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Monocular depth estimation is a challenging task in computer vision. Although many approaches using Convolutional neural networks (CNNs) have been proposed, most of them are trained on large-scale datasets mainly composed of gravity-aligned images. Therefore, conventional approaches fail to predict reliable depth for tilted images containing large pitch and roll camera rotations. To tackle this problem, we propose a novel refining method based on the distribution of gravity directions in the training sets. We designed a gravity rectifier that is learned to transform the gravity direction of a tilted image into a rectified one that matches the gravity-aligned training data distribution. For the evaluation, we employed public datasets and also created our own dataset composed of large pitch and roll camera movements. Our experiments showed that our approach successfully rectified the camera rotation and outperformed our baselines, which achieved 29% improvement in abs rel over the vanilla model. Additionally, our method had competitive accuracy comparable to state-ofthe-art monocular depth prediction approaches considering camera rotation.

INTRODUCTION

Monocular depth estimation, i.e., predicting a dense depth map from a single RGB image, is an essential task that is widely employed in many robotics and autonomous system tasks, such as ego-motion estimation [START_REF] Tateno | Cnn-slam: Real-time dense monocular slam with learned depth prediction[END_REF][START_REF] Czarnowski | Deepfactors: Real-time probabilistic dense monocular slam[END_REF], robot navigation systems [START_REF] Yang | Fast depth prediction and obstacle avoidance on a monocular drone using probabilistic convolutional neural network[END_REF][START_REF] Marcu | Safeuav: Learning to estimate depth and safe landing areas for uavs from synthetic data[END_REF][START_REF] Zhang | Monocular depth estimation for uav obstacle avoidance[END_REF], and augmented reality [START_REF] Wang | Cnn-monofusion: Online monocular dense reconstruction using learned depth from single view[END_REF][START_REF] Luo | Consistent video depth estimation[END_REF]. Recently, depth prediction based on convolutional neural networks (CNNs) has demonstrated successful performance on many benchmark scores and predicted plausible depth appearance [START_REF] Eigen | Depth map prediction from a single image using a multi-scale deep network[END_REF][START_REF] Laina | Deeper depth prediction with fully convolutional residual networks[END_REF][START_REF] Fu | Deep ordinal regression network for monocular depth estimation[END_REF][START_REF] Godard | Digging into self-supervised monocular depth estimation[END_REF].

Depth prediction approaches with CNN are generally trained with large-scale image datasets, which contain millions of RGB-D image pairs for various indoor and outdoor scenes [START_REF] Dai | Scannet: Richly-annotated 3d reconstructions of indoor scenes[END_REF][START_REF] Silberman | Indoor segmentation and support inference from rgbd images[END_REF][START_REF] Sturm | A benchmark for the evaluation of rgb-d slam systems[END_REF][START_REF] Geiger | Vision meets robotics: The kitti dataset[END_REF]. However, these images are mainly captured under certain camera motions, which leads to biased camera pose distributions in the training set.

As a result, conventional depth prediction approaches fail to estimate reliable depth maps on images captured under uncommon camera poses, such as tilted inputs, which include large roll and pitch rotations [START_REF] Saito | In-plane rotation-aware monocular depth estimation using slam[END_REF][START_REF] Zhao | Camera pose matters: Improving depth prediction by mitigating pose distribution bias[END_REF]. For illustration, Figure 1 shows the distribution of camera rotation along roll directions in the ScanNet dataset [START_REF] Dai | Scannet: Richly-annotated 3d reconstructions of indoor scenes[END_REF]. The distribution in the train-ing set is gathered around 0 • , and tilted scenes with large roll rotation are not equally represented in deep neural networks. Therefore, compared with gravityaligned scenes (a), the conventional depth prediction approach (Baseline) was unable to predict a reliable depth map on tilted scenes (b), and its prediction error significantly increased. This performance degradation causes a crucial problem in applications for which body-/robot-mounted cameras are employed and tilted images are easily captured under unexpected control, e.g., mobile AR [START_REF] Luo | Consistent video depth estimation[END_REF] and UAV [START_REF] Marcu | Safeuav: Learning to estimate depth and safe landing areas for uavs from synthetic data[END_REF][START_REF] Zhang | Monocular depth estimation for uav obstacle avoidance[END_REF].

To tackle this problem, several works have recently been proposed for monocular depth estimation by introducing camera pose as prior information. Saito et al. [START_REF] Saito | In-plane rotation-aware monocular depth estimation using slam[END_REF] and [START_REF] Sartipi | Deep depth estimation from visual-inertial slam[END_REF] proposed a method to rectify the in-plane rotation of images with Visual-SLAM (Mur-Artal and Tardós, 2017), which enabled more accurate depth prediction. Also, Zhao et al. [START_REF] Zhao | Camera pose matters: Improving depth prediction by mitigating pose distribution bias[END_REF] proposed a method to incorporate 2D maps encoded from camera poses with RGB input as prior knowledge of depth prediction. However, these methods heavily relied on offline pose estimation systems or external sensors, which required high computational costs or additional equipment, like an inertial measurement unit (IMU).

In this paper, we addressed this challenging task for depth estimation with tilted inputs leveraging only RGB information. We hypothesized that gravity direction is an indicator of the global orientation of the scene, which is a strong prior to depth estimation with CNNs [START_REF] Saito | In-plane rotation-aware monocular depth estimation using slam[END_REF][START_REF] Mi | Training-free uncertainty estimation for dense regression: Sensitivity as a surrogate[END_REF][START_REF] Do | Surface normal estimation of tilted images via spatial rectifier[END_REF]. We considered that gravity alignment between the training set and the test set can minimize the domain gap between the test set composed of tilted images and the training set composed of upright images.

To this end, we proposed a gravity rectifier network to learn transformation that warps tilted input to an upright image so that its gravity direction can be matched to the dominant direction, where most of the gravity vectors in the training set are densely distributed.

Different from previous approaches, our method does not need highly functional sensors like IMUs or other back-end systems for camera pose prediction. Furthermore, as our method does not rely on a particular backbone of depth estimation network and is computationally efficient, it can be easily integrated into a real-time application for scene understanding [START_REF] Jiang | Self-supervised relative depth learning for urban scene understanding[END_REF][START_REF] Chen | Towards scene understanding: Unsupervised monocular depth estimation with semanticaware representation[END_REF] or scene reconstruction [START_REF] Wang | Cnn-monofusion: Online monocular dense reconstruction using learned depth from single view[END_REF][START_REF] Laidlow | Deepfusion: Real-time dense 3d reconstruction for monocular slam using single-view depth and gradient predictions[END_REF][START_REF] Tateno | Cnn-slam: Real-time dense monocular slam with learned depth prediction[END_REF].

For the experiments, we employed not only Scan-Net [START_REF] Dai | Scannet: Richly-annotated 3d reconstructions of indoor scenes[END_REF] and NYUv2 [START_REF] Silberman | Indoor segmentation and support inference from rgbd images[END_REF] datasets but also recorded a new dataset with a large roll or pitch camera movement for various indoor scenes. We evaluated our approach with three baseline methods, including data augmentation baseline, and verified that our gravity rectifier significantly improved depth prediction accuracy qualitatively and quantitatively. Moreover, we compared our method with state-of-the-art approaches with camera pose priors and achieved highly competitive accuracy with only RGB information. In summary, our contributions are as follows: (1) We proposed a gravity rectifier that enables better performance by synthesizing gravity-aligned images for monocular depth estimation leveraging only RGB information without any external systems or sensors.

(2) We created a new dataset including large camera rotation along with roll and pitch directions under various indoor scenes. (3) Our proposed method outperformed our baselines (which achieved 38% improvement in abs rel over the vanilla model) and had comparable accuracy compared with state-of-the-art approaches.

RELATED WORK

Monocular Depth Estimation

Inferring depth from a single RGB image is an illposed problem as 3D points from multiple depth planes are projected to the same pixel on the image plane. Conventional approaches originally relied on stereo vision [START_REF] Agarwal | Building rome in a day[END_REF][START_REF] Sinz | Learning depth from stereo[END_REF] or different shading conditions [START_REF] Zhang | Shape-from-shading: A survey[END_REF][START_REF] Suwajanakorn | Depth from focus with your mobile phone[END_REF]. Recently, CNNbased depth prediction trained on large-scale datasets demonstrated promising results and enabled the production of reasonable depth maps [START_REF] Eigen | Depth map prediction from a single image using a multi-scale deep network[END_REF][START_REF] Laina | Deeper depth prediction with fully convolutional residual networks[END_REF][START_REF] Fu | Deep ordinal regression network for monocular depth estimation[END_REF].

Nevertheless, they still have difficulties obtaining accurate depth under extreme circumstances. One of the main issues is the pure-rotation of the camera at inference time. Previous work [START_REF] Dijk | How do neural networks see depth in single images[END_REF] analyzed CNN-based depth prediction, which performed poorly on images captured under unusual camera poses not included in the training data. To address this problem, we propose a novel depth prediction technique by refining camera poses to fill the gap between camera pose distribution in the training set and test set.

Gravity Estimation

Predicting gravity direction, i.e., estimating global scene orientation, is a fundamental task in computer vision. Conventional works [START_REF] Lee | Real-time joint estimation of camera orientation and vanishing points[END_REF][START_REF] Mirzaei | Optimal estimation of vanishing points in a manhattan world[END_REF] have leveraged visual cues such as vanishing points in indoor scenes to estimate gravity without external sensors like IMUs. Recently, learning-based approaches with deep regression models have been proposed by employing rich geometric representations extracted from an RGB image [START_REF] Olmschenk | Pitch and roll camera orientation from a single 2d image using convolutional neural networks[END_REF][START_REF] Xian | Uprightnet: Geometry-aware camera orientation estimation from single images[END_REF]. However, they have relied on the sophisticated network architecture of CNN or non-linear geometric optimization, which would be difficult for online gravity estimation.

Furthermore, the idea of predicting gravity from Visual SLAM has been proposed [START_REF] Saito | In-plane rotation-aware monocular depth estimation using slam[END_REF][START_REF] Sartipi | Deep depth estimation from visual-inertial slam[END_REF][START_REF] Fei | Geo-supervised visual depth prediction[END_REF], which has enabled more accurate monocular depth estimation or surface normal estimation. Nevertheless, these methods require highly functional sensors like IMUs or offline pose estimation backbones.

Unlike previous methods that rely on external sensors or offline gravity estimation, we propose here a gravity rectifier network that directly regresses the gravity direction and can be trained with a depth estimation network in an end-to-end manner. Inspired by the spatial transformer network [START_REF] Jaderberg | Spatial transformer networks[END_REF], our network transforms a tilted image with homography warping induced from 3D rotation parameterized by gravity direction, improving the prediction accuracy of a depth map.

Rotation-Aware Prediction

Conventional CNN models fail in dense prediction tasks on images captured in uncommon camera poses, like tilted inputs. This is mainly caused by distribution bias with the training set and test set, e.g., training examples might be collected with minimal roll and pitch rotations, but the testing environment where users can control body-/robot-mounted cameras freely might capture images containing large roll and pitch rotations.

To overcome this issue, Saito et al. [START_REF] Saito | In-plane rotation-aware monocular depth estimation using slam[END_REF] and [START_REF] Sartipi | Deep depth estimation from visual-inertial slam[END_REF] proposed rectifying roll rotation of tilted images with camera poses from Visual-SLAM. Also, Zhao et al. [START_REF] Zhao | Camera pose matters: Improving depth prediction by mitigating pose distribution bias[END_REF] incorporated encoded camera poses from IMUs into the depth prediction network directly. Nevertheless, they heavily relied on offline pose estimation systems (SLAM) or external sensors (IMUs), resulting in high computational costs or additional equipment.

Moreover, Do et al. [START_REF] Do | Surface normal estimation of tilted images via spatial rectifier[END_REF] proposed a new refinement method for tilted images in singleview surface normal prediction. They transformed the tilted images to rectified ones so that their surface normal distributions could be matched to those of the gravity-aligned images in the training data.

In this paper, we explore the benefit of spatial transformation to align tilted images to upright ones. Our proposed gravity rectifier, which can be trained in an end-to-end fashion only employed RGB information and corrected roll and pitch rotations with homography warping.

PROPOSED METHOD

Figure 2 shows the overview of our proposed networks. First, we input tilted images into a gravity estimator and predict gravity directions. Second, input images are warped with a gravity rectifier so that the estimated gravity directions is matched to the dominant direction of the gravity in the training set. Third, the rectified images are input into the depth prediction network. Finally, we re-warp the output depth map to the inverse direction so that the predicted depth map has the same resolution of the original image.

Gravity Rectifier

Given a tilted image I , we compute the gravity direction via a gravity predictor network formulated as a regression problem to produce gravity-aligned images I through a gravity rectifier.

The Gravity prediction network takes as input q ∈ R (I ) and outputs its gravity direction g ∈ R 3 . Then, the gravity-aligned image is expressed as Eq.1

I (q) = I (W g (q))
(1) where W g is the gravity rectifier that warps a tilted image I to the rectified image I . Suppose now that K is the camera intrinsic matrix so the gravity rectifier is expressed as a homography induced by the camera rotation like Eq.2.

W g = KR g K -1
(2) Here, camera rotation R g maps gravity direction g to dominant direction a ∈ R 3 , written as Eq.3.

R g = I 3 + [g × a] × + [g × a] 2 × × 1 1 + a T g (3) 
I 3 is 3 × 3 the identity matrix, and [g × a] × is a skew-symmetric matrix of g × a. Here, we define the dominant direction a = [0, 1, 0] T as a unit vector along the vertical axis of the camera, where the distribution of ground truth gravity directions in the training set is most densely distributed.

Network Architecture

We summarized the network architecture of both gravity rectifier h θ and depth estimation network f φ in Figure 3. The gravity rectifier network h θ predicts the gravity direction g ∈ R 3 from tilted image q ∈ R (I ) as in Eq.4.

h θ (q; I ) = g T (4)
The architecture is built upon Resnet-18 [START_REF] He | Deep residual learning for image recognition[END_REF]. The last fully connected layer and softmax function, which was part of the original architecture, are replaced with our novel multilayer perceptron (MLP). The MLP is composed of two fully connected layers (128, 3 output channels each) and rectified linear units (ReLU) activation functions, yielding an output of 3 × 1 gravity vector.

Then, the depth estimation network f φ takes gravity-aligned image q ∈ R (I ) as input and predicts its corresponding depth map. Our final depth d q ∈ R is obtained by applying an inverse warping of the gravity rectifier to the predicted depth map, as in Eq.5.

d q = v T R g T f φ (W -1 g (q); I t )K -1 q h (5)
where R g and W g are defined in section 3.1, and v = [0, 0, 1] T . We employ U-Net style architecture [START_REF] Ronneberger | Unet: Convolutional networks for biomedical image segmentation[END_REF] based on Resnet-50 [START_REF] He | Deep residual learning for image recognition[END_REF] for the encoder part. We replaced the last average pooling and fully connected layers of the original Resnet-50 architecture with a convolutional layer and Batch Normalization instead, yielding a feature map with 1024 output channels. This feature map is then fed to a decoder part composed of successive series of bi-linear upsampling and convolutional layers with their skip connections. The convolution layer in our decoder applies to the concatenation of the block after bi-linear upsampling and the block in the encoder with the same spatial size.

Loss Function

We learn the parameters of our total networks (φ and θ) by minimizing the following loss:

L(φ,θ) = ∑ q∈R (I ) L φ (d q , dq ) + λL θ (g T , ĝ) (6)
where dq is a ground truth depth map of tilted input I and ĝ is a ground truth gravity vector of I . λ is a scalar parameter balancing both the gravity prediction network and the depth prediction network.

For gravity predictor network loss L θ , we employ truncated angular loss as proposed in [START_REF] Do | Surface normal estimation of tilted images via spatial rectifier[END_REF] to avoid a vanishing gradient around the small angular error as follows:

L θ (g T , ĝ) =    0 (1 -ε ≤ g T ĝ) cos -1 (g T , ĝ) (0 ≤ g T ĝ < 1 -ε) π 2 -g T ĝ (g T ĝ < 0) (7) 
,where ε = 10 -6 .

For the depth prediction network loss L φ , we adopt the loss function proposed by [START_REF] Alhashim | High quality monocular depth estimation via transfer learning[END_REF] composed of mean absolute error (MAE) and structural similarity (SSIM) [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF] loss:

L φ (d q , dq ) = γL MAE (d q , dq ) + L SSIM (d q , dq ) (8)
where

L MAE (d q , dq ) = 1 n ∑ q |d q -dq | (9) L SSIM (d q , dq ) = 1 -SSIM(d q , dq ) 2 (10)
n is the total number of pixels of depth map d q and γ is a scalar parameter for the MAE term which is set as γ = 0.1.

EXPERIMENTS

Evaluation Dataset

To evaluate our proposed method, we employed publicly available RGB-D datasets of ScanNet [START_REF] Dai | Scannet: Richly-annotated 3d reconstructions of indoor scenes[END_REF] and NYUv2 [START_REF] Silberman | Indoor segmentation and support inference from rgbd images[END_REF] that are almost composed of upright scenes. However, these datasets are not sufficient for evaluating the robustness of our method since they are captured under limited camera motions containing minimal pitch and roll rotations. Therefore, we recorded a new dataset composed of tilted scenes at various indoor scenes with Kinect Azure. ScanNet [START_REF] Dai | Scannet: Richly-annotated 3d reconstructions of indoor scenes[END_REF]: an RGB-D video dataset containing a large variety of indoor scenes. We used the 20,942 images from their standard testing split. For the ground truth gravity vector, we calculated the ground plane's normal direction from semantic labels and its point cloud.

NYUv2 [START_REF] Silberman | Indoor segmentation and support inference from rgbd images[END_REF]: an RGB-D dataset captured with MS Kinect V1. We employed a labeled sequence for testing, which contains 654 image pairs. We employed accelerometer data in the dataset for the ground truth gravity vector.

OurDataset: We collected a new free-hand dataset with Kinect Azure that included 12 different scenes. Each RGB-D image pair was recorded in the resolution of 480 × 640 and ground truth gravity vector from IMU with 30 frames per second (FPS). Two types of scenes are collected. (i) Roll-rotated scenes:

We applied strong roll rotation of the camera ranging from -90 • to 90 • . We captured 1,520 images composed of six sequences. (ii) Pitch-rotated scenes: We also captured images with pitch rotation from -45 • to 45 • . We captured 1,717 images composed of six sequences. In each scene, roll and pitch angles are uniformly distributed.

Network Training

We trained our model with a standard training/validation split of ScanNet [START_REF] Dai | Scannet: Richly-annotated 3d reconstructions of indoor scenes[END_REF]: 189,916 images for training, 53,193 images for validation. We employed a batch size of 32 and optimized using Adam [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] with a learning rate of 1.0 × 10 -4 . The model converged after 40 epochs, which takes about 30 hours on a GeForce RTX 3090 GPU (24 GB of memory). All frames were resized into resolution 240 × 320. For our loss function of Eq.6, we used λ = 0.01. The weights of Resnet-18 and Resnet-50 [START_REF] He | Deep residual learning for image recognition[END_REF] in both the gravity prediction network and depth prediction network were initialized with the pre-trained ImageNet [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF]. Our code, dataset are available on GitHub1 .

Evaluation Details

We evaluated our method with baselines quantitatively and qualitatively. We set our own baselines:

• ResnetUnet: We trained the depth prediction network described in Section 3.2 without any data augmentation or pose rectification. We also compared our approach with state-of-theart methods of monocular depth estimation with camera pose priors.

• Saito et al. [START_REF] Saito | In-plane rotation-aware monocular depth estimation using slam[END_REF]: A trainingfree depth prediction approach for roll-rotated scenes with offline pose estimation from RGB-SLAM. For the depth prediction network, we input gravity-aligned images warped from tilted inputs with affine transformation. We employed the weight of ResnetUnet trained without any data augmentation and pose rectification.

• Zhao et al.(CPP) [START_REF] Zhao | Camera pose matters: Improving depth prediction by mitigating pose distribution bias[END_REF]: A method to estimate depth from concatenated images of RGB input and a 2D map encoded from a ground truth camera pose. We calculated ground truth pitch angle, roll, angle, and camera height from the ground plane in ScanNet [START_REF] Dai | Scannet: Richly-annotated 3d reconstructions of indoor scenes[END_REF].

• Zhao et al.(CPP pred ) [START_REF] Zhao | Camera pose matters: Improving depth prediction by mitigating pose distribution bias[END_REF]: A method to estimate depth with a 2D map encoded from a predicted camera pose of CNN. For the pose prediction network, we employed the same architecture of our gravity rectifier with Resnet-18 backbone [START_REF] He | Deep residual learning for image recognition[END_REF]. We initialized the network weight with ImageNet pre-trained [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF]. We also applied random augmentation for input: roll rotation ranging from -90 

Evaluation Metrics

We evaluated the accuracy of predicted depth maps with the standard four metrics used in prior works [START_REF] Eigen | Depth map prediction from a single image using a multi-scale deep network[END_REF][START_REF] Alhashim | High quality monocular depth estimation via transfer learning[END_REF]: (a) mean absolute relative error (abs rel), (b) mean squared relative error (sq rel), (c) root mean squared error (rmse), (d) threshold accuracy (δ i ) for which max( d q dq

, dq d q ) < 1.25 i (i = 1, 2, 3), where d q is the predicted depths and dq is the ground truth depths. [START_REF] Zhao | Camera pose matters: Improving depth prediction by mitigating pose distribution bias[END_REF]. Note that the depth pixel colored in red shows that the depth is a large value, and the pixel colored in blue shows that the depth is a small value.

RESULTS

Qualitative Evaluation

Figure 4 shows the qualitative results of our predicted depth map tested on our test dataset compared with our own baselines (ResnetUnet, Resne-tUnet+AUG, ResnetUnet+IMU). Although some of our baselines (ResnetUnet, ResnetUnet+IMU) failed to estimate a reasonable depth map, especially in roll-rotated scenes, our predicted depth map (Resne-tUnet+GR) had a more plausible appearance to ground truth depth, as well as an augmented model (ResnetUnet+AUG). This performance degradation is caused by a domain gap between the training set and the test set, i.e., the training set is mainly composed of gravity-aligned images while the testing tilted images have large roll and pitch angles. We also summarized the qualitative results compared with state-of-the-art methods with camera pose priors tested on our test dataset in Figure 5. Saito et al. [START_REF] Saito | In-plane rotation-aware monocular depth estimation using slam[END_REF] which rectify tilted inputs with RGB-SLAM, seemed to make erroneous predictions in large pitch-rotated scenes since they only considered the rectification of roll rotation with 2D affine transformation. On the other hand, Zhao et al. (CPP, CPP+PDA) [START_REF] Zhao | Camera pose matters: Improving depth prediction by mitigating pose distribution bias[END_REF] seemed to predict a more reliable depth map in both roll-and pitch-rotated scenes due to its strong prior of ground truth camera poses. While these prior works completely relied on external sensors or systems like IMU and SLAM, our proposed method (ResnetUnet+GR) successfully produced visually improved results even though we only employed RGB information for prediction.

Quantitative Evaluation

Table 1 shows the quantitative results of our proposed method evaluated on gravity-aligned scenes from test sequences of ScanNet [START_REF] Dai | Scannet: Richly-annotated 3d reconstructions of indoor scenes[END_REF] and NYUv2 [START_REF] Silberman | Indoor segmentation and support inference from rgbd images[END_REF] datasets. We observed that all networks performed excellently on unseen gravityaligned frames in ScanNet, as the dataset contains sufficient scene diversity. Our proposed method (ResnetUnet+GR) slightly underperformed compared to Zhao et al. (CPP) due to the lack of ground truth camera pose information and suffering from a prediction on the feature-less part of the scene, e.g., floor For tilted scenes, we summarized the quantitative results of our proposed method evaluated on our test dataset in Table 2. Our proposed method shows excellent performances compared to our baselines on both roll-and pitch-rotated scenes with unseen large camera rotation, e.g., the percentage drop in abs rel for ResnetUnet (by 29%), ResnetUnet+AUG (by 15%), ResnetUnet+IMU (by 33%). Our method also significantly outperformed other state-of-the-art methods [START_REF] Saito | In-plane rotation-aware monocular depth estimation using slam[END_REF][START_REF] Zhao | Camera pose matters: Improving depth prediction by mitigating pose distribution bias[END_REF] on rollrotated scenes, though these methods heavily relied on ground truth camera poses from IMU or offline camera pose estimation like SLAM. In pitch-rotated scenes, our proposed method achieved on-par performance with Zhao et al.(CPP, CPP+PDA) [START_REF] Zhao | Camera pose matters: Improving depth prediction by mitigating pose distribution bias[END_REF]. There are two main explanations for this fact: First, the distribution gap between the pitch rotation of the training set and the test set was less dissociated than for roll-rotated scenes. Second, Zhao et al. [START_REF] Zhao | Camera pose matters: Improving depth prediction by mitigating pose distribution bias[END_REF] employed ground truth camera poses for their prediction while we only leveraged image frames with RGB information.

We also summarized the relationship between camera rotation angle and the error rate on roll-and pitch-rotated scenes from our dataset in Figure 6. As can be seen in the left column of Figure 6, the errors around where the training set distribution is densely populated do not show any difference between our method vs. the baselines. However, in larger rotation angles, even though the errors of the baselines increased, the error of our proposed method does not depend on rotation angles, which shows the effectiveness of our proposed method.

Network Efficiency

We finally compared our proposed method (Resne-tUnet+GR) with other baselines in terms of the number of parameters, actual memory consumption, number of floating operations (FLOPS), and inference time as summarized in Table 3. Although our proposed method performed 1.3x larger memory consumption with the vanilla model (ResnetUnet), due to the additional network parameter of gravity rectifier, we achieved 66.8 FPS for our prediction, which is highly sufficient for real-time applications like real robot navigation systems. Since we did not employ offline pose prediction systems like SLAM in the back-end, we successfully realized our speed-up (1.25x faster than Saito et al. [START_REF] Saito | In-plane rotation-aware monocular depth estimation using slam[END_REF]).

Application to SLAM

To complement our results, we demonstrated the effectiveness of our proposed depth prediction within the SLAM applications. We integrated our depth prediction into a CNN-MonoFusion [START_REF] Wang | Cnn-monofusion: Online monocular dense reconstruction using learned depth from single view[END_REF], which reconstructed dense 3D maps by integrating monocular depth estimation with CNN into conventional camera-tracking systems like ORB-SLAM2

(Mur-Artal and Tardós, 2017).

Figure 7 shows the reconstruction result of our proposed method and other baseline methods tested on our dataset with roll-and pitch-rotated scenes. As it can be seen, our proposed model (Resne-tUnet+GR) successfully yielded more accurate reconstruction of the scene, compared to the vanilla model which failed to reconstruct reasonable scene geometry (e.g., there is some misalignment in parts of the floor in Roll/seq4). The improved accuracy of depth prediction with our gravity rectifier is not only obvious in Figure 4, but also in real-time applications like SLAM. We figured out our proposed method provide a more robust system for AR and robotics applications where users manipulate the device freely and can cause significant camera orientation.

CONCLUSION

In this paper, we proposed a gravity rectifier, a novel rectification approach to improve the accuracy of monocular depth estimation for tilted images, leveraging only RGB information. Our gravity rectifier is learned to transform a tilted image into a gravity-aligned image and can be trained jointly with the depth estimation network in an end-to-end fashion. To show the effectiveness of our method, we evaluated our method both qualitatively and quantitatively using our own dataset with large roll and pitch camera rotations. The results showed that our approach significantly outperformed baselines, including data augmentation, and has competitive accuracy as well as state-of-the-art methods with external sensor or offline pose estimation systems.

Figure 1 :

 1 Figure 1: Distribution bias of camera rotation between the training set and test set. The horizontal axis shows the roll rotation angle of the camera (degree), and the vertical axis shows absolute relative error. The training set distribution is shown in gray, and the test set distribution is shown in orange.(a) shows the predicted depth in the upright scene, and (b) shows the predicted depth in tilted scenes.

Figure 2 :

 2 Figure2: The overview of our proposed method. The gravity rectifier h θ is learned to predict gravity direction g in the tilted image. This allows us to warp the tilted image to the rectified image whose gravity direction matches the gravity distribution of the training data. The gravity estimation network f φ is used to predict the rectified depth maps and warp back to the tilted depth maps.

Figure 3 :

 3 Figure 3: The architecture of our gravity rectifier and depth estimation network.

Figure 4 :

 4 Figure4: Qualitative results on our test dataset compared with our baseline methods: ResnetUnet, ResnetUnet+AUG, Resne-tUnet+IMU. Note that the depth pixel colored in red shows that the depth is a large value, and the pixel colored in blue shows that the depth is a small value.

Figure 5 :

 5 Figure 5: Qualitative results on our test dataset compared with state-of-the-art methods: Saito et al. (Saito et al., 2020) and Zhao et al.[START_REF] Zhao | Camera pose matters: Improving depth prediction by mitigating pose distribution bias[END_REF]. Note that the depth pixel colored in red shows that the depth is a large value, and the pixel colored in blue shows that the depth is a small value.

Figure 6 :

 6 Figure 6: The correlation between the rotation angle of the camera pose and absolute relative error (abs rel) was evaluated on our test dataset. The horizontal axis shows the ground truth camera rotation angle (roll/pitch), and the vertical axis shows the abs rel value. Camera pose distribution in the training set is shown in gray, and the distribution in the test set is shown in orange.

Figure 7 :

 7 Figure 7: Dense reconstruction result of CNN-MonoFusion (Wang et al., 2018) evaluated on our test dataset. From left to right: result with ground truth depth, predicted depth from ResnetUnet, predicted depth from ResnetUnet+GR (Ours).

Table 1 :

 1 The quantitative results of our method with all baselines on gravity-aligned scenes from test sequences of ScanNet and NYUv2.

	Method	ScanNet abs rel ↓ sq rel ↓ rmse ↓ δ 1 ↑	δ 2 ↑	δ 3 ↑	NYUv2 abs rel ↓ sq rel ↓ rmse ↓ δ 1 ↑	δ 2 ↑	δ 3 ↑
	ResnetUnet	0.133	0.068	0.317	0.814 0.951 0.986 0.179	0.154	0.648	0.711 0.917 0.973
	ResnetUnet+AUG	0.145	0.078	0.348	0.787 0.943 0.983 0.196	0.180	0.707	0.661 0.891 0.966
	ResnetUnet+IMU	0.211	0.134	0.419	0.695 0.900 0.968 0.197	0.176	0.692	0.682 0.904 0.972
	ResnetUnet+GR (Ours)	0.132	0.068	0.313	0.818 0.951 0.987 0.171	0.147	0.619	0.734 0.920 0.976
	Zhao et al. (CPP)	0.114	0.059	0.274	0.855 0.957 0.986 0.205	0.178	0.686	0.663 0.900 0.971
	Zhao et al. (CPP pred )	0.136	0.073	0.309	0.824 0.950 0.984 0.176	0.151	0.633	0.725 0.915 0.974
	Zhao et al. (CPP + PDA) 0.135	0.073	0.330	0.811 0.947 0.983 0.199	0.186	0.709	0.665 0.897 0.969
	and walls. Nevertheless, our method outperformed			
	all baselines in NYUv2. Since the scenes in NYUv2			
	contained rich geometric features rather than Scan-			
	Net, our depth prediction network realized reasonable			
	prediction.							

Table 2 :

 2 The quantitative results of our method with all baselines on our test dataset on roll-and pitch-rotated scenes.

	Method	Roll-rotated scenes rgb imu SLAM abs rel ↓ sq rel ↓ rmse ↓ δ 1 ↑	δ 2 ↑	δ 3 ↑
	ResnetUnet	✓		0.317	0.976	2.266	0.476 0.584 0.661
	ResnetUnet+AUG	✓		0.216	0.476	1.563	0.551 0.731 0.871
	ResnetUnet+IMU	✓		0.299	0.881	2.219	0.481 0.582 0.673
	ResnetUnet+GR (Ours)	✓		0.166	0.286	1.101	0.698 0.885 0.955
	Saito et al.	✓	✓	0.262	0.622	1.663	0.568 0.567 0.567
	Zhao et al. (CPP)	✓	✓	0.299	0.877	2.136	0.472 0.602 0.688
	Zhao et al. (CPP pred )	✓		0.290	0.856	2.098	0.507 0.617 0.696
	Zhao et al. (CPP + PDA) ✓	✓	0.219	0.424	1.495	0.551 0.748 0.883
	Method	Pitch-rotated scenes rgb imu SLAM abs rel ↓ sq rel ↓ rmse ↓ δ 1 ↑	δ 2 ↑	δ 3 ↑
	ResnetUnet	✓		0.217	0.364	1.265	0.568 0.770 0.905
	ResnetUnet+AUG	✓		0.230	0.398	1.308	0.561 0.743 0.872
	ResnetUnet+IMU	✓		0.267	0.430	1.360	0.502 0.719 0.885
	ResnetUnet+GR (Ours)	✓		0.213	0.334	1.195	0.571 0.783 0.934
	Saito et al.	✓	✓	0.320	0.616	1.580	0.431 0.432 0.433
	Zhao et al. (CPP)	✓	✓	0.202	0.346	1.222	0.594 0.780 0.903
	Zhao et al. (CPP pred )	✓		0.232	0.379	1.271	0.551 0.722 0.899
	Zhao et al. (CPP + PDA) ✓	✓	0.200	0.330	1.165	0.582 0.770 0.907

Table 3 :

 3 Network efficiency of our proposed method with all baselines in terms of the number of parameters, memory consumption, FLOPS, and inference time (FPS with batch size 1). We employed our test dataset including both roll-and pitch-rotated scenes.

	Network			Backbone	Params Memory (MB) FLOPS(GB) FPS
	ResnetUnet+GR (Ours) Resnet-50+Resnet-18 47.5M	190.1	39.5	66.8
	ResnetUnet			Resnet-50	36.3M	145.1	36.7	94.9
	Saito et al.			Resnet-50	36.3M	145.1	36.7	53.5
	Zhao et al. (CPP)		Resnet-50	36.3M	145.2	36.8	73.9
	Zhao et al. (CPP pred )	Resnet-50+Resnet-18 47.5M	190.1	39.6	63.3
	Ground truth	ResnetUnet	ResnetUnet+GR(Ours)		
	Roll/seq1					
	Roll/seq4					
	Pitch/seq1					

https://github.com/WeLoveKiraboshi/ DeepTiltedDepthEstimation
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