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Abstract 

Biomolecules in the secretory pathway use membrane trafficking for reaching their final 

intracellular destination or for secretion outside the cell. This highly dynamic and multipartite 

process involves different organelles that communicate to one another while maintaining their 

identity, shape, and function. Recent studies unraveled new mechanisms of inter-organelle 

communication that help organize the early secretory pathway. We highlight how the spatial 

proximity between ER exit sites and early Golgi elements provides novel means of ER-Golgi 

communication for ER export. We also review recent findings on how membrane contact sites 

between the ER and the trans-Golgi membranes can sustain anterograde traffic out of the Golgi 

complex. 

 

Introduction 

The spatial compartmentalization of cellular functions is a hallmark of eukaryotic cells. The 

efficiency by which these cells coped with increasingly complex functions was evolutionarily 

achieved by the appearance of membrane-bound organelles, which ensure a tight spatial and 

temporal regulation of intracellular biochemical reactions. A direct consequence of intracellular 

compartmentation is that each organelle has a well-controlled and well-defined biochemical 

composition (organelle identity). Another consequence is the functional importance of the 

morphology of these organelles, which is controlled by the tight interaction between membrane 

mechanics, composition, and cellular biophysics (organelle shaping). Situations where organelle 

identity and/or shape are compromised can have extreme physiological and pathophysiological 

consequences. 

Importantly, the notion that intracellular organelles are independent entities working as distinct 

functional modules has been refuted in the last decades with the discovery of new means of inter-

organelle communication and functional crosstalk. Here, we review some recent advances on 

how inter-organelle communication controls the shape, identity, and export function of the two 

main organelles of the early secretory pathway: the endoplasmic reticulum (ER) and the Golgi 

complex. 

 

General principles of inter-organelle communication 

Organelles have different ways of communicating to one another (Table 1):  

Inter-organelle signaling. This indirect, long-range mode of communication is mediated by 

signaling molecules and occurs without the physical proximity of the two organelles. On the global 

cellular scale, organelles can use mechanical cues arising from the cytoskeleton or the 

extracellular matrix to communicate to one another (mechanotransduction). For example , the 

Golgi-associated small GTPase Arf1 can be activated downstream of integrin-based cell-matrix 

adhesions, thereby impacting on Golgi organization and function [1]. Notably, cell contraction 

regulates Golgi lipid metabolism, COPI-mediated trafficking, and SCAP/SREBP localization by 

activation of the lipid phosphatase Lipin-1 [2]. 
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Intracellular trafficking. Secretory pathway organelles use membrane-bound transport carriers for 

long-range communication. Besides their well-established role in shuttling cargoes between 

organelles, these carriers can also convey additional functions, such as the triggering of 

mitochondrial fission by Golgi-derived vesicles [3], or the regulation of procollagen export from 

the ER by ER-Golgi intermediate compartment (ERGIC)-derived membranes [4,5]. 

Membrane contact sites. Direct inter-organelle communication occurs when the membranes of 

two or more organelles come to close proximity to one another into a functional contact, commonly 

referred to as a membrane contact site (MCS). In MCSs, membranes (i) are in close apposition 

tethered by protein-protein or protein-lipid interactions, (ii) do not fuse together, and (iii) carry a 

specific biological function [6]. Although the existence of MCSs was already reported in the early 

days of electron microscopy, it was not until the 1990s when specific biochemical activities and 

physiological functions were directly linked to these structures (reviewed in [6]). Since then, and 

particularly during the last decade, our understanding of such mode of inter-organelle 

communication has dramatically improved. As a result, the field of MCSs has emerged as a major 

topic in cell biology [6–9]. 

Inter-organelle transient connections. Finally, it has been suggested that organelles directly 

communicate to one another by the transient formation of membranous connections between 

them. Although the existence of such connections in a physiological context remains debated, 

they have been proposed to serve as a means to tunnel cargo trafficking between Golgi cisternae 

[10–12], and between the ER and the Golgi/ERGIC [13] for the delivery of large proteins. 

 

Inter-organelle communication for ER export 

ER morphology and organization 

The ER membrane forms a continuous but intricate network of sheets, helicoidal ramps, and 

tubules  (of ~60 nm in diameter in mammals), which is maintained by a variety of proteins [14,15] 

and expands throughout the cytoplasm [16–19] (Figure 1a). Despite its continuity, the ER 

membrane presents specialized functional sub-domains, such as ER exit sites (ERES). ERES 

are enriched in COPII components and serve as departure gates for secretory cargoes [20–22]. 

Morphologically, ERES are distinct from the rest of the ER, forming single- or multi-budded 

structures and cup-like structures [23,24] (Figure 1a,b). ERES preferentially position on saddle-

shaped or highly curved tubular regions of the ER membrane [25]. Although the number and 

spatial distribution of ERES varies considerably among species, there are generally more ERES 

in the perinuclear area than in the cell periphery [26]. 

Preserving a balanced morphology of the ER network is important for cargo export. For example, 

depletion of Atlastin –a dynamin-like GTPase that tethers and fuses ER tubules into three-way 

junctions– leads to defects in cargo loading into COPII carriers [27]. These defects are reverted 

when an Atlastin mutant capable of tubule tethering but not of tubule fusion is expressed. In the 

absence of Atlastin-mediated tubule tethering, the ER network has a lower connectivity and the 

membrane is less tense. In addition, the lateral mobility of lipids and proteins is slowed down in 

Atlastin-depleted cells, leading to less frequent cargo-receptor interactions and cargo export 

defects [27]. Since both membrane tension [28] and ER network dynamics [17,29] can enhance 
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protein mobility, Niu et al. proposed that Atlastin facilitates cargo loading in COPII carriers by 

maintaining the tension of the ER network [27]. This example underscores the importance of ER 

network morphology for its export functions.  

 

ERES/cis-Golgi communication 

A subset of ERES is generally associated to early Golgi elements, such as the cis-Golgi cisternae 

and/or the ERGIC [22] (Figure 1a). In yeast, ER arrival sites – ER regions where Golgi-derived 

COPI vesicles fuse to – enclose the ERES to which they are functionally and dynamically linked 

[30]. However, despite the growing evidence of the entanglement between ERES and early Golgi 

elements, it still remains unclear how the ERES structure is dynamically maintained in relation to 

the overall functional organization of the early secretory pathway. 

ER export is altered in different physiological conditions [21]. Particularly, nutrient starvation 

induces ERES enlargement and enhances the association between ERES and ERGIC. This leads 

to the translocation of COPII components to the ERGIC, where they form COPII-coated vesicles 

for autophagosome biogenesis [31]. 

Of special interest is how inter-organelle communication between ERES and the ERGIC/cis-Golgi 

membranes assists ER export (Figure 1b). Procollagens and other large and complex cargoes, 

such as chylomicrons or apolipoproteins, have challenged the conventional view of how small 

COPII-coated spherical vesicles mediate export from the ER [13,32]. TANGO1 is an ERES-

localized transmembrane protein that connects COPI-coated ERGIC membranes and COPII-

coated ERES to allow for efficient procollagen shuttling between these two organelles. TANGO1 

forms ring-like structures at ERES [4,33] where it binds both procollagens and COPII components 

[34]. In addition, TANGO1 recruits ERGIC-derived membranes to the ERES [4,35–38]. 

Interestingly, ERES-recruited ERGIC membranes seem to have a different function other than in 

retrograde trafficking: by fusing to the ER, these membranes can locally modify the biophysical 

properties of the ERES to facilitate procollagen export [5]. A physical model of TANGO1-mediated 

ER export described how different physical properties, such as membrane tension, dynamically 

contribute to the formation of procollagen-containing transport intermediates commensurate with 

the cargo they shuttle [5]. Fusion of ERGIC membranes to an ERES transiently decreases 

membrane tension, thereby facilitating the elongation of COPII-coated, TANGO1-capped, and 

procollagen-loaded transport intermediates. How dynamic the TANGO1 rings are and whether or 

how ERGIC membrane tethering and fusion to ERES is regulated still remain open questions. 

The proposal that the transmembrane helices of TANGO1 act as membrane shape sensors [39], 

let us entertain the possibility of a shape-mediated tethering regulation, in which the shape of the 

elongating membrane would control TANGO1 ring formation and ERGIC membrane tethering and 

fusion for procollagen export. Altogether, the dual role of TANGO1 as a regulator of ERES 

structure and export, highlights the important relationship between organelle structure and 

communication. 

Notably, a comparable close contact between ERES and cis-Golgi elements exists in S. 

cerevisiae to control anterograde trafficking between these two organelles [40] (Figure 1b). 

Nakano and co-workers proposed a hug-and-kiss model whereby cis-Golgi cisternae wrap around 

and tether ERES (hug), after which ER cargo is directionally transferred to the Golgi complex 
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(kiss). This mechanism does not require the release of COPII vesicles in the cytoplasm for their 

subsequent Golgi capture [22,40]. Whether such a process creates a transient continuity between 

these organelles still remains to be elucidated. 

 

Biophysical considerations for transient ER-Golgi connections 

The proposal of transient organelle connections poses a major challenge: how could these 

connections form without causing organelle mixing or collapse? Brefeldin A-induced fusion of 

Golgi membranes with the ER leads to the rapid and massive absorption of Golgi components to 

the ER [41]. Early studies indicated that this is not simply mediated by passive diffusion but most 

likely by a tension-driven directional flow [42]. These data, together with the evidence that the 

tension of the Golgi membranes is lower than that of the ER [43], seemed to demur the existence 

of ER-Golgi connections. However, a step towards solving this conundrum arose from the finding 

that the transmembrane helix arrangement of TANGO1 can act as a lipid diffusion barrier [39]. 

Diffusion barriers permit minimal mixing of components and prevent a massive and quick 

absorption of membranes after transient organellar connections. This hypothesis that diffusion 

barriers help maintain organelle connections is further supported by the recent observations of 

thicker domains in yeast ER membranes that slow down the diffusion of short transmembrane 

proteins [44]. These domains are enriched at MCSs, underscoring the possible role of diffusion 

barriers in ER-Golgi communication. 

Overall, there is mounting evidence that there is both direct and indirect functional communication 

between ERES and early Golgi elements. Such interactions play important regulatory roles in 

organelle homeostasis and ER export. 

 

Inter-organelle communication for Golgi export 

Golgi complex morphology and organization 

The Golgi complex is the central organelle of the secretory pathway where cargo maturation and 

sorting for export take place. The Golgi complex is a polarized organelle, which in mammals is 

made of stacks of 4–8 cisternae that are laterally connected to form the Golgi ribbon [45]. Golgi 

cisternae are sac-like structures made of two large parallel flattened membranes (cisternal size 

~1 µm; inter-membrane distance ~30 nm), connected by swollen, highly-curved rims [46] (Figure 

1a). Such a peculiar membrane morphology guarantees a very large surface-to-volume ratio, 

thereby presenting some functional benefits: (i) the large surface area of the membrane helps 

withstand the continuous cycles of transport carrier fusion and fission without a consequential 

alteration in the biochemical composition of the membrane [47]; and (ii) the difference in curvature 

between the flat sheet-like part of a cisterna and its highly curved rim provides a morphological 

cue to organize in space and time the different Golgi functions. Physical modelling indicated that 

membrane budding effectors help maintain cisternae flat by stabilizing the highly curved rims [48], 

hence highlighting the connection between the export capabilities of the Golgi complex and its 

shape. 
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There is increasing evidence that Golgi-resident proteins (such as glycosylation enzymes) are 

enriched in the flat parts of the Golgi membranes, whereas export machinery localizes to the 

highly curved rims [48–52]. Electron tomography showed the accumulation of S-palmitoylated 

cargoes at the rims of Golgi cisternae [52]. A separate study using super-resolution microscopy 

confirmed that glycosylation enzymes and the budding machinery segregate along the radial 

direction of the cisternae [53], backing the idea of a lateral segregation of Golgi functions. Various 

mechanisms contribute to dynamically organize the different reactions occurring in the Golgi 

membranes, including lipid-mediated, curvature-mediated, calcium-mediated, or receptor-

mediated mechanisms (reviewed in [54–57]). While these studies emphasize how Golgi 

morphology impacts its secretory function, we review below how morphology is also a key aspect 

of Golgi inter-organelle communication, focusing on ER-Golgi MCSs and their role in export from 

the trans-Golgi network (TGN). 

 

ER-Golgi MCSs 

MCSs enable lipid transfer for TGN export. Golgi lipid homeostasis is preserved by non-vesicular 

transfer of lipids, which takes place at ER-Golgi MCSs (Figure 1c). These contacts form by the 

tethering of ER-localized VAP-A/B to a number of TGN-anchored lipid transfer proteins, such as 

OSBP or CERT, which are recruited to the TGN by binding to PI(4)P by their pleckstrin homology 

domains [8,58]. Notably, this lipid-protein binding is sensitive to cytosolic pH, which can be for 

instance modulated in response to nutrient (glucose) availability, thus enabling signal-mediated 

communication at the Golgi membranes for efficient cargo sorting and export [59]. ER-Golgi 

MCSs directly control the levels of sterols, sphingolipids and PI/PI(4)P in these organelles [8,58], 

and these lipids are crucial for cargo export from the TGN [55,60–63]. In particular, altering the 

sphingolipid metabolism at the Golgi membranes causes a massive cisternal curling into shapes 

with little rim area [48,51]. These shape changes are accompanied by global inhibition of cargo 

export from the Golgi complex [61], glycosylation defects [51], and mis-localization of Golgi 

proteins [48,51,64], highlighting the importance of MCS-regulated lipid homeostasis for organelle 

shaping and transport carrier biogenesis at the TGN. 

MCSs contribute to transport carrier biogenesis. Dynamic ER-Golgi MCSs are needed for the 

export of a subset of cargoes from the TGN [65–67]. Both the depletion of ER-Golgi MCS 

components and contact site immobilization inhibit the formation of a specific class of transport 

carriers named carriers of the TGN to the cell surface (CARTS) [65,66]. Notably, super-resolution 

microscopy revealed that CARTS form at TGN regions that are adjacent to ER-Golgi MCSs, 

opening the possibility that ER-Golgi communication via MCSs could directly facilitate membrane 

budding and/or fission for CARTS formation [66] (Figure 1c). Interestingly, in yeast, peak-shaped 

ER membrane regions of very high curvature were observed at ER-plasma membrane MCSs and 

appear to enhance the lipid transfer rate [68,69]. The formation of these membrane regions of 

high curvature is mediated by tricalbins (extended-synaptotagmins, in mammals), which can also 

localize at ER-Golgi MCSs where they contribute to ceramide transfer [70]. Whether similar high 

curvature membrane peaks are present at ER-Golgi MCSs for transport carrier formation at the 

TGN remains to be investigated (Figure 1c). 
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Biophysical considerations of MCSs. MCSs play direct roles in determining organelle fission sites 

and initiating membrane constriction [71–73]. Short distances between membranes impose a 

series of mechanical effects and constraints, such as the limitation in the amplitude of membrane 

fluctuations/movements (e.g. membrane pinning [74]), or steric hindrance that prevents proteins 

with large cytosolic domains to enter the contacts [75,76]. It is therefore becoming increasingly 

clear that MCSs have a pleiotropic effect in the way they regulate organelle dynamics and 

function.  

 

Summary and future perspectives 

Since the pioneering discoveries by George Palade and colleagues, we have learned how the ER 

and the Golgi complex are intimately linked by their shared function in intracellular trafficking and 

protein secretion. Beyond that, new interaction modes in the early secretory pathway are just 

beginning to be uncovered. Some examples, which we highlighted in this review, are the close 

contacts between ERES and early Golgi elements as well as ER-Golgi MCSs. These 

investigations herald a whole new wave of research in inter-organelle communication, further 

establishing its often unexpected but central role in cell homeostasis. 

Defining the molecular and biophysical basis of inter-organelle communication will pave our way 

to better understand the secretory pathway in health and disease. Combining novel approaches 

in fluorescence microscopy [17,29,77], and/or cryo-electron tomography [68,69], with tools to 

specifically monitor organelle contacts – such as fluorescence complementation [66,73] or FRET-

FLIM-based tools [78] – will help to obtain ultra-highly resolved spatio-temporal maps of organelle 

connections. Moreover, in vitro reconstitution of inter-organelle contacts is a promising approach 

to study the fundamentals of these structures [79]. Pooled CRISPR/Cas9-mediated loss of 

function genetic screens provide unbiased ways of finding novel components involved in these 

processes both in 2D cell cultures [80] and in 3D tissue organoids [81]. Finally, a physical 

understanding of the principles governing how inter-organelle communication affects organelle 

shape and identity will be an added value to improve our holistic understanding of the early 

secretory pathway. 
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TABLE 1. Inter-organelle communication in the early secretory pathway. 

Inter-organelle 

communication 

mode 

Contact between 

organelles? 

Membrane 

fusion? 

Examples 

Inter-organelle 

signaling 

No No ● Cell-matrix adhesions control 

Golgi function and organization 

by Arf1 activation [1] 

● Mechanotransduction at the 

Golgi complex mediated by 

Lipin-1 and SREBP [2] 

Intracellular 

trafficking 

No (mediated by 

organelle-derived 

membrane-bound 

transport carriers) 

Yes (of 

membrane-bound 

intermediates, but 

not of organelles) 

● COPI- and COPII-coated 

transport carriers 

Membrane 

contact sites 

Yes No ● ER-Golgi MCS mediate Golgi 

lipid homeostasis [8] and 

CARTS formation [19,20] 

Inter-organelle 

transient 

connections 

Yes Yes Not well established. 

● Heterotypic fusion between 

Golgi cisternae [11,12] 

● ER-ERGIC tunnels for 

procollagen export [13] 
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FIGURE 1 

 
 

Figure 1. Inter-organelle communication and membrane shaping in the early secretory 

pathway. (a) Schematic representation of the membrane-bound organelles involved in the early 

secretory pathway in mammalian cells. (b) Two modes of communication between ERES and 

early Golgi elements. (i) Mechanisms of ERES/ERGIC communication for procollagen export in 
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mammalian cells. A TANGO1 ring (orange) links procollagen (cyan-striped poles) to COPII coats 

(not shown). TANGO1, by binding to a tethering complex (not shown), recruits ERGIC/COPI 

membranes (light green) to a nascent transport intermediate. Fusion of these membranes triggers 

carrier growth. The precise fusion site is yet to be revealed. Finally, TANGO1 creates a diffusion 

barrier at the carrier base to prevent membrane mixing (ER membrane, black lines; COPI/ERGIC 

membrane, gray lines). (ii) Hug-and-kiss model for proximity-based ER-to-Golgi transport in yeast. 

A dynamic contact between ERES (blue) and cis-Golgi cisternae (yellow) enhances the efficiency 

of anterograde trafficking. Whether COPII vesicles are fully formed and travel the short distance 

within the contact, or alternatively a transient fusion of the ERES with a cis-Golgi cisterna occurs 

remains unresolved. An ER arrival site where Golgi-derived COPI vesicles fuse to the ER is shown 

proximal to the ERES. (c) ER-Golgi MCSs contribute to TGN export. Membranes of the ER (blue) 

and the trans-Golgi cisternae/TGN (orange) come into close apposition in ER-Golgi MCSs 

(magenta). These MCSs are established by ER tethers (VAP proteins) and Golgi-attached lipid 

transfer proteins. They can facilitate transport carrier formation by regulating the lipid composition 

of the TGN membrane. It is possible that MCSs could additionally play a direct role in membrane 

shaping (e.g. by recruiting curvature-inducing proteins such as tricalbins) or in constricting the 

neck of a transport carrier (such as CARTS, in orange) for its fission. 

 

 


