
HAL Id: hal-04064312
https://hal.science/hal-04064312v1

Preprint submitted on 11 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Inducing techniques for quantitative recurrence and
applications to Misiurewicz maps and Doubly

intermittent maps
Dylan Bansard-Tresse, Jorge Milhazes Freitas

To cite this version:
Dylan Bansard-Tresse, Jorge Milhazes Freitas. Inducing techniques for quantitative recurrence and
applications to Misiurewicz maps and Doubly intermittent maps. 2023. �hal-04064312�

https://hal.science/hal-04064312v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


INDUCING TECHNIQUES FOR QUANTITATIVE RECURRENCE AND
APPLICATIONS TO MISIUREWICZ MAPS AND DOUBLY

INTERMITTENT MAPS

DYLAN BANSARD-TRESSE AND JORGE MILHAZES FREITAS

Abstract. We prove an abstract result establishing that one can obtain the convergence of
Rare Events Point Processes counting the number of orbital visits to a sequence of shrinking
target sets from the convergence of corresponding point processes for some induced system
and matching shadowing shrinking sets inside the base of the inducing scheme. We apply
this result to prove a dichotomy for two classes of non-uniformly hyperbolic interval maps:
Misiurewicz quadratic maps and doubly intermittent maps. The dichotomy holds in the
sense that the shrinking target sets may accumulate in any individual point ζ chosen in the
phase space and then one either obtains a limiting homogeneous Poisson process at every
non-periodic point ζ or a limiting compound Poisson process with geometric multiplicity
distribution at every periodic point. We also highlight the reconstruction performed in order
to recover the multiplicity distribution for a periodic orbit sitting outside the base of the
induced map.

Contents

1. Introduction 2
2. Generalised inducing technique for the convergence of Rare Events Point Processes 4
3. Dichotomy for Misiurewicz-Thurston quadratic maps 10
3.1. Preparatory results and observations 12
3.2. The case where the orbit of ζ hits the interior of the inducing set 14
3.3. The case where the orbit of ζ does not hit the inducing set 17
3.4. Reconstruction of the clusters 21
4. Dichotomy for doubly intermittent maps 28
4.1. The case ζ /∈ {−1, 0, 1}. 30
4.2. The case ζ = 0. 33
4.3. The case ζ ∈ {−1, 1}. 33

Date: March 30, 2023.
2020 Mathematics Subject Classification. 37A50, 37B20, 60G70, 60G55, 37A25.
Key words and phrases. Inducing techniques, point processes, periodic points, clustering, return times,

hitting times, compound Poisson process.
DBT and JMF were partially supported by FCT projects PTDC/MAT-PUR/28177/2017, PTDC/MAT-

PUR/4048/2021 and 2022.07167.PTDC, with national funds, and by CMUP, which is financed by national
funds through FCT – Fundação para a Ciência e a Tecnologia, I.P., under the project with reference
UIDB/00144/2020. The authors would like to thank Romain Aimino, Théophile Caby, Jean-René Chazottes,
Mike Todd and Roland Zweimüller for fruitful and stimulating conversations about the results in the paper.

1



2 D. BANSARD-TRESSE AND J. M. FREITAS

References 34

1. Introduction

Inducing techniques are very powerful tools to study the statistical properties of dynamical
systems. Among these properties we are particularly interested in the extremal behaviour
which is tied to the study of quantitative recurrence to shrinking target sets in the phase
space. The idea of using induced systems to study hitting and return times statistics appeared
first in the insightful paper [BSTV03], where it was shown that, for sequences of nested balls
shrinking to a.e. point in the base of the induced system, the existence of a limiting law
for the normalised return times (or hitting times) to these balls for the induced dynamics
implied that the same limiting law applied for the original dynamics. This allowed them to
derive hitting and return times statistics for non-uniformly hyperbolic interval maps such as
maps with critical points or neutral fixed points, which admit induced systems with good
hyperbolic properties, for which an exponential limiting law was easy to derive. We note that
the existence of a limiting law for the normalised return time is equivalent to the existence of
a limiting law for the normalised hitting time (in which case the orbits may not necessarily
start in the target sets) and the two limits are related by an integral equation which has
the standard exponential distribution as a fixed point (see [HLV05]). We also observe that
the existence of limiting law for the hitting time to a nested sequence of balls shrinking to a
certain point ζ is equivalent to the existence of a distributional limit for the partial maxima
of a stochastic process for which the observation of exceedances of high levels corresponds to
the entrance in small balls around ζ (see [FFT10]).
The fact that the induced and the original system shared the same limiting laws for the
hitting/return times was generalised in [HWZ14] so that any point could be taken as the
intersection of the nested sequence of balls (instead of only typical points). This was further
generalised in [FFTV16], where again the connection between the induced dynamics and
the original one was established regarding the convergence of Rare Events Point Processes
(REPP), which keep information not only of the first hitting/return time but also of all
succeeding hits/returns. In simple terms, these point processes count the number of visits to
the chosen sequence of shrinking (hence rarer) target sets.
Earlier results established that for well behaved systems, for a.e. point ζ chosen in the phase
space and for a nested sequence of balls (or cylinders) shrinking to ζ, we had exponential hitting
and return times statistics (meaning that the limiting law for both the normalised hitting and
return time is the standard exponential distribution). On the other hand, for special points like
when ζ is a periodic point, the limiting law for the hitting time is exponential with parameter
0 < θ < 1, while the law for the return time is a mixture of an exponential distribution
with the same parameter and a discrete component placing a mass point at 0 with weight
1− θ. This was deeply studied in [FFT12], where the periodicity of ζ was associated with the
occurrence of clustering of rare events, so that a visit to a vicinity of ζ would usually mean
the appearance of a cluster of succeeding visits, which was responsible for the mass point at 0
observed in the return times statistics. The parameter θ measured the intensity of clustering
and, following the classical Extreme Value Theory, was called Extremal Index. Moreover, in
[FFT12], it was actually proved that for a uniformly hyperbolic system a dichotomy held:
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either we had this mixture for the return times statistics at every periodic point or we would
have a standard exponential limiting law at every non-periodic point (which means θ = 1),
with no exceptions. This dichotomy was conjectured to held in much more generality and,
later, it was established for some uniformly expanding interval maps with a finite number of
branches in [FP12], for maps for which there was a spectral gap for the respective transfer
operators in [Kel12] or maps with a strong form of decay of correlations in [AFV15], which
included Rychlik maps ([Ryc83]), with possibly countably many branches. Nonetheless, this
meant that the dichotomy held essentially for nicely expanding systems.
In [FFTV16], using the inducing technique, the authors managed to prove the dichotomy for
non-uniformly expanding systems with a neutral fixed point. It was established in terms of
the convergence of REPP, whose limits were a standard homogeneous Poisson process, for all
non-periodic points, and a compound Poisson process, for periodic points. The compound
Poisson process could be described has having two components, one was the time positions
of the clusters of rare observations, scattered in the time line according to a homogeneous
Poisson process of intensity θ, and the other was the Geometric multiplicity distribution of
parameter θ describing the cluster sizes.
One of the key aspects of the argument used in [FFTV16] in order to obtain the full dichotomy,
was the fact that the special structure of the Liverani-Saussol-Vaienti (LSV) maps [LSV99]
allowed the authors to choose different bases for the inducing scheme so that every point
(except for the neutral fixed point 0, which was analysed separately) could be covered by one
of these bases. Recall that all the results mentioned above regarding the connection between
the limiting laws for the induced and the original dynamics assumed always that the point ζ
which is the accumulation point of the targets sets must be in the base of the induced map.
In [Zwe19], Zweimüller managed to remove this obstruction and proved that the induced map
shared the same hitting times statistics, for some shadow shrinking sets inside the base, with
that of the original map, for which one considered a sequence of original shrinking target sets
outside the base. This is an abstract quite general result which holds as long as the time
needed to get from the shadow sets inside the base to the original target sets is negligible
when compared with the expected time to return to the latter. The dichotomy for LSV maps
can then be proved using only the usual induced map with base [1/2, 1] and even the case of
the neutral fixed point can be covered by analysing its preimage inside the base (1/2), as was
done in [Zwe19]. We also mention the paper [DT21] where the authors use inducing techniques
to study systems with holes outside the base.
One of the main goals of this paper is to generalise Zweimüller’s abstract result for hitting times
statistics to the convergence of REPP, i.e., we to establish that one can obtain the convergence
of REPP for shrinking target sets outside the base from the convergence of corresponding point
processes for the induced dynamics and shadowing sets inside the base. We remark that this
is not straightforward because one must guarantee that the induced system does not miss
clusters, which means that not only must one go fast enough from the shadow sets to the
original targets as one should return to the base of the inducing scheme before returning to
the target sets since, otherwise, the induced map is missing part of the action. This is carried
in Section 2.
We then apply these abstract results to prove a dichotomy regarding the convergence of
REPP for two classes of non-uniformly hyperbolic interval maps. In Section 3, we consider
Misiurewicz-Thurston quadratic maps, for which the critical point is pre-periodic and have the
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nice property of admitting a Rychlik induced system. In Section 4, we prove the dichotomy
for the class of doubly intermittent maps introduced very recently in [CLM22], which also
admit nice induced systems.
We observe that the induced map may not detect the clustering visits of the orbits to the
target sets outside the base because these may occur before the orbits return to the base.
Therefore, one must reconstruct the original point process counting all the visits to the target
sets from the point process of visits to the shadowing sets inside the base. This reconstruction
must be carried using the local behaviour of the dynamics in the limit of the shrinking target
sets. We perform this reconstruction for target sets shrinking to a periodic point whose orbit
never enters the base of the inducing scheme. This was done in Section 3.4 and we believe
that it has an independent interest on its own.

2. Generalised inducing technique for the convergence of Rare Events
Point Processes

Let (X ,B, µ, T ) be an ergodic dynamical system where X is a metric space, B is the Borel σ-
algebra on it and T is a map preserving the probability measure µ. Let A ∈ B with µ(A) > 0.
Given x ∈ X , the first hitting time to A as

rA(x) = inf
{
k ≥ 1: T kx ∈ A

}
.

When x ∈ A we say that rA is the first return time to A. For all i > 1, we define the i-th
hitting/return time to A inductively by

r
(i)
A = rA

(
T r

(i−1)
A (x)(x)

)
and by convention r(1)

A = rA. If r(i)
A = +∞ for some i, then we set r(j)

A = +∞ for j ≥ i. The
induced map TA : A→ A is defined by

TA(x) = T rA(x)(x).

This map is well defined µ-almost everywhere by Poincaré’s recurrence theorem. Then, the
induced dynamical system

(
A, TA, µA

)
is also an ergodic dynamical system, where µA(B) =

µ(A ∩B)/µ(A) for B ∈ B, and BA = {B ∩ A : B ∈ B}. In this case, for B ⊂ A and x ∈ A,
we define the induced hitting/return times by

rAB(x) = inf
{
k ≥ 1: T kAx ∈ B

}
.

We then define the successive hitting/return times rA,(i)B for TA in the same way as for T .

Definition 2.1. For B ∈ B, we define the stationary process of successive hitting/return
times:

ΦB =
(
r

(1)
B , r

(2)
B , . . .

)
,

where the r(k)
B ’s are random variables with the same law which is induced by µ (i.e., P

(
r

(1)
B =

·
)

= P
(
r

(k)
B = ·

)
= µ

({
x ∈ X : r

(1)
B (x) = ·

})
for all k ≥ 2). Given B ⊂ A, we can define the

induced process on A by
ΦA
B =

(
r
A,(1)
B , r

A,(2)
B , . . .

)
,

which is stationary with respect to µA.
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Definition 2.2. We define the Rare Event Point Processes (REPP), on R+
0 , which count the

number of orbital visits to the set B ∈ B, in a normalised time frame, for the original and the
induced dynamics in the following way:

NB(x) =
∑
i≥0

δi·µ(B) · 1B(T ix), for x ∈ X , NA
B (x) =

∑
i≥0

δi·µ(B) · 1B(T iAx), for x ∈ A,

where δz denotes the Dirac measure charging the mass point z ∈ R+
0 and, in the second case,

we have B ⊂ A.

Remark 2.3. Observe that the components of the process µ(B)·ΦB (respectively µA(B)·ΦA
B)

correspond to the interarrival times of the projection of the point process NB (respectively
NA
B ) to the space of continuous time càdlàg stochastic processes, or, in other words, the

sequences (
µ(B)

j∑
i=1

r
(i)
B

)
j∈N

and

(
µ(B)

j∑
i=1

r
A,(i)
B

)
j∈N

correspond to the sequence of mass points charged by the point process NB and its induced
version NA

B , respectively. For this reason, we will refer to the processes µ(B) ·ΦB and µA(B) ·
ΦA
B as the normalised interarrival times process and induced interarrival times process, while

ΦB and ΦA
B will be referred to as the unnormalised interarrival times and induced interarrival

times processes.

We will study the convergence of REPP when the measure of the target sets B shrinks to 0,
which motivates the following definition.

Definition 2.4 (Asymptotically rare events). We say that a sequence of measurable sets
(En)n∈N ⊂ B is asymptotically rare if µ(En)→ 0 when n→ +∞.

For a sequence (En)n∈N of asymptotically rare events, we can define the sequence of REPP
(Nn)n∈N and when En ⊂ A, for all n ∈ N, the sequence of induced REPP (NA

n )n∈N by:

Nn(x) := NEn(x), for x ∈ X , NA
n (x) := NA

En
(x), for x ∈ A.

Remark 2.5. As observed in [Zwe22, Remark 3.5], using the continuous mapping theorem,
one can show that the weak convergence of the normalised interarrival times process µ(Bn)·ΦBn

(respectively µA(Bn) ·ΦA
Bn

) implies the weak convergence of the point process Nn (respectively
NA
n ) on the space of Radon point measures equipped with the vague topology (see [Res08,

Chapter 3]).

One of the key ideas to recover the information regarding visits to sets outside the base of
the induced map is to consider their respective shadows in the base. Hence, we introduce the
following notion.

Definition 2.6 (Shadow set). Let A ∈ B with µ(A) > 0. For every E ∈ B, its shadow set
E′A in A is

E′A =
⋃
k≥0

A ∩ {rA > k} ∩ T−k(E). (2.1)

In the sequel, A will be a set on which we will induce. To alleviate notation, we shall simply
write E′ instead of E′A when it is clear from the context that we are inducing on A.
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Notation. We write µ
==⇒ for the convergence in law under the law µ and µ−→ for the conver-

gence in probability.

We are now ready to state the main abstract result relating the convergence of the normalised
interarrival times process and the respective induced version.

Theorem 2.7.
Let A ∈ B with µ(A) > 0. Let (En)n∈N be a sequence of asymptotically rare events. Assume
that the following properties hold:

(1) µ(E′n)rEn

µE′n−−−→ 0
(2) µEn (rEn < rA) −→ 0.

Let Φ be a random element of [0,∞)N. Then, we have

µA
(
E′n
)
ΦA
E′n

µA===⇒ Φ

if and only if
µ(En)ΦEn

µ
==⇒ Φ.

In particular, µ(E′n) ∼
+∞
µ(En) for n large enough.

Remark 2.8. Roughly speaking, the first condition ensures that we go fast enough from E′n
to En so that this lag is negligible in the limit. It is similar to the hypothesis made in [Zwe19].
The second condition is necessary to establish the connection between the convergence of the
hitting times point process for the induced system and the corresponding one for the original
system. Note that this condition was not needed to establish the connection between the first
hitting time for the original system and for the induced one. It is designed to guarantee that,
possibly, we will only miss one cluster and is crucial to make the link between the statistics
between the shadowing sets E′n and our target sets En.

Proof. Let us first analyse our shadowing set E′n and at its measure. Recall that

E′n =
⋃
k≥0

A ∩ {rA > k} ∩ T−kEn

Now, by Poincaré recurrence theorem, we know that, up to a µ-negligible set in A,

E′n =
⋃
k≥0

A ∩ {rA > k} ∩ T−k (En ∩ {rA ≤ rEn})∪

∪
⋃
k≥0

⋃
p≥0

A ∩ {rA > k} ∩ T−k (En ∩ {rA > rEn}) ∩ T−pA.

Now, we will only show that the second term of the union is included in the first one. Let p > k
(if not the intersection is empty) and x ∈ A ∩ {rA > k} ∩ T−k (En ∩ {rA > rEn}) ∩ T−pA.
Since T kx ∈ En ∩ {rA > rEn}, we consider q = max{k < ` < p | T `x ∈ En}. Then, by
definition of q we have

x ∈ A ∩ {rA > q} ∩ T−q(En) ⊂
⋃
k≥0

A ∩ {rA > k} ∩ T−k (En ∩ {rA ≤ rEn}) .
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So,
E′n =

⋃
k≥0

A ∩ {rA > k} ∩ T−k (En ∩ {rA ≤ rEn})

As the terms in the union are pairwise disjoint, we finally get

µ(E′n) = µ (En ∩ {rA ≤ rEn}) .

From the second hypothesis, we get

µ (En ∩ {rEn < rA})
µ(E′n)

=
µ(En)

µ (En ∩ {rA ≤ rEn})
µEn (rEn < rA) −−−−−→

n→+∞
0. (2.2)

Now, we can go on with the proof. We fix d ≥ 1 and we want to show that we have the
convergence for the first d return times. Let’s fix some ε > 0. So, we assume the first
condition that is to say

µA(E′n)ΦA
E′n

µA===⇒ Φ∗. (2.3)

Since E′n ⊂ A, we already have the equivalence of (2.3) with

µ(E′n)ΦE′n

µ
==⇒ Φ∗.

and
µ(E′n)ΦE′n

µA===⇒ Φ∗.

See [Zwe22, Theorem 11.1 and Proposition 3.1] or [FFTV16] for example. We write Φ∗ =(
φ(1), . . . , φ(n), . . .

)
. This means that for every i ∈ {1, . . . , d},

µ
(
B′j
)
r

(i)
B′j

µ,µA=⇒
j→+∞

φ(i). (2.4)

Then, we can consider t large enough so that ∀i ∈ {1, . . . , d},

µ
(
µ(E′n)r

(i)
E′n
≥ t
)
≤ ε. (2.5)

Now, we only need to show that for every i ∈ {1, . . . , d}, we have

µ(E′n)
(
r

(i)
En
− r(i)

E′n

)
µA−−→ 0. (2.6)

We proceed by (strong) induction. We will prove the property:

µ(E′n)
(
r

(i)
En
− r(i)

E′n

)
µ−−−−−→

n→+∞
0 and µA

(
r

(i+1)
En

< r
(i+1)
E′n

)
µ−−−−−→

n→+∞
0.

As µ(En)→ 0, for n large enough we have µ (rEn < rA) ≤ ε. Let δ > 0. We have

µ

(∣∣rEn − rE′n
∣∣ ≥ δ

µ(E′n)

)
≤ µ

({
rEn − rE′n ≥

δ

µ(E′n)

}
∩
{
rE′n ≤

t

µ(E′n)

}
∩ {rA ≤ rEn}

)
+ 2ε.

≤
bt/µ(E′n)c∑

p=1

µ

(
rE′n = p, T−p

(
E′n ∩

{
rEn ≥

δ

µ(E′n)

}))
+ 2ε



8 D. BANSARD-TRESSE AND J. M. FREITAS

≤ tµE′n

({
rEn ≥

δ

µ(E′n)

})
+ 2ε

≤ 3ε for n large enough by hypothesis (1).

Now, we get that µ(E′n)rEn also converges to ϕ(1) according to µ, so we can find t′ such that
µ (µ(E′n)rEn ≥ t′) ≤ ε.

µ
(
r

(2)
En

< r
(2)
E′n

)
≤ µ

({
rE′n ≤ rEn

}
∩
{
r

(2)
En

< r
(2)
E′n

})
+ µ(rE′n > rEn)

≤ µ
({

rE′n ≤ rEn

}
∩
{
r

(2)
En

< r
(2)
E′n

}
∩ {rEn ≤

t′

µ(E′n)
}
)

+ ε

+ µ(rA > rEn)

≤
bt′/µ(E′n)c∑

p=1

µ
(
rEn = p, T−p (En ∩ {rEn < rA})

)
+ 2ε

≤ t′µ (En ∩ {rEn < rA})
µ(E′n)

+ 2ε ≤ 3ε for n large enough by (2.2).

Now, we consider i ∈ {1, . . . , d − 1}. The induction step follows the same argument as the
base case but we need to consider the convergence to 0 for the first i terms. As d is fixed and
finite, it will only add a finite number of ε, which will not affect the convergence to 0. Let
δ > 0. We have

µ
( ∣∣∣r(i+1)

En
− r(i+1)

E′n

∣∣∣ ≥ δ

µ(E′n)

)
≤ µ

({
r

(i+1)
En

− r(i+1)
E′n

≥ δ

µ(E′n)

}
∩
{
r

(i+1)
E′n

≤ t

µ(E′n)

}
∩

i⋂
k=0

{
r

(k)
E′n

< r
(k)
En

})
+ (d+ 1)ε

≤
bt/µ(E′n)c∑

p=1

µ

(
r

(i+1)
E′n

= p, T−p
(
E′n ∩

{
rEn ≥

δ

µ(E′n)

}))
+ (d+ 1)ε

≤ tµE′n

({
rEn ≥

δ

µ(E′n)

})
+ (d+ 1)ε

≤ (d+ 2)ε for j large enough by assumption.

Now, we get that µ(E′n)r
(i+1)
En

also converges to ϕ(i+1) according to µ, so we can find t′ such

that µ
(
µ(E′n)r

(i+1)
En

≥ t′
)
≤ ε.

µ
(
r

(i+2)
En

< r
(i+2)
E′n

)
≤ µ

(
i+1⋂
k=1

{
r

(k)
E′n
≤ rkEn

}
∩
{
r

(i+2)
En

< r
(i+2)
E′n

})
+ dε

≤ µ

(
i+1⋂
k=1

{
r

(k)
E′n
≤ r(k)

En

}
∩
{
r

(i+2)
En

< r
(i+2)
E′n

}
∩
{
r

(i+1)
En

≤ t′

µ(E′n)

})
+ (d+ 1)ε
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≤
bt′/µ(E′n)c∑

p=1

µ
(
r

(i+1)
En

= p, T−p (En ∩ {rEn < rA})
)

+ (d+ 1)ε

≤ t′µ (En ∩ {rEn ≤ rA})
µ(E′n)

+ (d+ 1)ε ≤ (d+ 2)ε for n large enough by (2.2).

This ends the induction step and concludes the proof of (2.6) and thus the first implication.

The proof of the reciprocal can be dealt with the same arguments. One only needs to adapt
equations (2.4) and (2.5), which should now involve µ(En)ϕEn , instead, since this is the
convergence we assume in this case. �

Of course, if En ⊂ A, then E′n = En and the result was already known. What is more
interseting is when µ(En ∩ Ac) > 0. We give here two corollaries for shrinking balls around
point ζ that are not included in A. They will be useful for the proof of the dichotomy in the
following sections. We introduce the notation O(ζ) for the orbit of the point ζ, which is to
say that O(ζ) = {ζ, T (ζ), T 2(ζ), . . .}.

Corollary 2.9. Let A ∈ B with µ(A) > 0. Let ζ ∈ X be such that O(ζ) ∩ Å 6= ∅ and T is
continuous on the orbit of ζ until at least T rA(ζ)−1. Let (Bn)n∈N be a sequence of asymptotically
rare balls shrinking to ζ. Assume that

µ(B′n)rBn

µB′n−−−−−→
n→+∞

0.

Let Φ be a random element of [0,∞)N. Then, we have

µA(B′n)ΦA
B′n

µA=====⇒
n→+∞

Φ (2.7)

if and only if
µ(Bn)ΦBn

µ
=====⇒
j→+∞

Φ.

In particular, µ(B′n) = µ(Bn) for n large enough.

Proof. The only thing missing is condition 2 of Theorem 2.7. This is immediate since Bn ∩
{rBn < rA} = ∅ by continuity and because T q(Bn) ⊂ A for n large enough. From the formula
given in the Theorem, we also have µ(Bn) = µ(B′n) once n was chosen large enough too. �

Corollary 2.10. Let A ∈ B with µ(A) > 0. Let ζ ∈ X be such O(ζ) ∩ A = ∅. Let
(Bn)n∈N be a sequence of asymptotically rare balls shrinking to ζ. For all n ∈ N, we define
Q(Bn) = Bn ∩ T−sBc

n if ζ is a periodic point of prime period s and Q(Bn) = Bn, otherwise.
Assume the two following properties :

(1 ) µ(B′n)rQ(Bn)

µB′n−−→ 0,

(2 ) µQ(Bn)

(
rQ(Bn) < rA

)
= µQ(Bn) (rBn < rA) −→ 0.

Let Φ be a random element of [0,∞)N. Then, we have

µA(B′n)ΦA
B′n

µA===⇒ Φ

if and only if
µ(Q(Bn))ΦQ(Bn)

µ
==⇒ Φ.
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In particular, µ(B′n) ∼
+∞
µ(Q(Bn)).

Remark 2.11. The set Q(Bn) is the escape annulus defined in [FFT12] (its relatively simple
expression is due to the choice of our target set around a periodic point of period s).

Proof. This is the application of Theorem 2.7 applied to the asymptotically rare events
(Q(Bn))n∈N. One just need to remark that Q(Bn)′ = B′n. The estimate for µ(B′n) also
comes from the proof of Theorem 2.7 and especially condition 2. �

3. Dichotomy for Misiurewicz-Thurston quadratic maps

Let a ∈ [0, 2] and for x ∈ [−1, 1], define Ta : x 7→ 1− ax2.

Definition 3.1. We define MIS ⊂ [0, 2] the Misiurewicz-Thurston set of parameters such
that Ta admits an absolutely continuous invariant probability measure (acip) µa and the
critical point c = 0 is preperiodic (See [Mis81]).

Remark 3.2. For example, the full quadratic map (a = 2 and T2 : x 7→ 1 − 2x2) is a
Misiurewicz-Thurston map because T2(0) = 1 and for all n ≥ 2, Tn2 (0) = 0.

The main advantage of the Misiurewicz-Thurston parameters is that it is possible to build a
first return map that is uniformly expanding and Markov. The construction of such a tower
can be seen for example in [MS93]. We list here some properties. For a ∈MIS,

(1) There exists an interval Aa containing the critical point 0 such that TAa , the first return
map to Aa, is a Markov map. Furthermore, O(0)\{0}∩Aa = ∅ and the boundary of Aa
consists of a periodic point ξa and its opposite −ξa (by symmetry Ta(ξa) = Ta(−ξa)).
(See [MS93, Lemma V.3.2 on page 364].)

(2) There existsK < +∞ such that for each n ∈ N and each interval J with T ia(J)∩Aa = ∅
for all i ∈ {0, . . . , n−1}, the distortion of Tna J

is uniformly bounded byK. (See [MS93,
Proposition V.3.2 on page 364].)

(3) Let
⋃
j Ij be the domain of TAa and define k(j) by TAa Ij

= T
k(j)
a . Then,

+∞∑
j=1

k(j) Leb(Ij) < +∞.

(See [MS93, Lemma V.3.3 on page 365].)
(4) Let Λn = Aa\

⋃
j:k(j)<n Ij . Then the Lebesgue measure of Λn converges exponentially

to 0. Since dµa/d Leb is bounded away from 0 and +∞ on Aa, the µa measure of Λn
also goes exponentially to 0. We consider η < 1 such that µa(Λn) ≤ Cηn. (See [MS93,
Lemma V.3.3 on page 365].)

(5) Write ck = T k(0) for every k ∈ N and let ρa := dµa/d Leb. There exist ψ0 a C1-
function, w0, w1 < 0 and constants

C
(0)
k =

ρa(0)∣∣ (T k−1
a

)′
(c1)

∣∣ 12 ,
∣∣∣C(1)

k

∣∣∣ ≤ Ua∣∣ (T k−1
a

)′
(c1)

∣∣ 32 , ∀k ≥ 1

with Ua 6= 0, such that ρa is supported in [1− a, a] and

ρa(x) = ψ0(x) + ρ(0)
a (x) + ρ(1)

a (x)
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where

ρ(0)
a (x) =

+∞∑
k=1

C
(0)
k√
|x− ck|

1{w0<sk−1(x−ck)<0}

ρ(1)
a (x) =

+∞∑
k=1

C
(1)
k

√
|x− ck|1{w1<sk−1(x−ck)<0}

where sk = sgn((T ka )′(c1)) = sgn((T ka )′(1)).
Furthermore, there exist some constants c > 0 such that ρa ≥ c. (See [Rue09] or
[BS21, Section 5 formula (50)].)

(6) Defining ω = ω0 := {Ij , j ∈ N} the measurable partition of Aa and by recursion
ωn+1 = ω

∨
T−1ωn, we say that I is an (n + 1)-cylinder if I ∈ ωn. Furthermore, we

denote Fj,k the σ-algebra generated by ωj , . . . , ωk. Then, (Aa, TAa , µAa) is exponential
φ-mixing, that is to say there exists C > 0 and 0 < λ < 1 such that for every J ∈ F0,k

and D ∈ B([−1, 1]),∣∣∣µa (J ∩ T−(n+k)
A D

)
− µa(J)µa(D)

∣∣∣ ≤ Cλnµa(D).

(See [AN05, Theorem 1 (a) page 5] for example.)

Remark 3.3. The induced system (Aa, TAa , µAa) on Aa is also a Rychlik system in the sense
of [Ryc83].

Remark 3.4. The inducing interval Aa can be chosen as small as we want. One just needs
to consider a periodic orbit with at least a point sufficiently close to the critical point. Then,
one chooses the point of this orbit that is closest to the critical point and takes its opposite as
boundaries of the inducing interval. This can be done to get arbitrarily small diameter. Note
that, with this construction, it is guaranteed that the periodic orbit never hits the interior of
the inducing set, but rather its boundary, only.

Remark 3.5. We remark that the quadratic family used in [BS21], from where we took the
density formula, was slightly different, so we need to make the necessary adjustments.

Corollary 3.6. If B is a set such that B ∩ O(0)\{0} = ∅, then we have µa,B � LebB, where
µ � ν means that there are some constants c, C > 0 such that cν(A) ≤ µ(A) ≤ Cν(A) for
every measurable A. In particular, this is the case if we take B = Aa.

In the following, as we fix the index a ∈ MIS, we will drop the indices a in the definitions.
We now state the dichotomy for Misiurewicz-Thurston maps.

Theorem 3.7. Let a ∈MIS and ([−1, 1], T, µ) the corresponding system. Let ϕ : [0, 1]→ R
be a distance observable achieving a maximum at ζ ∈ supp(µ) = [1 − a, 1]. Let Nn be the
REPP associated to ϕ and un such that Bn := {ϕ > un} satisfies nµ(Bn) −−−−−→

n→+∞
τ > 0.

Then,

(i) If ζ is not periodic, Nn converges in distribution to N , a homogeneous Poisson Process
with intensity 1.

(ii) If ζ is periodic of period p and not in the critical orbit, then Nn converges to Nθ,Geo(θ)

a compound Poisson Process with intensity θ = 1 − |(T p)′(ζ)|−1 and multiplicity dis-
tribution function π given by π(k) = θ(1− θ)k−1 for k ∈ N∗.
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(iii) If ζ is periodic of period p and belongs to the critical orbit, then Nn converges to
Nθ,Geo(θ), a compound Poisson Process with intensity θ = 1− |(T p)′(ζ)|−1/2 and mul-
tiplicity distribution function π given by π(k) = θ(1− θ)k−1 for k ∈ N∗.

The rest of this section is dedicated to the proof of Theorem 3.7, which will be long and split
into several different cases.

3.1. Preparatory results and observations. We start by noting that Theorem 3.7 holds
for all ζ ∈ A, by direct application of [FFTV16, Theorem 3]. Therefore, henceforth, even if
not mentioned explicitly, we will always assume that ζ /∈ A.

Lemma 3.8. Let ζ /∈ A. Then, for the sequence (Bn)n of shrinking balls to ζ, we have

µa(B
′
n) rBn

µB′n−−−−−→
n→+∞

0.

Proof. Consider ε > 0. We have

B′n ∩ {rBn ≥ ε/µ(B′n)} =
⋃

k≥ε/µ(B′n)

(
A ∩ {rA > k} ∩ T−k(Bn)

)
⊂

⋃
j:k(j)≥ε/µ(B′n)

Ij ⊂ Λε/µ(B′n).

Hence,

µB′n(rBn ≥ ε/µ(B′n)) ≤ µ(Λε/µ(B′n))/µ(B′n)

≤ Cηε/µ(B′n)/µ(B′n) −−−−−→
n→+∞

0 by property (4).

�

Let ζ /∈ A. We need to understand better the structure of the shadow set B′n of Bn, in A. Let

Prek =
{
α ∈ A : T k(α) = ζ and T j(α) /∈ A ∀j ∈ {1, . . . , k}

}
and Pre =

⋃
k≥1

Prek .

We also write A = A− ∪A+ where A± = A ∩R± the two symmetric parts of A. Because the
map is symmetric, we have Prek ∩A− = sym(Prek ∩A+).

Lemma 3.9. For n large enough, there exists a family of intervals (B′n(α))α∈Pre included in
A such that

B′n =
⋃

α∈Pre

B′n(α) and the union is disjoint.

Furthermore, if ζ /∈ O(0), then for all k ≥ 1 and for all α ∈ Prek, we have T k(B′n(α)) = Bn.
In particular,

A ∩ {rA > k} ∩ T−k(Bn) =
⋃

α∈Prek

B′n(α).

Proof. Consider first α ∈ Pre. Thus, there exists k ∈ N such that T k(α) = ζ and T j(α) /∈ A
for all j ∈ {1, . . . , k}. If α 6= 0, there exists a branch Jk(α) such that T k|Jk(α) is monotone. We
consider its restriction Ak(α) to A. The endpoints of T k(Ak(α)) belong to O(0)∪O(ξ) which
is finite (0 and ξ are pre-periodic and periodic, respectively). Thus, if ζ /∈ O(0) ∪ O(ξ), as
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ζ ∈ T k(Ak(α)), we can choose n large enough (independently of k) so that B′n(α) ⊂ Ak(α) is
an interval such that T k(B′n(α)) = Bn.
Furthermore, for all j ∈ {1, . . . , k}, T j(B′n(α))∩A = ∅. Indeed we cannot have T j(B′n(α)) ⊂ A
because T j(α) /∈ A and α ∈ B′n(α). Now, if T j(B′n(α)) ∩ A 6= ∅ and T j(B′n(α)) 6⊂ A, since
B′n(α) is an interval, so is T j(B′n(α)) and thus it must contain ξ or −ξ, but, in this case, since
Bn ∩ O(ξ) = ∅, we have T k(B′n(α)) 6= Bn which is a contradiction. Thus, B′n(α) ⊂ B′n.
If α = 0 (in particular ζ ∈ O(0)), we have two branches Jk(0)− and Jk(0)+ symmetric such
that T k|Jk(0)− and T k|Jk(0)+ is monotone. We can have the same reasoning as before for each
branch independently but since T (0) = 1 and T 2(0) = 1 − a are the edges of the invariant
interval, we will have to consider the restrictions B′n(0)− and B′n(0)+, but T k(B′n(0)±) ( Bn
(because only one side is covered). Note that if ζ = 1 or ζ = 1− a we have T k(B′n(0)±) = Bn
because supp(µ) = [1− a, 1]. We write B′n(0) = B′n(0)− ∪B′n(0)+. This is an interval centred
at 0.
When ζ /∈ O(0), for all k ≥ 1, T−kBn is a union of intervals, {rA > k} is also a union
of intervals (always having the convention rA(x) = +∞ if Tnx /∈ A for all n ≥ 1) and
A is an interval. So A ∩ {rA > k} ∩ T−k(Bn) is a union of intervals. Of course, each
component is included in A by construction. We want to show that each component C is
equal to B′n(α) for some α ∈ Prek. Consider a component of A ∩ T−k(Bn). We can identify
it with a component Cn,k,i of T−k(Bn) intersected with A. But ∂A ∩ Cn,k,i = ∅ for n large
enough such that Bn ∩ O(∂A) = ∅ (which is possible since Bn is a ball centred at ζ and
ζ /∈ ∂A). Thus Cn,k,i ⊂ A. Now, we consider a component of Cn,k,i ∩ {rA > k}. Assume that
Cn,k,i ∩ {rA > k} 6= ∅. By contradiction, assume further that Cn,k,i 6⊂ {rA > k}. We recall
that Cn,k,i is still a component of T−kBn, so T k(Cn,k,i) ⊂ Bn. Since Cn,k,i∩{rA > k} 6= ∅ and
Cn,k,i∩{rA ≤ k−1} = Cn,k,i∩{rA ≤ k} 6= ∅, there is 1 ≤ j ≤ k−1 such that T j(Cn,k,i)∩A 6= ∅
and T j(Cn,k,i) 6⊂ A. But T j(Cn,k,i) is an interval meaning that ∂A ∩ T j(Cn,k,i) 6= ∅ which is
impossible because O(∂A) ∩ Bn = ∅ and T k−j(T j(Cn,k,i)) ⊂ Bn, with the previous choice of
n large enough. So Cn,k,i ⊂ {rA > k}.
We have just shown that, for n large enough, each component C of A ∩ {rA > k} ∩ T−k(Bn)
is actually a component of T−k(Bn). But every component of T−k(Bn) contains a preimage
α of ζ. The condition {rA > k} makes sure that α ∈ Prek. Thus, C = B′n(α).

Since each B′n(α) is included in {rA > k} for α ∈ Prek, then for every p 6= k and α ∈
Prep, α

′ ∈ Prek, we must have B′n(α) ∩B′n(α′) = ∅. If α, α′ ∈ Prek and α 6= α′, by monotony
of T k (since α or α′ is different from 0), then B′n(α) ∩B′n(α′) = ∅, again. �

The idea is now to approximate B′n by a union of cylinders so that we can use the good
mixing properties on cylinders and ultimately obtain the desired convergence in the spirit of
[HP14, KY21], for example.

For that purpose, we will need to distinguish between points ζ for which O(ζ) ∩ Å 6= ∅ and
such that O(ζ) ∩ A = ∅. The case O(ζ) ∩ ∂A 6= ∅ will be handled easily in the end (see
Remark 3.21).
When O(ζ)∩A = ∅, for every α ∈ Pre, we have O(α)\{α}∩A = ∅ and therefore Pre consists
of special points where the induced map is not defined, i.e., it consists of points where we will
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have an accumulation of branches with return time to A growing to +∞ (thus an accumulation
of 1-cylinders in the sense of the construction of the Young tower).

Lemma 3.10. Let µ be a φ-mixing measure. Then, there exist positive constants C and λ < 1
such that for all n ≥ 1 and all A = [an−1

0 ] ∈ ωn,
µ(A) ≤ Cµ([a0])λn.

For the proof, see for example [AAG21, Lemma 1], [Aba01].
For a set B ⊂ A and v ∈ N∗, we define

U+(B, v) :=
⋃

A∈ωv−1:A∩B 6=∅

A and U−(B, v) :=
⋃

A∈ωv−1:A⊂B
A.

By definition, U+(B, v), U−(B, v) ∈ F0,v−1. They are the approximations of B from above
and below by v-cylinders.

3.2. The case where the orbit of ζ hits the interior of the inducing set. The main
goal of this subsection is to prove the following:

Proposition 3.11. Theorem 3.7 holds for every ζ ∈ [1− a, 1] \A such that O(ζ) ∩ Å 6= ∅.

We note that the case studied in this subsection could be covered with standard already avail-
able methods, but for the sake of completeness, to illustrate the application of our approach
and to pave the way for the following sections, we do it carefully.
Also, recall that, as observed in Remark 3.4, by construction of the inducing base, the propo-
sition above does not cover the points in O(0)\{0}.
The idea is to use Corollary 2.9. Since O(ζ)∩ Å, let q be min{n ∈ N∗ : Tn(ζ) ∈ A}. We have
Bn := {ϕ > un} = (ζ − rn, ζ + rn) for some rn → 0. By continuity, we can assume that n is
large enough so that T q(Bn) ⊂ A. Recall that B′n ⊂ A is our shadowing set. The conclusion
of Lemma 3.8 is enough to apply Theorem 2.9. Thus, the convergence of the REPP for Bn
follows from the convergence of the REPP for B′n under the induced map, which means that
the proof of Proposition 3.11 is then reduced to the proof of the following result.

Proposition 3.12. Let ζ be as in Proposition 3.11 and consider the sequence (Bn)n defined
as in Theorem 3.7. Then the convergence in (2.7) holds for the respective shadowing sequence
(B′n)n defined through (2.1).

Our strategy to prove this result is to show first that the convergence in (2.7) for B′n can
be obtained from establishing the same convergence for an approximating union of cylinders
such as U+(B′n, vn) and U−(B′n, vn), for some well chosen sequence (vn)n of integers. Then,
using the fact that the induced map is φ-mixing, we show that a sequence such as U+(B′n, vn)
and U−(B′n, vn) satisfies the dependence conditions, which give the convergence of the REPP
associated to them.

Lemma 3.13. Let (vn)n be a sequence of positive integres such that ln(n) = o(vn). Then,

µ
(
U+(B′n, vn)\U−(B′n, vn)

)
≤ ρnµ(B′n),

with ρn → 0. In particular, the convergence of the REPP counting the number of hits to B′n
is equivalent to the convergence of the REPP counting the number of hits to U+(B′n, vn) (or
U−(B′n, vn)) and the limits are the same.
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Proof. By Lemma 3.9, we have

B′n =
⋃
k≥1

⋃
α∈Prek

B′n(α)

and the union is disjoint. Thus, we can look at each α independently. For α ∈ Prek and since
T qζ ∈ Å, we choose n large enough so that T q(Bn) ⊂ A. Hence, B′n(α) ⊂ Ij(α), where j(α) is
such that k(j(α)) = k + q (note that Ij(α) are also disjoint). Thus, by Lemma 3.10,

µ
(
U+(B′n(α), vn)\U−(B′n(α), vn)

)
≤ 2Cµ(Ij(α))λ

vn .

Then,

µ
(
U+(B′n, vn)\U−(B′n, vn)

)
≤
∑
k≥1

∑
α∈Prek

(
U+(B′n(α), vn)\U−(B′n(α), vn)

)
≤
∑
k≥1

∑
α∈Prek

2Cµ(Ij(α))λ
vn

≤ 2Cλvn since the Ij(α) are disjoint

≤ ρnµ(B′n).

In the last line, we use the fact that nµ(Bn) → τ > 0 by hypothesis and µ(B′n) = µ(Bn) for
n large enough. The condition ρn → 0 holds since we imposed ln(n) = o(vn).
The fact that the convergence of the respective REPP is equivalent follows from the observa-
tion:

µ
(
NU+(B′n(α),vn)(nJ)−NB′n(α)(nJ) > 0

)
≤ n|J |µ

(
U+(B′n(α), vn) \B′n(α)

)
≤ n|J |ρnµ(B′n) −−−→

n→∞
0,

where we used again the facts that nµ(Bn)→ τ > 0 and µ(B′n) = µ(Bn) for n large. �

Proof of Proposition 3.12. On account of Lemma 3.13, we are left to prove the convergence of
the REPP for U+(B′n, vn) (or U−(B′n, vn)). For that end, we use [FFMa18, Theorem 2.A] after
showing that the dependence conditions Дq(un)∗ and Д′q(un)∗ hold. We remark that when ζ
is a non-periodic point, we will show that Дq(un)∗ and Д′q(un)∗ hold, with q = 0 while if ζ is a
periodic point of period s, we will show these conditions hold with q = r := Card(O(ζ) ∩A).
In order to ease the notation we set U+

n := U+(B′n, vn).
Condition Дq(un)∗. We say that Дq(un)∗ holds if for any integers t, κ1, . . . , κp and any
J = ∪pi=2Ij ∈ R with inf J ≥ t,

En(κ1)

:=

∣∣∣∣∣∣µ
Qκ1q,0(U+

n ) ∩

 p⋂
j=2

NU+
n

(Ij) = κj

− µ(Qκ1q,0(un)
)
µ

 p⋂
j=2

NU+
n

(Ij) = κj

∣∣∣∣∣∣
≤ γ(n, t)

where for each n, γ(n, t) is decreasing in t, and limn→∞ nγ(n, tn) = 0 for some sequence
tn = o(n), where the annulus Qκ1q,0(U+

n ), in the particular cases we are handling here, can be
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written as:

Qκ1q,0(U+
n ) =

κ1⋂
j=0

T−jrA (U+
n ) ∩ T−(κ1+1)r

A ((U+
n )c) if q = r > 0

Qκ1q,0(U+
n ) = U+

n if q = 0.

When q > 0, note that En(κ) ≤ 2µ
(
Qκq,0(U+

n )
)
≤ 2Cθ(1− θ)κµ(U+

n ), since µ is regular on the
set considered (in fact, we have 1 − θ = |(T s)′(ζ)|−1 = |(T rA)′(T q(ζ))|−1). So we choose κ(n)

so that n(1− θ)κ(n) → 0. Hence, we only have to consider κ1 < κ(n). Observe that

Qκ1q,0(U+
n ) ∈ F0,(κ1+1)r+vn ⊂ F0,κ(n)r+vn .

Now, by (6), for some 0 < λ < 1 and for κ1 ≤ κ(n) we have,

En(κ1) ≤ Cλt−rκ(n)−vn .

Hence, we can take γ(n, t) := max
{
Cλt−rκ(n)−vn , 2Cθ(1− θ)κ(n)

}
. When q = 0, we only need

to consider γ(n, t) := Cλt−vn . We consider the most complicated of the cases, in which we
have

nγ(n, tn) ≤ n2Cθ(1− θ)κ(n) + nCλt−rκ(n)−vn .

Recall that, vn needs to be such that ln(n) = o(vn), κ(n) such that n(1− θ)κ(n) → 0. So it is
possible to find tn = o(n) and appropriate vn, κ(n) so that nγ(n, tn)→ 0.
Condition Д′q(un). For some fixed q ∈ N0, consider the sequence (tn)n∈N, given by condition
Д(un)∗ and let (`n)n∈N be another sequence of integers such that

`n →∞ and
n

`n
tn = o(n). (3.1)

We say that condition Д′q(un)∗ holds if there exists a sequence (kn)n∈N satisfying (3.1) and
such that

lim
n→∞

n

`n−1∑
j=q+1

µA

(
Q0
q,0(U+

n ) ∩ T−jA
(
U+
n

))
= 0.

Let
Rn := inf{rA

U+
n

(x) : x ∈ Q0
q,0(U+

n )}.
Using again that the induced map is φ-mixing with exponential tails of rate 0 < λ < 1, we
have

n

`n−1∑
j=1

µA

(
Q0
q,0(U+

n ) ∩ T−jA
(
U+
n

))

≤ n`nµA(Q0
q,0(U+

n ))µA(U+
n ) + nµA(Q0

q,0(U+
n ))

+∞∑
j=Rn

λj

Recalling that limn→∞ nµ(Bn) = τ ≥ 0 and observing that, since TA(U+
n ) is an interval,

limn→∞Rn = ∞ either by continuity when q = 0 and by the Hartman-Grobman Theorem
when q > 0, then the term on the right of the last displayed equation vanishes as n → ∞,
which proves Д′q(un)∗. As we said, condition Дq(un)∗ and Д′q(un)∗ are sufficient to show the
convergence of the REPP for U+

n and thus for B′n (by Lemma 3.13) and hence for Bn (by
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Corollary 2.9), concluding the proof in this case. Furthermore, we saw that if ζ is periodic of
prime period s, we have θ = 1− |(T s)′(ζ)|−1. �

3.3. The case where the orbit of ζ does not hit the inducing set. The main goal of
this subsection is to prove the following:

Proposition 3.14. Theorem 3.7 holds for every ζ ∈ [1− a, 1] such that O(ζ) ∩A = ∅.

When studying REPP in the presence of clustering created by observables maximised at
periodic points, we usually observe a limiting compound Poisson process (see [FFT13], for
example), which could be described as having two components: the first is the time occurrences
of the clusters, which is ruled by a homogeneous Poisson process, and the second is a Geometric
multiplicity distribution, which describes the number of visits to Bn during the same cluster.
We observe that an entrance in the annuli Q(Bn) marks to the last hit to Bn within a cluster
and, therefore, the point process of entrances in Q(Bn) gives us the time occurrences of
clusters.
One of the main difficulties in this case, where the orbit of ζ does not hit the inducing set,
is that the induced map may miss some of the intra cluster hits to Bn, since the orbits may
return to Bn without going through the base of the induced map. Hence, we split the analysis
by considering first the cluster positions and later, in Section 3.4, we reconstruct the point
process of hits to Bn from the point process of hits to Q(Bn).

Proposition 3.15. Let N ′n be the REPP for Q(Bn) renormalized by µ(Bn) that is to say

N ′n(J) =
∑

i∈µ(Bn)−1J ∩N

1Q(Bn)(T
ix).

Then,
N ′n

µ−−−−−→
n→+∞

Nθ,

where Nθ a standard Poisson process of intensity θ = limn→+∞ µ(Q(Bn))/µ(Bn).

Remark 3.16. If ζ is non-periodic, Q(Bn) = Bn, by construction, meaning that N ′n = Nn,
in this case.

Proof. Again, the first condition of Corollary 2.10 follows from Lemma 3.8. We need to prove
the second condition to be able to use Corollary 2.10.

Since Bn are balls centred at ζ and O(ζ) ∩ A = ∅, there exists δ > 0 (that may depend on
ζ but not on n) such that for n large enough, there exist kn ∈ N with Leb(T knQ(Bn)) ≥ δ
and T j(Bn) ∩ A = ∅ for j ∈ {0, . . . , kn − 1} (if ζ is a periodic point or a pre-periodic point,
the assertion follows from the application of Grobman-Hartman Theorem; if ζ is not periodic
nor pre-periodic, we can consider an inducing set A′ such that d(O(ζ), A′) ≥ δ′ > 0 and take
δ = δ′). Since Bn is an interval, T kn|Bn

has bounded distortion, given by a constant K that does
not depend on n (by 2). Thus,

Leb (Q(Bn) ∩ {rBn ≤ rA}) ≤ K
Leb

(
T kn (Q(Bn) ∩ {rBn ≤ rA})

)
Leb(T knQ(Bn))

Leb(Q(Bn))

LebQ(Bn) (Q(Bn) ∩ {rBn ≤ rA}) ≤ Kδ−1 Leb({rBn ≤ rA}).
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Since µ(rBn ≤ rA) −−−−−→
n→+∞

0 and µ and Leb are equivalent, we have

LebQ(Bn) (Q(Bn) ∩ {rBn ≤ rA}) −−−−−→n→+∞
0.

It just remains to show that it implies µQ(Bn) (Q(Bn) ∩ {rBn ≤ rA}) −−−−−→n→+∞
0. If ζ /∈ O(0),

then µ � Leb, it is immediate.
If ζ ∈ O(0), we use the fact that we know the form of the density and the singularities are
exactly of the form 1/

√
|x− ζ| and thus we also have

µQ(Bn) (Q(Bn) ∩ {rBn ≤ rA}) −−−−−→n→+∞
0.

The proof is finished. �

So, we can apply Corollary 2.10 and the convergence of the REPP counting entrances in B′n
for the induced map to obtain the convergence of the REPP counting entrances in Q(Bn).
After, we will only need to rebuild the compound process from the REPP counting entrances
in Q(Bn). In this case, we just want to show the convergence to a standard Poisson process
for the shadowing set B′n under the induced transformation TA. We recall that TA is known
to be Markov for parameters a ∈ MIS. However, it is not possible to immediately prove
the conditions Д0(un)∗ and Д′0(un) using the standard proof because B′n is not a ball around
some point ζ ′ ∈ A. However, due to its definition, it still has a form that we can characterise.
Indeed, it consists of the union (at most countable and not necessarily disjoint) of intervals
around the preimage of ζ in A, whose orbit does not hit A before arriving at ζ. These intervals
are not centred on the preimages but almost (the difference is only due to the fact that the
derivative is not constant but since it is continuous the difference is small).

Lemma 3.17. Let ζ be such that d(O(ζ), A) > γ, for some γ > 0, and Bn a sequence of
shrinking balls to ζ. Then, for every k ∈ N, α ∈ Prek, we have

µ(B′n(α)) ≥ cµ
(
U+(B′n(α), 1)

)
µ
(
U−(B′n(α), 1)

)
≥ cµ(B′n(α)),

for some c > 0.

Proof. Note that B′n(α) is an interval and thus U+(B′n(α), 1)\U−(B′n(α), 1) consists of at most
two intervals which are located at the extremities of B′n(α). Set

m := min{p ≥ 1 : T p
(
U+(B′n(α), 1)

)
∩A 6= ∅}

(note that m > k for n large enough by definition and Lemma 3.9). Since, Tm−1
|T (B′n(α)) is

monotone (as it does not cover 0 ∈ A), Tm (U+(B′n(α), 1)\U−(B′n(α), 1)) is still composed of
at most two intervals that lie at the extremities of Tm (U+(B′n(α), 1)). Since U+(B′n(α), 1) is
composed by 1-cylinders, Tm (U+(B′n(α), 1) ∩ A 6= ∅, we have A ⊂ Tm (U+(B′n(α), 1). But
since Tm−kζ ∈ Tm(B′n(α)), then we must have that the interval between Tm−kζ and the
closest element of ∂A is contained in Tm (B′n(α)\U+(B′n(α), 1)). Thus, |T p(B′n(α))| ≥ γ.
Then, again by bounded distortion (Property (2)) applied to Tm−1

|T (U+(B′n(α),1))
, we have

|T (U+(B′n(α), 1))| ≤ K|T (B′n(α))| |T
m(U+(B′n(α), 1))|
|Tm(B′n(α))|

≤ 2K

γ
|T (B′n(α))|. (3.2)

We have to analyse two different cases. If ζ∩O(0) = ∅, for n large enough so thatBn∩O(0) = ∅,
we have |T (U+(B′n(α), 1))| ≥ c′µ (T (U+(B′n(α), 1))) ≥ cc′µ (U+(B′n(α), 1)), using that µ �
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Leb outside the critical orbit. Now, since |T (B′n(α))| ≤ C|B′n(α)| ≤ CC ′µ(B′n(α)), we have
µ(B′n(α)) ≥ cµ (U+(B′n(α), 1)) for c > 0 not depending on k.
In the special case where α = 0, we do not have that |T (U+(B′n(0), 1))| ≥ c′µ (T (U+(B′n(0), 1))),
anymore. However, by definition of the Misiurewicz map, we have |T (U+(B′n(0), 1))| =
a(|U+(B′n(0), 1)|/2)2 and identically |T (B′n(0))| = a(|B′n(0)|/2)2. Thus, by (3.2),

a(|U+(B′n(0), 1)|/2)2 ≤ Ca(|B′n(0)|/2)2

|U+(B′n(0), 1)| ≤ C ′|B′n(0)|.

Now, since both lie insideA and µ � Leb onA, then for a certain c > 0, we have cµ(U+(B′n(0), 1)) ≤
µ(B′n(0)). �

Lemma 3.18. Let (B′n) be as above. Then for every sequence (vn) diverging to +∞, we have

µ(U+(B′n, vn)\U−(B′n, vn)) ≤ Cλvnµ(B′n).

Proof. Let N be such that, for all n > N , all the conditions of the previous lemmas are
satisfied. Consider also that n is large enough so that T p(Bn) ⊂ BN . We have that

B′n =
⋃
k≥1

⋃
α∈Prek

B′n(α)

and this union is disjoint. Hence⋃
k≥1

⋃
α∈Prek

U−(B′n(α), vn) ⊂ U−(B′n, vn) ⊂ U+(B′n, vn) ⊂
⋃
k≥1

⋃
α∈Prek

U+(B′n(α), vn)

leading to

µ(U+(B′n, vn)\U−(B′n, vn)) ≤
∑
k≥1

∑
α∈Prek

µ(U+(B′n(α), vn)\U−(B′n(α), vn)).

Hence, we can treat each B′n(α) independently. So fix k ≥ 1 and α ∈ Prek. Since B′n(α) is
an interval, for every q ≥ 1, there are at most two cylinders of ωq−1 such that A ∩B′n(α) 6= ∅
and A 6⊂ B′n. Hence, using the previous lemma

µ(U+(B′n(α), 1)\U−(B′n(α), 1)) ≤ (c−1 − c)µ(B′n(α)).

But U+(B′n(α), 1)\U−(B′n(α), 1) consists of at most two disjoint cylinders C1, C2 ∈ ω0. Thus,
by Lemma 3.10,

µ(U+(B′n(α), vn)\U−(B′n(α), vn)) ≤ Cλvnµ(U+(B′n(α), 1)\U−(B′n(α), 1)).

This gives
µ(U+(B′n(α), vn)\U−(B′n(α), vn)) ≤ Cλvnµ(B′n(α)).

Now, we can sum for every k ≥ 1 and α ∈ Prek to get

µ(U+(B′n, vn)\U−(B′n, vn)) ≤ Cλvnµ(B′n).

�

Similarly to what we did earlier (see Lemma 3.13), by the last lemma, it is equivalent to have
the convergence of the REPP counting the number of hits to U+(B′n, vn), U−(B′n, vn) or B′n,
as long as (vn) is chosen as a diverging sequence. By definition, U+(B′n, vn) and U−(B′n, vn)
are in F0,vn−1.
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Now, we will show the convergence to a standard Poisson process of the REPP counting
the number of hits to U+(B′n, vn), which implies the convergence of the REPP counting the
number of hits to B′n. For that purpose, we show that conditions Д0(un)∗ and Д′0(un) are
satisfied for the induced map.

Lemma 3.19. Let τ > 0 and (un) a sequence of thresholds such that nµA(B′n) −−−−−→
n→+∞

τ .

Then, conditions Д0(un)∗ and Д′0(un) hold. This means that the REPP NA
n converges in

distribution to N a standard homogeneous Poisson Process with intensity 1.

Proof. We recall that, once conditions Д0(un)∗ and Д′0(un) are checked, then the conclusion
for the REPP comes from [FFMa18, Theorem 2.A]. We saw that the induced map is Rychlik.
Thus, we know that it is exponential φ-mixing (Theorem 1-a) in [AN05]). We will check the
conditions for U+(B′n, vn), the reasonning is the same if we consider U−(B′n, vn), instead. We
have

n

`n−1∑
j=1

µA

(
U+(B′n, vn) ∩ T−jA

(
U+(B′n, vn)

))

≤ n
`n−1∑

j=vn+1

µA

(
U+(B′n, 1) ∩ T−jA

(
U+(B′n, vn)

))
+ n

vn∑
j=1

µA

(
U+(B′n, j) ∩ T

−j
A

(
U+(B′n, vn)

))

≤ n
`n−1∑

j=vn+1

µA
(
U+(B′n, 1)

)
µA
(
U+(B′n, vn)

)
+ n

`n−1∑
j=vn+1

φ(j − 1)µA
(
U+(B′n, 1)

)
+ n

vn∑
j=1

µA

(
U+(B′n, j) ∩ T

−j
A

(
U+(B′n, vn)

))

≤ n2µA (U+(B′n, 1))µA (U+(B′n, vn))

kn
+ nµA

(
U+(B′n, 1)

) +∞∑
j=vn

φ(j)

+ n

vn∑
j=1

µA

(
U+(B′n, j) ∩ T

−j
A

(
U+(B′n, vn)

))
.

Since kn, vn −−−−−→
n→+∞

∞ and (A, TA, µA) is summable φ-mixing (in fact, exponential φ-mixing),
the first two terms go to 0 when n goes to +∞. We are left with estimating the last term.
For that purpose, we will use bounded distortion, again. Take 1 ≤ j ≤ vn. Since U+(B′n, j) is
a union of j cylinders, we write U+(Bn, j) =

⋃
E∈Aj :E⊂U+(Bn,j)

E. Since the interiors of the
cylinders are disjoint and µA does not charge any mass point, we have in particular

µA
(
U+(Bn, j)

)
=

∑
E∈ωj :E⊂U+(Bn,j)

µA(E).
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But, by bounded distortion there is a constant K independent of j (depends on A but A is
fixed at the beginning), such that for each cylinder E ∈ ωj and since our map is Markovian
(which implies that T jA : E → A is onto), we have

µA

(
E ∩ T−jA (U+(Bn, vn))

)
≤ KµA (E)µA

(
U+(Bn, vn)

)
.

Hence,

n

vn∑
j=1

µA

(
U+(B′n, j) ∩ T

−j
A

(
U+(B′n, vn)

))
= n

vn∑
j=1

∑
E∈ωj :E⊂U+(Bn,j)

µA

(
E ∩ T−jA

(
U+(B′n, vn)

))

≤ n
vn∑
j=1

∑
E∈ωj :E⊂U+(Bn,j)

KµA(E)µA
(
U+(Bn, vn)

)
≤ Kn

vn∑
j=1

µA
(
U+(Bn, j)

)
µA
(
U+(Bn, vn)

)
≤ KC2vn/n −−−−−→

n→+∞
0.

�

Lemma 3.20. If ζ is a periodic point of period p and ζ /∈ O(0), then

θ := lim
n→+∞

µ(Q(Bn))/µ(Bn) = 1− |(T p)′(ζ)|−1.

If ζ is a periodic point of period p and ζ ∈ O(0),

θ = 1− |(T p)′(ζ)|−1/2.

Proof. The case when ζ /∈ O(0) is immediate. Indeed, for n large enough such that Bn∩O(0) =
∅, µBn � LebBn and since µ is quite regular, then θ = 1− |(T p)′(ζ)|−1.
If ζ ∈ O(0) and is periodic we can use the formula given by Proposition 5 to get the result. �

Remark 3.21. In the proof of Proposition 3.11 and 3.14, we could not treat special points
in O(ξ) and for which ξ and its symmetric are the borders of A. But with remark 3.4, we can
choose a smaller interval and thus these points can now be studied with Proposition 3.14.

3.4. Reconstruction of the clusters. In the previous section, we have seen that clusters
appear scattered in the time line according to an homogeneous Poisson process of intensity
θ := limµ(Q(Bn))/µ(Bn). If ζ is not a periodic point, by definition, Q(Bn) = Bn and there
is nothing more to prove. However, when ζ is a periodic point, the topological cluster is not
seen by the induced map and we need to reconstruct it. As we will see, the nice structure of
our shrinking balls Bn and the local dynamics ruled by Hartman-Grobman theorem allow us
to rebuild the clusters.

Remark 3.22. We remark that the reconstruction procedure is very general and it will work
for balls as long as the density is regular enough without any further assumptions.
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From this point forward, let us fix ζ as a periodic point of prime period p and (Bn)n a sequence
of balls shrinking to ζ as earlier. We introduce some notation following [FFT13], for example,
in order to study the clusters:

(1) let Q0(Bn) := Q(Bn) = Bn ∩T−p(Bc
n) be the outer annuli and for every k ∈ N, define

the higher order annuli as: Qk+1(Bn) := T−p(Qk(Bn)) ∩Bn.
(2) let U0(Bn) := Bn and for every k ∈ N, set Uk+1(Bn) = T−p(Uk(Bn)) ∩Bn.

We recall next a useful result in order to establish the convergence of point processes (see for
example [Kal21, Theorem 14.16]).

Proposition 3.23. In order to have the convergence of the point processes Nn to N , it is
enough to check that, for all I1, . . . , Iq ⊂ R with Ij = [aj , bj) and N(∂Ij) = 0 a.s, we have

(Nn(I1), . . . , Nn(Iq)) =====⇒
n→+∞

(N(I1), . . . , N(Iq)).

Define an adjusted version of the first hitting time to A by

hA(x) := min{n ≥ 0 : Tn(x) ∈ A}
and for every ` ∈ N, the corresponding `-th hitting time to A:

h
(`)
A (x) := min{n ∈ N : Card(A ∩ {x, . . . , Tnx}) = `}.

Note that if x /∈ A, then h(`)(x) = r(`)(x) and if x ∈ A, h(1)(x) = 0 and h(`+1)(x) = r(`)(x).
We introduce h(`) for technical reasons related with the forthcoming definition of the return
time processes which will add a mass at 0.
Proposition 3.15 gives us the convergence:

N ′n =
∑
`≥1

δ{
µ(Bn)h

(`)
Q(Bn)

} µ
=====⇒
n→+∞

Nθ,

with Nθ denoting an homogeneous Poisson process of intensity θ.
When an orbit enters Q(Bn) it determines the ending of cluster. It will be useful to consider
also the beginning of a cluster and, for that purpose, we introduce the entrance set:

E(Bn) := T−pBn ∩Bc
n

which marks the beginning of a cluster (after p steps). Q(Bn) has the advantage of being inside
Bn but studying hits to E(Bn) helps in relating the point processes of cluster locations and of
hits to the target sets. Instead of studying the point process of cluster locations by considering
entrances to Q(Bn), we consider the point process counting hits to E(Bn). Namely, let

N ′′n :=
∑
`≥1

δ{
µ(Bn)h

(`)
Q(Bn)

}.
Lemma 3.24. We have

N ′′n
µE(Bn)
=====⇒
n→+∞

Nθ + δ0,

with Nθ denoting the homogeneous Poisson process with intensity θ.

Proof. We use Proposition 3.23 to obtain the convergence of N ′′n under µ. Let I1, . . . , In be
such that Nθ(∂Ij) = 0 a.s for every j ∈ {1, . . . , q}. We can choose n large enough so that
µ(rQ(Bn) ≤ p) ≤ ε. Observe that on the complement of the set {rQ(Bn) ≤ p}, every return to
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Q(Bn) is preceded by a return to E(Bn). We also consider δ > 0 such that µ(N ′n([aj − δ, aj +
δ]) ≥ 1), µ(N ′n([bj − δ, bj + δ]) ≥ 1) ≤ ε for every j ∈ {1, . . . , q}. Then we have

µ
((
N ′′n(I1), . . . , N ′′n(In)

)
6= (N ′n(I1), . . . , N ′n(In))

)
≤

q∑
j=1

µ(N ′′n(Ij) 6= N ′n(Ij))

≤
q∑
j=1

k−1∑
`=0

µ
(
µ(Bn)r

(`)
E(Bn) ≤ aj ≤ aj + δ ≤ µ(Bn)r

(`)
E(Bn)

)

+

q∑
j=1

k−1∑
`=0

µ
(
µ(Bn)r

(`)
E(Bn) ≤ bj ≤ bj + δ ≤ µ(Bn)r

(`)
E(Bn)

)
+ (2q + 1)ε

≤
q∑
j=1

k−1∑
`=0

µ
(
r

(`)
Q(Bn) − r

(`)
E(Bn) ≥ 2δ/µ(Bn)

)
+ (2q + 1)ε

≤
q∑
j=1

k−1∑
`=0

max Ij/µ(Bn)∑
p=0

µ
(
r

(`)
E(Bn) = p, T−p(E(Bn) ∩ {rQ(Bn) ≥ δ/µ(Bn)})

)
+ (2q + 1)ε

≤ qkmax Ij
µ(Bn)

µ
(
En ∩ {rQ(Bn) ≥ δ/µ(Bn)}

)
+ (2q + 1)ε

≤ (2q + 2)ε for n large enough.

The convergence in law of N ′′n to Nθ under µ implies the convergence in law of N ′′n under
µE(Bn) to Nθ + δ0 ([Zwe16, Theorem 3.1] or [HLV07, Theorem 1]). �

In order to compare the measure of the successive annuli Qk(Bn) and the Uk(Bn) and the
measure of the respective preimages in E(Bn), we need the following lemma.

Lemma 3.25. For every sequence An ∈ F ∩Bn,
T p#µE(Bn)(An) ∼ µBn(An).

Proof. We have

T p#µE(Bn)(An) = µE(Bn)(T
−pAn) =

1

µ(E(Bn))

(
µ(An)− µ(Bn ∩ T−p(An))

)
=

1

µ(E(Bn))

(
µ(An ∩Bn)− µ(U1(Bn) ∩ T−p(An))

)
Now, by change of variables (since T p : U1(Bn)→ Bn is one to one and onto), we have

µ(An ∩Bn) =

∫
Bn

1Anρd Leb =

∫
U1(Bn)

1An ◦ T pρ ◦ T p|(T p)′| d Leb .

On the other hand, we have

µ(U1(Bn) ∩ T−pAn) =

∫
U1(Bn)

1An ◦ T pρ d Leb .

Since, we would like to compare both measures, we need to compare ρ ◦ T p|(T p)′| and ρ on
U1(Bn). Let us fix a small ε > 0. Since T p is a polynomial, |(T p)′| is continuous and for n
large enough, |(T p)′(x)| ∈ [|(T p)′(ζ)| − ε, |(T p)′(ζ)|+ ε] for x ∈ Bn.
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Now, we need to consider two cases. First, if ζ /∈ O(0), by (5), ρ is continuous at ζ and thus
provided n is large enough, ρ(x) ∈ [ρ(ζ)− ε, ρ(ζ)− ε] for x ∈ Bn. Since T p(U1(Bn)) ⊂ Bn by
construction, ρ ◦ T p ∈ [ρ(ζ)− ε, ρ(ζ) + ε] for x ∈ U1(Bn). Thus,

|(T p)′(ζ)| − ε
1 + ε

≤ µ(An ∩Bn)

µ(U1(Bn) ∩ T−pAn)
≤ |(T

p)′(ζ)|+ ε

1− ε
.

When, ζ ∈ O(0)\{0}, ρ has a singularity at ζ, but we can still compare ρ and ρ ◦ T p. Indeed,
using (5)

ρ ◦ T p(x) = ψ0 ◦ T p(x) +

+∞∑
k=1

C
(0)
k√

|T px− ck|
1{w0<sk−1(T px−ck)<0}

+

+∞∑
k=1

C
(1)
k

√
|T px− ck|1{w0<sk−1(T px−ck)<0}.

The only problem is when ck = ζ in the central term (all the other are continuous at ζ and
thus equal to a constant up to ε). We have

+∞∑
k=1,ck=ζ

C
(0)
k√

|T px− ζ|
1{w0<sk−1(x−ck)<0}

=
C1√
|T px− ζ|

1{w0<(T px−ζ)<0} +
C2√
|T px− ζ|

1{w0<−(T px−ζ)<0}

=
C1√

|T px− T pζ|
1{w0<(T px−ζ)<0} +

C2√
|T px− T pζ|

1{w0<−(T px−ζ)<0}

=
C1√

|(T p)′(c)|
√
|x− ζ|

1{w0<(T px−ζ)<0} +
C2√

|(T p)′(c)|
√
|x− ζ|

1{w0<−(T px−ζ)<0}

=
1√

|(T p)′(c)|

(
C1√
|x− ζ|

1{w0<(T px−ζ)<0} +
C2√
|x− ζ|

1{w0<−(T px−ζ)<0}

)

Thus, provided n is large enough,√
|(T p)′(ζ)| − Cε

1 + ε
≤ µ(An ∩Bn)

µ(U1(Bn) ∩ T−pAn)
≤
√
|(T p)′(ζ)|+ Cε

1 + ε
.

Hence, returning to the expression of T p#µE(Bn), we get

T p#µE(Bn)(An) = µE(Bn)(T
−pAn) =

1

µ(E(Bn))

(
µ(An)− µ(Bn ∩ T−p(An))

)
=

1

µ(E(Bn))

(
µ(An ∩Bn)− µ(U1(Bn) ∩ T−p(An))

)
∼ θ

µ(E(Bn))
µ(An ∩Bn)
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∼ 1

µ(Bn)
µ(An ∩Bn)

∼ µBn(An).

�

Let K(`)
n (x) be the unique k ∈ N such that T p ◦ T h

(`)
E(Bn)

(x)
(x) ∈ Qk(Bn), which is to say that

K
(`)
n is the size of the `-th cluster. Then, we define the point process:

N̂n :=
∑
`≥1

K(`)
n δ{

µ(Bn)h
(`)
En

}.
Lemma 3.26. We have that

N̂n

µE(Bn)
=====⇒ Nθ,Geo(θ) +X1δ0

where Nθ,Geo(θ) is a compound Poisson process with intensity θ and geometric multiplicity
distribution law of parameter θ, while X1 ∼ Geo(θ) is independent of Nθ,Geo(θ).

Remark 3.27. We observe that since we are studying returns now instead of hits, we obtain
a slightly different limiting process, in particular, with a point mass at 0.

Proof. First, note that µ(En) = µ(T−pBn ∩ Bc
n) = µ(T−pBn) − µ(T−pBn ∩ Bn) = µ(Bn) −

µ(Bn\Q(Bn)) = µ(Q(Bn)).
Furthermore, we have for every `, k ∈ N,

µE(Bn)

(
K(`)
n ≥ k

)
= µE(Bn)

(
T p ◦ T r

(`)
E(Bn) ∈ Uk−1(Bn)

)
= µE(Bn)

(
T−p (Uk−1(Bn))

)
=

1

µ(Q(Bn))
µ
(
T−p (Uk−1(Bn)) ∩Bc

n

)
=
µ (T−p (Uk−1(Bn)))− µ (T−p (Uk−1(Bn)) ∩Bn)

µ(Q(Bn))

=
µ (Uk−1(Bn))− µ (Uk(Bn))

µ(Q(Bn))

=
µ(Qk−1(Bn))

µ(Q(Bn))
−−−−−→
n→+∞

(1− θ)k.

So, K(`)
n

µEn=====⇒
n→+∞

K(`) ∼ Geo(θ) for every ` ≥ 1.

Moreover, starting from E(Bn), we have for ` < `′ and k, k′ ∈ N,

µE(Bn)

((
K(`),K(`′)

)
= (k, k′)

)
= µE(Bn)

(
K1 ◦ T `E(Bn) = k, K`′−`+1 ◦ T `E(Bn) = k′

)
= µE(Bn)

(
K(1)
n = k, K(`−`′+1) = k′

)
.

Thus, it is enough to look at the independence between K(1) and K(`).
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P(K(1)
n ≥ k,K(`)

n = k′) = µE(Bn)

(
K(1)
n ≥ k, K(`)

n = k′
)

= µE(Bn)

(
T−p (Uk−1(Bn)) ∩ T−`+1

E(Bn)

(
T−p(Qk′−1(Bn))

))
= µE(Bn)

(
T−p

(
Uk−1(Bn) ∩ T−`+1

E(Bn) (Qk′−1(Bn))
))

=
1

µ(E(Bn))

(
µ
(
T−p

(
Uk−1(Bn) ∩ T−`+1

E(Bn)

(
T−p(Qk′−1(Bn))

)))
− µ

(
Bn ∩ T−p

(
Uk−1(Bn) ∩ T−`+1

E(Bn)

(
T−p(Qk′−1(Bn))

))))

=
1

µ(E(Bn))

(
µ
(
Uk−1(Bn) ∩ T−`+1

E(Bn)

(
T−p(Qk′−1(Bn))

))
− µ

(
T−`+1
E(Bn)

(
T−p(Qk′−1(Bn))

)
∩ Uk(Bn)

))

=
1

µ(E(Bn))
µ
(
T−`+1
E(Bn)

(
T−p(Qk′−1(Bn))

)
∩Qk−1(Bn)

)
∼ (1− θ)k

µ(E(Bn))
µ
(
T−`+1
E(Bn)

(
T−p (Qk′−1(Bn))

)
∩Q(Bn)

)
.

Now, we have

µ
(
T−`+1
E(Bn)

(
T−p (Qk′−1(Bn))

)
∩Q(Bn)

)
= µ

(
T−p

(
T−`+1
E(Bn)

(
T−p (Qk′−1(Bn))

)
∩Q(Bn)

))
= µ

(
T−p

(
T−`+1
E(Bn)

(
T−p (Qk′−1(Bn))

)
∩Q(Bn)

)
∩ E(Bn)

)
+ µ

(
T−p

(
T−`+1
E(Bn)

(
T−p (Qk′−1(Bn))

)
∩Q(Bn)

)
∩Bn

)
= µ

(
E(Bn) ∩ T−pQ(Bn) ∩ T−p

(
T−`+1
E(Bn)

(
T−p (Qk′−1(Bn))

)))
+ µ

(
T−`+1
E(Bn)

(
T−p (Qk′−1(Bn))

)
∩Q1(Bn)

)
=

+∞∑
j=0

µ
(
E(Bn) ∩ T−pQj(Bn) ∩ T−p(j+1)

(
T−`+1
E(Bn)

(
T−p (Qk′−1(Bn))

)))
by immediate recursion.

=

+∞∑
j=0

µ
(
E(Bn) ∩ T−pQj(Bn) ∩ T−`+1

E(Bn)

(
T−p (Qk′−1(Bn))

))
= µ

(
E(Bn) ∩ T−`+1

E(Bn)

(
T−p (Qk′−1(Bn))

))
because (E(Bn) ∩ T−p(Qj(Bn)))j∈N are disjoint. Thus,

µE(Bn)

(
K(1)
n ≥ k, K(`)

n = k′
)
∼ (1− θ)kµE(Bn)

(
T−`+1
E(Bn)

(
T−p (Qk′−1(Bn))

))
∼ (1− θ)kµE(Bn)

(
T−pQk′−1(Bn)

)
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∼ P(K(1) ≥ k)P(K(`) = k′).

Since, we already know that K(1) and K(`) converge, (K(1),K(`)) is tight and the only possible
limit is the product of two independent random variables with a geometric distribution, Geo(θ).
To obtain the independence between K(`) the sizes of the cluster and the successive return
times, the same proof applies. Finally, the independence and law of the successive return
times is given by Lemma 3.24.
Hence, we have proved the limit

N̂n

µE(Bn)
=====⇒
n→+∞

Nθ,Geo(θ) +X1δ0,

where Nθ,Geo(θ) is a compound Poisson process with intensity θ and a geometric multiplicity
distribution of parameter θ and X1 = K(1) ∼ Geo(θ) is independent of Nθ,Geo(θ). �

Consider now the REPP counting the entrances in Bn:

Nn :=
∑
`≥1

δ{
µ(Bn)h

(`)
Bn

}.
Theorem 3.28. We have

Nn
µ

=====⇒
n→+∞

Nθ,Geo(θ),

where Nθ,Geo(θ) is a compound Poisson process with intensity θ and a geometric multiplicity
distribution of parameter θ.

Proof. By Lemma 3.26, N̂n converges to Nθ,Geo(θ) + X1δ0 under µE(Bn). We first show that
Nn converges to Nθ,Geo(θ) + X1δ0 under µE(Bn). Let ε > 0. By Lemma 3.24, we can choose
k ∈ N such that µE(Bn)(N

′′
n([0,max Ij ]) ≥ k) ≤ ε and since Nθ,Geo(θ)(∂Ij) = 0 a.s for all

j ∈ {1, . . . , q} we can consider δ > 0 such that µE(Bn)(N
′′
n([aj−δ, aj+δ]) ≥ 1), µE(Bn)(N

′′
n([bj−

δ, bj + δ]) ≥ 1) ≤ ε, for every j ∈ {1, . . . , q}. Now,

µE(Bn)

(
(Nn(I1), . . . , Nn(Iq)) 6= (N̂n(I1), . . . , N̂n(Iq))

)
≤

q∑
j=1

µEn

(
Nn(Ij) 6= N̂n(Ij)

)

≤
q∑
j=1

k−1∑
`=0

µE(Bn)

(
µ(Bn)r

(`)
E(Bn) < aj ≤ µ(Bn)r

(`)
Q(Bn)

)

+

q∑
j=1

k−1∑
`=0

µE(Bn)

(
µ(Bn)r

(`)
E(Bn) < bj ≤ µ(Bn)r

(`)
Q(Bn)

)
+ ε

≤
q∑
j=1

k−1∑
`=0

µE(Bn)

(
µ(Bn)rQ(Bn) ≥ δ

)
+ (2q + 1)ε

≤ qkµE(Bn)

(
µ(Bn)rQ(Bn) ≥ δ

)
+ (2q + 1)ε

≤ (2q + 2)ε for n large enough.

This means,

Nn

µE(Bn)
=====⇒
n→+∞

Nθ,Geo(θ) +X1δ0.
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Noting that Nn under T p#µE(Bn) corresponds to Nn ◦T p under µE(Bn) and by construction we
do not miss any cluster, then, since p is fixed, the normalisation by µ(Bn) makes the difference
disappear asymptotically. Thus,

Nn

T p
#µE(Bn)

=======⇒
n→+∞

Nθ,Geo(θ) +X1δ0.

By Lemma 3.25, we have T p#µE(Bn)(An) ∼ µBn(An) for every sequence An ∈ F ∩Bn. Thus,

µBn ((Nn(I1), . . . , Nn(Iq)) = (k1, . . . , kq))

∼ T p#µE(Bn) ((Nn(I1), . . . , Nn(Iq)) = (k1, . . . , kq))

−−−−−→
n→+∞

P
(
(Nθ,Geo(θ)(B1), . . . , Nθ,Geo(θ)(Bq)) = (k1, . . . , kq)

)
,

This proves the convergence of Nn to Nθ,Geo(θ) + X1δ0 under µBn . Again by equivalence
between hitting and return time processes ([Zwe16, Theorem 3.1] or [HLV07, Theorem 1]), it
is also equivalent to the convergence of Nn under µ and we have

Nn
µ

==⇒ Nθ,Geo(θ).

�

4. Dichotomy for doubly intermittent maps

The purpose of this section is to establish the dichotomy for doubly intermittent full branch
maps having neutral points at both ends of the intervals. We recall first the properties of
these maps. See [CLM22] for more details.

Definition 4.1. Let I = [−1, 1], I− = [−1, 0] and I+ = [0, 1].
We assume:

(A1) T : I → I is full branch, the restricitions T± : I± → I are orientation preserving C2

diffeomorphisms and the only fixed points are the endpoints of I.
(A2) There exists `1, `2 ≥ 0, k1, k2, a1, a2, b1, b2 > 0 such that

(i) if `1, `2 6= 0 and k1, k2 6= 1, then

Tx =


x+ b1(1 + x)(1+`1) in U−1,

1− a1|x|k1 in U0−,

−1 + a2x
k2 in U0+,

x− b2(1− x)1+`2 in U−1,

where U0− := (−ι, 0], U0+ = [0, ι) and U±1 := T (U0±).
(ii) If `1 = 0 and/or `2 = 0,

T|U±1
x := ±1 + (1 + b1)(x+ 1)∓ ξ(x),

where ξ is C2.
If k1 = 1 and/or k2 = 1, we only ask T ′(0−) = a1 > 1 and/or T ′(0+) = a2 > 1
and T is monotone in the corresponding meighbourhood.



INDUCING TECHNIQUES FOR QUANTITATIVE RECURRENCE AND APPLICATIONS 29

We define
∆−0 := T−1(0, 1) ∩ I− and ∆+

0 := T−1(−1, 0) ∩ I+,

and by recursion

∆−n := T−1(∆−n−1) ∩ I− and ∆+
n := T−1(∆+

n−1) ∩ I+.

By construction and hypothesis on T , {∆±n }n≥0 is a partition of I±. Furthermore, we define

δ−n := T−1(∆+
n ) ∩∆−0 and δ+

n := T−1(∆−n ) ∩∆+
0 .

This time, {δ±n }n≥1 is a partition of ∆±0 and we have Tn(δ±n ) = ∆∓0 . Let n± := min{n | δ±n ⊂
U0±}. We also assume
(A2) There exists λ > 1 such that for all 1 ≤ n ≤ n±, for all x ∈ δ±n , we have (Tn)′(x) > λ.

We denote F̂ := {T : I → I, T satisfies (A0)-(A2)}.
Let β := β1 ∨ β2 with β1 := k1`1 and β2 := k2`2. We define F := {T ∈ F̂ : β < 1}.

Proposition 4.2. [CLM22, Theorem B] For all T ∈ F, T admits an ergodic invariant proba-
bility µ equivalent to Leb and bounded away from 0 and +∞ on ∆−0 ∪∆+

0 . In particular, we
have Leb|∆−0 ∪∆+

0
� µ∆−0 ∪∆+

0
.

Proposition 4.3. For T ∈ F, T∆±0
is a first return Gibbs-Markov and Rychlik map.

Proposition 4.4. If β = 0, then µ∆−0
(r∆−0

> t) decays exponentially as t → +∞. If β > 0,
there exists C > 0 such that

µ∆−0
(r∆−0

> t) ≤ Ct−1/β.

Remark 4.5. The advantage of this symmetrical construction on ∆−0 and ∆+
0 is that we can

consider the appropriate induction set depending on the relative position of ζ.

Remark 4.6. For the notations, we will use T− : I− → I the left branch of T and T+ : I+ → I
the right-branch. Both of them are continuous, increasing, one to one and onto.

Now, we are able to formulate the dichotomy theorem for doubly intermittent full branch
maps.

Theorem 4.7. Let T ∈ F and µ be its associated acip. Let ϕ : I → R be a distance observable
achieving a maximum at ζ ∈ I. Let Nn be the REPP associated to ϕ and (un)n∈N a sequence
such that Bn := {ϕ > un} satisfies nµ(Bn) −−−−−→

n→+∞
τ > 0. Then,

(i) If ζ ∈ (−1, 1) and ζ not periodic, Nn converges in distribution to N an homogeneous
Poisson Process with intensity 1.

(ii) If ζ ∈ (−1, 1) is periodic of period p, then Nn converges to Nθ,Geo(θ) a compound Pois-
son Process with intensity θ = 1 − |(T p)′(ζ)|−1 and multiplicity distribution function
π given by π(k) = θ(1− θ)k−1 for k ≥ 1.

(iii) If `1, `2 6= 0 and ζ ∈ {−1, 1}, Nn does not converges but NQ(Bn) converges to an
homogeneous Poisson process of intensity 1. We still have the convergence of the
Hitting and Return Time Statistics but with another renomarlisation.

Remark 4.8. When ζ ∈ ∆−0 ∪∆+
0 , we can direclty use the induction results so there is nothing

to prove. However, we do not need to make this distinction as points in ∆−0 ∪∆+
0 are carried

the same way in the proof.
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Lemma 4.9. Let ζ /∈ ∆−0 . Then, for a sequence (Bn)n of shrinking balls to ζ, we have

µ(B′n) rBn

µB′n−−−→ 0.

Proof. Consider ε > 0. We have

B′n ∩ {rBn ≥ ε/µ(B′n)} =
⋃

k≥ε/µ(B′n)

(
A ∩ {rA > k} ∩ T−kBn

)
⊂ A ∩ {rA ≥ ε/µ(B′n)}.

Hence,

µB′n(rBn ≥ ε/µ(B′n)) ≤ C
(

ε

µ(B′n)

)−1/β

· 1

µ(B′n)
≤ Cε−1/βµ(B′n)1/β−1 −−−−−→

n→+∞
0,

using the fact that β < 1 for T ∈ F. �

Let ζ 6= 0. If ζ ∈ I±\{0}, we will use the induction on A∓. In the following we might drop
the indices once we choose ζ.

Lemma 4.10. Let ζ ∈ I̊±. Then, we have Bn ∩ {rBn ≤ rA} = ∅. If ζ = ±1, we have
Q(Bn) ∩ {rBn ≤ rA} = ∅.

Let ζ 6= 0. If ζ ∈ I±, we set A = ∆∓0 . We will characterize the shadow set B′n of Bn in A.
Let

Prek = {α ∈ A | T k(α) = ζ and T j(α) /∈ A} and set Pre =
⋃
k≥1

Prek .

We will separate the proof in different parts. The easiest case is when ζ /∈ {0,−1, 1} for some
s ∈ N. Then, we will consider the special case 0 and the fixed points −1 and +1.

4.1. The case ζ /∈ {−1, 0, 1}. In this section, we will assume that ζ /∈ {0,−1, 1} and prove
the assertions in Theorem 4.7 for such ζ.

Lemma 4.11. For every k ≥ 1, we have Prek = {αk}, (αk)k≥1 is monotone and αk −−−−−→
n→+∞

0.

Furthermore, for n large enough, there exists a family of intervals (Bn(αk))k≥1 included in A
such that

B′n =
⋃
k≥1

B′n(αk).

This is a disjoint union and T k(B′n(αk)) = Bn is one to one and onto.

Proof. In order to simplify the notation, we will consider ζ ∈ I− and thus A = ∆+
0 . The other

case is identical and follows by symmetry.
Consider n large enough such that Bn ⊂ I̊−. Recall that B′n =

⋃
k≥0A ∩ {rA > k} ∩ T−kBn.

For every k ∈ N, we have A ∩ {rA > k} ∩ T−kBn = B′n(αk), which we will ceck by induction.
Indeed, for k = 1, T−1Bn = T−1

− Bn t T−1
+ Bn and T−1

+ Bn ⊂ A and T−1
+ Bn is an interval

containing αk ∈ Pre1.
By induction, we have {rA > k}∩T kBn = T−k− BntT−1

+ (T−k+1
− Bn) and of course T−1

+ (T−k+1
− Bn) ⊂

A. The case k = 1 comes from the definition of T . Now, we have

{rA > k + 1} ∩ T−(k+1)Bn = T−1
(
{rA > k} ∩ T−kBn ∩Ac

)
= T−1

(
T−k− Bn

)
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= T
−(k+1)
− Bn t T−1

+ (T−k− Bn).

Now, we just have T−1
+ (T−k+1

− Bn) =: B′n(αk) for αk = T−1
+ (T−k+1

− ζ) and with T k(B′n(αk)) =

Bn, bijectively. Furthermore, T−k− ζ −−−−→
k→+∞

−1 meaning αk −−−−→
k→+∞

0. We also have that since

the sets A ∩ {rA > k} ∩ T−kBn are disjoint two by two for n large enough, then so are the
B′n(αk). �

Since B′n consists of a countable union of intervals, we cannot apply directly decay of cor-
relations to obtain the validity of the conditions and we have to truncate, as in [AFFR17].
For that purpose, for every sequence N(n) going to +∞, we define B̃′n :=

⋃
1≤k≤N(n)B

′
n(αk)

the approximation of B′n with only N(n) intervals. The following lemma tells us that this
approximation is good enough to apply, without needing any further assumption on N(n).
Furthermore, for an interval B′n(αk), we will write B′n(αk)

− (resp. B′n(αk)
+) for the left part

(resp. the right part) of B′n(αk) stopping at αk (resp. starting at αk) and procede likewise for
Bn around ζ.

Lemma 4.12. For every sequence (N(n))n∈N, we have

lim
n→+∞

µ
(
B′n\B̃′n

)
µ(B′n)

= 0.

Proof. Here, again, we will consider ζ ∈ I− and use the induction on A = ∆+
0 . The proof for

ζ ∈ I+ is identical: one only need the switch the + and − signs. We split the proof in three
different cases.
Assume first T sζ ∈ Å (take s minimal). Consider n sufficiently large so that T s(Bn) ⊂ A.
Then, B′n ⊂ T−1

A (T s(Bn)). Since (A, TA, µA) is Rychlik and Markov, it has bounded distortion
on each (Ij)j∈N. Furthermore, by construction, for every k ≥ 1, we have that B′n(αk) ⊂ Ijk
for some Ijk such that k(jk) = q + k. Thus, we have

µ(B′n(αk)) ≤ Kµ(Ijk)µ(TA(B′n(αk)))

≤ Kµ(Ijk)µ(T s(Bn)) ≤ Cµ(Ijk)µ(Bn),

Using the fact that µ � Leb away from −1 and 1 and (T s|Bn
)′ is bounded away from +∞ for

n large enough since ζ is not a preimage of 0, we get

µ
(
B′n\B̃′n

)
= µ

 ⋃
k>N(n)

B′n(αk)

 ≤ C ∑
k:k(jk)>N(n)+s

µ(Ijk)µ(Bn)

≤ Cµ(Bn)µ (A ∩ {rA > N(n) + s}) = o(µ(Bn)),

as soon as we take N(n)→ +∞. Since we have µ(B′n) = µ(Bn), the result follows.
Now, if T sζ = T−1

+ (0) ∈ ∂A, we have T s(B−n ) ⊂ A and thus, using the same method, we get

µ(B′n(αk)
−) ≤ Cµ(Ijk)µ(B−n ).

Moreover, we also have T s+1(B+
n ) ⊂ A and the same argument holds, giving

µ(B′n(αk)
+) ≤ Cµ(Ijk)µ(B+

n ).
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Combining the two and summing, we obtain

µ
(
B′n\B̃′n

)
= o(µ(Bn)),

as we take N(n)→ +∞.
The final case is when T sζ = 0 with T s−1ζ = T−1

− (0). In particular, it means that T iζ ∈
I−\∆−0 for every i ∈ {0, . . . , s− 1}. Here again, we have T sB+

n ⊂ A leading to

µ(B′n(αk)
+) ≤ Cµ(Ijk)µ(B+

n ).

But now, B−n will be sent close to 1 and thus, when it comes back close in A, it will cover
it preventing from obtaining the product by Bn. To avoid this issue, we will use the fact
that (∆−0 , T∆−0

, µ∆−0
) is also Markov and Rychlik. We have T sB−n ⊂ ∆−0 . For every Bn(αk),

consider T−1
− Bn(αk)

− ⊂ ∆−0 . We have T−1
− Bn(αk)

− ⊂ I ′jk with k(jk) = k+ s+ 1 (where (I ′j)j
are the domain of the Rychlik map induced on ∆−0 ). So, by bounded distortion again

µ(T−1
− Bn(αk)

−) ≤ Kµ(I ′jk)µ(TA(B′n(αk)))

≤ Kµ(Ijk)µ(T s(Bn)) ≤ Cµ(I ′jk)µ(Bn),

Now, using this time that T ′ is bounded away from 0 on T−1
− Bn(αk)

− for n large enough
(since the set is bounded away from 0), we get µ(T−1

− Bn(αk)
−) ≥ cµ(Bn(αk)

−). Combining
again the two, we get the estimate

µ
(
B′n\B̃′n

)
≤ Cµ(Bn)

(
µ (A ∩ {rA > N(n) + s}) + µ

(
∆−0 ∩ {r∆−0

> N(n) + s}
))

= o(µ(Bn)),

as we take N(n)→ +∞. �

Now we are able to finish the proof of Theorem 4.7 for every ζ /∈ {−1, 0, 1}.
If ζ is not periodic, let q = 0. If ζ is periodic of period p, we consider q = |O(ζ) ∩A| (note
that the special cases of Lemma 4.12 are not periodic points and we will have q = 0 in this
case). By Lemma 4.11, we have seen that B′n consists of a countable number of intervals.
Using the arguments applied in [AFFR17, Theorems 4.3 and 4.4], we need to find a sequence
N(n) ∈ N with limn→+∞N(n) = +∞ and N(n) = o(n) such that

lim
n→+∞

µ
(
B′n\B̃′n

)
µ(B′n)

= 0.

and

(1) limn→+∞ ‖1Q(B̃′n)‖C1nρtn = 0 for some sequence (tn)n∈N such that tn = o(n).
(2) limn→+∞ ‖1Q(B̃′n)‖C1

∑+∞
j=Rn

ρj = 0.

Here Q(B̃′n) = B̃′n ∩
⋂q
i=1 T

−i
A (B̃′n)c. We have ‖Q(B̃′n)‖BV ≤ 4N(n) + 1 (for every k ≥ 1,

Q(B̃′n) ∩B′n(αk) consist of two disjoint intervals).
Since we do not have any constraint on N(n), the three conditions are satisfied for a good
sequence N(n), thus giving the result and the convergence for B′n. Corollary 2.9 gives the
result for Bn since its conditions are satisfied by Lemma 4.9.
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4.2. The case ζ = 0. For ζ = 0, we will induce on A := ∆+
0 . The proof would be identical if

we had chosen ∆−0 . Again, we write B±n = Bn ∩ I±. The main issue here is that µ(Bn ∩A) =
µ(B+

n ) > 0 and µ(Bn ∩Ac) = µ(B+
n ) > 0 for every n ≥ 0.

Lemma 4.13. We have µBn(rBn < rA) −−−−−→
n→+∞

0.

Proof. By the choice of A, we have µBn(rBn < rA) = µBn(B+
n ∩ {rBn < rA}) = µBn(B+

n ∩
{rB−n < rA}) = µBn((B−n )′ ∩B+

n ).
(B−n )′ =

⋃
k≥1(B−n )′(αk). Here again, we will use the same trick as in the proof of Lemma

4.12 by considering the induced system (∆−0 , T∆−0
, µ∆−0

) and using that for every k ≥ 1,
µ(T−1

− (B′n)−(αk)) ≥ cµ((B′n)−(αk)) since the preimage is bounded away from 0. Moreover,
µ(T−1

− (B′n)−(αk)) ⊂ I ′jk for some jk with k(jk) = k + 1. Hence, by bounded distortion

µ((B−n )′(αk)) ≤ Cµ(T−1
− (B−n )′(αk)) ≤ Cµ(I ′jk)µ(Bn).

Moreover, T−1
− B+

n ⊂
⋃
j:k(j)>N(n) I

′
j for some N(n) −−−−−→

n→+∞
+∞ because B+

n is shrinking to
0+. Hence,

µ((B−n )′ ∩B+
n ) ≤ Cµ∆−0

(r∆−0
> N(n))µ(Bn) = o(µ(Bn)).

�

Now, Lemma 4.13 allows us to use B′n without making further adjustments as in Corollary 2.10.
The proof for ζ = 0 is now similar to the case ζ /∈ {−1, 0, 1} applying the same truncations.
Hence the REPP associated to Bn converges to a standard homogeneous Poisson process.

4.3. The case ζ ∈ {−1, 1}. For ζ = −1, we will consider the induction on ∆+
0 and for ζ = 1,

the induction on ∆−0 . The two cases are again symmetrical so we only consider the case
ζ = −1 and A = ∆+

0 . Since ζ ∈ ∂I, Bn is only defined on one side of ζ.

Lemma 4.14. We have Pre1 = {0+} and Prek = ∅ for k ≥ 2. We have

B′n = T−1
+ Bn.

Proof. This comes from the fact that T−1
− Bn ⊂ Bn thus B′n = A ∩ {rA > 1} ∩ T−1Bn =

T−1
+ Bn. �

This case is easier since B′n is also an interval so there is no need to make approximation
nor truncation. We directly get the convergence of the REPP associated to B′n and thus
to the one associated to Q(Bn) = Bn ∩ T−1Bn = Bn\T−1

− Bn to a homogeneous Poisson
process of intensity one by Corollary 2.10, the conditions again coming from Lemma 4.9
and 4.10. However, we cannot use the reconstruction as in the Misiurewicz case because
θ = limn→+∞ µ(Q(Bn))/µ(Bn) = 0. However, one can still get the convergence of the HTS
with the normalisation µ(Q(Bn)) instead of µ(Bn) since the first hitting time is not affected
by the infinite cluster. In this case, this is the same argument as [Zwe19, Theorem 5.1] for
Manneville-Pommeau maps.
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