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Abstract— Iterative Closest Point (ICP) algorithms are widely used
in the literature for the estimation of relative transformations using
3D LiDAR point clouds. This class of algorithms proves to be
efficient when the 3D data share sufficient overlapping parts and a
good initial guess is provided. However, large relative motions and
mutual occlusion of objects in real-road scenarios hinder traditional
optimization-based ICP from achieving optimal estimation. This pa-
per explores both direct and feature-based 3D LiDAR scan matching
using the ICP framework in different contexts, such as parking,
residential, urban, and highway scenarios. In order to guarantee the
scan matching performances in scenarios with scarce geometric
information and fast ego-vehicle motion, we propose an adaptive
semi-direct scan matching method together with an alignment uncertainty quantification. The proposed semi-direct scan
matching is tested on both the public KITTI and self-recorded LS2N datasets, which accomplishes the robust 6 Degrees
of Freedom (DoF) pose estimation and consistent scene reconstruction. We demonstrate that the proposed approach
outperforms the state-of-the-art and achieves the leading results with 68.3% average relative fitness and 5.71 cm average
RMSE, respectively.

Index Terms— LiDAR-based sensing, Scan matching, Ego-motion, State estimation, Uncertainty quantification

I. INTRODUCTION

PERCEPTION of the surrounding environment and self-
positioning are important functions for intelligent ve-

hicles. Global Navigation Satellite Systems (GNSS) allow
for the estimation of the vehicle global position in outdoor
environments. In GNSS-denied areas, the relative position
is estimated using sensors such as the Light Detection and
Ranging (LiDAR) that enable the construction of maps of
the surrounding environment [1]. For safety-critical functions,
LIDARs are used with video cameras to have better depth
information and add redundancy [2]. This is mainly attributed
to LiDAR’s insensitivity to illumination conditions and om-
nidirectional field of view, which enables scale-aware 6 DoF
pose estimation and precise 3D scene mapping.

LiDAR scan matching algorithms are categorized into direct
and feature-based approaches based on matching raw data
or local features in the LiDAR scans. The direct LiDAR
scan matching method aligns the raw point clouds without
distinguishing the feature points. The correspondences are
built iteratively according to the closest neighbor criteria. And
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the optimal transformation is estimated that aligns the source
and target point clouds. However, it needs to be noticed that
the direct method always requires a good initial guess to
start, and it does not work efficiently for partial overlapping
and noisy scans. The feature-based LiDAR scan matching
methods extract local features from raw point clouds and use
high-dimension descriptors for matching these features. The
established corresponding feature points will then be used
to estimate the relative transformation, which increases the
robustness against noise and erroneous matches. Nonetheless,
in repetitive and feature-less environments, the feature-based
method may perform poorly due to the absence of anchor
features for scan alignment.

Semi-direct approaches were proposed in [3] [4] for vision-
based state estimation to overcome the problem of visual
illumination changes and loss of visual feature tracking. Ba-
sically, the feature-based method provides an initial estimate
for the direct method, which then improves the accuracy and
reliability of the estimation. Inspired by those performances
in vision-based state estimation, we come up with a so-called
semi-direct LiDAR scan matching approach that combines
the conceptually complementary direct and feature-based scan
matching. The proposed semi-direct LiDAR scan matching
algorithm ensures that the registration is robust against the
high-speed or large-rotation motion, or traveling in repetitive
and feature-less environments. For vehicles driving on roads,
the highly isotropic ground points are inevitably scanned and
matched, which may bias the state estimation. In order to
reduce the registration lag effects, ground points need to be
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removed beforehand. Thus, we first apply a simple but efficient
method to identify and clear the ground points with the prior
vehicle height and planar motion assumptions. Moreover, an
uncertainty model of the relative transformation is also per-
formed to evaluate the scan matching quality, which also lays
the basis for pose-graph optimization [5]. The contributions of
this paper are the following:

1) A robust semi-direct 3D LiDAR scan matching approach
is proposed, whose adaptive initialization procedure fa-
cilitates accurate 3D point cloud registration.

2) The registration lag effect of 3D LiDAR scan matching
is solved by implementing a consensus-based ground
plane fitting and ground points removal. The consensus
is based on the least summed distance of the potential
ground points to the estimated plane.

3) An uncertainty model for the 3D LiDAR scan matching
is proposed and evaluated. The main factors which
degrade LiDAR scan alignment performances are also
analyzed.

4) The uncertainty model is integrated into the global pose-
graph optimization to reduce the pairwise registration
drift and to obtain consistent scene mapping.

The rest of this paper is organized as follows: In Section
II, the related work and recent advances in LiDAR-based scan
matching problems is covered. Then, the proposed method-
ology is detailed in Section III. After that, the experimental
results and corresponding analysis are shown in Section IV.
Finally, the conclusion and future perspectives are given in
Section V.

II. RELATED WORK

In the past few decades, several achievements in 6 DoF
pose estimation using 3D LiDAR scan matching have been
obtained, which reach centimeter-level precision. In order to
tightly align two time-consecutive point clouds, ICP-based al-
gorithms are well-recognized methods to estimate the relative
transformation of the LiDAR scans.

A. Direct scan matching
The direct ICP scan matching algorithm is firstly intro-

duced by [6]. The ICP algorithm iteratively searches for the
nearest neighbor in the target point cloud and builds the
correspondences, which refines the optimal relative transfor-
mation through iterations. In [6], the point-to-point distance
is used for the closest neighbor association, which might
be too greedy when the two scans are captured with strong
viewpoint changes. In order to mitigate this problem, the
point-to-plane distance is proposed in [7] for robust data
association. Compared with the point-to-point distance metric,
the point-to-plane distance metric relaxes the strict point-to-
point correspondence restrictions, which is more adaptable for
partially overlapping scans in practice. With the purpose of
unifying the point-to-point and point-to-plane distance metrics
into a probabilistic framework, Generalized-ICP (G-ICP) has
been proposed in [8]. The G-ICP framework aims to align the
LiDAR scan surfaces instead of distinctive individual points,
which is more tolerant to incorrect correspondences and also

reduces the risks of being stuck in local minima for the
partially overlapped LiDAR points clouds. Moreover, since
the G-ICP framework leverages the probabilistic model for
LiDAR scan alignment, it maintains better robustness against
the measurement noise due to manufacturing limitations or
extreme working conditions.

B. Feature-based scan matching
Instead of aligning the whole raw 3D point cloud, the

feature-based methods extract distinctive feature points and
build the correspondences based on pre-computed descriptors.
For example, a double-layer feature-based method is proposed
in [9] to extract ground and vertical features that match the
corresponding scan observations. Also in [10], four planar
feature points are extracted in the region of interest for
accurate automotive LiDAR alignment inspection. In order
to efficiently compute the features, the 3D point clouds are
projected into rasterized range images in [11], where the visual
ORB features can be trivially extracted for state estimation and
loop closure. Recently, inspired by images-based approaches,
viewpoint invariant 3D descriptors such as FPFH [12] and
SHOT [13] have emerged to characterize the local patches
in the LiDAR scans. Sample Consensus Initial Alignment
(SAC-IA) has been proposed in [12] for the rough scan
alignment. This approach is robust to sensor noise but might
cause overfitting in information-deprived environments such as
indoor corridors, outdoor tunnels, or highways. Furthermore,
the emergence of data-driven methods is reflected in the
estimation of the 6 DoF pose using an end-to-end approach
as in PointLoc [14].

C. Hybrid scan matching
The accuracy of the standard ICP scan matching is highly

dependent on the initialization process as reported in [15].
It means that a large deviation of the initial alignment may
cause the ICP optimization to diverge or get stuck in local
minima. Thus, hybrid methods that incorporate visual, IMU,
GNSS, and range sensor information have been proposed for
reliable state estimation and scene reconstruction. In [16],
the multi-sensor data are tightly coupled for accurate rail
vehicle localization and mapping even in degenerated en-
vironments. The visual and LiDAR sensor information are
loosely coupled by covariance intersection in [17] for the
robust inter-frame transformation estimation. Besides, a multi-
sensor joint optimization approach has been proposed in [18]
and the dual-layer optimization design ensures both local
and global estimation consistency. At the same time, the
RTK/IMU measurements are employed to verify the LiDAR
scan matching accuracy to prevent degenerated estimation in
[19]. Furthermore, the drift of the incremental LiDAR scan
alignment can be eliminated by the vision-based bag-of-words
place recognition technique, as demonstrated in [20].

D. Scan matching uncertainty
For the LiDAR scan matching, it is crucial to evaluate

the corresponding uncertainty for the estimated relative trans-
formation. This is beneficial for sensor fusion or weight
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assignment in pose graphs to mitigate local errors. Another
advantage of uncertainty modeling is to bound the estimation
error within a known confidence interval, which is the prereq-
uisite for road obstacle avoidance and interactive navigation
tasks. There exist several methods for the LiDAR scan match-
ing covariance estimation. A singular value decomposition-
based method is proposed for the LiDAR-based 6 DoF pose
error propagation and covariance estimation [1]. Based on
the estimated covariance, the accumulated errors can then
be corrected with the GNSS data. A closed-form covariance
estimation method is presented in [21], which is based on
the objective function linearization around the optimal esti-
mation. In order to correctly propagate the uncertainty from
the measurement space to the estimation domain, the second-
order derivatives of the objective function are calculated and
applied to the initial measurement noise. Nevertheless, it needs
to be noted that the closed-form covariance estimation only
considers the uncertainty caused by the sensor noise; thus,
it could not apply to the local minima situations. Monte
Carlo simulation [22] is another branch of the uncertainty
modeling methods, which iteratively generates different input
point clouds to test the estimated transformation sensitivity.
Then several estimates could be computed with different input
samples. Based on Monte Carlo simulation scan matching re-
sults, the distribution of the relative transformation estimation
can be constructed. Nevertheless, brute force sampling is time-
consuming and limits the application scenarios.

III. PROPOSED APPROACH

degeneracy problem

3D LiDAR Scans

3D Point Cloud Registration

Semi-direct Scan Matching Scan Matching Uncertainty

Raw Point Clouds

Valid Matches

3D Point Cloud Pre-processing

Initial Poses Pose Uncertainties
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Fig. 1. Overview of the proposed semi-direct LiDAR scan matching and
scene mapping framework

The pipeline of the proposed approach is shown in Fig. 1.
For consecutive LiDAR scans perceived in the vehicle local
frame, point cloud pre-processing is necessary before imple-
menting the scan matching. The point cloud pre-processing
includes scattered outliers and ground points removal, which
will significantly ease the false correspondence matching
problem. Afterwards, a robust semi-direct scan matching is
applied to compute the 6 DoF motion and to estimate the

relative transformation covariance. Since the scan matching-
based localization is bound to drift over time, a pose-graph
optimization is then used to reduce the local drift and to render
a globally consistent mapping. In order to make the proposed
approach easy to follow, the notations for the semi-direct scan
matching are explained in Table I.

TABLE I
NOTATION TABLE FOR THE SEMI-DIRECT SCAN MATCHING

Symbol Meaning

(xi,x
′
i)

The matched 3D points in the source and target point
clouds

Vi The voxel point set for the point cloud downsampling
ci The centroid of 3D points inside Vi

|·| The cardinality of a 3D point set
xG
l

The potential 3D ground point
Ĝt The estimated potential 3D ground points set
hprior The LiDAR installation height prior
n⃗G
xl

The unit normal vector around xG
l

xG
lz The z-coordinate of xG

l
γoff The angle offset between n⃗G

xl
and vertical unit vector

P̂G The estimated ground plane
P∗

G The optimal ground plane
hoff The distance offset between xG

l and P∗
G

{S△t , S△t+1} The pre-processed consecutive LiDAR scans
C
ii

′ The inlier correspondence set
t+1T∗

t
The optimal transformation that aligns the consecu-
tive LiDAR scans

n⃗
′
i The unit normal vector around x

′
i

N(xi) The spherical neighbor point set around xi

x̄ The mean position of points in N(xi)
Σ(xi) The scattered matrix of points in N(xi)

{λ1
i , λ

2
i , λ

3
i }

The eigenvalues of the Σ(xi) eigenvalue decompo-
sition

{e1i , e2i , e3i }
The eigenvectors of the Σ(xi) eigenvalue decompo-
sition

{γ21, γ32} The salience thresholds for the ISS features detection
dij The edge distance between the point xi and xj

CD(·) The Chamfer Distance between the aligned point
clouds

Tf
The feature-based coarse transformation that aligns
the consecutive LiDAR scans

Tinit
The initial transformation that aligns the consecutive
LiDAR scans

Lsize The downsampling voxel size
t+1T̂t

The estimated transformation that aligns the consec-
utive LiDAR scans

T−1
t Tt+1

The ground truth transformation that aligns the con-
secutive LiDAR scans

∥(·)∥2 The Euclidean norm
r = [α, β, γ]T The XYZ Euler angles parameterization
t = [x, y, z]T The XYZ translation parameterization
R(·) The rotation angle matrix parameterization

(·)∧ The skew symmetric matrix of cross product multi-
plication

D(·) The inconsistency indicator for uncertainty modeling
Λ The quadratic form information matrix

A. 3D Point cloud pre-processing
1) Scattered outlier points removal: Sparse and non-

permanent scattered scene components, like tree leaves or
bushes, may pose challenges for accurate scan matching. In
our approach, a Gaussian distribution-based outlier rejection
method is performed to remove the sparse and isolated points.
Subsequently, the voxel grid filter with the leaf size Lsize is
applied to down-sample and to approximate the point clouds
for efficient scan alignment. For the points inside each voxel
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point set {xi : xi ∈ Vi}, they are approximated with their
centroid ci =

∑
xi∈Vi

xi

|Vi|
, where |·| denotes the cardinality of

a set. This operation will greatly reduce the number of points
without losing the raw points distribution.

2) Ground points removal: When traveling on real roads, the
point cloud acquired by the LiDAR sensor naturally contains
many ground points. Ground points on flat roads tend to be
isotropic and they encode little geometric information for the
data association step. A slight deviation during iterative nearest
neighbor tracking can cause ground point mismatches and
distort the entire scan alignment.

To address these problems, a consensus-based method is
used to segment ground points, assuming the vehicle follows a
planar motion and the LiDAR installation height is known. On
this basis, a set of potential ground points {xG

l : xG
l ∈ Ĝt} are

selected, incorporating all the points that locate hprior along the
z-axis under the vehicle roof. Hereby, hprior is highly linked to
the LiDAR installation height. Meanwhile, another condition
for potential points selection is that the unit normal vector n⃗G

xl

around the potential ground point xG
l needs to stay within an

offset of γoff from the z-axis of the LiDAR local frame. The
offset γoff allows the slightly sloped terrain points to participate
in the ground plane estimation, considering the fact that the
driving road is not always fully flat.

xG
lz < −hprior, [0, 0, 1] · n⃗G

xl
> cos(γoff) (1)

After that, the consensus-based method iteratively picks three
non-collinear points {xG

i ,x
G
j ,x

G
k } within the potential ground

point set Ĝt. The selected points are used to fit the ground
plane equation P̂G : Ax+By+Cz+D = 0. The distances of
the potential ground points {xG

l : xG
l ∈ Ĝt} to the estimated

plane P̂G are then computed and summed up. The summed
distances are used to vote for the plane candidates until the
convergence criteria are met. At the end of the iterations,
the plane with the least summed point-to-plane distances is
chosen as the optimal ground plane P∗

G. Once the ground
plane is identified, points in Ĝt within distance threshold hoff
to the optimal ground plane P∗

G are also considered as ground
points. This strategy helps to increase robustness against
measurement noise for ground point segmentation. Finally,
after the scattered outliers and the ground points removal,
the pre-processed LiDAR scans {S△t ,S△t+1}t=1,··· ,τ−1 can be
obtained for the following 3D point cloud registration.

B. 3D Point cloud registration

1) Semi-direct scan matching: According to [15], direct
scan matching with raw point clouds is less efficient for
large baseline motions, while feature-based methods lose their
advantages to bootstrap from local minima in feature-less en-
vironments. To complement the weakness of individual direct
or feature-based methods, a hybrid semi-direct approach is
proposed in this paper. The semi-direct LiDAR scan matching
pipeline is detailed in Algorithm 1 at the end of Section III-
B.1. Hereby, a feature-based method is leveraged to estimate a
coarse but globally consistent inter-frame transformation that
serves as a prior for the following multi-scale direct dense

point cloud alignment. In the proposed semi-direct approach,
the point-to-plane distance metric is adopted for the optimal
relative transformation t+1T∗

t estimation,

t+1T∗
t = argmin

t+1Tt

∑
(xi,x

′
i)∈C

ii
′

∥(x
′

i − t+1Tt.xi)
T n⃗

′

i∥2 (2)

where Cii′ is the inlier correspondence set incorporating the
matched point pairs {(xi,x

′

i)} in the source and target LiDAR
scans. The plane unit normal vectors n⃗

′

i around x
′

i in the
target LiDAR scan could effectively guide the scan matching
process to distinguish points lying on different surfaces and
discard unreliable correspondences {(xi,x

′

i)}. For the sake of
reducing spurious correspondences, the selected features for
the sparse point cloud alignment need to be distinctive and
invariant to viewpoint changes. To this end, the salience-based
intrinsic Shape Signatures (ISS) [23] keypoints extraction
method is adopted, in which the salience measure is derived
from the scatter matrix Σ(xi) eigenvalue decomposition.

x̄ =
1

|N(xi)|
∑

xj∈N(xi)

xj (3)

Σ(xi) =
1

|N(xi)|
∑

xj∈N(xi)

(xj − x̄) (xj − x̄)
T (4)

where N(xi) are the spherical neighbors of xi within a pre-
defined radius and |·| denotes the number of points within the
set. With the scatter matrix Σ(xi) eigenvalue decomposition,
the descending magnitude eigenvalues {λ1

i , λ
2
i , λ

3
i } can be

calculated, and their corresponding eigenvectors {e1i , e2i , e3i }
are used to build the intrinsic reference frame. To ensure the
distinctiveness of the local features, the ratios of the sequential
eigenvalues of the scatter matrix Σ(xi) are required to not
exceed the salience thresholds γ21 and γ32 for the pruning
purpose [23].

λ2
i /λ

1
i < γ21, λ3

i /λ
2
i < γ32 (5)

where γ21 is the upper bound on the ratio between the
second and the first eigenvalue and γ32 is the upper bound
on the ratio between the third and the second eigenvalue
returned by the scatter matrix eigenvalue decomposition. The
salience thresholds γ21 and γ32 guarantee that the estab-
lished intrinsic reference frame exhibits maximum salience
along the principal directions, which makes features more
informative and recognizable from various viewpoints. As
long as the ISS features are extracted from the 3D point
cloud, the efficient Fast Point Feature Histogram (FPFH)
descriptor [12] is used for robust data association. FPFH is
basically a 33-dimensional vector that characterizes the local
geometry around a point. It efficiently enriches the keypoints
description and helps to establish the keypoints correspon-
dences. Through iteratively taking three pairs of matched
feature points {(xi,x

′

i), (xj ,x
′

j), (xk,x
′

k)} and implementing
correspondence consistency (edge similarity) check, the trans-
formation matrix Tf that optimally aligns the sparse feature
points could be obtained by the Random Sample Consensus
(RANSAC) method. The correspondence consistency check
is to verify the edges distance {(dij , dik, djk), (d

′

ij , d
′

ik, d
′

jk)}
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formed by the features in each frame. This prevents mis-
matches in the environment with repeatable features. The
correspondences are then considered valid if the features are
not collinear

(xi − xj)/dij ̸= (xi − xk)/dik
(x

′

i − x
′

j)/d
′

ij ̸= (x
′

i − x
′

k)/d
′

ik

(6)

and their formed edges have similar length as

0.9 < dij/d
′

ij , dik/d
′

ik, djk/d
′

jk < 1.1 (7)

Given a set of associated feature points, the RANSAC-
based scan matching does not require an initial guess and
is more robust to outliers. This alleviates the problem of
getting stuck at the local minima. However, in a feature-
less environment with few distinctive features to be extracted,
feature tracking tends to be hard to manage. In this way, we
need to evaluate the estimated transformation Tf from the
feature-based method and the transformation heuristics tT̂t−1.
Hereby, the transformation heuristics come from the constant
velocity motion model and the evaluation metric used is the
Chamfer Distance. The Chamfer Distance CD(·) in (8) is a
metric to measure the tightness of two aligned point clouds
{St,St+1}, with the expression as

CD (St,St+1) =
1

|St|
∑
xi∈St

min
x
′
i∈St+1

∥xi − x
′

i∥2

+
1

|St+1|
∑

x
′
j∈St+1

min
x∈
j St
∥xj − x

′

j∥2
(8)

and |·| stands for the cardinality of the point set. This step
helps to choose a more reliable initialization point Tinit for
the dense alignment.

Tinit = argmin
tT̂t−1,Tf

{CD(tT̂t−1S△t , S△t+1), CD(TfS
△
t , S△t+1)}

(9)
Then the multi-scale pyramidal dense point cloud alignment is
implemented to refine the coarse initial transformation Tinit.
The multi-scale pyramid defines a two-layer maximum corre-
spondence distance as 3×Lsize and Lsize, that are proportional
to the downsampling voxel leaf size. The first layer point
cloud alignment has the maximum correspondence distance
of 3×Lsize, whose convergence criteria is simple to reach. As
a result, the first layer alignment further eliminates the effect
of false correspondence and reduces the risk of being stuck
in the local minima. Then, based on the result from the first
layer, the second layer pyramid searches in a finer scale for
the final tight point-cloud alignment. This design adaptively
determines the nearest neighbor searching radius without fine-
tuning, which greatly facilitates optimization convergence for
partially overlapping point clouds.

Algorithm 1 Semi-Direct Scan Matching Algorithm
Input: Consecutive LiDAR scans {St,St+1}t=1,··· ,τ−1, Rel-

ative transformation heuristics tT̂t−1

Output: Estimated transformation t+1T̂t that tightly aligns
the consecutive scans

1: Initialize 1T̂0 ← I4
2: while New LiDAR scan arrives do
3: Remove the scattered outliers and ground points to get

the processed LiDAR scans {S△t ,S△t+1}
4: Apply the ISS keypoints detection, FPFH description to

{S△t ,S△t+1}
5: Implement the keypoints correspondence consistency

check and only keep the valid ones using (6), (7)
6: Obtain the rough transformation Tf with the consistent

keypoints correspondences using RANSAC
7: Evaluate the Chamfer Distance CD(·) of tT̂t−1 and

Tf , then choose the initial guess Tinit using (9)
8: Conduct the multi-scale dense alignment with Tinit and

get the relative transformation t+1T̂t

9: Update the LiDAR scan timestamp t← t+ 1
10: end while

2) Scan matching uncertainty: In the proposed pipeline, the
uncertainty quantification is integrated into the pose-graph op-
timization to limit the frame-to-frame estimation drift. In order
to maintain computation efficiency and estimation accuracy,
the derivative-free covariance estimation method is adopted to
assess the scan matching quality. Owing to the point cloud pre-
processing and semi-direct coarse-to-fine point cloud align-
ment, a considerable number of outliers are filtered out. And
we manage to predict the LiDAR scan matching uncertainty
in large-scale outdoor scenarios with measurement noise and
large viewpoint changes. Given the two consecutive LiDAR
scans in the local sensor frame St and St+1, the estimated
relative transformation t+1T̂t tightly aligns the corresponding
points1 {xi : xi ∈ St} and {x′

i : x
′

i ∈ St+1} in the point
clouds. Essentially, the uncertainty estimation is based on the
inconsistency indicator D(t+1T̂t,Tt,Tt+1) in (14), which re-
flects the overall discrepancies between the points in the inlier
correspondence set Cii′ . The inlier correspondence set Cii′

incorporates all valid pairwise correspondences (xi,x
′

i) within

a predefined euclidean distance threshold
∥∥∥t+1T̂txi − x

′

i

∥∥∥2 <

ϵ. The error tolerance ϵ is linked to the downsampling voxel
leaf size Lsize, which is set as 0.1m in our case. And the
information matrix can then be extracted via the local param-
eterization ξ = [r, t]T = [α, β, γ, x, y, z]T that expresses the
estimated transformation t+1T̂t and true value transformation
T−1

t Tt+1 discrepancies in such manner:

T−1
t Tt+1

t+1T̂t ≈
[
I3 + r∧ t

0 1

]
(10)

where r = [α, β, γ]T represents the rotation angles2 along the
x−y−z axes sequentially, and t stands for the corresponding

1{xi} are points with the homogeneous coordinates and {x∧
ivec

} are skew
symmetric matrices of points with the vectorized cartesian coordinates

2For the local parameterization of transformation discrepancy, the rotation
angles are far away from their singular positions of π

2
, thus the gimbal lock

issue of Euler angle parametrization is avoided
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translation parts. And the approximation is made for the
infinitesimal rotations angles:

R = Rz(γ)Ry(β)Rx(α) ≈ I3 +

 0 −γ β
γ 0 −α
−β α 0

 (11)

After that, with the cross product (·)× and skew symmetric
matrix (·)∧ substitution,

r× xivec = −xivec × r = r∧xivec = −x∧
ivec

r (12)

the inconsistency indicator can be approximated as:

D(t+1T̂t,Tt,Tt+1) =
∑

(xi,x
′
i)∈C

ii
′

∥∥∥t+1T̂txi − x
′

i

∥∥∥2
=

∑
(xi,x

′
i)∈C

ii
′

∥∥∥t+1T̂txi −T−1
t+1Ttxi

∥∥∥2
=

∑
(xi,x

′
i)∈C

ii
′

∥∥∥T−1
t Tt+1

t+1T̂txi − xi

∥∥∥2
≈

∑
(xi,x

′
i)∈C

ii
′

∥r× xivec + t∥2

=
∑

(xi,x
′
i)∈C

ii
′

∥∥[−x∧
ivec

I3
]
ξ
∥∥2

= ξTΛξ
(13)

where Λ is the information matrix in the quadratic form with
the expression as follows:

Λ =
∑

(xi,x
′
i)∈C

ii
′

[
−x∧

ivec
I3
]T [
−x∧

ivec
I3
]

(14)

The information matrix gives a direct reflection of the tightness
of two LiDAR scans being aligned, and its inverse Λ−1

can be considered as the covariance matrix to model the
scan matching uncertainty. Compared with the scan alignment
itself, the covariance matrix is calculated only once at the
final iteration, and its estimation time is negligible since it is
derivative-free.

3) Scan matching back-end optimization: In order to reduce
the LiDAR scan matching pairwise registration drift, the
uncertainty quantification can be integrated into the global
pose-graph optimization [5]. A pose graph is linked with
edges which represent pairwise registration, and the deviated
poses are adjusted and smoothed based on the edge constraints
to optimize the overall discrepancies among the co-visible
LiDAR scans. With such back-end optimization, the refined
poses for point clouds registration can be obtained, which lays
the basis for consistent scene mapping.

IV. EXPERIMENTAL RESULTS

To evaluate the performances of the proposed Semi-Direct
Scan Matching (SD-SM) approach, extensive experiments
have been carried out using the public KITTI [24] and self-
recorded LS2N datasets at the Centrale Nantes Campus. Com-
pared with more recent public datasets such as Nuscenes [25]

TABLE II
THE PARAMETERS TABLE FOR THE PROPOSED SD-SM

Lsize hprior γoff hoff γ21 γ32

0.1m 1.4m π
5
rad 0.2m 0.975 0.975

and PandaSet [26], the KITTI dataset is more dedicated to the
ego-motion estimation with available precise 6 DoF ground
truth poses. The KITTI dataset point cloud is acquired with
a Velodyne HDL-64E laser scanner, which has 64 channels
with a maximum range of 120m. Our self-recorded dataset
is collected with a light-weight Velodyne VLP-16 LiDAR,
which only has 16 layers and renders sparser point clouds than
the HDL-64E. The scene characteristics for the experimental
datasets are described in Table III, which include the scenario
type, moving objects occurrence, and the number of road in-
tersections. The parameters chosen for the proposed approach
are summarized in the Table II. And all the LiDAR scans
have been undistorted by compensating for the vehicle ego-
motion. The two evaluation metrics are the Relative Fitness
(RF) and Relative Root Mean Square Error (RMSE) of the
inlier correspondences {Cii′}, that can be expressed as

RF =
|Cii′ |
|St+1|

, RMSE =
1

|Cii′ |
∑

(xi,x
′
i)∈C

ii
′

√
∥Txi − x

′
i∥2

(15)
and |·| denotes the cardinality of the inlier correspondences
set. The Relative Fitness (RF) measures the proportion of
associated inliers {(xi,x

′

i) : (xi,x
′

i) ∈ Cii′} among the full
target cloud St+1, and ideal relative fitness value is close to
1. RMSE measures the root mean square errors of all inlier
correspondences, and lower RMSE value represents tighter
alignment. In this section, we put the analysis emphasis on
three principal parts that include the ground points removal,
the semi-direct scan matching, and the uncertainty modeling.

TABLE III
EXPERIMENTAL DATASET SEQUENCE SCENE CHARACTERISTICS

Dataset Scenario Moving Object Occurrence No.Intersection
KITTI 00 residential occasional 26
KITTI 01 highway constant 2
KITTI 02 residential occasional 19
KITTI 03 residential occasional 1
KITTI 04 urban constant 0
KITTI 05 residential occasional 10
KITTI 06 residential occasional 2
KITTI 07 residential occasional 6
KITTI 08 residential occasional 17
KITTI 09 residential occasional 6
KITTI 10 residential occasional 3
LS2N 00 parking occasional 2
LS2N 01 parking occasional 10

A. Ground points segmentation
According to the KITTI sensor setup specifications3, the

LiDAR installation height is 1.73m from the ground. This

3http://www.cvlibs.net/datasets/kitti/setup.php
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verifies that our ground plane estimation P∗
G : −0.00x +

0.03y+ 1.00z + 1.75 = 0 is precise and reliable. This can be
mainly attributed to the fact that the potential ground points
set has been strictly selected and only contains few outliers.
As a result, the consensus-based ground plane estimation
avoids local minima, which facilitates accurate ground points
segmentation. The registration lag effect, which means that
erroneous matches on the ground points will disrupt the
seamless alignment of the point clouds, is shown in Fig. 2. And
the qualitative registration lag effect result in Fig. 2 reveals the
necessity to remove the ground points before conducting the
LiDAR scan matching.

(a) The ground points erroneous matches dis-
tract the point clouds from seamless alignment

(b) The registration lag effect is eased by
ground points removal

Fig. 2. Qualitative results for the registration lag effect caused by the
ground points erroneous matches for the KITTI sequence 05

B. Registration results benchmarking
In order to benchmark the performances of the proposed

semi-direct scan matching method, a thorough quantitative
evaluation is conducted in various scenarios. The scenario
types are listed as residential (KITTI 00, 02-03, 05-10),
highway (KITTI 01), urban (KITTI 04), and outdoor parking
(LS2N 00-01) areas. In these different driving scenarios, the
vehicle ego-motion varies a lot. And it provides high-speed
motion on the highway and mild motion in the parking area
for us to investigate the performance of different LiDAR scan
matching approaches. Table. IV lists the RF and RMSE metric
values of the state-of-the-art scan matching methods as well
as our approach, including Direct ICP [7] (D-ICP), Feature-
based ICP [12] (F-ICP), Generalized ICP [8] (G-ICP) and our
Semi-Direct Scan Matching (SD-SM). The scan registration
with the relative fitness below 30% is considered as invalid
and the RMSE value is not computed in that case.

From Table. IV, it is shown that the dense point cloud align-
ment using the direct ICP is generally superior to the sparse
feature-based ICP. Particularly, for the sequence of LS2N 00,
direct ICP outperforms other approaches in terms of the fitness
metric. It is due to the fact that the ego-vehicle moves slowly
in the parking area. Since more raw point cloud information
is leveraged for scan matching, the direct ICP has better
performance when the subsequent scans that share adequate

(a) Point cloud registration stuck in local minima
for the D-ICP

(b) Point cloud registration boosted from local
minima for the SD-SM

Fig. 3. Point cloud registration results visualization at the road intersec-
tion for frame 133-134 in the KITTI sequence 05

(a) Point cloud registration lag in the feature-
less environment for the F-ICP

(b) Robust point cloud registration with the
adaptive initialization strategy for the SD-SM

Fig. 4. Point cloud registration results visualization on the highway for
frame 634-635 in the KITTI sequence 01

overlapping areas. The sparsity of the point clouds obtained
by 16-layer LiDAR is another reason for the poor performance
of the feature-based method. However, when the ego-vehicle
experiences dramatic viewpoint changes, the direct ICP loses
its advantages, especially with inadequate initialization of
the identity matrix transformation. Due to the unanticipated
decrease of overlaps, the inherent iterative nearest neighbor
association strategy of D-ICP is vulnerable and tends to be
stuck in the local minima, see Fig. 3(a). On the contrary,
high-dimensional feature descriptors are invariant to viewpoint
changes. And the feature-based scan matching is more ro-
bust for the large baseline motion across consecutive frames.
The putative descriptor-based keypoints correspondences are
constructed beyond iterative nearest neighbor searching and
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TABLE IV
REGISTRATION RESULTS BENCHMARKING WITH METRICS OF RF(%) AND RMSE (cm)

Dataset
Method D-ICP F-ICP G-ICP SD-SM

RF RMSE RF RMSE RF RMSE RF RMSE
KITTI 00 47.7% 5.83 27.0% − 59.7% 5.68 77.2% 5.53
KITTI 01 26.8% − 24.8% − 27.2% − 49.4% 6.23
KITTI 02 38.1% 6.18 29.9% − 57.7% 5.94 73.2% 5.75
KITTI 03 47.2% 6.08 27.7% − 62.8% 5.83 67.2% 5.75
KITTI 04 31.7% 5.91 30.9% 6.03 31.6% 5.92 65.4% 6.05
KITTI 05 43.8% 5.80 28.9% − 61.4% 5.64 76.4% 5.51
KITTI 06 27.6% − 19.8% − 40.9% 5.84 62.3% 5.75
KITTI 07 56.8% 5.49 33.4% 5.98 62.4% 5.36 78.7% 5.26
KITTI 08 39.1% 6.05 24.5% − 50.4% 5.91 70.7% 5.68
KITTI 09 28.3% − 21.4% − 52.6% 6.07 68.8% 5.85
KITTI 10 49.5% 5.95 30.7% 6.38 69.8% 5.62 76.0% 5.53
LS2N 00 74.7% 5.37 69.9% 5.56 74.3% 5.41 72.7% 5.34
LS2N 01 44.8% 6.11 32.9% 6.40 44.9% 6.07 49.5% 6.02
Average 42.8% 5.88 30.9% 6.07 53.5% 5.77 68.3% 5.71

association loop, which reduces the risks of being stuck in
the local minima. With pre-established correspondences, the
initialization-free sampling consensus-based method is applied
to reject potential outliers and to obtain the optimal relative
transformation. Nevertheless, it also needs to be mentioned
that the feature-based scan matching is highly dependent on
the feature detection procedure. This may lead to inaccurate
or biased registration in the feature-less or feature-repetitive
environments such as corridors or highways, see Fig. 4(a).
The drawbacks of direct and feature-based scan matching
reveal the necessity for their combination to provide more
robust estimation in information-deprived environments. From
the benchmarking results, it can be noticed that our semi-
direct approach outperforms the state-of-the-art methods by
a considerable margin in various scenarios. It is shown that
the proposed method achieves the leading results with 68.3%
average relative fitness and 5.71 cm average RMSE distance,
respectively. It can be seen that our semi-direct method im-
plements the scan matching in a coarse-to-fine manner. Thus,
it is less sensitive to unmodelled artifacts such as moving
objects, undergoing the view occlusion, viewpoint changes,
and information-deprived environments, see Fig. 3(b). For
instance, it can be seen from Fig. 5 that a van constantly
appears in front of the ego-vehicle for the KITTI sequence 04.
The existence of moving objects in the scene greatly degrades
the performance of both direct and feature-based ICP methods,
see the 7th row of the Table. IV. In this case, the D-ICP and F-
ICP tend to be stuck in the local minima, which may partially
align the point clouds and provide low fitness registration
results.

Indeed, the undergoing environments and realized ego-
trajectories have a deep impact on the performance of LiDAR
scan matching. To be more specific, our approach obtains
promising results in the highway scenarios (KITTI 01), which
is very challenging for direct and feature-based methods
because of the relatively low frame rate compared with the
high-speed ego-motion (see the 4th row of Table. IV). The
adaptive initialization strategy in (9) ensures that the starting
point for the pose optimization is not biased. With a reliable
initialization point considering the constant velocity motion

(a) Frame 126 in the KITTI sequence 04

(b) Frame 143 in the KITTI sequence 04

Fig. 5. Moving objects in the scene degrade the state estimation
performance for the KITTI sequence 04

model, it takes fewer iterations for multi-scale dense point-
cloud alignment to converge. And it is also more likely to
obtain the global minima even for the fast motion, see Fig.
4(b).

C. Uncertainty modeling

TABLE V
THE OUTLIER FRAME NUMBER FOR POSE UNCERTAINTY ESTIMATION

Sequence
Method Monte-Carlo simulation Inconsistency indicator

KITTI 04 17, 126, 188
233, 239, 254

18, 90, 110
126, 132, 143

KITTI 05 233, 500, 592
1389, 1500

27, 233, 500
1393, 1500

The pose uncertainty estimation helps to bound the pose
error within a known confidence interval. In this part, the pro-
posed uncertainty modeling approach is benchmarked with the
Monte-Carlo simulation-based method in [22]. The detailed
implementation of the Monte-Carlo simulation-based scan
matching uncertainty modeling can be seen from Algorithm
2.
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Fig. 6. Inconsistency indicator-based scan matching uncertainty along
tx, ty and rz for the KITTI sequence 04

It can be seen from Fig. 6 that our predicted confidence in-
terval could accurately bound the estimation errors during most
of the time. We attribute this primarily to our pre-conducted
outdoor ground points removal, scattered outliers removal and
multi-level semi-direct scan matching that incorporate more
reliable correspondences for the pose estimation. As it can be
inferred from (14), more valid correspondences will result in
a more confident state estimation, which is in line with the
principle of maximum likelihood estimation. It can also be
seen from (14) that the farther the inliers {xi} locate from the
local sensor frame, the more confidence we gain from the pair-
wise correspondences. While it is observed that few overshoots
occur at the road intersection or due to some moving objects
in the scene, see Fig. 5 and Fig. 8. In the KITTI dataset,
the LiDAR point clouds were captured at the frequency of
10Hz, on which basis the relation between the frame number
and timestamp could be established. The ego-motion at the
road intersection in Fig. 8 will cause inadequate overlapping
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Fig. 7. Monte-Carlo simulation-based scan matching uncertainty esti-
mation along tx, ty and rz for the KITTI sequence 04

of subsequent LiDAR scans for state estimation, and the scan
matching convergence can not be guaranteed in this situation.
Besides, the existence of the moving object in Fig. 5 further
complicates the point cloud registration process and may lead
to inconsistency in uncertainty estimation. The LiDAR scans’
inadequate overlapping and moving objects’ contamination
also pose challenges for the Monte-Carlo sampling methods,
which can be seen from Fig. 7. The outlier frame numbers of
two typical sequences KITTI 04 (moving objects contamina-
tion) and KITTI 05 (road intersection partial overlapping) are
summarized in Table. V for better visualization. Apart from
these few overshoots, the Monte-Carlo sampling performs
very well in estimating the pose estimation uncertainty. The
different voxel sizes’ downsampling will approximate the raw
point clouds at different scales, which helps the Monte-Carlo
simulation to boost from the local minima while maintaining
the estimation accuracy. Compared with the sampling-based
Monte-Carlo simulation scan matching uncertainty estimation,
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(a) Frame 233 in the KITTI sequence 05

(b) Frame 500 in the KITTI sequence 05

Fig. 8. Partially overlapping point clouds at the road intersection
degrade the scan matching performance for the KITTI sequence 05

Algorithm 2 Monte-Carlo simulation-based scan matching
uncertainty estimation
Input: Consecutive LiDAR scans {St,St+1}t=1,··· ,τ−1

Output: The distribution of estimated motion parameters
1: while New LiDAR scan arrives do
2: Remove the scattered outliers and ground points to get

the pre-processed LiDAR scans {S△t ,S△t+1}
3: Downsample the pre-processed LiDAR scans with the

voxel sizes of 0.05m, 0.1m, 0.2m, 0.4m, and 0.8m
4: Conduct semi-direct scan matching iteratively five times

with the different pre-processed input LiDAR scans
5: Obtain different estimated transformations with differ-

ent downsampled input LiDAR scans
6: Calculate the distribution of the estimated motion pa-

rameters that align {S△t ,S△t+1}
7: end while

our proposed method achieves comparable performances. It
can be seen from Algorithm 2 that the pre-processed LiDAR
scans are downsampled with five different voxel sizes for
Monte-Carlo simulation. And then the semi-direct LiDAR scan
matching is conducted iteratively five times with different
downsampled LiDAR point clouds to obtain the final distri-
bution of the estimated motion parameters. However, for the
proposed method, the semi-direct scan matching is conducted
only once. And the covariance matrix is calculated at the
final iteration based on the inconsistency indicator, which
is derivative-free. Thus, the proposed method is much more
computationally efficient than the Monte-Carlo simulation
uncertainty estimation.

In the proposed approach pipeline, the uncertainty quantifi-
cation is integrated into the global pose-graph optimization
[5]. This helps to reduce the pairwise registration drift and to
obtain consistent scene mapping, where the point clouds are
registered with high fidelity. In our case, in order to accelerate
the pose-graph optimization convergence, only the pose nodes
in the graph are adjusted and the environment 3D points are
not involved. By adjusting the pose nodes in the pose graph,
the overall cost function will be minimized and the refined 6
DoF pose can be obtained. The scene mapping is in fact the

registered point clouds with the refined 6 DoF pose. It can
be seen from Fig. 9 that, the scene mapping is consistent and
the vehicle poses are smooth even with a sharp turning in the
trajectory.

(a) The main parking scene visualization with the front camera

(b) The main parking scene reconstruction with the VLP-16
LiDAR

Fig. 9. The main parking area scene mapping and self-positioning with
the VLP-16 LiDAR at the Centrale Nantes Campus (LS2N 00)

V. CONCLUSION AND FUTURE WORK

In this paper, an adaptive semi-direct LiDAR scan matching
approach is proposed to overcome the weakness of individ-
ual direct or feature-based methods. The semi-direct LiDAR
scan matching guarantees convergence in challenging environ-
ments such as undergoing high-speed motion and traveling in
repetitive, feature-less environments. On this basis, extensive
registration results on city, residential, highway, and parking
scenarios with the relative fitness and RMSE metrics are
presented and discussed. The superiority of the proposed semi-
direct LiDAR scan matching method is validated with both
HDL-64E and VLP-16 Velodyne LiDARs. At the same time,
scan matching uncertainty is modeled as well to evaluate the
final convergence accuracy. Furthermore, we also analyze the
possible sources that may lead to scan matching divergence
in various scenarios. It is demonstrated that ground points and
dynamic objects such as vehicles or pedestrians are the main
causes of the estimation accuracy decrease. It is also noticed
that significant errors frequently occur near road intersections
and in highway scenarios, where it is more likely to come
across dynamic vehicles and the geometric information is not
adequate for reliable state estimation.

The main contribution of this paper lies in the front-end
improvement of LiDAR-based state estimation and uncertainty
modeling. For future work, we will focus on integrating the
GNSS measurements [27] in the back-end to correct the odom-
etry drifts for the large-scale scene [28] application. Moreover,
the semantic information can be leveraged for the moving
objects segmentation [29], which increases the automotive per-
ception system. More efficient outliers rejection mechanisms
for partially overlapping point clouds that incorporate the IMU
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pre-integration will also be studied to further ameliorate the
scan matching accuracy and robustness with the presence of
several moving objects in the scene.
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de Nantes, within the ARMEN Team of LS2N
Laboratory, UMR CNRS 6004. His research in-
terests belong to perception systems for au-
tonomous mobile robotics with an emphasis on
computer vision, machine learning and multi-
sensor fusion.


