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A Discrete Element Method model for frictional fibers

Jérôme Crassous
Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France∗

(Dated: February 3, 2023)

We present a Discrete Element Method algorithm for the simulation of elastic fibers in frictional
contacts. The fibers are modeled as chains of cylindrical segments connected to each other by
springs taking into account elongation, bending and torsion forces. The frictional contacts between
the cylinders are modeled using a Cundall and Strack model routinely used in granular material
simulations. The physical scales for simulations, the determination and the tracking of contacts,
and the algorithm are discussed. Tests on different situations involving few or many contact points
are presented and compared to experiments or to theoretical predictions.

I. INTRODUCTION

The use of natural or artificial fibers allows to design
materials with original mechanical properties. At the
nanometric or micrometric scales, carbon nanotubes [1]
or polymer fibers [2] can be assembled into threads or
networks. At the micrometer and millimeter scales, the
frictional forces act with the elasticity of the fibers to pro-
duce a wide variety of materials. The fibers can just be
deposited without any special preparation to form highly
elastic media [3] such as cushions or non-woven fabrics [4].
Textile fibers can be twisted to produce yarns [5–7],
which are then assembled into cords [8], woven [9] or knit-
ted fabrics [9, 10]. Cyclic mechanical stresses can form
very compact natural structures [11], and birds also as-
semble fibers to build their nests [12, 13]. The contacts
between fibers play a fundamental role in describing the
physics of knots, which is a subtle competition between
tension and friction [14, 15], as well as eventual bending
of the fibers [16–19].

Several approaches have been proposed to numerically
simulate these structures. One approach is to use finite
element algorithms to discretize the fibers [20]. This ap-
proach allows a complete solution of the elasticity equa-
tions in complex geometries such as nodes [18], but is
only possible for systems with small numbers of contacts.
Another approach is to model the fibers as connected
spheres [21] or sphero-cylinders [22] and to use the dis-
crete element method algorithm widely used for the study
of granular materials. However, the periodic variations of
diameter of such fiber may induce very specific physical
properties as interlocked granular chains stiffening [23].

More realistic approaches are the simulations of
fibers as discrete [24] or continuous [25, 26] cylindri-
cal elastic chains of circular cross-sections. The non-
interpenetration condition between fibers and surfaces,
or between fibers, is then treated as constraints on the
displacements. The introduction of frictional tangential
forces in such model has been proposed using methods for
finding forces that match the Coulomb conditions [25–
27]. In those algorithms, the fibers are moved in order
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to find the positions of the surfaces that match the non-
penetration of fibers, with forces verifying the Coulomb
condition. Those positions are found using an iterative
procedure with proper regularization of Coulomb law to
ensure the convergence towards one solution verifying the
force balance. In the case where many frictional contacts
are present, the problem becomes hyperstatic, and the
solution is expected not to be unique. This is a well
known situation in granular material [28] simulations,
and the solutions selected by iterative algorithms are not
well controlled [28], and presumably depend on the algo-
rithm itself. Those drawbacks are of course of minimal
importance in situations where the indeterminacy in con-
tact forces is absent (hypo- or iso-static problem) such as
in knots with few contacts [29], or if qualitative simula-
tions are needed as in computer graphic community [30].
In explicit methods, the forces are obtained directly from
the kinematic of the body in contacts. The selection of
one solution of the Coulomb friction forces among many
ones is then ensured by the dynamics of the system. In
counterpart, explicit algorithm are usually slower.

Chains of cylinders with frictional contacts have
been first introduced in Discrete Element Method by
Chareyre et al.. These authors used them for the study
of the mechanical properties of granular materials rein-
forced with fibers [31, 32], with geotextiles [33], and for
the behavior of suspensions of frictional fibers in viscous
flow [34].

This bibliography shows that the modeling of fibers in
chains of discrete elements has been the subject of many
studies, but scattered in different fields. Moreover, the
ability of these different models to quantitatively repro-
duce the behavior of fibers systems with many frictional
contacts has never been shown. Systems of fibers in fric-
tional interactions are the object of a growing interest
of physicists and mechanics. The object of this study
is to propose to the community a simple Discrete El-
ement Method, easily reproducible, and founded on the
Discrete Element Rod model which include frictional con-
tacts, and whose capacity to reproduce the behavior of
various frictional fibers is clearly demonstrated.

We will base the model on the theory of elastic chains
as proposed by Bergou et al. [24]. We will keep a formula-
tion with independent elastic constants of torsion, bend-
ing, and torsion, i.e. not linked by a cylindrical beam
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FIG. 1. (a) Ensemble of connected point forming the skeleton
of the fiber. (b) Cylinders and spheres forming the shell of
the fibers.

elasticity. This will allow to simulate various systems,
such as arbitrarily flexible wires. The contacts will be
treated following an approach proposed by Chareyre et
al. [31]. The ingredients of the modeling, as well as the
calculations, will be presented in the simplest possible
way so that this simulation can easily be reproduced by
physicists from various fields.

The manuscript is organized in the following way. In
the section II, we first describe the mechanical model
of our fibers, including internal elastic forces and con-
tact forces. The numerical resolution is then detailed in
section III, where we insist on points that are specific
compared to DEM simulations of frictional beads, i.e.
the numerical scales that are used, the integration of dis-
placement, and the search of neighbors. In section IV, we
illustrate this algorithm on various situations including
static and dynamics, with few and many contacts.

II. MECHANICAL MODEL OF FIBERS IN
CONTACT

A. Description of the fiber

Following [24], we model a fiber as an ensemble of N
connected points (see figure 1(a)). Let ri, with 0 ≤ i ≤
N − 1 be the position of the point, and ei = (ri+1 −
ri)/‖ri+1−ri‖, with 0 ≤ i ≤ N−2 the unit vector joining
two successive points. We note li = ‖ri+1 − ri‖. The
segment joining two successive points is the generatrix of

a cylinder of circular basis of diameter d. In addition,
each point ri is the center of a sphere of diameter d.
So each fiber is a set of N spheres connected by N − 1
cylindrical segments. A mass m0 is assigned to each node
of the string, and a moment of inertia J is assigned to
each cylinder.

The kinematic of the deformation is the following. The
different nodes of one fibre may translate, allowing the
bending and the stretching of the fibre. The cylinders
joining the different nodes stay straight cylinders and
are not bent when the fiber is deformed. The rectilin-
ear shape allows to determine the contacts between fibers
as contacts between cylinders.The cylinders may rotate
around their axis, allowing the twist of the fibers. The
kinematic of the chain is then determined by the set of
N node positions ri, and N − 1 cylinder rotations θi. To
those degrees of freedom, we associate forces that act on
nodes, and torques along the axis of cylinders. Any sys-
tem of forces or torques, such as contact forces or elastic
forces, acting on a cylinder will be decomposed as an ax-
ial torque and forces on nodes. This decomposition will
be detailed below for elastic twist torques and contact
forces.

B. Internal elastic forces

The internal elastic forces that we consider in the fol-
lowing are elongation, flexion and twist forces. The elon-
gational forces are modeled using springs of stiffness k0
with dashpots of damping λ. The equilibrium length of
the spring is l0, and the elongation force exerted by point
i+ 1 on the mass located at ri is:

f
(e)
i+1;i =

[
k0 (li − l0) + λ l̇i

]
ei (1)

Each point i is submitted to forces from points i− 1 and

i+ 1 so that f
(e)
i = f

(e)
i+1;i + f

(e)
i−1;i, excepted the first i = 0

and last i = N − 1 points.
The flexion forces acting on the point i is obtained from

the elastic bending energy E(b) =
∫
s
(B/2) κ2 ds with B

the bending stiffness of the fiber, and κ the curvature.
The bending energy of the discrete fiber is:

E(b) =
B l0

2

i=N−2∑
i=1

κ2i (2)

where κi is the curvature at node i, and the summation
is extended to all nodes except ending ones. Writing
the curvatures κi as function of nodes positions ri, the

flexion force f
(b)
i = −(∂E(b)/∂ri) acting on nodes i is (see

Appendix A):

f
(b)
i = −B

l30

[
ri−2 − 4ri−1 + 6ri − 4ri+1 + ri+2

]
(3)

for (N − 3) ≥ i ≥ 2. Expressions of the forces f
(b)
i for

i < 2 and i > (N − 3) are given in Appendix A. The
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FIG. 2. Contact between two cylinders.

calculation supposes that the fibers are weakly extended
and bent (see Appendix A).

The internal elastic torque is obtained from the twist-
ing energy [24]: E(t) =

∫
s
(C/2) τ2 ds with C the torsion

modulus of the fiber, and τ the twist of the fiber. The
twist may be written as [35–37]: τ = τint + τs. The in-
ternal twist τint is the twist of the fiber if simply unbent,
whereas τs is the torsion of the fibre centre line. Writ-
ing internal twist at node i as (θi− θi−1)/l0, and τs,i the
torsion of the center line at node i, we obtain the twist
energy of the discrete fiber as:

E(t) =
C l0

2

i=N−2∑
i=1

(
θi − θi−1 + l0 τs,i

)2
(4)

The twist moment acting on segment joining nodes i
and i + 1 is obtained by differentiating (4) with respect
to θi (see VI B):

m
(t)
i =

C

l0

[
(θi+1 − θi + l0 τs,i+1) ei+1

−(θi − θi−1 − l0 τs,i) ei−1
] (5)

This elastic moment is split into one component m
(t)
i =

m
(t)
i · ei of the moment along the axis of the segment

(i, i+ 1), and into forces acting on nodes (see VI B).

C. Contact forces

Contact between fibers may occur between segments
of cylinders or spheres belonging to identical or differ-
ent fibers. The figure 2 shows the contact between two
sections of cylinders. The contact point rC(t) is lo-

cated on the segment with ending points r
(1)
Hi

and r
(2)
Hi

on axis cylinders which minimizes the distance between
axis. This segment is unique if the axis are not paral-
lel. The determination of this segment will be detailed

in section III C. Let d(t) = ‖r(2)Hi
− r

(1)
Hi
‖ this minimal

distance, and n(t) the normal unitary vector. We note
δ(t) = (d1 + d2)/2− d(t) the interpenetration of the two

cylinders, and rC(t) = r
(1)
Hi

+ (r1 − δ/2) n the contact
point. We use the Cundall-Strack model for the contact
force [38]. The normal contact force exerted by cylinder
1 on cylinder 2 is modeled as a spring-dashpot system:

f (c)n = −
[
kn δ + λn δ̇

]
n (6)

with kn the contact stiffness between the cylinders, and
λn the contact damping. This contact law is a simpli-
fied version of the elastic contact force between 2 cylin-
ders [39] which varies non-linearly with the interpenetra-

tion f
(c)
n ∼ δ3/2, and which depends on the angle between

cylinder axis. The tangential contact force is a Coulomb-
Force:

f
(c)
t = −Min

[
kt ut;µknδ

] ut

ut
(7)

where kt is the tangential stiffness, ut the tangential
displacement, and µ the microscopic friction coefficient.
The tangential displacement ut is initialized to 0 when
the contact is first formed, and is evolves with time in
the following way:

First, since the tangential displacement is expressed in
the fixed frame, ut is first rotated to take into account the
rotation of the normal vector. Lets dβ the angle between
the normal at times t − dt and t: n(t − dt) and n(t),
and k =

[
n(t − dt) × n(t)

]
/|n(t − dt) × n(t)| the axis

rotation. We name urot
t (t − dt) this rotated tangential

displacement.
Then, the displacement is integrated as:

ut(t) = urot
t (t− dt) + (v(2) − v(1))dt (8)

where v(1) (and similar for v(2)) is the velocity of the
point of the cylinder (1) coinciding with the contact point

C. The velocity is v(1) = ṙ
(1)
i +Ω

(1)
i ×(rC−r

(1)
i ) with Ω

(1)
i

the rotational velocity of the segment i of fiber 1. The
rotation vector is separated into an axial and non-axial

components as: Ω(1) = Ω
(1)
⊥ + θ̇iei, where the non-axial

component is Ω
(1)
i,⊥ = 1

li
ei × (ṙ

(1)
i+1 − ṙ

(1)
i ).

Finally, the normal component (ut ·n) n is removed. If
ktut > µknδ, then the tangential displacement is renor-
malized such that ut = µknδ/kt.

The contact force f (c) is then expressed as a system of

forces f
(c)
i and f

(c)
i+1 applied on nodes i and i + 1, and a

moment miei acting the cylinder connecting those nodes.
The conservation of the resultant and of the moment of
contact force implies that:

f
(c)
i + f

(c)
i+1 = f (c) (9a)

(ri+1 − ri)× fi+1 +miei = (rC − ri)× f (c) (9b)
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A possible choice for forces and moment is (see VI C):

m
(c)
i =

[
(rC − ri)× f (c))

]
· ei (10a)

f
(c)
i = (1− si)f (c) +

R

li
(f (c) · ei)n (10b)

f
(c)
i+1 = sif

(c) − R

li
(f (c) · ei)n (10c)

It should be noticed that (9) does not set all the compo-

nents of f
(c)
i and f

(c)
i+1, and that a supplementary condi-

tions expressed in appendix VI C must be added to obtain
(10).

If the contact between two fibers involve one cylindrical
segment of the fiber and one sphere, or two spheres, the
contact point is calculated accordingly to the type of the
surfaces in contact. The translation velocity of the sphere
is the velocity of the node. The rotation velocity of the
sphere at node i is the rotation velocity of the cylinder
joining nodes i with i+ 1.

D. Miscellaneous forces.

In addition misc extra forces may be added. A global

viscous damping force f
(v)
i = −λv ṙi may be added. It

is useful to damp transverse motion of fibers. Indeed,
our mechanical model of fiber does not include any dis-
sipation for motion perpendicular to fiber axis if there
is no contacts. Volumetric forces such as gravity forces

f
(g)
i = m0 g with g the gravity field may be also added.

Other external forces may applied to fibers such pre-
tension at ends of fibers.

III. NUMERICAL IMPLEMENTATION

A. Integration of equation of motions

The dynamical equations of motions writes as:

M0 r̈i = f
(e)
i + f

(b)
i + f

(c)
i + f

(v)
i + f

(g)
i (11a)

Jz θ̈i = m
(t)
i +m

(c)
i (11b)

The second equation described the rotation of cylinder
segment around its axis. We did not consider in (11b)
any elastic torque due to torsion of the fiber, and the
fiber is free to rotate around node ri. The dynamical
equations are integrated using a standard second-order
Verlet algorithm [40].

B. Physical parameters for simulations

1. Physical scales

We first define mass, length and stiffness scale for the
simulation. The mass scale m0 is the point mass of nodes,

and the length scale l0 is the equilibrium length of each
segment, and the stiffness scale k0 is the elongation stiff-
ness of spring. If all the fibers do not have identical phys-
ical properties, those scales are chosen from the fibers of
smallest radius. For every physical quantities x, with a
physical scale x0, we note the non-dimensional quantity
as x∗ = x/x0.

The time scale is t0 = (m0/k0)1/2. For fibers of di-
ameters r = d/2 made of an elastic material (Young
modulus E, Poisson coefficient ν) of density ρ, we have
k0 = Eπr2/l0, m0 = ρπr2l0, and then t0 = l0 (ρ/E)1/2.
The time scale t0 is then the time of propagation of com-
pression waves through one segment of the fiber. The
force scale f0 = k0 l0 = Eπr2 is the force that extend a
hypothetical perfectly elastic fiber by 100%.

2. Elastic forces and damping

When submitted to a traction force f , the relative ex-
pansion of the fibers is f/f0 = f∗. It follows that if we
want to stay in the limit of small extension, we should
keep f∗ � 1. In practice the simulations are done with
f∗ ∼ 10−5 − 10−3. It should be noted that if f∗ is too
small, the propagation of transverse waves is very slow
when no bending forces are present. Indeed, the veloc-
ity of transverse wave vt in a string of linear density ρl
under a tension f is vt = (f/ρl)

1/2. With ρl = m0/l0,
we have ρ∗l = 1, and the non-dimensional speed of trans-

verse wave is v∗t = (f∗/ρ∗l )1/2 = (f∗)1/2 when no bending
stiffness are present.

The non-dimensional bending stiffness is B∗ = B/k0l
3
0.

For an elastic fiber as consider in III B 1, we have B =
Eπr4/4, and then B∗ = (r∗)2/4. Similarly, the non-
dimensional torsional modulus is C∗ = C/k0l

3
0. For an

elastic fiber of radius r, we have C = Eπr4/2(1+ν), and
then C∗ = (r∗)2/2(1 + ν).

The longitudinal damping λ is chosen to avoid com-
pression waves that travel continuously through the
fibers, needing very long time to return to equilibrium.
We take λ ∼ (k0m0)1/2, and then λ∗ ∼ 1 for this.

3. Contact force

The value of the contact stiffness is fixed from a lin-
earization of the Hertzian contact between two elastic
cylinders. If two cylinders of radius r, with perpendicu-
lar axis are in contact, the problem is equivalent to the
the contact between a sphere of radius r and a plane,
and the normal force is fn = (4/3) Eeff r

1/2 δ3/2, with
Eeff = E/(1−ν2), ν being the Poisson ratio of the mate-
rial. For doing the linearization, we arbitrary set that the
elastic energy of the Hertzian contact ∼ Eeff r1/2 δ5/2

is equal elastic energy knδ
2/2 of the spring for a normal

force f which is of the order or the traction force that we
applied on the fibers. Dropping numerical factor of order
1, we obtain kn = E2/3 f1/3 r1/3. The non-dimensional
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stiffness may then be obtain as:

k∗n =
(f∗)1/3

r∗
(12)

where we again dropped constant term. f∗ is the typical
non-dimensional force (i.e. the non-dimensional traction
applied to the fibers). This value of k∗n is a reasonable
choice for modeling contact, but evidently different values
may be set. In practice, since the tension is of order
f∗ ∼ 10−5 − 10−3, and typical radius are r∗ ∼ 10−1,
we have k∗n ∼ 1. For sake of simplicity, the tangential
stiffness is taken as k∗t = k∗n.

Some damping of the normal force λn may be intro-
duced. We took λ∗n ∼ 1 for rapid relaxation of oscillating
motion of contact.

4. Time scale for simulation

The time step dt for simulation is chosen such that
the dynamic of length relaxation and of contact es-
tablishment is correctly described. The length of seg-
ment relaxes on a time scale ∼ (m0/k0)1/2 = t0,
whereas the time scale for a contact to establish is
∼ (m0/kn)1/2 = t0 (k0/kn)1/2. The time step is cho-
sen as dt = Min

[
t0; t0 (k0/kn)1/2

]
/10, leading to:

dt∗ =
1

10
Min

[
1; (k∗n)−1/2

]
(13)

such that both relaxat ions occur on at least 10 time
steps. In practice, since k∗n ∼ 1, we take dt∗ = 0.1. For
a given set of parameters, it is checked that results are
unchanged if time steps are divided by a factor 2.

C. Computation of contact points

The Discrete Element Method is mainly used in assem-
blies of spherical particles. Due to the anisotropic shape
of the segments, our algorithm for the determination of
the contact points has some particularities compared to
sphere-sphere contact that we discuss in this section.

1. Distance between fibers

The distance between fibers is calculated in the follow-
ing way. We first consider a segment as a set composed
of a sphere and a part of cylinder as shown on figure 3(a).
We first calculate the distance between the two parts of
cylinders following the method described in Appendix
VI D. If contact does not occur along two cylinders, con-
tact between spheres and cylinders are searched, and fi-
nally between the two spheres. The hull of the fiber is
therefore composed of the external surface of the cylin-
ders and of the spheres as shown ib figure 3(b). The
starting and the ending of fibers are finished by spheres.

FIG. 3. (a) 2D view of two sets composed of one sphere and
one cylinder. (b) Motions of an external Cext and internal
Cint contact points at the junction between two cylinders.

2. Integration of displacement of contact point

The contact point is followed continuously during the
motion of the fibers. This may be done easily as long as
the contact point between one segment and one fiber is
unique as in example the contact point Cext of 3(b). In
this case, the displacement of the contact point is con-
tinuously integrated along the motion. In some case, two
contact points may exist simultaneously as the two points

as in example the contact points C
(a)
int and C

(b)
int of 3(b).

When the contact at point C
(b)
int occurs, its tangential

displacement is initially set to 0 (as every new contact),
and this lower the tangential force. Since the fibers are
weakly bend with r � l0, we expect that the number
of such contacts are very small compared to the total
number of contact, producing very negligible errors. A
possible refinement may be to interpolate the two contact
points as a single one, allowing a continuous integration
of displacement.

3. Neighbor search method

The search for contacts between discrete objects can
significantly increase the computation time of DEM al-
gorithms. In our case, the algorithm for measuring the
distance between cylinders is slightly more complex than
for spheres, further increasing the computation time of
collisions. Several strategies are possible to significantly
improve the computation time of the collisions. They are
based on the use of neighbor list (Verlet list) or on the
partition of the system in boxes (Linked Cell Method).
We discuss here the problem arising when using strongly
anisotropic objects. In linked cell method, the particles
are assigned in cells, and the list of particles is each cell is
updated periodically. The collisions are searched only for
particles within the same or the neighboring cells. This
strategy is very effective for approximately monodisperse
spheres. In the case of polydisperse spheres, the size of
the cell must be a multiple of the size of the largest parti-
cles, so that the number of particles per box increases. As
a consequence, the computation time grows rapidly with
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FIG. 4. (a-b): Two possible choices for the size of the cells
into which collisions between fibers mat be searched: (a) size
of the cell scales as the length of segments; (b) size of the cell
scales as the radius of segments. (c) Simplification arising
from the fact that the segments belonging to each fibers are
connected.

the polydispersity as shown by Luding et al [41]. The
problem is very similar for strongly anistropic particles
such fibers, or segments of fibers. The figure 4(a) shows
an assembly of fibers with segments of size l0. If collisions
between segments are searched within one or neighboring
cells, the size of the cell should be ∼ 2 l0. For segments
of section ∼ 4 r2, the number of segments in each cell is
∼ 2 (l0/r)

2 for dense 3D system. Since l0/r � 1, sorting
particles in cell of size ∼ l0 is not efficient. A more conve-
nient way to define cell may be considered. It consists, as
shown 4(b), of replacing segments by fictitious spheres
of radius r inside each segment of length l0, and to con-
sider cells of size ∼ 4 r. In this case for a system of Nf

fibers of N segments each, the total numbers of fictitious
spheres is ∼ NfN(l0/2r). However those two methods do
not use the fact that different segments of one fiber are
linked together. Taking advantage of this knowledge may
significantly speed up the search of neighboring. The fig-
ure 4(c) shows two fibers, and we search contact between
segment i of fiber 1, with fiber 2, by increasing j. For a
segment j, we calculate the distance d(i, j). If this dis-
tance is larger that 2r there is no contact, and we are
sure that there is no contact between the two fibers for
|j′−j| ≤ d(i, j)−2r. So the next segment where we need
to search contact verifies j′ > j + d(i, j)− 2r.

The optimal strategy to find contacts is expected de-
pendent on the type of fiber under studies. In case of
fibers with numerous segments, taking advantage of the
constraint that the segment are linked as depicted in 4(c)
is presumably the better. At the opposite, in the case of
an assembly of very short fibers, such as a packing of

FIG. 5. Force applied to a beam as a function of its deflec-
tion. (a) Geometry. (b) Symbols: simulation results. Plain
line: theoretical solution. Dashed line: force in the small de-
flection limit FL2/B = 3δ/L. (c) Convergence: δN is the end
deflection for a beam with N nodes ((N − 1) cylinders), and
δth the theoretical deflection. Applied forces is FL2/B = 10.
Symbols are relative error, and dashed line is a N−2 decay.

one-segment needles, use of cell as 4(b) should be pre-
ferred. The further study of such optimization is outside
the scope of this study.

IV. ILLUSTRATION EXPERIMENTS.

The program has been tested on various simple geome-
tries in order to check the consistency with the theory, to
verify the numerical stability of the algorithm, and test
the numerical precision. Those configurations were the
rolling or sliding of a cylinder on a inclined plane, the ve-
locity of transverse waves of a string, the static flexion of
a fiber loaded at extremity by a point force, the catenary
shape of a massive string under gravity. We present in
the following four more complex situations. If not other-
wise specified, the simulation parameters are: time step
dt∗ = 0.1, internal damping λ∗ = 2.8, contact stiffness
k∗n = k∗t = 1, contact damping λ∗n = 1, global viscous
damping λ∗v = 0.001, inertia momentum J∗ = m∗r∗2/2
(homogeneous cylinder).

A. Elastic rods without contacts

The elastic rod model has been already tested in misc
situations that do not involve frictional contacts [24].
The test examples presented here are just for checking
the approximations used in II B and VI.

The first example is the deformation of a clamped elas-
tic rod (N = 100, B∗ = 0.1) submitted to a point force
applied at one end (see figure 5.a). The clamping is im-
posed by fixing the first and second node of the rod. The
free rod length L is then the number of cylinders N − 1
minus one: L = N − 2 = 98. Results for different values
of applied forces are shown on 5.b. Those results may be
compared to the deflection of an non-extensible rod. At
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FIG. 6. Buckling of an elastic rod. (a) Geometry. (b) Torque
applied at ends at the torsional buckling threshold as a func-
tion of the rod length. Symbol: simulation results with P = 0.

Line: M
(b)
t = 2πB/L.

small deflections δ � L, FL2/B ' 3δ/L. At large de-
flections δ ∼ L simulations agree well with the analytical
solution of Bisshopp et al. [42]. Simulations with beams
made with different N show that the solution obtained
with the discrete beam converges towards analytical solu-
tion as ∼ N−2 (see fig.5.c). It may be noticed that since
the maximum force applied in those simulations are of or-
der F ∼ 10 B/L2, the maximum non-dimensional force
F ∗ ∼ 10−4 << 1, so that the beam stretching is negligi-
ble.

The second example is the buckling of a rod submit-
ted to a compression and applied torque at its ends (see
fig.6.a). A numeric rod (B∗ = 0.1) is submitted to a
torque Mt at its ends. The displacement of the ends per-
pendicularly to the axis of the rod are blocked, and no
compression forces P are applied. The torque is slowly in-
creased until buckling of the beam occurs. The buckling
threshold is determined by measuring the displacement of
the ends along the axis of the rod. Those displacements
are initially negligible, and suddenly increases as buck-

ling occurs. fig.6.b shows the buckling torque M
(b)
t as a

function of the rod length. Stability analysis of twisted

rods leads to[43]: M
(b)
t = 2πB/L. As shown on fig.6.b,

the numerical results are in correct agreement with this
theoretical law.

B. Static without flexion : capstan

We simulate the tension along a string which is rolled
up around a cylinder. For this, we prepare a infinitely
flexible spring (B∗ = 0, N = 200, r∗ = 0.1) which makes
5 turns around a cylinder (R∗ = 5). The cylinder had a
huge mass and moment of inertia to prevent any motion.
The friction coefficient is µ = 0.2. We first apply an

FIG. 7. Tension in a rolled string around a cylinder: T ∗ is
the tension in the string, and θ is the rolling angle.Circles are
symbol, plain line is an exponential fit. See for simulations
parameters Inset: Schematic of the experiment.

equal tension T ∗1 = T ∗2 = 0.01, with opposite directions,
to the two ends of the string. We let the system to reach
equilibrium. Then, we slowly decreases T ∗2 while keeping
T ∗1 = 0.01. For a threshold value of T ∗2 , the sliding of
the string occurs. We measure the tension in the string
using (1) at the onset of sliding. The fig.7 shows the
decrease of the tension T ∗ along the string as a function
of θ = (s∗−s∗0)/(R∗+ r∗), with s∗ the abscissa along the
curve, and s∗0 the abscissa of first contact contact point.
The solution of capstan problem with a finite thickness
rod predicts that [44]: T ∗/T ∗1 = exp(−µ θ), which is the
observed behavior on figure 7. The measured decay is
µ = 0.198 in agreement with the imposed value µ = 0.2.

C. Static with flexion : elastic knots

We consider the mechanical response of an elastic rod
with an open knot. An elastic fiber of length L, with
a circular section of radius r, and bending modulus B is
bent in an open trefoil knot (31). We then apply a tension
T to the ends of the fibers. This experimental situation
has been addressed by Audoly et al. [16, 17]. When the
tension is weak, the loop radius R is very large compared
to r. In this limit, authors found analytical solutions for
the shape of the knot, either in the frictionless case, but
also for weak friction µ � 1. This knot has been simu-
lated very recently by Choi et al. using an discrete rod
model with an implicit solver for the contact force [29].

We simulate numerically such knot by considering a
flexible spring (r∗ = 0.1, B∗ = (r∗)2/4 = 2.5 10−3, N =
500, λ∗v = 4.10−4) as shown on figure 8(a). We first knot
the fiber by setting µ = 0 and applying a tension ± T ∗ez

at ends. After this preparation stage, we set µ to its
actual value, and we increase or decrease T ∗ depending
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FIG. 8. (a) Snapshot of a (31) knot. For seek of clarity,
illustration is made with r∗ = 0.2. (b) Tension as a function

of ε =
√
r/R for frictionless and frictional strings. Symbols

are numerical data, and lines are theoretical expressions given
by equation (14).

if we tighten or lossen the knot. When the knot begins
to move, we measure the radius of curvature of the loop
as R =< ‖dti/ds‖−1 >, where dti/ds = ei+1 − ei is the
derivative of the tangent vector, and the average < > is
over all segments in the loop which are at a distance of
at least one segment from any contact point. Following
[16, 17], we introduce ε =

√
r/R. The figure 8(b) shows

the tension T ∗ as a function of ε for frictionless (µ = 0),
and frictional (µ = 0.1) loosening and opening knots.
The analytical solutions in the limits ε � 1 and µ � 1
are [16, 17]:

Tr2

B
=
ε4

2
± µσε3 (14)

where the sign ± depends if the knot is tightened (+)
or loosened (−), and σ is a numerical constant which is
σ ' 0.492 for trefoil knot. As shown on figure 8(b), the
numerical data agrees correctly with the analytical one.
In the frictionless case, we may observe deviations from
the scaling T ∼ ε4 when ε & 0.15. Two possible sources
of deviations may be identified. First, the equation (14)
is obtained in the limit ε � 1, and deviations may arise
from high order ε terms in equation (14). Second, for

FIG. 9. (a) Experimental snapshots of the impact of a
metallic chain on a fixed perpendicular cylinder of radius
R = 10 mm. The perimeter of the cylinder is underlined
in red. Time t = 0 is defined as the first contact time. Chain
length L = 190 mm, mass m = 8.5 g. (b) Simulated impact.
See text for physical parameters of the simulation.

ε & 0.15, we have R∗ = R/l0 = r∗/ε2 ∼ 4, so that the
discretization of loop may then be an issue. The discret
nature of the rod may be clearly identified on numerical
data form µ = 0.1 loosening, where some steps in ε are
visible. For the frictional case, the model (14) slightly
underestimates the role of friction compared to numerical
simulations. It may be due to some departure from the
hypothesis µ� 1 which is used to obtain (14).

D. Impact: falling chain.

We consider the dynamics of the impact of a metallic
chain on a cylindrical obstacle. We restrict this anal-
ysis to a qualitative analysis. A metallic chain (length
L = 190 mm, mass m = 8.5 g) is held at its extremities
by hands. The chain is released and its fall is recorded
with a fast camera operating at 200 fps. The figure 9(a)
show some snapshots of the impact. The chain is simu-
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lated as a infinitely flexible spring B∗ = 0. We set the
length scale to l0 = 2 mm, and N = 95, so that L = N l0.
The choice of the time scales may be done in the follow-
ing way. We want to simulate a non-extensible chain, so
we need that the non-dimensional typical force is << 1.
The gravity force is Fg = Nm0g, with m0 the mass scale
of one segment, and g the gravity. The non-dimensional
gravity force is then F ∗g = Fg/k0l0 = Ng/l0t

−2
0 = Ng∗.

We take g∗ = 4.9 10−5 so that N g∗ ' 5. 10−3 � 1. This
sets the time scale t0 = 0.1 ms. It should be noted that
in the limit of a non-extensible chain, the mass scale does
not need to be specified. Other parameters are dt∗ = 0.1,
R∗ = 5, r∗ = 0.1, µ = 0.1, k∗n = k∗t = 1. Figure 9(b)
shows the results of the simulations which qualitatively
agree with the experiments. We may remark that the
behaviour of the experimental chain is not symmetric in
compression and in extension (nearly infinite stiffness in
extension, zero stiffness in compression), whereas the nu-
merical chain is symmetric (same stiffness in compression
and in extension). However, in impact experiment, the
chain is always in tension, and the lack of symmetry does
not have importance.

E. Multiple fibers: a yarn model.

In a recent study, Seguin et al. considered the situation
of a staple yarn made of twisted totally flexible fibers [7].
We present in this section some numerical details about
this simulation. The yarn is made of an assembly of Nf

identical fibers of N segments initially parallel to an axis
z (see figure 10(a). Their positions (xi; yi) in the plane
perpendicular to the z axis, with 1 ≤ i ≤ Nf are the
positions of a packing of disks in 2D obtained from a
separate simulation.

In a first phase of the simulation the fibers are twisted.
The fiber are submitted to a tension T ∗ = 10−4 along z,
applied at both ends. A torque C∗ez is applied to both
ends of the assembly of fibers. For this, each fiber i with
1 ≤ i ≤ Nf is submitted at both ends j = 0 and j = N
to an external shear force:

τi(j) = ± C∗∑
i r

2
i (j)

[
ez × ri(j)

]
(15)

where sign is − for j = 0, and + for j = N ends. The
torque is gradually increased until it reaches its target
value and the shear forces are updated at each time step.
Under the action of this torque, the fibers twist and be-
comes approximately helicoidal as shown on figure 10(b).
During this preparation, the friction coefficient is set to a
low value µ = 0.05. This is important in order to obtain
a regular pitch along the thread. Indeed, since the yarn
is twisted by the application of torques at ends, the pres-
ence of an important friction between fibers has the effect
of concentrating the twist near ends, with a central zone
of low twist. This behavior is also observed experimen-
tally [7] if the twist is not homogenized along the yarn.

FIG. 10. (a) Assembly of of initially straight fibers. (b)
Thread of fiber after a torque is applied at ends. (c) Sep-
aration of the fibers due to applied forces. (d) Force ratio
necessary to separate the slivers as a function of the twist
angles. Red disks: µ = 1, blue triangles: µ = 0.5, green
squares: µ = 0.2. Lines are for guidelines. (e) Same data
as (d) plotted as a function of H = µθ2R/L. Dotted line is
0.75 µθ2R/L. Simulation parameters are Nf = 20, N = 30,
r∗ = 0.1, B∗ = 0. For clarity, the sub-figures (a-c) are en-
larged by a factor 6 perpendicularly to z-axis.

The duration of this preparation stage is t∗ = 5.105, and
the total twist θ is measured at the end of this phase.

In a second phase the fibers are separated. The fric-
tion is first set at its target value. The fibers are ran-
domly partitioned is two set -up- and -down-. The ten-
sion of the up-fibers are multiplied by a factor f > 1
at the up-extremities: Tup(j = 0) = T ∗ and Tup(j =
N) = f T ∗. Symmetrically, Tdown(j = 0) = f T ∗ and
Tdown(j = N) = T ∗. The factor is f = 1 at the begin-
ning of the separating stage and is increased at a fixed
rate (∆f/∆t∗) = 2.10−6. During this phase, the torque
is kept constant. The difference between the average po-
sitions of the -up and -down fibers is measured. This dif-
ference stays constant, until a threshold value of f where
the two slivers of fiber separates (see figure 10(c)). A
mechanical model of this problem developed in [7], show
that the force necessary to separate the two slivers is
ln(1 + f) ' 0.75 µθ2R/L which is the behavior that is
observed on figure 10(e).
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V. CONCLUSION

We have described a discrete element mechanics algo-
rithm for the simulation of flexible and frictional fibers.
This algorithm is similar to the DEM type algorithms
widely used for the study of granular materials. The dif-
ference arises from the type of surfaces in contact (cylin-
ders and not spheres) and from the elastic forces between
the cylinders which are connected to form a fiber. The
algorithm has been tested on various configurations that
can be compared to experiments or to theoretical models.

The assumptions and approximations used to design
this algorithm are quite limited. The low bending as-
sumption is not very compelling for many applications,
but could eventually be minimized by a finer discretiza-
tion of the fiber. The simplification of the Hertzian elastic
contact law between the cylindrical segments by a linear
spring has probably a very small impact on the model-
ing of real systems. An extension to non-linear contact
laws should not be a problem. Finally, the discretization
of the fiber generates a discontinuity of the displacement
for some contact points at the passage between successive
segments of a fiber. A priori the number of such jumps is
negligible compared to the total number of contacts for
thin and weakly bent fibers, and this should not be an
issue for simulations of real systems.

The main difference between this algorithm and those
previously described to simulate elastic fibers lies in the
level of simplification of the mechanical problem. Simula-
tions of fibers with finite element algorithms are certainly
of high accuracy but can only simulate small systems.
Implicit algorithms are probably faster, but the indermi-
nation of forces in multi-contact cases is not resolved by
the dynamics of the system. The use of a DEM algo-
rithm is a compromise that allows to consider relatively
complex assemblies of fibers and that correctly handles
the multiplicity of equilibrium solutions.

The potential applications of this algorithm are ob-
viously multiple. The study of complex knots between
fibers of ropes, with or without bending energy is possi-
ble. The mechanical response of fiber clusters in nests,
cushions, or in rigid needle stacks are also possible. For
these studies, the contact search should be optimized ac-
cording to the aspect ratio of the fibers and the geometry
of the packing. The simulation of knitted or woven fab-
rics can also be considered. For this, large systems can
be simulated, but the introduction of periodic boundary
conditions should be more suitable. Finally, systems mix-
ing fibers and grains for the study of soils reinforced by
fibers or roots are also possible applications of this work.
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VI. APPENDICES

A. Flexion forces

The curvature κi at a node N − 2 ≥ i ≥ 1 is first
expressed as a function of the positions of nodes ri−1,
ri and ri+1. The radius Ri = 1/κi of the circle join-
ing those three points may be expressed as a function of
the surface Si and the perimeter pi of the triangle with
vertices (ri−1, ri, ri+1) using the Heron formula. After
elementary calculus, we obtain:

κ2i = 4
l2i−1l

2
i − (li−1 · li)2

l2i−1 l2i (li−1 + li)2
(16)

where we noted li = ri − ri−1. The bending energy is

E(b) =
B l0

2

i=N−2∑
i=1

κ2i (17)

The flexion force is then:

f
(b)
i =

B l0
2

∂

∂ri

[i′=N−2∑
i′=1

κ2i′
]

(18)

First, we notice that for weakly bend fibers li ' li−1,
and for weakly extended fibers li ' l0. Then, the denom-
inator of (16) is ' 4 l60:

∂κ2i′

∂ri
' 1

l60

∂

∂ri

[
l2i′−1l

2
i′ − (li′−1 · li′)2

]
(19)

Using li = ri − ri−1, we obtain:

∂κ2i−1
∂ri

' 1

l40

[
2(li−1 − li−2)

]
(20a)

∂κ2i
∂ri
' 1

l40

[
−4(li − li−1)

]
(20b)

∂κ2i+1

∂ri
' 1

l40

[
2(li+1 − li)

]
(20c)

and (∂κ2j/∂ri) = 0 if |i− j| > 1. We obtain finally:

f
(b)
i =

B

l30

[
−li−2 + 3li−1 − 3li + li+1

]
(21)

=
B

l30

[
ri−2 − 4ri−1 + 6ri − 4ri+1 + ri+2

]
(22)

for N − 3 ≤ i ≤ 2. Expressions of the forces for i < 2,
and i > N − 3 are obtained by noticing that summation
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in (18) is for i′ = 1 to i′ = N − 2.

f
(b)
0 = −B

l30

[
r0 − 2r1 + r2

]
(23a)

f
(b)
1 = −B

l30

[
−2r0 + 5r1 − 4r2 + r3

]
(23b)

f
(b)
N−2 = −B

l30

[
rN−4 − 4rN−3 + 5rN−2 − 2rN−1

]
(23c)

f
(b)
N−1 = −B

l30

[
rN−3 − 2rN−2 + rN−1

]
(23d)

B. Twist moment and forces

The twist energy of the discrete rod is:

E(t) =
C

2 l0

i=N−2∑
i=1

(θi − θi−1 + l0 τs,i)
2 (24)

where τs,i is the torsion of the center line at node i, and
(θi − θi−1)/l0 is the internal twist. The torsion τs of the
center line is obtained from Frenet-Serret equations as
τs = (dN/ds) · B, where (T,N,B) are tangent, normal
and bi-normal vector of the centre line of the fiber. They
are obtained by multiple differentiation of tangent vector
ei, with appropriate interpolations depending if deriva-
tives are evaluated at nodes or at cylinder.

m
(t)
i−1;i =

C

l0
(θi − θi−1 + l0 τs,i)ei−1 (25)

Taking into account the torque acting from the segment
(i + 1; i + 2) on the segment (i; i + 1), the total elastic
twist torque acting on the segment (i; i+ 1) is:

m
(t)
i =

C

l0

[
(θi+1 − θi + l0 τs,i+1) ei+1

−(θi − θi−1 − l0 τs,i) ei−1
] (26)

This torque is split in two components. The axial (co-
linear to ei) component is:

m
(t)
i = m

(t)
i · ei (27)

whereas the remaining perpendicular component m
(t)
i −

m
(t)
i ei is written as a system of two points forces f

(t)
i and

f
(t)
i+1 acting at points i and i+ 1 such that:

f
(t)
i + f

(t)
i+1 = 0 (28a)

(ri+1 − ri)× f
(t)
i+1 = m

(t)
i −m

(t)
i ei (28b)

f
(t)
i · ei = 0 (28c)

(28a) ensures that the system of two points forces is a
torque, (28b) assigns the moment, and (28c) that those
forces do not stretch the rod. Using (ri+1 − ri) = liei,
we finally obtain the two forces acting on nodes:

f
(t)
i+1 = −f

(t)
i = (m

(t)
i /li)× ei (29)

C. Contact forces distribution

Let’s a contact force f (c) acting at point rC . We are

looking for two point forces f
(c)
i (respectively f

(c)
i+1) acting

at point ri (resp. ri+1) and a moment miei such that:

f
(c)
i + f

(c)
i+1 = f (c) (30a)

(ri+1 − ri)× f
(c)
i+1 +m

(c)
i ei = (rC − ri)× f (c) (30b)

Scalar product of (30b) with ei gives:

m
(c)
i =

[
(rC − ri)× f (c)

]
· ei (31)

and cross product of (30b) with ei gives:

lif
(c)
i+1 − li

[
f
(c)
i+1 · ei

]
ei = f (c)

[
ei · (rC − ri)

]
− (rC − ri)

[
ei · f (c)

]
(32)

Defining the parallel and perpendicular component of
a force f with respect to the cylinder axis as:

f‖ =
[
f · ei

]
ei (33a)

f⊥ = f − f‖ (33b)

we obtain:

f
(c),⊥
i+1 = sif

(c),⊥ − R

li
f (c),‖n (34)

(34) determines only the components of f
(c)
i+1 which are

perpendicular to the axis. The parallel component of f
(c)
i+1

is obtained in the following way. Consider the cylinder
of length li made of an elastic material, and let’s k the
stiffness of the corresponding compressing spring. This
cylinder may be viewed as the reunion of one cylinder of
length sili with stiffness k/si, and one cylinder of length
(1 − si)li with stiffness k/(1 − si). Let’s a force f (c),‖

applied at the junction between cylinders. This force
moves the junction on a distance δ = ‖f (c),‖‖/[k/si +
k/(1−si)]. This displacement deforms the part of length

(1− si)li and generates a force f
(c),‖
i+1 = [k/si]δ = sif

(c),‖

on this spring. Inserting this equation in (34), we finally
obtain:

f
(c)
i+1 = sif

(c) − R

li

[
f (c) · ei

]
n (35)

D. Distance

We consider two segments 1 and 2 whose axis are
drawn on figure 11. On each axis are located at abscissa
s = 0 a sphere of rayon r, and a segment of cylinder of
radius r for 0 ≤ s ≤ 1. The distance between two points
at abscissa s1 and s2 is:

d2(s1, s2) = (a + s1 l1 + s2 l2)2 (36)
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FIG. 11. Distance between two points located on two seg-
ments of line.

The distance is minimal for s∗1 and s∗2 which verify:

(∂d2(s1, s2)

∂s1

)
(s∗1, s

∗
2) =

(∂d2(s1, s2)

∂s1

)
(s∗1, s

∗
2) = 0 (37)

Equation 37 is solved to obtain (s∗1, s
∗
2), and the mini-

mal distance d(s∗1, s
∗
2) is obtained. If d(s∗1, s

∗
2) < 2r, with

0 ≤ s∗1 ≤ 1 and 0 ≤ s∗2 ≤ 1, the contact is found between
the two cylinders.

It not, the contact is checked between the sphere lo-
cated at s1 = 0 and the cylinder 2. For this the minimal
distance is obtained for s∗2 verifying:

(∂d2(0, s2)

∂s2

)
(0, s∗2) = 0 (38)

Equation 38 is solved to obtain s∗2, and the minimal
distance d(0, s∗2) is obtained. If d(0, s∗2) < 2r, with 0 ≤
s∗2 ≤ 1, the contact is found between the sphere (1) and
the cylinder (2).

The contact between sphere (2) and cylinder (1) is
searched in a similar way. If not, we check for a con-
tact between the two spheres.
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[11] Gautier Verhille, Sébastien Moulinet, Nicolas Vanden-
berghe, Mokhtar Adda-Bedia, and Patrice Le Gal.
Structure and mechanics of aegagropilae fiber net-
work. Proceedings of the National Academy of Sciences,
114(18):4607–4612, 2017.

[12] Andrade-Silva, Ignacio, Godefroy, Théo, Pouliquen,
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