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Mathieu Oléron,1 Laurent Limat,1 Julien Dervaux,1 and Matthieu Roché1, ∗
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Abstract
Soft solids such as gels and elastomers can be compliant enough to deform when a droplet lies on their

surface, in particular at the line of contact between the solid, the liquid and the atmosphere. While axisym-
metric contact line motion has received a lot of attention, much less is known about droplets moving on soft
substrates, a configuration often encountered in applications in which symmetry may be lost. We investigate
here the dynamic properties of droplets sliding on thick viscoelastic layers. We show that the partition of
energy dissipation between the liquid and the solid sets the shape and velocity of droplets. When dissipa-
tion parts equally between the liquid and the solid, droplet dynamics are similar to that of droplets on rigid
substrates. In the opposite case, we observe shapes that indicate the presence of contact angle hysteresis.
We compare our observations to a non-linear model of the wetting of soft solids that we proposed recently.
We find the model to be in excellent agreement with our data, in particular regarding the prediction of the
hysteresis that we show to be only apparent. This work opens fondamental questions on the connection
between the properties of the substrate and the dynamics, shapes and fragmentation of moving droplets that
are relevant to all applications where soft gel coatings may be used.

A raindrop sliding on a windshield deforms into asymmetric shapes while it moves and it
often leaves liquid in its wake. This seemingly common observation illustrates the complexity
encountered when studying droplet and contact line motion on solid surfaces. Model systems of
this daily-life situation have received a great deal of attention as the control of droplets moving
on rigid surfaces is crucial to many industrial applications. For example, the dynamics of droplets
sliding down a plate inclined at an angle α with the horizontal at velocity U depends on a balance
of viscous, gravitational and capillary stresses. Dimensional analysis of the problem for a liquid
with viscosity η , density ρ and surface tension γ shows that two dimensionless quantities, the
capillary number Ca = ηU/γ and the Bond number Boα = ρgR3

0 sinα/(γRc), encapsulate its
physics. Here g is the acceleration of gravity, R0 is the radius of the droplet, assumed to be
spherical just before deposition, and Rc is the contact radius between the droplet and the substrate
after deposition. The latter depends on the contact angle measured between the liquid-gas and the
solid-liquid interfaces inside the droplet. Experiments performed on surfaces with small contact
angle hysteresis, i.e. a small difference between the contact angle θa above which the contact
line starts advancing and its counterpart θr when receding, confirm the prediction Ca ∝ Boα [1,
2]. These deceptively simple objects adopt non-trivial shapes as their velocity increases. For
example, corners and cusps form at their trailing-edge [1–5] that destabilize into rivulets breaking
up into small droplets known as pearls at the largest attainable velocities [1–3, 6–8]. This shape
diagram challenged our theoretical understanding of wetting [9–13] and led to new insights into
the dynamics of curved contact lines.

Soft visco-elastic solids such as gels are used in an increasing number of applications as coat-
ings to control wetting and adhesion [14–16]. The deposition of a droplet induces a deformation
of these soft substrates in the vicinity of the contact line, known as a ridge [17–20], the height of
which is proportional to the elastocapillary length scale ℓs = γs/(2µ0), with γs and µ0 the surface
energy and the shear modulus of the solid respectively. Propagation of the ridge accompanies
contact line motion, resulting in energy dissipation in both the liquid and the substrate and a
slowing-down of droplets compared to the case of a rigid solid [21]. The dependence of the height
of the ridge on the geometry and mechanical state of the substrate leads to susbtrate-droplet and
droplet-droplet interactions that are unobtainable on rigid substrates [22–26]. However, little to
nothing is known regarding the dependence of the shape and stability of droplets on their velocity
when they move on a soft layer, to the best of our knowledge.

A supplementary dimensionless number, the relaxation ratio R, characterizes droplet motion on
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soft substrates. This quantity indicates how dissipation parts between the liquid and the substrate
[27, 28]. Here, we use a silicone gel, the rheology of which is well described by the Chasset-
Thirion model [29] (see Materials and Methods). In this model, a single relaxation time τ charac-
terizes the mechanical response. If we compare the strain-relaxation velocity induced by capillarity
in the liquid, Ul = γ/η , to that in the solid, Us = ℓs/τ , we obtain:

R=
γτ

ηℓs
. (1)

Small values of R indicate that relaxation is slower in the liquid than in the solid, i.e. energy is
dissipated in the droplet rather than in the solid. Wetting dynamics has been studied mostly in the
limit R → ∞ in the literature [30, 31], when energy dissipation in the liquid can be neglected.
This paper investigates the influence of R on the dynamics and shapes of sliding drops.

RESULTS

The most obvious signature of a change in the magnitude of the relaxation ratio lies in the shape
of droplet (Fig. 1). While droplets remain nearly axisymmetric at small Bond numbers, symmetry
is lost as Boα increases. When R≃ 2, a corner appears at the trailing edge. Its radius of curvature
is smaller than that of the leading edge of the droplet. In contrast, the aft and fore radii of curvature
are comparable when 102 ≤R≤ 104. Besides, the droplet contour contains portions parallel to the
direction of motion, leading to shapes similar to those observed in the case of droplets sliding on
hysteretic surfaces [6, 32–34]. A further increase of Boα at all values of R leads to the observation
of the pearling instability.

Figure 2a shows that, for equivalent Bond numbers, capillary numbers vary over four orders of
magnitude as the relaxation ratio changes. The data for R≃ 2 suggest an affine relation between
Ca and Boα (Fig.2b), with a non-zero y-intercept, similar to the rigid case [1, 2]. The functional
form for the other datasets is more complex. We multiply R with Ca to obtain a capillary num-
ber for the solid, Cas = Uτ/ℓs and plot the data in Figs. 2a and b as a function of this quantity.
Accounting for variations of the equilibrium contact angle θeq from one system to another (see
Supplementary Materials), we observe that the large-R data collapse on a single master curve
(Fig. 2c). We can discriminate the curve obtained for R ≃ 2 from the others, in line with the as-
sumption that the power balance relevant to these experiments differs from the one tested in this
representation.

Another way to characterize the dynamics of sliding droplets is to measure the dependence of
the dynamic contact angle on droplet velocity. Figure 3 shows the deviation from the equilibrium
contact angle θeq (see Table I) as a function of the capillary number Ca, for each system. We
observe that the apparent dynamic contact angle θd increases smoothly as the capillary number
goes from negative to positive values when R≃ 2. Corners appear when Ca ≥ 7.5×10−3, a value
of the same order of magnitude as those reported for fluoropolymer-coated silicon wafers [1–3].
The other curves display a steep jump of several tens of degrees around Ca = 0 that brings to mind
results obtained in the case of significant wetting hysteresis [35] and when a contact line moves
on low-modulus natural rubber and cis-butadiene [36].

In a vein similar to what we observed in figure 2, the datasets collapse on a master curve
when plotted against the solid capillary number Cas (inset in Fig. 3). The curve obtained at R∼
104 displays plateaus in the advancing and receding branches, similar to those reported in earlier
studies [27]. In contrast to Fig. 2b, the R≃ 2 dataset is hardly discriminable.

3



<latexit sha1_base64="KZstYTmjlsHgB9AwsTQvExEpJ+8="></latexit>

Boα

2.24 1.19 x 102 1.07 x 104

FIG. 1. Shapes as a function of the Bond number BBBoooα for different values of the relaxation ratio R.
For each system, the drop becomes more asymetric and eventually unstable as Boα increases. R = 2.24:
Boα = 0.095, 0.239, 0.409; R = 1.19× 102: Boα = 0.103, 0.480, 0.496; R = 1.07× 104: Boα = 0.107,
0.404, 0.442. The equivalent radius R0 of the droplets is of the order of the capillary length ℓc = (γ/(ρg))1/2

of the liquids in all cases. The pinch observed behind the front of the droplet at large R is a visual artefact:
the equilibrium contact angle is greater than π/2 for these systems (see table I) and the liquid/air interface
hangs over the contact line during sliding. Orange arrow in the bottom left picture: direction of motion.
Scale bar: 2 mm. ©(2022) M. Oléron et al. (DOI: 10.6084/m9.figshare.21583407) CC BY 4.0 license
https://creativecommons.org/licenses/by/4.0/.

DISCUSSION

Droplet dynamics

The data presented in figure 2 can be discussed in terms of scaling laws. We focus first on the
case R ≃ 2, and we follow a rationale that was proposed in earlier studies of droplets sliding on
rigid substrates [1, 2]. We assume that dissipation occurs entirely in the liquid and balances the
gravitational force experienced by the droplet. Contact-angle hysteresis may also be present. The
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FIG. 2. R impacts the relationship between droplet velocity and weight. In all panels, filled symbols
correspond to points measured above the pearling threshold. (a) Dependence of the liquid capillary number
Ca on the Bond number Boα . (b) Focus on the case R≃ 2. Blue dashed line: Eq. 2. (c) Dependence of the
solid capillary number Cas on the Bond number Boα . The latter is corrected for the effect of the equilibrium
contact angle θeq. Dashed line: Eq. 35. ©(2022) M. Oléron et al. (DOI: 10.6084/m9.figshare.21583098).
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FIG. 3. Dependence of the dynamic contact angle on droplet velocity. Experimental evidence for
soft hysteresis. Difference between the dynamic contact angle θd and the equilibrium contact angle θeq

as a function of the liquid capillary number Ca. Positive (resp. negative) Ca values correspond to leading-
edge (resp. trailing-edge) angles, and advancing (resp. receding) contact lines. In all panels, filled symbols
correspond to points measured above the pearling threshold. Purple dashed line : Cox-Voinov law (Eq. 4),
fitted to the data for R≃ 2. Inset: Same data as a function of the solid capillary number Cas =RCa. The
schematic depicts how θd is measured between the solid/liquid and the liquid/vapor interfaces inside the
droplet. ©(2022) M. Oléron et al. (DOI: 10.6084/m9.figshare.21583437).

resulting force balance leads to (see Supplementary Materials):

Ca ∼ 1− cosθeq

sinθeq
[Boα −Boc]. (2)

where Boc is a threshold Bond number capturing hysteresis effects. Scaling 2 captures well the
trend of the data obtained for R ≃ 2 (Fig. 2c). Following arguments developed in ref. [37] and
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used in ref. [2], we can estimate the magnitude of the contact angle hysteresis of silicone gels from
Boc and we find ∆θ = θa −θr ≃ 3.5 ◦, a small value compatible with the data displayed in Fig. 3
and the rounded shapes of droplets at R≃ 2 (Fig. 1).

In the limit R→∞, energy dissipates in the substrate. A reasoning similar to the one used in
the previous paragraph leads to a scaling that balances viscous dissipation in the solid and droplet
weight (see Supplementary Materials):

Boα ∼
(

γ

γs

)2

(sinθeq)
3Cas

m. (3)

For systems where R≥ 102, Eq. 35 captures our data up to Boα ≃ 8×10−2 (Fig. 2c).

Contact angles

Given the similarities between the R≃ 2 data and the rigid case, we compare the contact angle
dependence on the capillary number to the Cox-Voinov law [2, 38, 39]:

θ
3
d −θ

3
eq = 9Ca ln

(
h
λ

)
, (4)

where h is the height on the liquid/vapor interface at which the angle is measured and λ is a
nanoscopic length scale introduced to circumvent stress divergence at the contact line. The agree-
ment is qualitatively excellent (dashed line in Fig. 3), provided the logarithmic term has an ampli-
tude around 15. As we measure the contact angle at h ∼ 100 µm, we obtain an unreasonable cutoff
length scale λ ≃ 30 pm, smaller than an interatomic bond. The large value of the logarithmic term
likely results from the fact that R∼ 1: dissipation in the solid is of the same order of magnitude
as in the liquid. Failure of the Cox-Voinov law is then expected, as it does not account for all
dissipation sources.

We use the θd(Ca) curves in Fig. 3 to test the predictions of a model that we proposed recently
[28] and that describes the wetting of soft solids in a regime of finite strains. We also assume that
γs is independent of strain: there is no Shuttleworth effect [40]. The model provides a prediction
for the dependence of the dynamic contact angle θd on Ca and R :

g(θd) = g

π

2
+ arctan

(√1+A2(R,Ca,Λ)−1
2

)1/2


+Ca ln
(

h
λ

)
, (5)

with:

g(x) =
∫ x

0

z− sin(z)cos(z)
2cos(z)

dz, (6)

A a function that accounts for the capillary and viscoelastic forces that exist at the contact line, and
Λ the ratio between the thickness of the substrate and the elastocapillary length ℓs; here Λ →∞.
This equation is formally similar to the most general form of the Cox-Voinov relation, where the
first r.h.s. term is related to the microscopic contact angle and the second results from dissipation
in the liquid [41]. In Eq. 5, the microscopic angle term is a dynamic quantity set by the response
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FIG. 4. Comparison between experimental data for the dynamic contact angle θd and the prediction of
the non-linear model. The only fitting parameter, the microscopic cutoff length scale λ is set to 100 nm for
all systems. Colored ranges show the span covered by fits if we account for uncertainties on experimental
parameters at constant λ .©(2022) M. Oléron et al. (10.6084/m9.figshare.21583389).

of the solid to the existence and propagation of the ridge. For large relaxation ratios, the first
term dominates, while the second term is prominent for vanishing R. The model predicts a steep
variation of the dynamic contact angle around Ca = 0 that we refer to as soft hysteresis.

Figure 4 shows comparisons between the experimental data of Fig. 3 and Eq. 5, setting λ = 100
nm. Agreement is good to excellent for all datasets. In the case R= 119, the model fails to capture
the receding branch Ca < 0. The steepness of the R>> 1 curves close to Ca = 0 is characteristic
of soft hysteresis [28]. Experiments highlight the apparent nature of this hysteresis, as contact
angles remain well defined at all velocities. Despite this difference, its signature on droplet shape
is akin to that of real hysteresis, as we have seen in Fig. 1. These results and their interpretation
clarify the nature of the hysteresis reported for soft materials in the past literature [36], and they
highlight the necessity to reach the smallest possible velocities to characterize wetting dynamics
on soft solids accurately. Sliding droplets are a good system in this respect, as the sign of velocity
near the contact line switches from positive to negative continuously along their contour [3, 12],
providing a proxy to the relation between the dynamic contact angle and arbitrarily small droplet
velocities.

The fitting procedure also suggests that all systems, even at small values of R, exhibit a steep
asymptote at Ca = 0. This is because viscoelastic dissipation in the solid, ∝ Um with m < 1,
always exceeds viscous dissipation in the liquid, ∝U , at vanishing Ca. We note that the value of
∆θ that we obtain from Eq. 2 is compatible with the magnitude of the jump seen in the fit of the
model to the data for R≃ 2, indicating again that manifestations of soft hysteresis in the dynamics
and shapes of moving droplets is akin to that of real, defect-induced, hysteresis. The model can
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also predict the results displayed in Fig. 2 including the deviation from the power-law regime for
large R (see Supplementary Materials).

Finally, fits to the datasets with Eq. 5 are obtained while keeping the microscopic cut-off length
scale λ constant. We can also leave λ free to adjust, while setting experimental parameters to their
nominal value (without uncertainties). We find that best-fit values lie in the range between 50 and
1000 nm, larger than the molecular sizes of the liquids we use, of the order of 10 nm at most, and
smaller than the elastocapillary length ℓs ≃ 20 µm. The large magnitude of λ could be the result
of the presence of free chains that are known to lubricate the contact between the droplet and the
gel and induce significant slip [15, 16, 42]. The motion of droplets is then similar to that observed
on liquid-infused surfaces [43]. Our model seems to provide at least qualitative information on
slip during the motion of droplets.

Transition to pearling
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FIG. 5. Receding contact angle θθθ c and capillary number CCCaaac at the pearling threshold as a function
of the dissipation ratio R. For each system, θc corresponds to the receding contact angle of the last stable
point, and Cac is the mean of the capillary numbers of the last stable and the first unstable points. Error
on the latter is estimated with its standard deviation. (a) Critical receding contact angle θc as a function of
R. (b) Critical capillary number |Cac| as a function of R for equilibrium contact angles θeq ∼ 60 and 97 ◦.
Dashed lines: prediction of the non-linear model of ref. [28] for the capillary number at which the receding
dynamic contact angle is zero. Values of the receding contact angle and capillary number at R ≃ 104

are obtained with a larger uncertainty because the system jumps between two very different states as the
threshold is passed. ©(2022) M. Oléron et al. (DOI: 10.6084/m9.figshare.21583275).

The characterization of the properties of the system at the threshold of the pearling instability
shows how different the transition to liquid deposition on soft substrates is from that on rigid ones.
First, the contact angle just before pearling, θc, is around 32◦ when the relaxation ratio R ≲ 102

and rises up to 50◦ when R≃ 104 (Fig. 5a). These values are much larger than those, around 10◦,
reported for rigid substrates [2]. Second, the threshold capillary number |Cac| depends on both
the equilibrium contact angle θeq and R (Fig. 5b). While the former is expected [13] and may at
least partly explain the jump of around an order of magnitude in |Cac| that we see for R ∼ 100,
the latter remains to be investigated. For R ≃ 2, |Cac| ≃ 1.1× 10−2 and it is around twice as
large as in the rigid case for a comparable equilibrium contact angle θeq [2]. Keeping the latter
constant, a one-hundredfold increase of R decreases |Cac| tenfold. This result stems from the fact
that receding branches in the θd(Ca) curves tend to be steep, and their steepness increases with
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an increase of R [28]. As a consequence, for a constant equilibrium contact angle, the capillary
number at which a zero receding contact angle is attained decreases as R increases. Thus, we
expect the rivulet transition to occur at smaller values of Ca for larger values of R. This rationale
explains why the prediction of our model for the zero-contact-angle receding capillary number in
figure 5b captures quite well the data. It also suggests that dissipation in the substrate increases
the sensitivity of droplets to the pearling instability.

CONCLUDING REMARKS

In conclusion, we document how droplets slide on soft viscoelastic gels as a function of the
partition of energy dissipation between the liquid and the substrate. While the substrate is always
deformable in these experiments, sliding droplets may display shapes and dynamics akin to those
observed on a rigid solid, in particular when dissipation occurs in comparable amounts in the liquid
and the solid. When the latter is the main dissipative element, droplets show extended regions
where portions of their contour are straight lines parallel to the direction of motion. These shapes
are signatures of an apparent hysteresis that appears when the dependence of dynamic contact
angles on velocity is measured. A non-linear model that we proposed recently is able to describe
the data very well with a single fitting parameter, a microscopic slip length, that seems to be able
to account for the lubricating effect of the free chains present in our system. Thus, accounting
for geometrical non-linearities is enough to describe the dynamics of a droplet of a soft substrate,
without the need for a dependence of the surface energy of the solid on strain, in line with recent
experimental results [44].

This study raises fascinating questions regarding the physics of wetting, in particular with re-
spect to the shape diagram, the existence and properties of the corner and the transition to pearling.
First, cusps, i.e. corners characterized by a change of the sign of the curvature of the contact line,
appear in our systems at the same time as the pearling stability; they are always unstable. Sec-
ond, corners appear only once the droplet is unstable in systems where energy is dissipated mostly
in the solid. These observations suggest the curvature of the trailing edge is constrained by the
substrate and cannot become arbitrarily high. The systems we use do not allow us to ascribe a
clear origin for this constraint. This issue calls for future work in which care shall be taken to dis-
criminate effects due to free chains from those due to the cross-linked polymer network. On top
of that, our data indicate that the ability to tune independently the relaxation timescale τ and the
shear modulus µ0 while keeping the viscosity of the liquid constant may be a viable route to ob-
tain designer coatings. Investigation of the adjustment of the height of the ridge via gel thickness
control and/or the application of pre-strains should also help improve our understanding of sliding
droplets [24–26]. Besides, given the parallel that was established recently between liquid-infused
surfaces [43] and polymer gels [42], it would be interesting to entirely remove the contribution of
the cross-linked network to see whether the presence of a viscous liquid is sufficient to modify the
appearance of corners and the transition to pearling in a way similar to the one we report. Finally,
we have also observed oscillations of the trailing edge of the droplet as the system approaches the
pearling transition. These oscillations may explain why the model does not fit the data well for
receding contact lines at R∼ 100, as it provides no prediction for them. These studies will open
the possibility to design efficient compliant coatings.
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MATERIALS AND METHODS

Liquids

We use pure glycerol (G100, Sigma Aldrich, G5516), a 60-%-glycerol-in-water mixture (G60),
polyethylene glycol-ran-propylene glycol monobutyl ether (P25, PEG-ran-PPG ME, average
molecular weight Mw ∼ 2500 gmol−1, Sigma Aldrich), a 70%-polyethylene glycol-ran-propylene
glycol monobutyl ether-in-water mixture (P7, PEG-ran-PPG ME, Sigma Aldrich), and the UCON
lubricant 75-H-90,000 (U90, Dow corning). Table I summarizes their properties. All the liquids
are insoluble in silicone gels. We measure the liquid-vapor surface tension γ with the pendant
drop technique. We estimate density ρ by weighing a volume V = 10± 0.5 mL of liquid with a
0.01-g-accurate scale. We measure the dynamic viscosity η with a capillary viscosimeter sitting
next to the set-up twice a day to account for hygroscopic and thermal effects.

TABLE I. Properties of liquids used in our experiments.
Liquid γ η ρ θeq R

mN m−1 mPa s 103 kg m−3 ◦

U90 40.7 36900 1.08 61.6 2.24
± 0.9 ± 690 ± 0.05 ± 0.7 ± 0.42

P7 37.3 842 1.05 56.6 92.7
± 0.2 ± 99 ± 0.05 ± 0.7 ± 11.0

G100 63.1 631 1.27 97.2 119
± 0.5 ± 104 ± 0.06 ± 1.1 ± 20

P25 37.1 491 1.05 64.3 165
± 0.4 ± 34 ± 0.01 ± 0.2 ± 11

G60 62.9 6.8 1.16 98.1 10700
± 0.1 ± 0.2 ± 0.06 ± 0.9 ± 400

Equilibrium contact angle measurements

Wetting equilibrium is difficult to identify on these systems using classical techniques such as
droplet deposition. We see the contact line moving even a few hours after deposition. We circum-
vent this issue by deducing equilibrium contact angles θeq from experimental dynamic contact
angles (Fig 3): we fit the points around U = 0 with a linear law, and take θeq equal to the value of
the fitted contact angle at U = 0.

Gel preparation

Gel slabs are prepared with a two-part commercial silicone kit (Dow Corning Sylgard 527).
We mix equal volumes of each part of the kit together, as recommended by the manufacturer,
in a weighing boat previously cleaned with ethanol and water, and dried. The gel mixture is
degassed under vacuum for 2 h to remove bubbles. It is then poured in a 60× 40-mm2 plastic
vessel (Caubère), also cleaned with ethanol and distilled water and let to dry in a vacuum before
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use. Then, we leave the sample in an oven at 65 ◦C for 15 to 18 h. We perform experiments
exclusively on dust-free unmarked gels.

Free-chain extraction

We extract free chains from silicone gels using the process described in ref. [45]. After weigh-
ing pieces of gels, we dip them into toluene (VWR, AnalaR NORMAPUR), a good solvent for
PDMS. Free chains migrate to the solvent. We renew toluene everyday for five days to accelerate
the extraction process. Then the sample is immersed in a mixture of toluene and ethanol (VWR,
AnalaR NORMAPUR) to the bath to remove toluene from the gel. Ethanol is added progressively
to avoid damaging the sample. We start with a solution of 20wt% ethanol in toluene, and we in-
crease the ethanol proportion by steps of 20wt% every day, until the sample sits in 100% ethanol.
After three baths in pure ethanol, the gel stops shrinking. We dry the gel under vacuum to remove
remaining solvent and weigh it again. From this procedure, we find that our materials contain 62
wt% free chains. This large amount of free chains explains likely the absence of transition between
two sliding regimes [45, 46] in our experiments.

Rheology

10−2 10−1 100 101 102 103

ω (rad s−1)

100

102

104

G
′ ,

G
”(

Pa
)

G’
G”
Chasset-Thirion

FIG. 6. Rheology of Sylgard 527. Storage modulus G′ and loss modulus G” as function of pulsation ω .
Strain amplitude: 1%. Continuous black lines: Chasset-Thirion law, Eqs. 8 and 9.

We perform small amplitude oscillatory shear rheology on our gels with an Anton Paar MCR
501 rheometer mounted with a plate-plate geometry (diameter d = 25 mm). Strain amplitude is
set at 1%. We extend the frequency range using a time-temperature superposition procedure [47].
We fit the data with the Chasset-Thirion model [29]:

G(ω) = µ0(1+(iωτ)m), (7)

with G the complex modulus, ω the strain angular frequency and τ a characteristic relaxation
time. The exponent m depends on the degree of polymerization of the polymer network and on the
coordination number of monomers [29, 48].

If we decompose the complex modulus G(ω) in a real elastic part G′(ω) and an imaginary
dissipative part G”(ω), we obtain

G′(ω) = µ0(1+ cos(mπ/2)(ωτ)m), (8)
G”(ω) = µ0 sin(mπ/2)(ωτ)m. (9)
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We determine τ and m by fitting the loss factor deduced from the model to its experimental value:

G”
G′ (ω) = tan(δ ) =

sin(mπ/2)(ωτ)m tan(mπ/2)
sin(mπ/2)(ωτ)m + tan(mπ/2)

. (10)

We inject the values of τ and m to fit equations 8 and 9 to the rheological data (Fig. 6). We find
µ0 = 1.077 kPa, τ = 18.2 ms, and m = 0.626.

Sliding experiments

We deposit a liquid droplet with a micropipette on the gel. The experiment starts when we tilt
the gel at an angle α with the horizontal. A LED panel (Effilux) shines light on the sample from
below, and a camera (Imaging Source, DMK 33UX174) records top views of the droplet with
a spatial resolution of 32 µmpx−1. We take side views on some experiments (Imaging Source,
DMK 33UX174, spatial resolution 4 µmpx−1). The thickness of all the samples, hs ∼ 4 mm, is
much larger that the elastocapillary length of our material, ℓs ∼ 10 µm, to avoid small-thickness
effects [24]. Samples are covered with a polystyrene lid that we find able to prevent surface ageing
and dust deposition. We unmold gel layers and cut their edges so the meniscus is not in the way
of side views. We obtain identical results when the silicone gel is in the box or unmolded.

We check the volume of droplets by weighing samples before droplet deposition and after. We
tracked the motion of droplets with the software package FiJi [49]. Droplet velocities range from
10−3 to 1 mm s−1. In most cases, the trajectories that we observe are linear functions of time:
droplets move at constant speed. For the longest experiments, drops may lose or gain water from
surrounding air. In that case, we fit only the part of the trajectory that is unaffected. Thus we
extract a single value U of the droplet velocity from each experiment. Each set of experimental
conditions is tested three times to ensure reproducibility.
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SUPPLEMENTAL MATERIALS

Derivation of scaling laws describing the dynamics of sliding droplets.

Vanishing values of the relaxation ration R

a b

FIG. 7. Different configurations for a liquid drop. (a) A spherical droplet of volume V = 4R3
0/3π . (b)

The same droplet as a spherical cap after spreading on a substrate, with radius of curvature Rcal, height at
the center h, contact radius Rc and contact angle θeq.

In experiments, a droplet of volume V is deposited on the substrate. This volume corresponds
to a sphere of radius R0 (Fig. 7a). Once it has spread on the surface of the substrate, the droplet
reaches its equilibrium shape, a spherical cap with radius Rcal, height h, contact radius Rc and
contact angle θeq (Fig. 7b).

Rc is difficult to measure in experiments, especially when the equilibrium contact angle is larger
than π/2. In contrast, we can obtain R0 by weighing the drop. If we know the equilibrium contact
angle θeq, we can write, assuming that droplets form spherical caps:

Rc = Rcal cos
(

π

2
−θeq

)
Rcal−h = Rcal sin

(
π

2
−θeq

)
.

(11)

Rearranging, we can link the contact radius and the height of the droplet to the spherical cap
radius: {

Rc = Rcal sinθeq

h = Rcal(1− cosθeq).
(12)

Now, we can express the volume for both a sphere and a spherical cap:
V =

4π

3
R3

0

V =
π

3
h2(3Rcal−h)

(13)

in terms of Rc and θeq: 
V =

4π

3
R3

0

V =
πR3

c
3

(2+ cosθeq)(1− cosθeq)
2

sin3
θeq

(14)
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Volume conservation then leads to:

Rc

R0
=

1
f (θeq)

= sinθeq

(
(2+ cosθeq)(1− cosθeq)

2

4

)− 1
3

. (15)

For a droplet sliding down an inclined plane, the ratio between its weight and the capillary force
along its perimeter, called the Bond number, writes:

Boα =
ρgR3

0
γRc

sinα . (16)

Injecting Eq. 15 into Eq. 16, we obtain an expression for the Bond number that accounts for
changes in the equilibrium contact angle:

Boα = f (θeq)
ρgR2

0
γ

sinα . (17)

Now, let’s assume that the gravitational force experienced by the droplet is balanced dissipation
in the liquid and contact angle hysteresis:

ρgR3
0 sinα ∼ η

U
h

R2
c + γ(cosθa − cosθr)Rc. (18)

Here U/h estimates the velocity gradient in the droplet, and θa and θr are the advancing and
receding dynamic contact angles, i.e. the threshold values of the contact angle above and below
which contact line motion occurs.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
1−cos θeq

sin θeq
Boα

0.0

0.5

1.0

1.5

2.0

C
a

×10−2

R = 2.24
Podgorski & al, PRL 2001 (ref. 1)

FIG. 8. Comparison between our data for R ≃ 2 and the data of Podgorski et al. [1] once corrections
related to a different equilibrium contact angle are accounted for.

In what follows, we assume that the values of dynamic contact angles are close to that of the
equilibrium contact angle, a hypothesis that is valid at low droplet velocities, Ca << 1. Thus, we

14



can use the description of the equilibrium shape of the droplet to relate the contact angle and the
contact radius. Using Eq. 12, we obtain:

R2
c

h
= Rc

sinθeq

1− cosθeq
(19)

Dividing both sides by the liquid-vapor surface tension γ , replacing R2
c/h, and using Eq. 15, it

follows that:

Ca ∼ 1− cosθeq

sinθeq
[Boα −Boc], (20)

where Boc is a threshold Bond number below which contact hysteresis pins the droplet to the
surface. We observe that this correction leads to the overlap of our data for R ≃ 2 and those of
ref. [1] (Fig. 8). Following Dussan [37] and Le Grand et al. [2], we can evaluate contact angle
hysteresis from the experimental value of Boc using:

Boc =

(
24
π

)1/3
(cosθr − cosθa)(1+ cosθa)

1/2

(2+ cosθa)1/3(1− cosθa)1/6 (21)

Le Grand et al. performed this estimation accounting for the prefactor appearing in front of Boα

when fitting their data with Eq. 20. We use the same procedure to obtain our estimate.

Large-R sliding

We expect that the relation between injected energy and dissipation be modified when the
effective viscosity of the solid exceeds that of the liquid. The collapse of the Ca−Boα curves
in the Cas −Boα space, with Cas = RCa, suggests that the latter is a good metric. Besides, we
know from the previous section that the equilibrium contact angle matters. Hence we should derive
a scaling law for the solid-dominated case that accounts for all of these modifications. Note that
we use again the approximation that the dynamic contact angles remain close to the equilibrium
contact angle.

Inspired by Ref. [24], we estimate the power dissipated per unit of volume of the solid when
the drop moves by a length ℓ:

dPdiss ∼ σε
2
ω (22)

with σ the viscous stress, ε the strain and ω the pulsation. Using the Chasset-Thirion model:

G(ω) = µ0(1+(iωτ)m), (23)

and taking the typical strain scale to be:

ε ∼ γ

γs
sinθeq (24)

and the characteristic pulsation of the experiment as:

ω =
U
ℓs

, (25)
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we have the following estimate for viscous stresses in the solid:

σ ∼ µ0

(
Uτ

ℓs

)m

. (26)

Then we have:

dPdiss ∼ µ0

(
Uτ

ℓs

)m(
γ

γs
sinθeq

)2 U
ℓs

(27)

Dissipation takes place in a half-torus having a radius Rc, width ℓ and height ℓr. As elasticity
balances the vertical component of the resulting capillary force per unit length at the contact line
γ sin(θeq), the height of the ridge scales as:

ℓr ∼ γ sinθeq/µ0. (28)

Then, we can estimate the power dissipated in the solid, neglecting numerical prefactors:

Pdiss ∼ σε
2
ωRcℓrℓ (29)

Pdiss ∼ µ0URcℓ

(
γ

γs
sinθeq

)3(Uτ

ℓs

)m

(30)

Now, we can write the force balance that a droplet sliding on a viscoelastic substrate should
obey. Dividing Pdiss by the sliding velocity U , we have:

ρgR3
0 sinα ∼ µ0Rcℓ

(
γ

γs
sinθeq

)3(Uτ

ℓs

)m

. (31)

Dividing by the liquid-vapor surface tension γ on both sides and rearranging, we obtain:

Boα ∼ µ0ℓ

γ

(
γ

γs
sinθeq

)3(Uτ

ℓs

)m

(32)

and using:
Uτ

ℓs
=RCa =Cas, (33)

we end up with the following prediction:

Boα ∼ µ0ℓ

γ

(
γ

γs
sinθeq

)3

Cas
m. (34)

The prefactor [(γ/γs)sin(θeq)]
3 in Eq. 34 should capture the dependence on equilibrium contact

angles. In the limit of thick samples, ℓ= ℓs =
γs

2µ0
[24], and we obtain Eq. 7 in the main text when

neglecting numerical prefactors:

Boα ∼
(

γ

γs

)2

(sinθeq)
3Cas

m. (35)
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FIG. 9. Comparison between the data of Fig. 2 in the main text with the non-linear model of Dervaux et
al. [28]. Closed symbols represent data points obtained beyond the pearling threshold. The fitting domains
represent the variation of the fitting results due to uncertainty on the experimental parameters. Dashed lines:
pearling threshold capillary number.

Comparison of experimental Ca−Boα curves with the non-linear model

Figure 9 shows a comparison between experimental data for the Ca−Boα displayed in Fig. 2
in the main text and theoretical predictions from our non-linear model [28]. Theoretical fits cover
a surface in the Ca−Boα space because we account for uncertainties in experimental parame-
ters such as the viscosity and the surface tension of the liquids, etc. Fits are seen to be in good
agreement with experimental data.
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