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Abstract: Vapor–liquid equilibrium (VLE) and density data for binary systems of branched alkanes + ethyl
acetate are scarce in the literature. In this study, the binary mixtures 3-methylpentane + ethyl acetate and
2,3-dimethylbutane + ethyl acetate were investigated. Density measurements at atmospheric pressure
were performed using a vibrating tube density meter at 293.15, 298.15 and 303.15 K. Large and positive
excess molar volumes were calculated and correlated using a Redlich–Kister-type equation. Isobaric
VLE data at 101.3 kPa were obtained using a Gillespie-type recirculation ebulliometer. Equilibrium
compositions were determined indirectly from density measurements. The experimental data were
checked for consistency by means of the Fredenslund test and the Wisniak (L-W) test and were
then successfully correlated using the NRTL model. The newly studied binary systems display high
deviations from ideality and minimum boiling azeotropes, the coordinates of which are reported in
this work.

Keywords: phase equilibria; VLE; density; excess molar volume; binary mixture; ethyl acetate;
alkane; azeotrope

1. Introduction

Ethyl acetate is a common solvent and diluent used in many sectors for the production
of lacquers, synthetic resins for surface coatings [1], adhesives and perfumes [2]. It is also
used as a solvent for the decaffeination of coffee beans. In recent years, ethyl acetate has
been mentioned as an interesting potential additive in gasoline [2–4]. Indeed, ethyl acetate
presents advantages such as a relatively low toxicity, a moderate production cost and a
high oxygen content that enhances the octane number of diesel blends [2]. Moreover, the
addition of ethyl acetate does not significantly modify the vapor pressure of gasoline [5].
The search for alternative additives is an important issue to reduce diesel engine emissions
and fossil fuel consumption. In this context, it is essential to improve the thermodynamic
understanding, particularly the vapor–liquid equilibrium (VLE) and volumetric properties,
of non-ideal mixtures containing oxygenates, n-paraffins and iso-paraffins [5]. Indeed,
gasoline contains substantial proportions of branched C5 and C6 paraffins [3]. Despite the
vast amount of such experimental data currently available, a lack of data can be noticed for
certain kinds of mixtures.

For example, binary systems consisting of short-chain esters + linear alkanes were
extensively studied in the past [6–16], but few VLE data are available for binary systems con-
taining ethyl acetate and a branched alkane. To our knowledge, ethyl
acetate + 2,2,4-trimethylpentane is the only system belonging to this family for which
the phase equilibrium was previously investigated [17,18]. The situation is slightly bet-
ter for the densities of systems of ethyl acetate + branched saturated hydrocarbons. The
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densities of the binary system ethyl acetate + 2,2,4-trimethylpentane were reported at
298.15 K [18,19] and 303.15 K [20], while the excess molar volumes of four binary ethyl
acetate + branched light alkanes were published at 298.15 K [21].

The aim of this work is to report new experimental densities and isobaric VLE data
(at P = 101.3 kPa) for the two following binary systems: 3-methylpentane + ethyl acetate
and 2,3-dimethylbutane + ethyl acetate. The binary system hexane + ethyl acetate, which
was repeatedly investigated in the past [6,7,10,22–25], was also measured beforehand for
comparison and validation of the apparatus and of the experimental technique employed
in this study.

2. Experimental Section
2.1. Material and Pure Component Properties

The source and the purity stated by the manufacturers of the chemicals employed
are summarized in Table 1. After receipt, the pure components were analyzed by gas
chromatography. Since no significant impurities were found, they were used without
further purification.

Table 1. Description of the pure compounds used in this work.

Compound CAS Number Supplier Mass Fraction Purity a Mass Fraction Water
Content b

Ethyl acetate (EA) 141-78-6 Sigma Aldrich 0.999 0.0008
Hexane 110-54-3 Merck 0.993 0.0008

3-Methylpentane 96-14-0 Sigma Aldrich 0.998 0.0005
2,3-Dimethylbutane 79-29-8 ThermoFisher Scientific 0.998 0.0003

a Information provided by the manufacturers. b Determined by Karl-Fischer titrations.

Before use, the pure compounds were boiled to remove dissolved gases and stored
hermetically. The water content of the components was measured by Karl-Fischer titrations
before the density and VLE measurements. Low moisture contents were found. To confirm
the quality of the chemicals received, the normal boiling temperature and density at 298.15
K and ambient pressure (P = 101 kPa) were measured and compared with literature values.
The results of these measurements and the respective comparisons are given in Table 2,
showing good agreement with previously published values. Other density comparisons at
293.15 K and 303.15 K are provided in the Supplementary Materials (Table S1).

Table 2. Comparison of normal boiling temperature (at P = 101.3 kPa), Tb, density at T = 298.15 K
and P = 101 kPa, ρ, of the pure components with literature values a.

Compound
Tb/K ρ298.15K/g·cm−3

This Work Literature This Work Literature

Ethyl acetate (EA) 350.09 350.09 [6]
350.15 [10] 0.89445 0.89431 [6]

0.89440 [10]

Hexane 341.80 341.72 [6]
341.88 [10] 0.65524 0.65507 [6]

0.65490 [10]

3-Methylpentane 336.30 336.30 [26]
336.10 [27] 0.65972 0.65968 [21]

0.65973 [28]

2,3-Dimethylbutane 330.99 331.18 [27]
330.95 [29] 0.65751 0.65700 [28]

0.65717 [30]
a Standard uncertainties u are u(Tb) = 0.05 K, u(P) = 0.1 kPa, u(ρ) = 0.00005 g·cm−3, u(Tρ meas) = 0.03 K and
u(Pρ meas) = 3 kPa.

2.2. Density Measurement Apparatus and Method

The densities of the pure components and mixtures were measured at atmospheric
pressure (P = 101 ± 3 kPa) using a vibrating tube density meter (DMA 4500 M, An-
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ton Paar, Graz, Austria) at 293.15 K, 298.15 K and 303.15 K with a standard uncertainty
u(Tρ meas) = 0.03 K. The equipment was regularly calibrated using pure and degassed water
and dry air during the measurement campaign. The device is also inspected and cali-
brated yearly by the manufacturer. For the measured density, a resolution of (±0.00001)
g·cm−3 is displayed by the instrument, whereas the standard uncertainty is estimated to
be u(ρ) = 0.00005 g·cm−3. It must be noted that this standard uncertainty is only valid for
low-viscosity fluids measured at moderate temperatures [31].

Binary mixtures of known compositions were gravimetrically prepared using a pre-
cision balance (Metler Toledo, model ML204, Columbus, OH, USA) with a standard
uncertainty of 0.0001 g. Pure compounds were stored and kept at a low temperature
during weighing, and the least volatile component of the studied binary was always
charged first to restrict evaporation during mixture preparation. Mixtures were prepared
in glass vials with appropriate volumes to minimize the gaseous space between the liquid
and the stopper. Density measurements were taken promptly after mixture preparation
and homogenization.

The experimental method described above was employed in previous work to measure
the density of the ethanol–water binary system [32].

2.3. VLE Measurement Equipment

Isobaric vapor–liquid equilibrium measurements for pure components and mixtures were
performed using a recirculation ebulliometer (Labodest VLE 602, ILUDEST, Waldbüttelbrunn,
Germany) equipped with a Cottrell pump. This type of equipment is routinely employed for
low-pressure VLE measurements and extensively described in the literature [32–36].

Briefly, the device comprises a mixing chamber linked to a boiler, an equilibrium
chamber (the “Cottrell Pump”) and a separation chamber. It allows the measurement of
isobaric VLE data from 5 kPa to 400 kPa. The pressure stability in the experimental device is
ensured by using injections of pure nitrogen (molar fraction purity >0.9999) and a vacuum
pump regulated by a pressure controller. A precision pressure transmitter Wika (model
P-30) was used with a standard uncertainty u(P) = 0.1 kPa. The equilibrium temperature
was measured by a Pt-100 platinum probe with a standard uncertainty u(T) = 0.05 K.

To check the accuracy of the apparatus, the vapor pressures of the four components
involved in this study were measured from 50 kPa to 101.3 kPa with a step of 5 kPa.
Experimental vapor pressure data were then compared to previously published data
and correlated with the Antoine equation. The Antoine coefficients are provided in the
Supplementary Materials (Table S2). Before each measurement campaign (pure compound
or binary mixture), the device was rinsed and dried under vacuum (~5 kPa) for one hour
to prevent contamination.

For the VLE measurements of the mixtures, the compositions of the liquid and con-
densed vapor phases collected from the ebulliometer were obtained indirectly from density
measurements at 298.15 K using a polynomial fit of the previously measured density–
composition data. For each binary system studied, 21 density measurements were used
to establish the calibration curve between the density and the composition of the mixture.
The coefficients of the polynomial density–composition functions employed are presented
in the Supplementary Materials (Table S3). Moreover, several additional binary mixtures
of known composition were prepared and measured to determine the uncertainty of the
composition obtained using the calibration curve.

As an example, the calibration curve analysis for the binary system hexane (1)–EA (2) is
presented in the Supplementary Materials (Figure S1). A standard uncertainty u(x1) = u(y1) = 0.001
was estimated for the studied binary systems.

2.4. Density at 298.15 K and VLE of the Hexane (1)–Ethyl Acetate (2) System

The binary system hexane (1)–EA (2), which was investigated several times in the
past [6,7,10,22–25], was measured beforehand for the comparison and validation of the
experimental technique. The density of the system hexane (1)–EA (2) was measured at
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298.15 K over the whole composition range. Excess molar volumes
(
VE) at 298.15 K were

calculated by the following expression:

VE =
x1M1 + x2M2

ρm
−
(

x1M1

ρ1
+

x2M2

ρ2

)
(1)

where x1 and x2 are the mole fractions of the mixture, M1, M2 and ρ1, ρ2 are, respectively,
the molar masses and the densities of the pure components, and ρm is the density of the
mixture. The densities and excess molar volumes of the binary system at 298.15 K measured
in this study are reported in the next section (see Table 3) and are plotted in Figure 1 with
previously published values.

Table 3. Experimental densities, ρ, at T = 298.15 K and P = 101 kPa, along with calculated excess
molar volumes for hexane (1)–EA (2) mixtures of known molar compositions, x1

a.

x1
b ρ/g·cm−3 VE/cm3·mol−1 x1 ρ/g·cm−3 VE/cm3·mol−1

0.0000 0.89445 0.000 0.5546 0.73896 0.968
0.0512 0.87688 0.171 0.6052 0.72787 0.958
0.1032 0.85991 0.318 0.6555 0.71727 0.927
0.1557 0.84343 0.462 0.7023 0.70780 0.874
0.2043 0.82887 0.573 0.7529 0.69794 0.795
0.2542 0.81439 0.689 0.7923 0.69046 0.729
0.3056 0.80025 0.769 0.8506 0.67989 0.588
0.3547 0.78725 0.833 0.9014 0.67113 0.425
0.4052 0.77420 0.912 0.9496 0.66317 0.238
0.4558 0.76181 0.947 1.0000 0.65524 0.000
0.5054 0.75009 0.971

a Standard uncertainties u are u(x1) = 0.0001, u(ρ) = 0.00005 g·cm−3, u(T) = 0.03 K, and u(P) = 3 kPa. b x1 is the
mole fraction of hexane.
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Figure 1. (a) Densities of the binary system hexane (1)–EA (2) at 298.15 K; •: this work; ♦: [10];�: [23];
∆: [24]. (b) Excess molar volumes of the binary system hexane (1)–EA (2) at 298.15 K; •: this work;
♦: [10]; �: [23]; ∆: [24]. Dotted line: correlation curve using a Redlich–Kister expression.

Figure 1 clearly illustrates good agreement between the data measured in this work and
previously published data, particularly for our excess molar volumes and those published
by Fernández and co-workers [10]. The isobaric VLE of the binary system hexane (1)–EA (2)
at 101.3 kPa was also measured for comparison with literature data. The experimental VLE



Liquids 2023, 3 191

data (T, x1, y1) measured in this work at P = 101.3 kPa are given in the Section 3 and are
plotted in Figure 2 for comparison with previously published data.
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•: [10]; •: [6]; filled symbols: bubble points; empty symbols: dew points. (b) Plot of the experimental
activity coefficients and excess Gibbs energy as a function of hexane mole fraction for the binary
system hexane (1)–EA (2) at 101.3 kPa; •: this work’s activity coefficients; •: [10]; •: [6]; filled symbols:
γ1; empty symbols: γ2. N: gE/RT from this work; N: [10]; N: [6]. Solid lines: curves calculated using
the NRTL model.

Figure 2 indicates reasonable agreement between the different data sets. The exper-
imental data measured in this work were used to calculate the azeotropic coordinates
of the binary system. The azeotropic point was found to be located at x1az = 0.655 and
Taz = 338.05 K, which is quite consistent with the values reported by Acosta et al. [6]
(x1az = 0.657 and Taz = 338.0 K) and Fernández et al. [10] (x1az = 0.661 and Taz = 338.15 K).
After this validation step, the binary systems 3-methylpentane + EA and 2,3-dimethylbutane
+ EA were investigated.

3. Experimental Results and Discussion
3.1. Density and Excess Molar Volumes

Table 3 reports the density measurements and excess molar volumes calculated using
Equation (1) at 298.15 K for hexane (1)–EA (2) mixtures. Table 4 presents the densities and
excess molar volumes of the binary system 3-methylpentane (1)–EA (2) at 293.15, 298.15
and 303.15 K, whereas Table 5 shows the densities and excess molar volumes of the binary
system 2,3-dimethylbutane (1)–EA (2) at the same temperatures.

Excess molar volumes at constant temperature obtained from density measurements
were correlated with the following Redlich–Kister-type function:

VE

x1(1 − x1)
= a0 + a1(2x1 − 1) + a2(2x1 − 1)2 + a3(2x1 − 1)3 (2)

Table 6 summarizes the corresponding values of the coefficient ai for the three binary
systems at each temperature, and Figures S2–S4 represent the corresponding residual
distributions of the excess molar volumes.
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Table 4. Experimental densities, ρ, at P = 101 kPa, along with calculated excess molar volumes for the
binary system 3-methylpentane (1)–EA (2) at 293.15, 298.15 and 303.15 K a.

x1
b

T = 293.15 K T = 298.15 K T = 303.15 K

ρ/g·cm−3 VE/cm3·mol−1 ρ/g·cm−3 VE/cm3·mol−1 ρ/g·cm−3 VE/cm3·mol−1

0.0000 0.90049 0.000 0.89445 0.000 0.88829 0.000
0.0519 0.88320 0.147 0.87723 0.152 0.87117 0.155
0.1026 0.86709 0.269 0.86120 0.277 0.85525 0.280
0.1539 0.85143 0.381 0.84561 0.394 0.83971 0.405
0.2042 0.83662 0.487 0.83087 0.504 0.82504 0.519
0.2546 0.82240 0.574 0.81672 0.595 0.81097 0.612
0.3047 0.80881 0.647 0.80321 0.670 0.79754 0.689
0.3554 0.79552 0.715 0.79000 0.739 0.78440 0.762
0.4053 0.78290 0.772 0.77745 0.799 0.77192 0.825
0.4551 0.77080 0.811 0.76542 0.839 0.75997 0.865
0.5061 0.75888 0.832 0.75359 0.859 0.74821 0.888
0.5553 0.74778 0.840 0.74257 0.866 0.73726 0.896
0.6039 0.73722 0.831 0.73208 0.857 0.72685 0.885
0.6542 0.72665 0.808 0.72158 0.834 0.71643 0.862
0.7030 0.71680 0.763 0.71180 0.788 0.70672 0.815
0.7537 0.70691 0.701 0.70199 0.723 0.69699 0.748
0.7969 0.69880 0.627 0.69395 0.646 0.68902 0.667
0.8462 0.68984 0.526 0.68506 0.542 0.68021 0.559
0.9010 0.68033 0.375 0.67563 0.387 0.67087 0.398
0.9491 0.67232 0.216 0.66771 0.219 0.66302 0.226
1.0000 0.66427 0.000 0.65972 0.000 0.65511 0.000

a Standard uncertainties u are u(x1) = 0.0001, u(ρ) = 0.00005 g·cm−3, u(T) = 0.03 K and u(P) = 3 kPa. b x1 is the
mole fraction of 3-methylpentane.

Table 5. Experimental densities, ρ, at P = 101 kPa, along with calculated excess molar volumes for the
binary system 2,3-dimethylbutane (1)–EA (2) at 293.15, 298.15 and 303.15 K a.

x1
b

T = 293.15 K T = 298.15 K T = 303.15 K

ρ/g·cm−3 VE/cm3·mol−1 ρ/g·cm−3 VE/cm3·mol−1 ρ/g·cm−3 VE/cm3·mol−1

0.0000 0.90049 0.000 0.89445 0.000 0.88829 0.000
0.0538 0.88268 0.118 0.87671 0.123 0.87065 0.125
0.1030 0.86705 0.216 0.86116 0.223 0.85517 0.229
0.1542 0.85142 0.306 0.84560 0.318 0.83969 0.327
0.2049 0.83649 0.392 0.83074 0.406 0.82491 0.418
0.2547 0.82233 0.471 0.81665 0.489 0.81090 0.503
0.3054 0.80848 0.537 0.80288 0.556 0.79720 0.573
0.3563 0.79506 0.596 0.78953 0.617 0.78392 0.637
0.4059 0.78254 0.630 0.77708 0.653 0.77155 0.674
0.4540 0.77074 0.663 0.76536 0.686 0.75990 0.709
0.5052 0.75862 0.687 0.75331 0.711 0.74792 0.735
0.5553 0.74718 0.697 0.74195 0.721 0.73663 0.746
0.6054 0.73617 0.688 0.73101 0.712 0.72577 0.736
0.6546 0.72565 0.680 0.72056 0.703 0.71539 0.727
0.7037 0.71561 0.640 0.71059 0.662 0.70549 0.686
0.7521 0.70603 0.588 0.70108 0.609 0.69605 0.631
0.8018 0.69657 0.511 0.69169 0.530 0.68674 0.548
0.8506 0.68759 0.420 0.68278 0.436 0.67790 0.452
0.9007 0.67868 0.310 0.67395 0.321 0.66914 0.333
0.9466 0.67085 0.180 0.66619 0.186 0.66146 0.192
1.0000 0.66209 0.000 0.65751 0.000 0.65286 0.000

a Standard uncertainties u are u(x1) = 0.0001, u(ρ) = 0.00005 g·cm−3, u(T) = 0.03 K and u(P) = 3 kPa. b x1 is the
mole fraction of 2,3-dimethylbutane.

Table 6. Parameters of the Redlich–Kister function (see Equation (2)) for the correlation of the excess
molar volume (VE/cm3·mol−1) a.

Binary System T/K a0 a1 a2 a3

Hexane–EA 298.15 3.84392 0.67007 0.45232 0.20695
3-Methylpentane–EA 293.15 3.29588 0.71386 0.46091 0.14146
3-Methylpentane–EA 298.15 3.40859 0.74159 0.44523 0.09746
3-Methylpentane–EA 303.15 3.52442 0.77610 0.41211 0.12022

2,3-Dimethylbutane–EA 293.15 2.74556 0.67017 0.22393 0.03453
2,3-Dimethylbutane–EA 298.15 2.84326 0.69501 0.23687 0.02754
2,3-Dimethylbutane–EA 303.15 2.93939 0.73036 0.22997 0.03870

a Using the above coefficients in Equation (2), the unit of VE is cm3·mol−1.
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The excess molar volumes of the binary systems 3-methylpentane + EA and 2,3-
dimethylbutane + EA from 293.15 K to 303.15 K are plotted in Figure 3, along with the
correlation curves.
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Figure 3. (a) Excess molar volumes of the binary system 3-methylpentane (1)–EA (2) at 293.15 K, 

298.15 K and 303.15 K; o: this work’s experimental data; •: data at 298.15 K from [21]. Dotted lines: 

correlation curves using Equation (2). (b) Excess molar volumes of the binary system 2,3-

dimethylbutane (1)–EA (2) at 293.15 K, 298.15 K and 303.15 K; o: this work’s experimental data. 

Dotted lines: correlation curves using Equation (2). 

Figure 3. (a) Excess molar volumes of the binary system 3-methylpentane (1)–EA (2) at 293.15 K,
298.15 K and 303.15 K; o: this work’s experimental data; •: data at 298.15 K from [21]. Dotted
lines: correlation curves using Equation (2). (b) Excess molar volumes of the binary system 2,3-
dimethylbutane (1)–EA (2) at 293.15 K, 298.15 K and 303.15 K; o: this work’s experimental data.
Dotted lines: correlation curves using Equation (2).

In Figure 3, it can be noted that the binary systems containing branched alkanes + EA
present pronounced positive excess molar volumes, with a maximum value of VE near
an alkane molar fraction of 0.55. These observations are consistent with previous studies
dealing with linear alkanes + short-chain esters [10–14] or branched alkanes + EA [18–21].

The results obtained in this work clearly indicate that for a given saturated hydro-
carbon CnH2n+2 in a mixture with EA, the excess molar volume is the maximum when
carbon atoms are arranged in a single chain and decreases when EA is mixed with its
isomer. Moreover, the more branched the hydrocarbon, the lower the excess molar volume
of the mixture with EA. This phenomenon is clearly illustrated in Figure 4 and can probably
be attributed to better interstitial accommodation when the alkane approaches a more
spherical shape.

3.2. Pure Compounds’ Vapor Pressures

Before performing the VLE measurements for the mixtures, the vapor pressures of the
pure components were measured using the same apparatus. The vapor pressure data are
given in Table 7 and plotted in Figure 5 with values from the literature.

Figure 5 demonstrates that the vapor pressures measured in this work are in line with
previously published experimental data.

3.3. VLE Data and Consistency Checks

As mentioned previously, the accuracy of the experimental apparatus used for the
VLE measurements and the suitability of the protocol were verified by remeasuring the
VLE of the binary mixture hexane + EA at P = 101.3 kPa. A total of 23 VLE points were
measured for this system, all of which are reported in Table 8 and plotted in Figure 2.
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Table 7. Pure components’ vapor pressures measured in this study a.

P/kPa
T/K

Ethyl Acetate Hexane 3-Methylpentane 2,3-Dimethylbutane

40.0 324.42
45.0 327.43
50.0 330.18 320.99 315.58 310.35
55.0 332.70 323.63 318.21 312.96
60.0 335.05 326.08 320.65 315.40
65.0 337.25 328.38 322.92 317.66
70.0 339.31 330.53 325.08 319.82
75.0 341.27 332.57 327.12 321.85
80.0 343.12 334.48 329.03 323.76
85.0 344.86 336.33 330.85 325.59
90.0 346.55 338.08 332.61 327.31
95.0 348.16 339.76 334.28 328.99

100.0 349.69 341.38 335.89 330.59
101.3 350.09 341.80 336.30 330.99

a Standard uncertainties u are u(T) = 0.05 K, u(P) = 0.1 kPa.
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Figure 4. Excess molar volumes at 298.15 K of binary systems containing 6-carbon-atom alkanes + EA.
Effect of the type of alkane (normal or branched) on the excess molar volume of the mixture.
Hexane (1)–EA (2); 3-methylpentane (1)–EA (2); 2,3-dimethylbutane (1)–EA (2). o: This work’s
experimental data. Dotted lines: correlation curves using Equation (2) and parameters reported in
Table 6.
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Figure 5. Vapor pressures, P, as a function of temperature, T, of the pure components used in this
study. (a) Hexane and EA; •,•: this work; +,+: [10]; ∆: [37]; ∆: [38]. (b) 2,3-Dimethylbutane and
3-methylpentane; •,•: this work; +,+: [39]; ∆: [40]; ∆: [41]. Continuous lines: curves calculated using
the Antoine equation with parameters regressed against vapor pressures measured in this work.

Table 8. Isobaric vapor–liquid equilibrium data at P = 101.3 kPa for the binary system hexane (1)–EA (2) a.

T/K x1 y1 γ1 γ2 gE/RT

350.09 0.000 0.000 1.000 0.000
346.38 0.059 0.163 2.459 1.002 0.055
345.95 0.069 0.182 2.375 1.004 0.063
344.61 0.102 0.249 2.280 0.999 0.083
343.85 0.120 0.278 2.211 1.005 0.100
342.73 0.160 0.332 2.043 1.012 0.125
342.44 0.173 0.348 1.997 1.014 0.131
341.06 0.234 0.413 1.822 1.033 0.165
340.58 0.258 0.431 1.749 1.051 0.181
339.59 0.342 0.491 1.546 1.098 0.211
339.41 0.348 0.494 1.537 1.109 0.217
339.03 0.382 0.513 1.470 1.141 0.229
338.72 0.421 0.535 1.403 1.176 0.237
338.30 0.530 0.592 1.248 1.292 0.238
338.09 0.605 0.629 1.168 1.410 0.230
338.06 0.667 0.662 1.115 1.528 0.214
338.07 0.689 0.675 1.100 1.573 0.207
338.11 0.717 0.692 1.082 1.637 0.196
338.21 0.758 0.719 1.060 1.742 0.178
338.35 0.792 0.745 1.046 1.833 0.162
338.67 0.836 0.782 1.030 1.969 0.136
338.99 0.866 0.817 1.028 2.004 0.117
340.07 0.934 0.890 1.004 2.365 0.061
340.99 0.975 0.954 1.003 2.539 0.026
341.80 1.000 1.000 1.000 0.000

a Standard uncertainties u are u(T) = 0.05 K, u(P) = 0.1 kPa and u(x) = u(y) = 0.001. T/K, equilibrium temperature; x1
and y1, liquid phase’s and vapor phase’s hexane mole fractions, respectively; γi , activity coefficient of component
i; gE/RT, dimensionless Gibbs function.
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Taking into account the non-ideality of the vapor phase using the virial equation of
state truncated after the second term, activity coefficients were calculated with

γi =
yi P ϕ

vap
i

xi P◦
i ϕ∗

i
(3)

giving, for a binary system containing the pure components i and j,

γi =
yi P

xi P◦
i

exp

[(
Bii − vL

i
)(

P − P
◦
i
)
+ P(1 − yi)

2(2Bij − Bii − Bjj
)

R T

]
(4)

where γi is the activity coefficient of component i, and xi and yi are the molar compositions
of component i in the liquid and vapor phases. P is the system’s total pressure, and P

◦
i is

the saturation pressure of component i. The saturated liquid molar volumes vL
i of the pure

compounds were estimated with the Rackett equation [42], whereas the second virial coef-
ficients (Bii, Bjj and Bij) were calculated from the correlation proposed by Tsonopoulos [43].
Using the calculated activity coefficients, the values of the excess Gibbs energy (gE) were
obtained using the following expression:

gE = RT ∑ xilnγi (5)

in which R is the universal gas constant, and T is the temperature.
The binary systems 3-methylpentane + EA and 2,3-dimethylbutane + EA were inves-

tigated in the same way as the binary system hexane + EA, and the experimental data
acquired were treated similarly. The VLE data for the systems 3-methylpentane + EA
(20 VLE data points) and 2,3-dimethylbutane + EA (20 VLE data points) are summarized
in Tables 9 and 10. They are additionally plotted in Figures 6 and 7.

Table 9. Isobaric vapor–liquid equilibrium data at P = 101.3 kPa for the binary system 3-
methylpentane (1)–EA (2) a.

T/K x1 y1 γ1 γ2 gE/RT

350.09 0.000 0.000 1.000 0.000
347.27 0.036 0.121 2.493 0.998 0.031
345.28 0.068 0.205 2.357 0.996 0.055
343.48 0.102 0.270 2.174 1.008 0.087
341.44 0.150 0.361 2.090 1.000 0.110
340.98 0.164 0.377 2.022 1.007 0.121
339.37 0.220 0.441 1.845 1.024 0.153
338.43 0.265 0.477 1.702 1.051 0.177
337.45 0.320 0.519 1.577 1.081 0.199
336.85 0.357 0.544 1.508 1.108 0.212
336.47 0.387 0.561 1.450 1.134 0.221
336.00 0.437 0.586 1.360 1.185 0.230
335.30 0.512 0.629 1.271 1.257 0.235
334.90 0.571 0.659 1.208 1.335 0.232
334.58 0.633 0.691 1.153 1.432 0.222
334.35 0.706 0.728 1.096 1.589 0.201
334.34 0.775 0.768 1.053 1.774 0.169
334.40 0.825 0.803 1.032 1.936 0.142
334.55 0.871 0.842 1.020 2.099 0.113
334.93 0.921 0.892 1.010 2.318 0.075
335.68 0.969 0.952 1.001 2.565 0.030
336.30 1.000 1.000 1.000 0.000

a Standard uncertainties u are u(T) = 0.05 K, u(P) = 0.1 kPa and u(x) = u(y) = 0.001. T/K, equilibrium temperature;
x1 and y1, liquid phase’s and vapor phase’s 3-methylpentane mole fractions, respectively; γi , activity coefficient
of component i; gE/RT, dimensionless Gibbs function.
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Table 10. Isobaric vapor–liquid equilibrium data at P = 101.3 kPa for the binary system 2,3-
dimethylbutane (1)–EA (2) a.

T/K x1 y1 γ1 γ2 gE/RT

350.09 0.000 0.000 1.000 0.000
346.42 0.038 0.149 2.563 0.995 0.031
344.22 0.071 0.233 2.272 0.999 0.057
341.96 0.104 0.318 2.248 0.994 0.079
340.69 0.128 0.362 2.152 0.998 0.096
339.36 0.159 0.410 2.035 1.002 0.114
338.86 0.172 0.428 1.991 1.004 0.121
337.62 0.211 0.469 1.841 1.021 0.145
336.68 0.243 0.506 1.771 1.024 0.157
335.19 0.305 0.556 1.617 1.058 0.186
334.19 0.356 0.592 1.518 1.088 0.203
333.22 0.418 0.627 1.408 1.141 0.220
332.62 0.473 0.653 1.319 1.198 0.226
331.77 0.539 0.696 1.265 1.240 0.226
331.31 0.601 0.721 1.191 1.338 0.221
330.87 0.665 0.750 1.134 1.453 0.209
330.63 0.731 0.781 1.082 1.601 0.184
330.43 0.773 0.808 1.064 1.678 0.166
330.30 0.871 0.872 1.023 1.984 0.108
330.39 0.925 0.917 1.010 2.211 0.069
330.66 0.967 0.961 1.004 2.344 0.032
330.99 1.000 1.000 1.000 0.000

a Standard uncertainties u are u(T) = 0.05 K, u(P) = 0.1 kPa and u(x) = u(y) = 0.001. T/K, equilibrium temperature;
x1 and y1, liquid phase’s and vapor phase’s 2,3-dimethylbutane mole fractions, respectively; γi , activity coefficient
of component i; gE/RT, dimensionless Gibbs function.
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Figure 6. (a) Isobaric phase diagram for the system 3-methylpentane (1)–EA (2) at 101.3 kPa; filled
symbols: this work’s experimental bubble points; empty symbols: dew points. Solid lines: bubble and
dew curves calculated using the NRTL model; red dashed lines: bubble and dew curves predicted
using UNIFAC. (b) Plot of the experimental activity coefficients and excess Gibbs energy as a function
of the 3-methylpentane mole fraction for the binary system 3-methylpentane (1)–EA (2) at 101.3 kPa;
•: this work’s activity coefficients; filled symbols: γ1; empty symbols: γ2. N: gE/RT from this work.
Solid lines: curves calculated using the NRTL model.
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Figure 7. (a) Isobaric phase diagram for the system 2,3-dimethylbutane (1)–EA (2) at 101.3 kPa;
filled symbols: this work’s experimental bubble points; empty symbols: dew points. Solid lines:
bubble and dew curves calculated using the NRTL model; red dashed lines: bubble and dew curves
predicted using UNIFAC. (b) Plot of the experimental activity coefficients and excess Gibbs energy as
a function of the 2,3-dimethylbutane mole fraction for the binary system 2,3-dimethylbutane (1)–EA
(2) at 101.3 kPa; •: this work’s activity coefficients; filled symbols: γ1; empty symbols: γ2. N: gE/RT
from this work. Solid lines: curves calculated using the NRTL model.

Consistency tests were performed on the experimental binary VLE data using two
different tests: the Van Ness [44] point test modified by Fredenslund [45] and the Wisniak
test (also called the L-W test) [46]. These thermodynamic consistency tests are commonly
employed and are largely detailed elsewhere [32,38,47,48].

Table 11 summarizes the results of the consistency tests applied to the VLE data
measured in this study. Hexane–EA and 3-methylpentane–EA both satisfy the Fredenslund
test, whereas the binary system 2,3-dimethylbutane–EA obtains a result that is slightly
higher than 0.01. The Wisniak test was thus additionally performed. The three data sets
were validated by the L-W test with D values significantly lower than 3.

Table 11. Synthesis of the consistency tests performed on the VLE data measured in this work.

Criterion
Fredenslund Test Wisniak Test

∆y ≤ 0.01 Point Test 0.92 < Li/Wi < 1.08 Area Test D ≤ 3

Hexane–EA 0.006 0.962 < Li/Wi < 0.982 1.73 (L = 5.65; W = 5.85)
3-Methylpentane–EA 0.005 0.960 < Li/Wi < 0.985 1.74 (L = 5.99; W = 6.20)

2,3-Dimethylbutane–EA 0.012 0.957 < Li/Wi < 0.985 1.81 (L = 6.44; W = 6.68)

Binary mixtures of linear alkanes + EA are well known for presenting significant devi-
ations from ideality [6,10] since they are constituted by a non-polar compound (alkane) and
a polar compound (EA). Logically, the binary systems containing branched alkanes + EA
studied in this paper also present large deviations from ideality. Moreover, similar to the
systems hexane + EA and heptane + EA [10], the binary systems 3-methylpentane + EA and
2,3-dimethylbutane + EA exhibit a minimum boiling azeotrope at low concentrations of EA.
The coordinates of the azeotrope for the studied systems derived from our experimental
data are reported in Table 12.
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Table 12. Experimental coordinates of the azeotrope for the binary systems investigated at P = 101.3 kPa.

System x1,az Taz

Hexane (1)–EA (2) 0.655 338.05
3-Methylpentane (1)–EA (2) 0.757 334.33

2,3-Dimethylbutane (1)–EA (2) 0.877 330.30

3.4. VLE Data Correlation

The experimental VLE data were correlated using the activity coefficient model
NRTL [49] with two adjustable parameters. The interaction parameters of the model
were estimated using the Generalized Reduced Gradient (GRG) algorithm of the Microsoft
Excel Solver add-in (with a convergence tolerance of 1 × 10−4) by minimizing the following
objective function:

OF = ∑N
i=1

0.5

(
yexp

1 − ycal
1

yexp
1

)2

+ 0.5

(
yexp

2 − ycal
2

yexp
2

)2

+

(
Texp − Tcal

Texp

)2
 (6)

where N is the number of experimental points. For all binaries in this work, the non-
randomness parameter α12 of the NRTL model was set to 0.3.

The experimental results were also compared to predictions given by the modified
UNIFAC (Dortmund) group contribution model [50,51]. Table 13 reports the binary interac-
tion parameters of the NRTL model and the deviations obtained with the NRTL model and
with UNIFAC predictions.

Table 13. Binary interaction parameters of the NRTL model and deviations in equilibrium tempera-
ture and vapor phase molar composition using NRTL and UNIFAC models.

System
NRTL Parameters NRTL UNIFAC

∆g12/J·mol−1 ∆g21/J·mol−1 ∆y ∆T/K ∆y ∆T/K

Hexane (1)–EA (2) 1441.5 1575.9 0.0036 0.06 0.0070 0.38
3-Methylpentane (1)–EA (2) 1665.9 1302.8 0.0027 0.08 0.0046 0.16

2,3-Dimethylbutane (1)–EA (2) 1342.4 1496.0 0.0079 0.09 0.0080 0.16

The new experimental VLE data at 101.3 kPa measured in this work for binary systems
containing branched alkanes + EA are represented in Figures 6 and 7 with the corresponding
bubble and dew curves calculated from the NRTL model. The curves predicted by UNIFAC
are also shown by red dashed lines.

Figures 6 and 7 illustrate that the NRTL model provides a good description of the
phase behavior of the studied systems, in which the azeotropic phenomenon is correctly
reproduced. From Figures 6 and 7, an increase in the gap between the boiling temperature
of the pure compounds in the mixture appears to induce a shift in the azeotropic compo-
sition toward the most volatile component of the binary mixture. In future research, it
would be interesting to investigate the 2,2-dimethylbutane (which is more volatile than 2,3-
dimethylbutane) + EA binary system at 101.3 kPa to check for the existence of an azeotrope,
since this binary is likely to be zeotropic.

Table 13 and Figures 6 and 7 also highlight that the UNIFAC model is able to satisfac-
torily predict the phase behaviors of these systems, reaching deviations for the composition
and equilibrium temperature that are relatively low for a purely predictive approach. In
the absence of experimental data, this predictive model may be used with confidence for
such mixtures.
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