.

3 Discussion

3.1 R≃ 2: a deceptive resemblance to the rigid case.

The data presented in figure 3 can be discussed in terms of scaling
laws. We focus first on the case R≃ 2, and we follow a rationale
proposed in studies of droplets sliding on rigid substrates19,23.
We assume that dissipation occurs entirely in the liquid and bal-
ances the gravitational force experienced by the droplet. Contact-
angle hysteresis may also be present. This force balance leads to
(see Appendix)

Ca ∼ 1− cosθeq

sinθeq
[Boα −Boc], (8)

where Boc is a threshold Bond number below which contact hys-
teresis pins the droplet to the surface.

Scaling 8 captures well the trend of the data obtained for R≃ 2
(Fig. 3b). We can estimate the magnitude of the contact angle
hysteresis of silicone gels from Boc

23,43 (See Eq. 22 in Appendix)
and we find ∆θ = θa − θr ≃ 3.5 ◦, a value compatible with the
data displayed in Fig. 5, the rounded shapes of droplets at R≃ 2
(Fig. 2) and reports in the literature regarding silicone gels1,16.

Given the similarities between the R ≃ 2 data and the rigid
case, we push the comparison further by testing the contact
angle dependence on the capillary number to the Cox-Voinov
law23,44,45:

θ
3
d −θ

3
eq = 9Ca ln

(
h
λ

)
, (9)

where h is the height on the liquid/vapor interface at which the
angle is measured and λ is a nanoscopic length scale introduced
to circumvent stress divergence at the contact line. The agree-
ment is qualitatively excellent. However, the logarithmic term
has an amplitude around 15. As we measure the contact angle at
h ∼ 100 µm, we obtain an unreasonable cutoff length scale λ ≃ 30
pm, smaller than an interatomic bond. The large value of the log-
arithmic term likely results from the fact that R∼ 1: dissipation
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Fig. 4 (a) Dependence of the deviation from the equilibrium contact angle θd − θeq on the liquid capillary number Ca. Positive (resp. negative) Ca
values correspond to advancing (resp. receding) contact lines. Filled symbols: points measured above the pearling threshold. Red dashed line : fit of
the Cox-Voinov law (Eq. 9) to the R ≃ 2 data. (b) Same data as in a plotted against the solid capillary number Cas. Both figures share the same
legend.

in the solid is of the same order of magnitude as in the liquid.
Failure of the Cox-Voinov law is then expected, as it does not ac-
count for all dissipation sources. We go back to the Ca(Boα ) data
in Fig. 3b and fit them with a more refined version of Eq. 8 (Eq. 21
in Kim et al. 20),

Ca ∼ 2
3c(θ) ln Λ

λ

[Boα −Boc] (10)

with c(θ) a function of the contact angle that is equal to 0.6 for
θ = 60◦, Λ the horizontal extent of the wedge near the contact
line in which the stress balance involves only capillary and vis-
cous stresses, i.e. a distance of the order of the capillary length46.
We also obtain an unreasonable value of the logarithmic term, up
to some unidentified prefactors. Hence, while the data obtained
at low values of R resemble those obtained with a rigid substrate,
detailed analysis demonstrates that the agreement is only qualita-
tive and that some physics realted to dissipation in the substrate
is missing.

3.2 R >> 1: the substrate contributes the most to dissipa-
tion.

In the limit R→∞, energy dissipates in the substrate. A reason-
ing similar to the one used in the previous paragraph leads to a
scaling that balances viscous dissipation in the solid and droplet
weight (See Appendix):

Boα ∼
(

γ

γs

)2

(sinθeq)
3Cas

m, (11)

where m is the exponent of the power law describing the loss
modulus of the substrate as a function of strain frequency. For
systems where R ≥ 102, Eq. 11 captures our data up to Boα ≃
8×10−2 (Fig. 3c).

3.3 Comparison with a non-linear model of wetting.
We compare the data in Fig. 5 to a model that we proposed re-
cently35 that describes the wetting of soft solids in a regime of fi-

nite strains under the assumption that γs is independent of strain:
there is no Shuttleworth effect47. The model provides a predic-
tion for the dependence of θd on Ca and R :

g(θd) = g

π

2
+ arctan

√√
1+A2(R,Ca,Λ)−1

2


+Ca ln

(
h
λ

)
, (12)

with g(x) =
∫ x

0
z−sin (z)cos (z)

2 cos (z) dz, A a function that accounts for the
capillary and viscoelastic forces at the contact line, and Λ the ra-
tio between the thickness of the substrate and the elastocapillary
length ℓs; here Λ → ∞. This equation is formally similar to the
general form of the Cox-Voinov relation, where the first r.h.s. term
is related to the microscopic contact angle and the second results
from dissipation in the liquid48. Here, the microscopic angle term
is a dynamic quantity set by the response of the solid to the prop-
agation of the ridge. The correction to this term increases as R
increases.

Figure 5 shows that the agreement between the experimental
data and Eq. 12, setting λ = 100 nm, is good to excellent for all
datasets. The steepness of the R >> 1 curves close to Ca = 0 is
characteristic of soft hysteresis35. This hysteresis is apparent as
contact angles remain defined at all velocities. However, its sig-
nature on droplet shape is akin to that of real hysteresis (Fig. 2).
These results and their interpretation clarify the nature of the hys-
teresis reported for soft materials in the past literature42. They
highlight the necessity to reach the smallest possible velocities to
characterize wetting dynamics on soft solids accurately. Sliding
droplets are a good system in this respect, as the sign of velocity
near the contact line switches from positive to negative continu-
ously along their contour21,22. We note that the model fails to
capture the receding branch Ca < 0 for R = 119. The trailing
edge of these droplets oscillates close to the pearling transition,
and our model does not predict this response.
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The fitting procedure also suggests that all systems, even at
small values of R, exhibit a steep asymptote at Ca = 0. This is
because viscoelastic dissipation in the solid, ∝Um with m < 1, al-
ways exceeds viscous dissipation in the liquid, ∝ U , at vanishing
Ca. We note that the value of ∆θ obtained from Eq. 8 is compat-
ible with the jump magnitude seen in the fit of the model to the
data for R ≃ 2, despite the issues that we have identified. This
comparison indicates that signatures of soft hysteresis are akin
to those of real, defect-induced, hysteresis. Figure 6 shows that

the model can also predict the full range of the data displayed in
Fig. 3.

Finally, fits to the datasets with Eq. 12 are obtained while keep-
ing λ constant. We can also set experimental parameters to their
nominal value and leave λ free to adjust. We find best-fit values
50 ≤ λ ≤ 1000 nm, larger than the molecular sizes of the liquids
we use, of the order of 10 nm at most, and smaller than the elas-
tocapillary length ℓs ≃ 20 µm. The large magnitude of λ is likely
the result of the presence of free chains that lubricate the gel-
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droplet contact and induce slip2,29,49? , in a manner similar to
liquid-infused surfaces50.

3.4 Properties of the system at the pearling threshold.
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Fig. 7 (a) Receding contact angle θc and (b) capillary number Cac at the
pearling threshold as a function of the relaxation ratio R. θc: receding
contact angle of the last stable point; Cac: mean of the capillary numbers
of the last stable and the first unstable points. Error on the latter:
standard deviation. Dashed lines: prediction based on Eq. 12 of the
vanishing-contact-angle capillary number.

Characterization of the properties of the system at the pearling
threshold shows how different the transition to liquid deposition
on soft substrates is from that on rigid ones. First, the contact
angle just before pearling, θc, is around 32◦ when the relaxation
ratio R≤ 102 and rises up to 50◦ when R≃ 104 (Fig. 7a). These
values are much larger than those, around 10◦, reported for rigid
substrates23. Second, the threshold capillary number |Cac| de-
pends on both the equilibrium contact angle θeq and R (Fig. 7b).
While the former is expected51 and may at least partly explain the
jump of around an order of magnitude in |Cac| at R ∼ 100, the
latter remains to be investigated. For R ≃ 2, |Cac| ≃ 1.1× 10−2,
around twice as large as in the rigid case for a comparable equi-
librium contact angle θeq

23. Keeping the latter constant, a one-
hundredfold increase of R decreases |Cac| tenfold. This trend is
in agreement with our model. Indeed, the latter predicts that,
for a constant equilibrium contact angle, the capillary number at
which a zero receding contact angle is attained decreases as R
increases. Besides, predictions for the contact angle curves are
steep in the vicinity of this capillary number. Sensible changes in
the contact lead to small changes in Ca. This rationale explains

why the prediction of our model for the zero-contact-angle reced-
ing capillary number captures quite well the data (Fig. 7b): while
the last value of the receding contact before destabilization differs
from 0, the capillary number is expected to be similar. Finally, dis-
sipation in the substrate increases the sensitivity of droplets to the
pearling instability.

4 Conclusion and Outlook
In conclusion, we document how droplets slide on soft viscoelas-
tic gels as a function of energy dissipation partition between
the liquid and the substrate. While the substrate is always de-
formable, sliding droplets display shapes and dynamics akin to
those observed on a rigid solid when dissipation occurs equally
in both materials. When the substrate is the main dissipative el-
ement, straight lines parallel to the direction of motion appear
in the droplet contour as the signature of an apparent hystere-
sis in the dependence of dynamic contact angles on velocity. The
ability of a non-linear model that we proposed recently to de-
scribe the data very well suggests that accounting for geometri-
cal non-linearities is enough to describe droplet dynamics on soft
substrates, without the need to assume a dependence of the sur-
face energy of the solid on strain, in line with recent experimental
results52. The model accounts at least qualitatively for the lubri-
cating effect of free chains present in our system. This issue is
currently attracting a lot of interest29,49? . Droplet motion seems
possible only in the presence of mobile chains that act as a liquid
infusing the surface. The way the thickness of the liquid layer is
set and its relation to slip in soft gels is still a rather open ques-
tion49.

Our study raises questions around the physics of curved con-
tact lines. On rigid substrates, the trailing edge contact angle
decreases almost to zero at the pearling transition threshold. We
show that the path to fragmentation is different on a soft gel.
Our observations suggest that the curvature of the trailing edge is
constrained by the substrate, an issue that calls for future work.
The tenfold increase of the capillary number when passing the
pearling threshold at R ≃ 104 also deserves investigation, as we
were not able to find a smooth transition.
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Appendix

Scaling laws for the Ca(Boα ) curves in the limit R→ 0.

a b

R0

θeq

hh

Rc

Rcal

Fig. 8 Different configurations for a liquid drop. (a) A spherical droplet
of volume V = 4R3

0/3π. (b) The same droplet as a spherical cap after
spreading on a substrate, with radius of curvature Rcal, height at the
center h, contact radius Rc and contact angle θeq.

In experiments, a droplet of volume V is deposited on the sub-
strate. This volume corresponds to a sphere of radius R0 (Fig. 8a).
Once it has spread on the surface of the substrate, the droplet
reaches its equilibrium shape, a spherical cap with radius Rcal,
height h, contact radius Rc and contact angle θeq (Fig. 8b).

Rc is difficult to measure in experiments, especially when the
equilibrium contact angle is larger than π/2. In contrast, we can
obtain R0 by weighing the drop. If we know the equilibrium con-
tact angle θeq, we can write, assuming that droplets form spheri-
cal caps after deposition:

Rc = Rcal cos
(

π

2
−θeq

)
Rcal −h = Rcal sin

(
π

2
−θeq

)
.

(13)

Rearranging, we can link the contact radius and the height of the
droplet to the spherical cap radius:

Rc = Rcal sinθeq

h = Rcal(1− cosθeq).

(14)

Now, we can express the volume for both a sphere and a spherical
cap: 

V =
4π

3
R3

0

V =
π

3
h2(3Rcal −h)

(15)

in terms of Rc and θeq:
V =

4π

3
R3

0

V =
πR3

c
3

(2+ cosθeq)(1− cosθeq)
2

sin3
θeq

.

(16)

Volume conservation then leads to:

Rc

R0
=

1
f (θeq)

= sinθeq

(
(2+ cosθeq)(1− cosθeq)

2

4

)− 1
3

. (17)

Injecting Eq. 17 into the definition of the Bond number, Eq. 5,

we obtain an expression for the Bond number that accounts for
changes in the equilibrium contact angle:

Boα = f (θeq)
ρgR2

0
γ

sinα. (18)

Now, let’s assume that the gravitational force experienced by
the droplet is balanced by dissipation in the liquid and contact
angle hysteresis:

ρgR3
0 sinα ∼ η

U
h

R2
c + γ(cosθa − cosθr)Rc. (19)

Here U/h estimates the velocity gradient in the droplet, and θa

and θr are the advancing and receding dynamic contact angles,
i.e. the threshold values of the contact angle above and below
which contact line motion occurs.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
1−cos θeq

sin θeq
Boα

0.0

0.5

1.0

1.5

2.0

C
a

×10−2

R = 2.24
Podgorski & al (ref. 19)

Fig. 9 Comparison between our data for R≃ 2 and the data of Podgorski
et al. 19 once corrections related to a different equilibrium contact angle
are accounted for. The blue dashed line is a guide for the eye.

In what follows, we assume that the values of dynamic contact
angles are close to that of the equilibrium contact angle, a hy-
pothesis that is valid at low droplet velocities, Ca << 1. Thus, we
can use the description of the equilibrium shape of the droplet to
relate the contact angle and the contact radius. Using Eq. 14, we
obtain:

Rc

h
=

sinθeq

1− cosθeq
. (20)

Dividing both sides of Eq. 19 by the liquid-vapor surface tension
γ, replacing Rc/h, and using Eq. 17, we find that

Ca ∼ 1− cosθeq

sinθeq
[Boα −Boc], (21)

where Boc is a threshold Bond number below which contact hys-
teresis pins the droplet to the surface. A similar scaling was first
suggested in Podgorski et al. 19 . We observe that this correction
leads to the overlap of our data for R ≃ 2 and theirs (Fig. 9).
Following Dussan V. 43 and Le Grand et al. 23 , we can evaluate
contact angle hysteresis from the experimental value of Boc us-
ing:

Boc =

(
24
π

)1/3
(cosθr − cosθa)(1+ cosθa)

1/2

(2+ cosθa)1/3(1− cosθa)1/6
. (22)

Le Grand et al. 23 performed this estimation accounting for the
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prefactor appearing in front of Boα when fitting their data with
Eq. 21. We use the same procedure to obtain our estimate.

Scaling laws for the Ca(Boα ) curves in the limit R→∞.

We expect that the relation between injected energy and dissipa-
tion be modified when the effective viscosity of the solid exceeds
that of the liquid. The collapse of the Ca − Boα curves in the
Cas − Boα space, with Cas = RCa, suggests that the latter is a
good metric. Besides, we know from the previous section that
the equilibrium contact angle matters. Hence we should derive a
scaling law for the solid-dominated case that accounts for all of
these modifications. Note that we use again the approximation
that the dynamic contact angles remain close to the equilibrium
contact angle.

Inspired by Ref. 16, we estimate the power dissipated per unit
of volume of the solid when the drop moves by a length ℓ:

dPdiss ∼ σε
2
ω (23)

with σ the viscous stress, ε the strain and ω the pulsation. Using
the Chasset-Thirion model:

G(ω) = µ0(1+(iωτ)m), (24)

and taking the typical strain scale to be:

ε ∼ γ

γs
sinθeq (25)

and the characteristic pulsation of the experiment as:

ω =
U
ℓs
, (26)

we have the following estimate for viscous stresses in the solid:

σ ∼ µ0

(
Uτ

ℓs

)m

. (27)

Then we have:

dPdiss ∼ µ0

(
Uτ

ℓs

)m(
γ

γs
sinθeq

)2 U
ℓs
. (28)

Dissipation takes place in a half-torus having a radius Rc, width
ℓ and height ℓr. As elasticity balances the vertical component of
the resulting capillary force per unit length at the contact line
γ sin(θeq), the height of the ridge scales as:

ℓr ∼ γ sinθeq/µ0. (29)

Then, we can estimate the power dissipated in the solid, neglect-
ing numerical prefactors:

Pdiss ∼ σε
2
ωRcℓrℓ (30)

Pdiss ∼ µ0URcℓ

(
γ

γs
sinθeq

)3(Uτ

ℓs

)m

. (31)

Now, we can write the force balance that a droplet sliding on
a viscoelastic substrate should obey. Dividing Pdiss by the sliding

velocity U , we have:

ρgR3
0 sinα ∼ µ0Rcℓ

(
γ

γs
sinθeq

)3(Uτ

ℓs

)m

. (32)

Dividing by the liquid-vapor surface tension γ on both sides and
rearranging, we obtain:

Boα ∼ µ0ℓ

γ

(
γ

γs
sinθeq

)3(Uτ

ℓs

)m

(33)

and using:
Uτ

ℓs
=RCa =Cas, (34)

we end up with the following prediction:

Boα ∼ µ0ℓ

γ

(
γ

γs
sinθeq

)3

Cas
m. (35)

The prefactor [(γ/γs)sin(θeq)]
3 in Eq. 35 should capture the de-

pendence on equilibrium contact angles. In the limit of thick sam-
ples, ℓ = ℓs =

γs
2µ0

16, and we obtain Eq. 11 in the main text when
neglecting numerical prefactors:

Boα ∼
(

γ

γs

)2

(sinθeq)
3Cas

m. (36)
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