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Abstract

In this article, a new algorithm detecting particles and aggregates on the surface of a burning solid propellant
containing inert particles is presented. Shadowgraphy images are captured using a set-up at ONERA. Four propellants
containing particles of different sizes are used. Detecting the surface being well studied, the method rather focuses on
detecting protrusions of a continuous 1D curve. Curvature is the basic tool used, it can be calculated using Gaussian
filters of different widths. A normalization is proposed, ensuring curvatures of different filter widths to be compared,
meaning the algorithm can detect protrusions of different sizes. The result is the Extreme of the Normalized Curvature
(ENC), detecting concave parts of a curve, independently of the size of the protrusion. While the ENC detects the
main concavities, the limits of the targeted patterns (convexities) are found by a multi-scale approach following the
detection.

Evaluating the performances of the algorithm is possible thanks to the annotations of some images. Both detec-
tion performances and limit research performances are investigated. The influence of the initial particle size on the
performances is studied.

Keywords: Solid propellant, Inert particles agglomeration, Image processing, Protrusion detection, Curvature,
Gaussian filter

1. Introduction

Solid Rocket Motors (SRM) are widely used in spa-
tial propulsion in both civilian and military applications.
They produce a major thrust, have very few reliabil-
ity issues and can be ignited at any moment. The fuel
is a solid material named solid propellant. Most mo-
tors burn a composite solid propellant, which is com-
posed of three main ingredients. The first is the oxi-
dizer, classically Ammonium Perchlorate (AP) particles
embedded in a polymer binder, classically Hydroxyl-
Terminated PolyButadiene (HTPB). They react together
when the solid propellant is ignited. Aluminum par-
ticles can also be added for better performance. The
oxidizer and the polymer binder burn at the surface of
the propellant, producing gas. The aluminum particles
are ejected as the propellant burns and are ignited in the
gas flow produced. While the propellant is consumed,
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the aluminum particles bind together through sintering
or coalescence at the propellant surface [1], increasing
their initial size when they melt to form a droplet before
burning. The process is named agglomeration. Figure 1
is a schematic of a solid propellant combustion with alu-
minum agglomeration on its surface. The increased size
due to agglomeration has several effects on both perfor-
mances and instabilities of Solid Rocket Motor [2–4].

HTPB

AP

Al

Propellant surface

Figure 1: Schematic of a solid propellant combustion with aluminum
agglomeration on its surface.

Agglomeration prediction in terms of agglomerate
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size and agglomeration proportion has been the focus
of studies for many decades. Residue and droplet col-
lection after combustion is the basic method used, the
data obtained are experimental references [5–8]. Even
so, this method is quite demanding and expensive, re-
quiring new tests for new composition or new operation
conditions. Correlations based on experimental studies
have been established [9–12] but are inappropriate when
the studied propellant differs too much from the refer-
ence. Some correlations have been established based
on pocket models, i.e. with a geometric description of
space between AP particles [13–15] but do not consider
the effect of pressure on the burning rate. Some numeri-
cal models have also been developed, the first are based
on random numerical packings [16, 17] but only con-
sider geometry. Some models include both geometric
and pressure effects [18–20], considering the ignition
phase of the aluminum aggregates, but contain limited
agglomeration modeling.

Overall, previous studies have not been able to de-
scribe and quantify the physical phenomena at the root
of aluminum agglomeration. Experimental studies are
still mandatory to investigate agglomeration, with two
purposes. The first is to quantify the increase of the size
of the droplets due to agglomeration, providing exper-
imental references. The second is to better understand
the physics implied in the agglomeration process. Digi-
tal Inline Holography (DIH) [21, 22] and shadowgraphy
[23] provide image series that can be studied with ad-
vanced image analysis tools. The burning surface of the
propellant can be analyzed to study agglomeration [24].

The present study is incorporated within the frame-
work of agglomeration physical modelling on the sur-
face of a solid propellant. The modelling needs high-
speed experiment data of burning solid propellants to be
able to track agglomerates over their lifetime before en-
tering the gas flow. Exploiting the experimental data re-
quires an automatic analysis of the burning surface and
detecting the agglomeration patterns. A new multiscale
method based on curvature has been developed in or-
der to detect particles and aggregates as a whole and not
only a fraction of it.

The method is performed on shadowgraphy images
of burning solid propellant containing a low amount
of inert particles in order to demonstrate it on well-
controlled cases. The solid propellant choice was driven
by their relatively low agglomeration (aggregates are
usually formed of 2-3 particles). They are therefore sim-
pler to study as a first investigation and are well adapted
to develop and adjust the detection method, before ap-
plying the method to real propellants.

2. Experimental data

2.1. Shadowgraphy images

Shadowgraphy was used to provide accurate details
around the solid propellant surface during combustion,
the focusing shadowgraphy set-up used at ONERA was
originally made to study aluminum combustion [25].
The shadowgraphy set-up is presented in figure 2. A
high-speed camera is used to acquire frames enabling
the visualization of the regression of the solid propel-
lant surface. The camera frame-rate is 7500Hz, the im-
ages recorded are 1280 pixels in width and 800 pixels
in height. With a spatial resolution of 3µm/pixel, the
image real size is approximately 3.8 by 2.4mm.

Figure 2: Shadowgraphy set-up [23]

Each frame is divided into two parts, the propellant
and the gas flow, the surface of the propellant being the
boundary. This frontier is the focus of the study. The
first step is to automatically acquire its location, this
step has been studied in previous works [26]. The most
efficient surface detection method was found to be the
Chan-Vese active contour approach [27]. An example
of a shadowgraphy image is presented in figure 3. The
surface detected by the Chan-Vese active contour is col-
ored in white. The surface is a curve on a 2D plan, it is
composed of a finite number of positions along a curvi-
linear abscissa.

Four solid propellant compositions are studied here.
They all contain inert particles instead of aluminum par-
ticles. Inert particles do not produce smoke and remain
solid at the surface. Aggregates are consequently more
easily observed and automatically detected. All four
propellant contain HTPB as the binder, a trimodal AP
distribution as oxidizing particles and approximately
6% mass fraction of inert particles. The amount of
binder and oxidizing particles remain similar from one
propellant to another. Three propellants contain ceramic
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Figure 3: Example of a shadowgraphy frame, with the burning propel-
lant in dark and the gas flow in light color, the surface representation
is added in white. Scale in pixels.

particles composed of a ZrO2, S iO2 and Al2O3 mixture,
the fourth contains titanium. The distribution of the in-
ert particles used in the different propellant are summa-
rized in table 1. The representative size of each distribu-
tion is the mean particle size D10. The main mode of the
inert particles used is between 34 and 90 micrometers.

Each propellant is burnt under pure nitrogen atmo-
sphere at atmospheric pressure. Because the number of
frames recorded for each fire-shot at this pressure is very
important (around 10000), only one test is studied here
for each propellant.

In order to provide a ground truth for the position of
agglomeration patterns on the surface and to evaluate
detection performances of the new algorithm, annota-
tions have been realized. Annotations have been real-
ized on images chosen regularly all over the test du-
ration in order to annotate different combustion condi-
tions. The total number of images annotated per pro-
pellant studied varies from 100 to 115. An example of
annotated image of the 2427 propellant is presented in
figure 4. The limits of the annotated aggregates are de-
limited with magenta crosses. The image is trimmed for
better visualization.
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Figure 4: Example of annotated image of the 2427 propellant. The
surface is delimited in white and the aggregates annotated are repre-
sented with magenta crosses.

2.2. Synthetic images

The new algorithms developed were first applied on
a simplified synthetic image for validation purpose. It
is made of three protrusions. Each protrusion represents
a particle half released from the surface and is different
from the others only by its size. The synthetic image is
290 pixels wide and 60 pixels high.

The synthetic image is presented in figure 5, the sur-
face detection using a simple thresholding is presented
as well. The objective is to detect all three protrusions
and correctly find their limits represented by the red
lines.
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y

Figure 5: Synthetic image of three half-spheres of different radius
with their theoretical limits represented in red, the associated surface
detection is represented in blue.

3. Automatic detections of objects on the surface

The goal of the detection algorithm is to isolate pat-
terns of interest from the curve defining the solid propel-
lant surface. The targeted patterns are protrusions asso-
ciated to emerging particles and aggregates. Aggregates
are usually formed of very few particles, rarely exceed-
ing 3. Only the aggregates from the 2430 propellant are
sometimes formed of more particles, because the ini-
tial particles are smaller. The goal of the presented de-
tection method is to detect particles and aggregates that
protrude significantly above the solid propellant burning
surface. The method is first applied on the synthetic im-
age for comprehensive purposes. The detection on real
shadowgraphy images is presented in the result section
4.

3.1. Surface description

The surface of the propellant is a curve with concave
and convex portions. A protrusion is characterize with
a concave portion with sufficient size and protuberance,
i.e. the upper part of the particle or aggregate emerging
from the surface. The protrusion is limited by convex
portions, i.e. the link between the particle or aggregate
to the propellant. Describing the surface as concave and
convex portions is necessary in order to detect and iso-
late the targeted patterns.

3



Table 1: Particle mass fraction of each studied propellant. The diameter shown is the mean particle size D10.

Propellant
Particles Ceramic Titanium

13µm 34µm 90µm 62µm
2427 0.15 0 6 0
2429 0.13 0.43 5 0
2430 0 6 0 0
2462 0 0 0 6.47

3.1.1. Existing surface description
In previous works [23], the targeted patterns detec-

tion and isolation was based on the Curvature Scale
Space (CSS) [28]. Unfortunately, the CSS is a descrip-
tion originally used to extract dominating points of a
curve for matching [28] or recognition [29], detections
are possible but limited to sharp corners [30]. In partic-
ular, the CSS only focuses on zero values of curvature
while the protrusion detection requires the study of cur-
vature extremums (both maximums and minimums).

Many studies [31–36] proposed adapted CSS focus-
ing more on curvature. They are summarized in table 2.
More adaptations are presented in a review by Berreda
et al. [37].

Table 2: Different methods from the literature adapted
from the CSS.

Method
Description added from the

CSS (figure shape)
Extended Curvature Scale

Space (Extended CSS)
[31]

The classification of convex or
concave segments of the curve

(2D plot)

Concavity-Convexity
Scale Space (CCSS) [32]

Maximums and minimums of
curvature are plotted in place of
the zeros of curvature (2D plot)

Extreme curvature Scale
Space (Extreme CSS)

[33]

Extrema of curvature are
plotted, and values of curvature

are written (2D plot)

Multi-scale Convexity
Concavity (MCC)

[34, 35]

The displacement of the
contour between two scale

levels are plotted (2D scalar
field)

Curvature Scale Space
Transform [36]

Curvatures are directly
calculated for all filter widths

and are plotted (2D scalar
field).

Similarly to the CSS, those descriptors have shape
matching and recognition purposes, they are insufficient
for protrusion detection. A new description is devel-
oped here, the result is a 1D plot highlighting extreme
curvatures, their study being necessary and sufficient for
protrusion detection.

3.1.2. Extreme of Normalized Curvature (ENC)
We here present our method based on the extreme of

normalized curvature concept. Let t be the position on
the curve along the curvilinear abscissa, x(t) and y(t) are
the functions representing the curve in the space of the
frame, x(t) being the abscissa and y(t) the ordinate. t, x
and y unit is the pixel.

The curvature κ is obtained by equation 1.

κ(t) =
ẋÿ − ẏẍ

(ẋ2 + ẏ2)
3
2

(1)

With ẋ = ∂x
∂t , ẍ = ∂2 x

∂t2 . In order to isolate pattern
with various representative scales, the curvature κ must
evolve depending on a representative scale. The Gaus-
sian filter g(t, σ) = 1

σ
√

2π
exp( t2

2σ2 ) is applied to x(t) and
y(t) through products of convolution ⊛. σ (in pixels) is
the Gaussian filter width, the representative scale of the
filtering. The result is the abscissa X and the ordinate Y
of the curve filtered :X(t, σ) = x(t) ⊛ g(t, σ)

Y(t, σ) = y(t) ⊛ g(t, σ)
(2)

Curvature is first calculated with no filtering and writ-
ten κ0 (X(t, 0) = x(t),Y(t, 0) = y(t)). It is then calcu-
lated for increasing filtering levels (i.e., increasing fil-
ter widths σ). On a frame, the curvature is negative on
a convex part and positive on a concave part, because
of the orientation of the y-axis pointing downwards (a
usual rule in image processing tools). We have chosen
to keep this convention, a negative curvature is associ-
ated to a convex portion and a positive curvature to a
concave portion.

The curve to analyze is presented in figure 6a, the
curve being the surface of the synthetic image presented
in figure 5. The curve’s curvatures κ(t, σ) using differ-
ent filter sizes are presented in figure 6b. In compliance
with convention, concave portions of the curve result in
positive curvatures while convex portions result in neg-
ative curvatures.

The surface filtering smooths the surface and hides
the effects of small irregularities of the initial surface,
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Figure 6: (a) Curve to analyze, (b) Curve’s curvatures using different
Gaussian filter widths (in pixels). (c) Curve’s normalized curvatures
using different Gaussian filter widths.

such as protruding AP particles.
The filtering scale σ is an indication of the concav-

ity/convexity scale. But Gaussian filtering mechanically
reduces curvature value with increasing σ. A normal-
ization is here added in order to compare curvatures
calculated with different filter widths σ. The curva-
ture κ is multiplied by the filter width σ, resulting in
the normalized curvature κnorm(t, σ) = σκ(t, σ). A ma-
trix κnorm(t, σ) is calculated from 0 to σmax, for all the
t values along the surface. The normalized curvatures
κnorm(t, σ) using four filter sizes between 0 and 16 pix-
els are presented in figure 6c. The normalized curvature
is maximized with a filter width σ depending directly
on the size of the protrusion. κnorm(t, σ) is maximum for
σ = 9 pixels for the smallest protrusion whereas it is
maximum for σ = 16 pixels for the largest.

In order to follow a direct protrusion detection ap-
proach, a single plot (function of t) is created from the
normalized curvature matrix, by comparing normalized
curvature for all filter widths σ. The single plot is a
descriptor of the curve. It only keeps the extreme one,
either positive or negative:

- κnorm > 0 represents a concave portion of the curve.
- κnorm < 0 represents a convex portion of the curve.

The new descriptor is named the Extreme of Normal-
ized Curvature (ENC). For each position t, the ENC cal-
culation returns the extreme curvature value and the as-
sociated filter-width σext(t), giving information on the
size of the concavity or the convexity:

ENC(t) = extreme
∀σ

(κnorm(t, σ)) (3)

σext(t) = σ | κnorm(t, σ) = ENC(t) (4)

ENC displays either the concavity (when positive) or
convexity (when negative) of the curve. It compares
the normalized curvature of the filtered curve using dif-
ferent filter width σ. The more extreme the ENC is,
the more concave/convex the curve is. σext(t) is the fil-
ter width associated to ENC(t), i.e. the filter width for
which the curve is the more concave or convex. At this
point, we would like to stress that ENC is defined as the
extreme value of normalized curvature among all filter
widths, and not the extreme value of curvature, as given
by equation 1.

The ENC plot for the synthetic image is presented in
figure 7a, the filter width associated σext(t) is presented
in figure 7b. The maximums of ENC correspond to the
center of the concavities of the curve. The minimums of
ENC are located at the protrusion limits (convex parts).
Using directly the ENC to search for the limits of the
protrusions is only possible for synthetic images such as
the one studied, not real images. The reason is that the
surface is not plane as in the synthetic image. The con-
vex portions delimiting the protrusions are not as sharp
as in the synthetic image, resulting in minimums of cur-
vature sometimes wrongly placed.

As an example, ENC for a real shadowgraphy image
is shown in figure 8a. ENC clearly increased the con-
cave portions and facilitate protrusion detection. The
image is trimmed and positions are regularly repre-
sented by cyan crosses in figure 8b in order to link the
surface to the ENC.

3.2. Method
The automatic detection and isolation can not only be

realized by ENC because the convexities are sometimes
wrongly placed. Furthermore, representative size and
protuberance of the protrusions must be calculated in
order to detect only the patterns with sufficient size and
protuberance.

The automatic detection and isolation is realized in
two parts. The first is the protrusion presence detection,
i.e. the detection of concave portions of the curve with
sufficient size and protuberance. The protrusion pres-
ence detection is realized in four steps and presented in
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Figure 7: (a) ENC plot, (b) Filter width associated σext(t) plot, both
of the synthetic image.

section 3.2.1. The second is protrusion limit research,
i.e. the research of the convex portions of the curve
around the convex portion. The protrusion limit re-
search is realized in two steps and presented in section
3.2.2.

3.2.1. Protrusion presence detection

Step 1 : concave portions detection

A protrusion on the surface of the propellant is a con-
cavity to detect with positive curvatures. Therefore, de-
tecting protrusions is obtained by detecting the ENC
maximums. Examples of convexities represented with
ENC local maximums are located at t ≈ 900 pixels
and t ≈ 1400 pixels in figure 8. All local maximums
with prominence equals or superior to a parameter Min-
Prominence are detected. The prominence is the ENC
difference between the local maximum and its surround-
ing local minimums.

The parameter MinProminence is chosen low, i.e. 0.3
here (in ENC units), in order to miss as few protrusions
as possible. Protrusion detections are then validated
with other criteria, i.e. the filter width and the curvature
associated to the protrusion. They are calculated as
follows.

Step 2 : representative size calculation
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Figure 8: (a) ENC of the surface of the propellant studied, (b)
Trimmed image with the surface studied represented in white. Po-
sitions are regularly represented by cyan crosses. Arrows indicate the
location of three specific patterns.

From the step 2, each detection is studied separately.
The presentation of the different steps is realized on the
second protrusion with intermediate size from figure 5.

Let ti the location of the ENC maximum associated to
detection #i. Let ti(1) and ti(2) be the left and right bor-
ders delimiting the concave portion of the curve associ-
ated to detection #i. They are the zero values of ENC
closest to ti. The filter width associated to the detection
σi is calculated as the mean of the filter width associ-
ated to the ENC σext(t) on the interval ⟦ti(1) ; ti(2)⟧.
σi is the mean filter width on the concave portion of
the curve, it is the representative size of the protrusion.
Averaging the filter width aims at reducing sensitivity
to a local value of curvature, therefore considering the
whole concavity of the protrusion and not only its max-
imum.

The mean filter σi calculated for the second protru-
sion is σ2 = 14 pixels (mean value calculated between
the two vertical dashed lines representing t2(1) and t2(2)
in figure 9).
Step 3 : representative protuberance calculation

A normalized curvature value κi is calculated for each
detection #i. It is the maximum normalized curvature
value κnorm for the scale representative of the studied
protrusion, e.g. σi. κnorm(σi) is shown in figure 10,
where κi corresponds to the asterisk at the top of the
curve.
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Figure 9: (a) ENC positive borders research. (b) Mean filter calcula-
tion, for detection #2 of the synthetic image.
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Figure 10: Calculation of the maximum of normalized curvature, for
detection #2 of the synthetic image.

The filter width σi is related to the size of the pro-
trusion while its normalized curvature κi represents its
protuberance from the surface, i.e. how a protrusion
surpasses the propellant surface.

Step 4 : validation of the detection

The two features σi and κi of each detection #i deter-
mine whether it is a valid protrusion or not. Two thresh-
olds σmin and κmin are used. The detection #i is validated
if σi > σmin and κi > κmin. The thresholds σmin and κmin

are determined using the annotations. They are chosen
in order to maximize the detection performances, the
process will be presented in section 4.1.

The thresholding of the two features σi and κi leads to
the detection of patterns whose representative size (σi)
and protrusion (κi) are sufficiently large and represen-

tative of real agglomeration patterns associated to the
inert particles. This aims at avoiding detecting all the
surface irregularities such as protruding AP particles.

3.2.2. Protrusion limits research

Step 5 : temporary limits research

The limits of the protrusion are the convexities of the
curve, linking the particle or aggregate to the propellant
surface. Because an aggregate is formed of several par-
ticles, there may be convexities within the inner portions
of the protrusion and not only on its limits.

The research of the protrusions limits is performed in
two steps in order to be more robust. The first is the
research of temporary limits using the mean filter σi as-
sociated to the detection. The mean filter σi is related
to the real size of the protrusion, enabling the detection
of the total of an aggregate and not only a fraction of
it. Then a refinement of the temporary limits is real-
ized using the curvature without filtering κ0, because it
corresponds to the real protrusion with all its details.

The left and right temporary limits ti(1) and ti(2) are
calculated using the position ti of the detection and the
associated filter width σi. They are the nearest left
and right local minimums of the normalized curvature
κnorm(σi, t) to the detection position ti. The temporary
limits research is illustrated in figure 11a, where it is
applied on the second protrusion of the synthetic image.
The red asterisk is the location of the maximum κi, the
green asterisks are the temporary limits of the protru-
sion.
Step 6 : final limits research

The temporary limits ti(1) and ti(2) are convexities of
the filtered curve. The final limits must be convexities of
the unfiltered curve. The final limits t̃i(1) and t̃i(2) are
chosen from the unfiltered curvature κ0 as the closest
local minimums of κ0 to the temporary positions ti(1)
and ti(2). The final limits research is the final step of
the method. It is illustrated in figure 11b on the second
protrusion of the synthetic image. The green asterisks
are the temporary limit, the black asterisks are the final
limits of the protrusion.

3.3. Summary of the method

The detection of the particles and aggregates and the
research of their limits is realized in six steps, they are
summarized in table 3.

Figure 12 is the synthetic image studied with the three
protrusions detected plotted in different colors. The
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Figure 11: (a) Temporary limits (green asterisk) research (b) Final
limits (black asterisk) research, for detection #2 of the synthetic im-
age.

method correctly detects the protrusions, their limits are
correctly placed, confirming the necessity to research
the protrusions limits by a two-step method.
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Figure 12: Synthetic image with the protrusions plotted with different
colors, obtained with our algorithm.

4. Performances

On real images, objects of interest are protrusions
with sufficient size and protuberance. The algorithm
separate those protrusions from all the protrusions de-
tected thanks to the thresholding of the two features σi

and κi during the step 4 (validation of the detections)
of the method. The values of the parameters σmin and
κmin are chosen in order to optimize the detection per-
formances.

4.1. Protrusion presence detection

The annotations enable the performance calcula-
tion of the protrusion presence detection through a

Table 3: The six steps to obtain the protrusions from the
surface curve.

Step Results
1. ENC creation and

detection of maximums ENC and { ti | i ∈ ⟦1 ; N⟧}

For each detection i = 1 : N
2. ENC positive borders
research and mean filter

calculation
ti(1), ti(2) and σi

3. Maximum of
normalized curvature

calculation
κi

4. Validation of the
detection

If validation
5. Temporary limits

research ti(1) and ti(2)

6. Final limits research t̃i(1) and t̃i(2)

classification. The comparison between detections
and annotations are realized with the positions of the
maximums detected on the ENC and the annotated
limits of the protrusions (represented by magenta
crosses in figure 4). The purpose of the annotations
process is to select the two parameters of the detection
method, the two features σmin and κmin. By maximizing
the global score of detection, the detection method
aligns as closely as possible to the annotations, the
latter representing what should be detected (i.e. inert
particles).

The protrusions are classified in three categories :
- True Positive (TP) when the position of a maximum

ti is included between the limits of an annotation, the de-
tection is confirmed by an annotation. Each annotation
can confirm only one detection.

- False Positive (FP) otherwise.
- False Negative (FN) when an annotation does not

confirm any detection

Two performances metrics are calculated :
- The precision Pr = T P

T P+FP .
- The recall Re = T P

T P+FN .
Precision quantifies the proportion of false detec-

tions. Recall is used to verify that all annotation are in-
deed detected. When more protrusions are detected by
decreasing the two parameters σmin and κmin, the preci-
sion decreases while the recall increases. A compromise
is necessary, the F1 score is usually used in image pro-
cessing. It takes into account both performances metrics
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following equation 5.

F1 = 2
Pr.Re

Pr + Re
(5)

The objective is to maximize the F1 score by choos-
ing the appropriate parameters σmin and κmin.

In order to adjust the two threshold values, a detec-
tion without thresholding is realized in order to detect
all real protrusions and many false protrusions. All pro-
trusions detected are kept and the associated features σi

and κi are calculated. The detections are compared to
the annotations and classified as TP or FP. Figure 13 is
a scatter plot with the parameters σi and κi of the detec-
tions as the graph axes. Each cross/point is a detection,
its color representing whether it is confirmed by an an-
notation (classified as TP) or not (classified as FP). The
propellant studied is the 2427 propellant.
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Figure 13: Classification of the detections depending on the parame-
ters σi and κi (propellant 2427).

A first observation is that the top-right part of the plot
is mostly filled with TP and the bottom-left part with
FP. This was anticipated because a detection with high
σi and κi is a big protrusion, likely to be annotated.

The parameters σmin and κmin must be chosen in order
to maximize the F1 score. Figure 14 is a 2D surface plot
representing the F1 score depending on the parameters
σmin and κmin chosen for the thresholding.

The parameter σmin appears to have less influence, a
huge zone from σmin = 6 to σmin = 10 pixels has F1
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Figure 14: Surface plot of the F1 score depending in the two parame-
ters σmin and κmin (propellant 2427).

score of at least 0.85. The parameter κmin seems to di-
rectly influence the F1 score. This observation is con-
firmed by figure 15, it is a Precision-Recall curve with
a κmin from 0.3 to 0.5 with a 0.02 increment. The pa-
rameter σmin is set to 8 pixels. The F1 score isolines are
drawn in black.

The performances are good for the whole range of
κmin considered, Recall and Precision are always supe-
rior to ≈ 0.80. A small variation of the parameter κmin

does not significantly change the performances. The
F1 score varies slightly from 0.82 to 0.87. The perfor-
mances (Precision and Recall) and the F1 score for three
values of κmin (minimum, optimum and maximum) are
shown in table 4. A κmin of 0.38 maximizes the F1 score

Table 4: Performances for the minimum and maximum
of κmin (propellant 2427).

κmin Precision Recall F1 score
0.30 (Min) 0.79 0.90 0.84
0.38 (Opt) 0.88 0.86 0.87
0.50 (Max) 0.93 0.74 0.82

The maximum F1 score is obtained with a parame-
ter κmin equal to 0.38, with precision and recall very
close. Figure 16 is the real image of the 2427 propel-
lant presented in figure 3 with the detected protrusions
plotted in different colors. The two parameters σmin and

9



0
.7

0.8

0.9

60 65 70 75 80 85 90 95 100

Recall (%)

60

65

70

75

80

85

90

95

100

P
re

c
is

io
n
 (

%
)

Min

Max

Opt

Figure 15: PR-curve depending on the parameter κmin (0.3 ≤ κmin ≤

0.5). The parameter σmin is set to 8 pixels (propellant 2427).

κmin chosen are the optimum parameters calculated. The
presence of the five protrusions annotated (visible in fig-
ure 2) have been correctly detected. Figure 17 is the de-
tection of an image with a coral-like aggregate on the
surface (see the left dark blue structure), showing the
ability of the method to detect complex-shaped patterns.
Figure 17a is the captured image, figure 17b is the image
with the detected protrusions plotted in different colors.
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Figure 16: Real image with the protrusions plotted with different col-
ors (propellant 2427).

The influence of the parameter κmin is similar for all
propellants. Large κmin involves high precision but low
recall. The parameter κmin maximizing the F1 score dif-
fers slightly from one propellant to another (from 0.38
to 0.57). The performances and the maximized F1 score
are presented in table 5 for the four propellants, with
κmin for each of them. The parameter σmin is set to 8 pix-
els for all propellants. For all propellants, the optimum
parameters σmin are really close to 8 pixels and a small

(a)
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Figure 17: (a) Real image (b) Real image with the protrusions plotted
with different colors (propellant 2430).

variation of it marginally changes the performances.

Table 5: Detection performances with a κmin maximiz-
ing the F1 score for all propellants studied (σmin = 8
pixels).

Propellant κmin Precision Recall F1 score
2427 0.38 0.88 0.86 0.87
2429 0.47 0.93 0.94 0.88
2430 0.58 0.90 0.90 0.90
2462 0.57 0.81 0.85 0.83

Overall, detection performances for agglomeration
patterns are good. The F1 score varies from 0.83 to
0.90. For each propellant studied, both precision and
recall are above 80%.

The annotation process itself is slightly uncertain.
Some of the present false detections correspond to shal-
low protrusions associated to single particle, that could
have been annotated. Precision might then be slightly
underestimated. Similarly, some of the missed annota-
tions (i.e. FN) are protrusions from single particles only
partially above from the surface, that are not the main
target for agglomeration study.

The parameter κmin maximizing the F1 score does
seem to be linked to the particles initial size of the pro-
pellants studied. The parameter is smaller for the 2427
and 2429 propellants than for the 2430 and 2462 pro-
pellants, i.e. for compositions with larger particles.

4.2. Image selection sensitivity
The previous analysis might be biased by the sets of

annotated images that were used for performance esti-
mation. In order to investigate the sensitivity of the per-
formance estimation, performances were estimated for
random sets of annotated images.
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A random sub-sampling was tested on the 111 anno-
tated images for composition 2427. Half the annotated
images are picked randomly (55 images) and perfor-
mances are evaluated by comparing the detections of the
algorithm and the annotations on those randomly picked
images only.

The performances are presented in figure 18. The
four colored plots show the performances of the four
arbitrary samplings. The black curve is the original plot
presented in figure 15, representing the performances
calculated for the complete 111 annotated image set.
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Figure 18: Performance plots depending on the parameter κmin for
random samplings of the whole annotated image set (propellant 2427).

The performances are really close from one sampling
to another. With the same parameter κmin, the highest
relative error between the F1 score of two random sam-
pling is equal to 2.61%. The optimum parameter κmin is
equal to 0.38 for three out of the four random sampling,
and is equal to 0.40 for the last one. Hence estimat-
ing the optimum value for κmin does not depend on the
selected annotated images, provided it includes enough
targeted patterns, i.e. several hundreds.

4.3. Limits research
The limits research is the second part of the automatic

detection and isolation of protrusions. Delimiting the
protrusion is as important as detecting their presence,
in order to correctly place the protrusions on the sur-
face of the propellant. Performances are evaluated by

comparing the researched limits to the annotated limits
(magenta crosses in figure 4). The comparison is real-
ized by comparing the size of the protrusion detected by
the algorithm to the protrusion annotated.

The size of the protrusion is related to its limits. If
the final limits found by the algorithm are too distant to
the position ti, the size of the protrusion detected is too
large. On the contrary, if the final limits are too close to
ti, the size of the protrusion detected is too low.

For each detection classified as TP, pattern area is es-
timated, delimited on the bottom part by the segment
connecting the two pattern borders. For both detection
and annotation areas, the equivalent diameter is calcu-
lated considering an aggregate as a disk following equa-
tion 6.

Deq = 2

√
Area
π

(6)

Figure 19 is a scatter plot with each dot being a pro-
trusion of the TP category. The x-axis and the y-axis
are respectively the equivalent diameter for annotations
and detections. The figure is divided into six different
areas, depending on the ratio between Deq(detection)
and Deq(annotation). The dashed lines represent a
±10% tolerance interval and the dotted lines a ±25%
tolerance interval. The full line is Deq(detection) =
Deq(annotation).

Figure 19: Scatter plot of the comparison between annotated and de-
tected protrusions equivalent diameters (propellant 2427).

The percentage of protrusions in the different areas
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are shown in table 6. Around 84% of the protrusions
are within the ±25% tolerance. An overestimation of
the size of the detections can be noticed, that seems
attributed to the estimation of the mean filter σi. The
mean filter σi is always superior to the filter width
σext(t) located at the maximum of ENC ti. The trend
is similar for all propellants, around 80% of the protru-
sions are within the ±25% tolerance with the 20% left
being oversized.

The overestimation of the mean filter σi admittedly
leads to larger protrusions detected but prevents the de-
tection of sub-parts of a protrusion. This would be the
case if a protrusion is made of an aggregation of spher-
ical particles.

Detecting sub-parts of a protrusion would cause un-
certainties when trying to associate an aggregate on two
successive images. Following a surface pattern over
time on successive images is a crucial aspect of agglom-
eration characterization. It is thus preferable to over-
estimate the detections than detecting sub-parts of the
protrusions.

Table 6: Proportion of detection in each class for equiv-
alent diameter relative to annotation diameter (propel-
lant 2427).

Area Deq(detection)
Deq(annotation) interval Proportion

1 > 1.25 16%
2 1.1 − 1.25 23%
3 1.0 − 1.1 43%
4 0.9 − 1.0 15%
5 0.75 − 0.9 3%
6 < 0.75 0%

5. Limitations and improvements

Shadowgraphy captures a 1D “integrated” surface
while the real surface of the propellant is 2D (integra-
tion over the depth of field). Due to the image projec-
tion, particles and aggregates can be hidden by parts of
the solid propellant, or even other particles. The propel-
lant 1D “integrated” surface is irregular, protruding AP
particles or binder could be represented by a a soft con-
cave portion on the 1D curve. The whole process of fil-
tering and thresholding of the present detection method
aimed at limiting as much as possible wrong detections.

A special attention on the propellant ignition was per-
formed in order to get a burning surface as plane and
horizontal as possible, limiting the irregularity of the
surface due to other things than particles or aggregates,

such as high curvature levels induced by a portion of the
sample ignited before the others. In addition, the sam-
ple thickness and the depth of field are relatively small
(1 − 2mm) to try to reduce the projection effects.

In order to further improve robustness, a coupling
with the detections of particles/aggregates in the gas
flow is considered. The gas flow is transparent, the de-
tection of inert particles in it gives good results [26].
A first work on this coupling has been published [38].
Figure 20, taken from [38], shows a coupling example.
Figure 20a is a detection on the surface with the method
presented in this article, figure 20b is the coupled detec-
tion in the gas flow on the following image.
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Figure 20: (a) A detection on the surface (b) Coupled detection in the
gas flow on the following image.

Surface detections can be followed easily over time
[38] and their ejection in the gas flow is either confirmed
or invalidated. The coupling with the detections in the
gas flow aims at making the surface detection method
more robust, thus allowing to solve (at least partially)
the problems raised previously by limiting the amount
of wrong detection.

Sizes of particles and aggregates in the gas flow can
be estimated with good precision [26]. The unagglom-
erated particles size should be very similar to the ini-
tial particles, comparing the two size distributions is a
way to examine the correct application of the detection
method. Furthermore, the relevance of the approach can
be checked by comparing the detected sizes (of parti-
cles and aggregates) with standard collection techniques
(e.g. quench bombs) in future works.

6. Conclusions

An algorithm detecting particles and aggregates on
the surface of a solid propellant has been developed. A
new descriptor, the Extreme of Normalized Curvature
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(ENC) has been created based on the curvature of the
curve using Gaussian filters of different widths. The de-
tection of convex parts, potentially being a particle or an
aggregate, is obtained by locating the maximums of the
ENC. Two features are calculated for each detection and
give information about the size and the protuberance of
the detection. A thresholding is performed in order to
validate the detections of sufficient size and protuber-
ance. The research of the limits of the detections fol-
lows a multi-scale approach.

Detection performances for the algorithm have been
evaluated by comparing the detections to manual anno-
tations. A parametric study has been realized in order to
find the most suitable parameter to implement in the al-
gorithm. The maximum F1 score calculated varies from
0.83 to 0.90, depending on the propellant studied. Glob-
ally, the algorithm correctly detects particles and aggre-
gates on the solid propellant surface. The optimum pa-
rameter determination does not seem to be much sensi-
tive to the set of images annotated.

The research of the limits of the protrusions has
also been evaluated by comparing the equivalent diam-
eters of the detections to the annotations. Concerning
the 2427 propellant, about 84% of the detections have
equivalent diameters relatively close to the annotation,
within a ±25% tolerance.

The detection method has some limitations. Experi-
mental efforts reduce the potential of the mentioned lim-
itations. A further consolidation of the surface detec-
tion method through the coupling with detections in the
gas flow aims at improving robustness and undermine
its limitations.

The final stage is to apply the algorithm of detections
to propellant containing aluminum particles, those
are employed in Solid Rocket Motors. The detection
method can detect particles and aggregates before they
start to merge. New image processing tools are required
in order to detect the merging aggregate when it turns
into a droplet.
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